当前位置:文档之家› 情境八 食品中水分含量的测定.doc

情境八 食品中水分含量的测定.doc

情境八 食品中水分含量的测定.doc
情境八 食品中水分含量的测定.doc

情境八食品中水分含量的测定

学习本情境应了解食品中水分含量的测定在现实生产、生活中的作用;根据所给出的产品的特征和检测的意义选择、设计合适的检测方法;正确的进行检测操作并如实的记录检测过程的现象和问题;测定结果的精密度应达到相关标准规定的要求。通过该情境的学习逐步深入了解食品中水分含量测定的各种方法的原理。

工作任务一明确检测任务,获取检测方法信息

项目1 熟悉面包产品中水分含量测定的意义

通过网络搜集、相关参考书的查阅等手段,了解各种面包产品中水分含量的基本情况;面包产品中水分的来源;测定面包中水分含量有哪些意义,曾经发生过的与该检测项目相关的案例等。撰写一份报告,请特别关注对最新情况的收集。(2000字)

项目2 熟悉蜂蜜中水分含量测定的意义

通过网络搜集、相关参考书的查阅等手段,了解蜂蜜产品中水分含量的基本情况;括蜂蜜产品中水分的来源;蜂蜜产品中水分含量的测定有哪些意义,曾经发生过的与该检测项目相关的案例等。撰写一份报告,请特别关注对最新情况的收集。(2000字)

1.1 水分对食品体系的重要性

水是维持植物和人类生理功能必不可少的物质之一。控制食品中的水分含量,对于保持食品的感官性状、维持食品中其他组分的平衡关系、保证食品的稳定性十分重要。各种食品水分的含量差别很大。例如,鲜果为70%一93%、鲜菜为80%一97%、鱼类为67%一81%、鸡蛋为67%一74%、乳类为87%一89%、猪肉为43%一59%,即使是干食品,也含有少量水分,如面粉为12%一14%、饼干为2.5%一4.5%。例如,新鲜面包的水分含量若低于28—30%,

其外观形态干瘪,失去光泽;水果糖的水分含量一般控制在3.0%左右,过低则会出现反砂甚至反潮现象;乳粉的水分含量控制在2.5—3.0%以内。控制微生物生长繁殖,延长保质期。湿度在产品保藏中是一个质量因素,并且可以直接影响一些产品质量的稳定性。

1.2 水分含量测定的意义

对食品分析来说,最基本最重要的方法之一就是对水分含量的测定。食品中去除水分后剩下的干基就称为固形物,因为水是一种廉价的掺入物,所以对食品制造商来说,这个分析值就意味着巨大的经济利益.。水分测定对于计算生产中的物料平衡,实行工艺控制与监督等方面,都具有很重要的意义:

1.湿度在某些产品保藏中是一个质量因素,并且可以直接影响一些产品质量的稳定性。如下列产品:脱水蔬菜和水果、奶粉、鸡蛋粉、脱水马铃薯、香精香料。

2.水分含量常被用作控制质量的重要因素。如:在果酱和果冻中,防止糖结晶。常规加工过的谷物,4-8%;膨胀后,7-8%。

3.减少含水量有利于包装和运输,如:浓缩牛奶、液体甘蔗糖(67%固形物)和液体玉米糖浆(80%固形物)、脱水产品(如果水分含量太高很难包装)、浓缩果汁。

4.水分含量(或固形物含量)通常是有专门规定的,过多的水含将被视为不合格产品。Cheddar干酪的水分含量必须≤39%、通心粉的水分含量必须≤15%、风梨汁中可溶性固形物必须≥10.5波美度、葡萄糖浆的固形物必须≥70%、加工肉类食品时,添加水的百分比通常有专门的指标。

5.食品营养价值的计量值要求列出水分含量。

6.用水分含量数据可用于表示在同一基础上的其他分析测定结果(如干基)。

工作任务二获取检测方法信息、制定检测计划、做出决策

要求能检索出与该项目相关的、公开发表的检测方法和检测标准;能根据GB 7713-87要求的格式书写相关检测标准;能描述这些检测方法在检测原理、结果精密度、检测限、应用方便、完成检测所用时间,检测人员资质要求等方面的异同点;能根据所选定的检测方法清晰的规划操作步骤,正确配备检测所需资源,对检测任务进行决策。

项目1 获取面包产品中水分含量测定方法,正确配备资源

项目2 获取蜂蜜中水分含量测定方法,正确配备资源

2.1 相关检测方法、标准及其异同点

2.2 根据最新食品安全国家标准设计操作步骤

根据GB 5009.3—2010食品安全国家标准: 食品中水分的测定的方法设计出样品中水分含量测定的操作步骤。

器材及试剂的配置与配制

2.3

工作任务三实施检测任务、原始数据记录及检测任务完成情况的检验能对提供的样品依据所策划的方法进行正确检测;能根据检测项目设计信息完整、美观的检测原始记录单;能正确填写、记录原始数据,必要时,对重要实验加以描述并记录;能自行对任务完成情况进行检验。

对检测任务完成情况的检验包括以下两方面:1、需对检验结果的精密度进行检验:用以评价检验结果是否在标准所需达到的精密度范围内;评价检验任务执行过程中所造成的偶然误差是否在可接受范围内。2、将检测数据与国家规定的产品验收标准进行对比,以评价产品是否合格,并判定样品所达到的质量等级。

项目1 如实记录面包产品中水分含量测定的原始数据和现象、并对检测结果进行评价及分析

项目2 如实记录蜂蜜中水分含量测定的原始数据和现象、并对检测结果进行评价及分析

3.1 操作过程记录

3.2 器材及试剂配置与配制记录

3.3 检验原始数据及现象描述记录

3.4 检验结果的评价及分析

3.5 检验报告单

食品分析检验的结果,最后必须以检验报告的形式表达出来,检验报告单必须列出项目测定的结果,并与相应的质量标准相对照比较,从而对产品作出合格或不合格的判断。

检验报告单

20 ()检字第号

工作任务四食品中水分含量测定任务的相关知识拓展

随着对各种检测方法研究的不断深入,我国已发表了大量有关该检测方法研究的科技文献。这些科技文献可分为两类:一类存在于大量的学术期刊中,可以通过学校的图书馆网页进入查询。这类文献以理论研究、实证研究居多。请积极查阅、吸收,以提高检测理论水平。还有一类文献存在于网络之中,其中比较典型的为“食品伙伴网”,“仪器分析网”。在这两个网站中的BBS论坛、检验检测栏目中,存在着大量的检测工作者对实践操作问题所提出的总结和案例。请积极下载、研究,以提高检测过程中提出问题和解决问题的能力。

4.1 相关信息资料查询总结

4.2 检测方法及原理简介

4.2.1 水分测定方法简介

水分测定过程中,取样的步骤、样品的处理和贮藏以及样品的制备步骤可能是各种分析中潜在的最易出现错误的来源之一,在水分含量的测定中,必须预防上述操作过程中产生的水分的得失,并尽量将它降到最低值。因此任何样品都需尽量缩短在空气中暴露的时间,尽可能的减少摩擦加热样品,装食品的容器尽量少留空间,因为水分为了维持容器内的气液平衡而会从样品中挥发出去,从而降低了样品水分含量。

为了说明分析称量的最佳方法和速度的必要性,Vanderwar用粉碎的Cheldar奶酪(2-30克放在一个直径5.5cm的铝盒中),置于分析天平上,可观察到水分的挥发呈线性状态,其挥发度与相对湿度有关。在50%相对湿度时,5秒就能减少0.01%的水分;在70%相对湿度时,挥发速度降至一半,即10秒可减少0.01%的水分。预计的挥发曲线,实际上过了5分钟的间隔后,水分的挥发就成线性了。这些事实说明,在干燥前对取样和称量方法进行控制是绝对必要的。

采用烘箱干燥法蒸发水分是基于水的沸点是100℃这样的事实,当然这仅是在纯水的条件下。自由水是水的三种存在状态中最易除去的,如果1克分子(1mol)的溶质溶解在1升水中,溶液的沸点就升高0.512℃,而且随着溶液的浓度越来越高,沸点的升高会持续贯穿于整个水分蒸发过程中。

水分的除去往往通过二个阶段完成最好,液体样品(如:牛奶,果汁)一般在放入烘箱前先用蒸汽预干燥;面包等谷物产品先在空气中干燥,磨碎后再烘箱干燥。空气和烘箱干燥中水分的损失作为样品损失的水分含量。样品的颗粒

大小,均匀程度,样品的量及其表面积都会直接影响干燥过程中水分除去的速度和效率。

4.2.1.1 干燥法

在烘箱干燥法中,样品在一定条件下加热,质量的损失被计算为样品的水分含量。水分含量测定值的大小与所用的烘箱的类型,炉中的状况,干燥时间和干燥温度密切相关。AOAC提供了用不同类型的烘箱干燥法测定各种食品中的水分含量的方法。该方法操作简单,很多烘箱都允许同时分析大量样品,时间从几分钟到24小时不等。

原理:食品中的水分受热以后,产生的蒸汽压高于空气在电热干燥箱中的分压,使食品中的水分蒸发出来。同时,由于不断的加热和排走水蒸汽,而达到完全干燥的目的,并根据样品前后失重来计算水分含量的方法,称为干燥法。

干燥法符合的条件:水分是样品中唯一的挥发物质,其它挥发物质含量要非常少或不含有。水分可以较彻底地被去除。在加热过程中,样品中的其它组分由于发生化学反应而引起的重量变化可以忽略不计。

样品的制备:

(1)固态样品:切碎或磨细——面包、饼干、乳粉.固态样品在所含水分在安全水分以上时,实验条件下粉碎过筛等处理会使产品水分含量发生损失.应采用二步干燥法.

安全水分:一般水分含量在14%以下时称安全水分,即在实验室条件下进行粉碎过筛等处理,水分含量一般不会发生变化。

二步干燥法:对于水分含量在14%以上的样品,如面包之类的谷类食品,先将样品称出总质量后,切成厚为2~3mm的薄片,在自然条件下风干15~20h,使其与大气湿度大致平衡,然后再次称量,并将样品粉碎、过筛、混匀,放于称量瓶中以烘箱干燥法测定水分。

(2)浓稠态:——炼乳、糖浆、果酱.在干燥过程中,这类食品原料可能易形成硬皮或块状,结果成不稳定或错误。避免手段:使用清洁干燥的海砂和样品一起搅拌均匀,再将样品加热干燥直至恒重。作用:防止表面硬皮的形成;可以使样品分散,减少样品水分蒸发的障碍。用量:依样品量而定,一般每3g样品加20~30g海砂就能使其充分分散。也可用硅藻土、无水硫酸钠代替.

(3)液体样品:直接高温加热,会因沸腾造成样品损失,应低温浓缩后再进行高温干燥——牛乳、果汁.

恒重:烘干后将样品取出,加盖置于干燥器内冷却0.5h后称重。重复此操作,直至前后2次质量差不超过2mg(视实验方法规定而定)视为恒重. 确定干燥时间的另一个方法是称重,然后恒重至二次连续称量值的误差在限制范围内,例如:0.1-0.2mg/5g样品,称重的时间间隔为30分钟;使用这种方法必须注意样品的变化,例如褐变,说明水分损失产生误差。高糖碳水化合物样品不应在强制通风烘箱内干燥,而应在真空烘箱中不高于70℃下干燥,另外脂类氧化也会使液体化使样品在高温强制通风烘箱内干燥时`增加重量。

操作条件的选择:

(1)称量瓶的选择(铝制、玻璃):玻璃称量皿——能耐酸碱,不受样品性质的限制,常用于常压干燥法。铝制称量盒——质量轻,导热性强,但对酸性食品不适宜,常用于减压干燥法或原粮水分的测定。选择称量皿的大小要合适,一般样品≯1/3高度。称量瓶的预处理:用烘箱进行干燥处理,在100℃的烘箱进行重复干燥,以使其达到恒重(两次称量质量差不超过2mg)。称量皿放入烘箱内,盖子应该打开,斜放在旁边,取出时先盖好盖子,用纸条取,放入干燥器内,冷却后称重。干燥之后的称量皿应存放在干燥器中。

(2)干燥设备:烘箱,电热烘箱有各种形式,对流式、强力循环通风式:对流型:温差最大。强力通风型:由风扇强制在烘箱内作循环运动,温差最小,但轻质

试样会飞散。真空烘箱:装有耐热钢化玻璃窗,可观察干燥进程;空气进入烘箱的方式不同。如果空气进出口安排在烘箱的两侧上,那么空气就会直接穿过整个箱体。

(3)干燥器中冷却,一般采用硅胶作为干燥剂,当其颜色由蓝色减退或变成红色时,应及时更换,于135℃条件下烘干2~3h后可重新利用。

干燥温度选择:一般95~105℃,对热稳定的样品(如谷类)可提高到120~130℃;对还原糖含量高的食品应先用低温(50~60℃)干燥0.5h,再用95~105℃干燥。干燥时间选择:有两种方法:第一种方法是干燥到恒重(是指相邻两次烘烤称量的质量差不超过规定的毫克数,一般不超过2mg),基本能保证水分完全蒸发。第二种方法是规定一定的干燥时间,准确度不如前者。对水分测定结果准确度要求不高的样品。

常压烘箱干燥法原理:在一定温度(95~105℃)和压力(常压)下,将样品放在烘箱中加热干燥,除去蒸发的水分,干燥前后样品的质量之差即为样品的水分含量。

适用范围:适用于在95~105℃下,不含或含其他挥发性物质甚微且对热稳定的食品。

常压烘箱干燥法是食品中水分测定国家标准第一法。不能完全排出食品中的结合水,所以它不可能测出食品中真正的水分。设备和操作简单,但时间较长,不适合含易挥发物质、高脂肪、高糖食品及含有较多的高温易氧化、易挥发、易分解物质的食品。

减压干燥法原理:在低压条件下,水分的沸点会随之降低。将某些不宜于在高温下干燥的食品置于一个低压的环境中,使食品中的水分在较低的温度下蒸发,根据样品干燥前后的质量差,来计算水分含量。

适用范围:适用于在100℃以上加热容易变质及含有不易除去结合水的食

品,如淀粉制品、豆制品、罐头食品、糖浆、蜂蜜、蔬菜、水果、味精、油脂等。可以防止:含脂肪高的样品在高温下的脂肪氧化;含糖高的样品在高温下的脱水炭化;含高温易分解成分的样品在高温下分解等。

步骤:放入样品→连接泵,抽出箱内空气至所需压力(一般为40~53kPa),并同时加热至所需温度(55℃左右)→关闭真空泵,停止抽气→保持一定的温度和压力干燥→打开活塞→待压力恢复正常后再打开

方法说明及注意事项:真空烘箱内各部位温度要均匀一致,若干燥时间短时,更应严格控制。实际应用时可根据样品性质及干燥箱耐压能力不同而调整压力和温度自干燥箱内部压力降至规定真空度时起计算干燥时间;恒重一般以减量不超过0.5mg时为标准,但对受热后易分解的样品则可以不超过1~3mg 的减量值为恒重标准。

红外线干燥法原理:是一种快速测定水分的方法,它以红外线发热管为热源,通过红外线的辐射热和直接热加热样品,高效迅速地使水分蒸发。加热迅速,精密度差。

4.2.1.2 蒸馏法

蒸馏技术最初是一种用于质量控制的快速方法,并不适合于常规检测。现在,蒸馏方法是一种AOAC许可的用于调味品(AOAC法969.19)和动物饲料(AOAC法925.04)的水分分析技术,它也能在坚果、油类、肥皂和蜂蜡的水分分析中提供很好的准确度和精确度。

原理:用不溶于水的高沸点溶剂与样品中的水分共沸蒸馏,利用两种互不相溶的液体,其二元体系的沸点低于其中各组份分沸点,将食品中的水分与有机溶剂如甲苯、苯、二甲苯等,共沸蒸出,冷凝并收集馏出液,由于水与其他组分密度不同,馏出液在有刻度的接收管中分层,根据水的体积计算水分含量。

特点:热交换有效方式,水分迅速移去,食品组分所发生氧化、分解等作

用比较小。对于易氧化、分解、热敏性以及含有大量挥发性组分的样品,用该法测定水分含量其准确度明显高于干燥法。

适用范围:设备简单经济,管理方便,准确度能够满足常规分析的要求,快速。对于谷类、干果、油类、香料等样品,分析结果准确特别是对于香料,蒸馏法是唯一的、公认的水分测定法。该法为食品水分测定国家标准第三法。

4.2.1.3 卡尔-费休(Karl-Fischer)法

简称费休法或K-F法:如果在加热和抽真空条件下进行食品水分含量的分析,得到的结果不稳定时,此时特别适合于采用卡尔费休滴定法来进行。该法适合于测定低水分含量的食品,如脱水水果和蔬菜、糖果和巧克力、咖啡和油脂以及任何高糖高蛋白低水分的样品。此方法快速准确且不需加热。此方法是在1853年Bunsen 发现的基本反应的基础上建立起来的,即有水存在时碘与二氧化硫会发生氧化还原反应。属于碘量法,被广泛应用于多种化工产品的水分测定。迅速而又准确,且不需加热在很多场合,该法也常被作为水分特别是微量水分的标准分析方法,用于校正其它分析方法。

原理:基于水存在时碘与二氧化硫的氧化还原反应:

2H2O+SO2+I2→C5H2SO4+2HI

卡尔·费休试剂的有效浓度取决定于碘的浓度。新鲜配制的试剂,有效浓度会不断降低。新鲜配制的卡尔·费休试剂,混合后需放置一定的时间后才能使用。每次使用前均应标定。卡尔-费休法试剂:碘:二氧化硫:吡啶按1:3:10的比例溶解在甲醇溶液中,该溶液被称为卡尔-费休法试剂。

适用范围:广泛用于各种样品的水分含量测定,特别适用于痕量水分分析(如面粉、砂糖、人造奶油、可可粉、糖蜜、茶叶、乳粉、炼乳及香料等);其测定准确性比直接干燥法要高;也是测定脂肪和油类物品中微量水分的理想方法。

其滴定终点可用肉眼观察,颜色为红棕色。也可使用一些改良的仪器装置

如电极电位计来测定终点以提高灵敏度。采用电导方法可用仪器自动完成卡尔费休水分分析。

在卡尔费休滴定法中主要的难点和误差来源有:

(1)水分的萃取不完全:这一点对于谷物和某些食品的制备来说,研磨的好坏(即颗粒的大小)非常重要。

(2)空气的湿度:外界的空气不允许进入反应室中。

(3)壁上吸附水分:所有玻璃器皿必需充分干燥。

(4)来自食品组分的干扰:抗坏血酸被KFR试剂氧化成脱氢抗坏血酸,使水分含量测定值偏高;而羰基化合物则与甲醇发生缩醛反应生成水,从而使水分含量测定值偏高(这个反应也会使终点消失);不饱和脂肪酸和碘反应,也会使水分含量的测定值偏高。

说明及注意事项:样品的颗粒大小非常重要。通常样品细度约为40目,宜用破碎机处理,不用研磨机以防水分损失。如果食品中含有氧化剂、还原剂、碱性氧化物、氢氧化物、碳酸盐、硼酸等,都会与卡尔-费休试剂所含组分起反应,干扰测定。该法不仅可以测得样品中的自由水,而且可以测出其结合水,所测得的结果更能反映出样品总水分含量。

4.2.1.4 物理测定水分方法

介电法:通过测定电流通过样品时的电容和电阻的变化来确定某种食品中水分含量。这些仪器需要按标准化方法测定已知样品中水分含量来进行校准,样品的密度或重量与体积的关系、样品的温度是控制可靠性、重复性的重要因素。这些手段对于测量步骤的要求是有用的,因此,需要多次测量。这些方法不适合于水分含量低于30-35%的食品。

在介电计中水分的确定是基于水的介电常数(20℃时,介电常数为80.37)高于其它大部分溶剂。例如:介电法用于谷物水分含量的测定,水的介电常数为

80.37的,而谷物中的蛋白质和淀粉的介电常数仅为10。将待测的谷物样品置于一个标准的金属电容器中,根据仪器的读数可从事先制作好的标准曲线上得到水分含量的测定值。

传导法: 传导法的原理是基于样品中水分含量的增加,可导致其电流传导性也随之增加。因此通过测量其电阻,就生产了一种具有中等精确度的快速分析方法。欧姆定律指出:电流等于电压除以电阻。含水量为13%的小麦的电阻是含水量为14%的小麦电阻的7倍,是含水量为15%的小麦电阻的50倍。测定样品时,温度必须保持恒定,且每个样品的测定时间必须恒定为一分钟。

液体比重测定法: 液体比重测定法可采用不同的原理和仪器来科学地测量重量和密度。尽管在一些分析中液体比重测定法被认为是比较陈旧的方法,但只要正确运用该技术,它仍能够广泛应用而且精确度很高。该法通常需要专门的比重瓶、各种类型的比重计或者是韦斯特尔比重称用于常规测量许多食品中的水分含量(或固形物含量)。这些食品包括饮料、盐和糖的溶液。用比重测定法测定只含单一组分的待测溶液时,得到的效果最好。

1、比重瓶:测比重的另一个方法是比重瓶法,即将等体积的液体和水分别置于标准玻璃器皿中并比较它们的重量,从而得到相对于水的液体比重。许多文章和参考书中,测重量时两个样液都是在20℃时测定的。20℃时,用一清洁干燥的比重瓶,先测定空的比重瓶重量,再加入满刻度的20℃的蒸馏水。插入温度计并封口,然后擦净水滴,盖上防溢流管的盖子,比重瓶必须是完全擦干后再称量,以防止因溢出的液体所造成的误差,样品的密度可通过下列公式计算得到:此法用于确定酒精饮料(如蒸馏酒,AOAC法930.17)中的酒精含量,糖浆中的固形物含量(AOAC法932.148),和牛奶中固形物的含量(AOAC法925.22)。

2、液体比重计:另一种测量比重的方法是基于阿基米德定律,即悬浮于液

体中的固体被等于它所排出的液体的重量的力所浮起,可通过测定被标准重量的物体所排开的液体体积来测定液体单位体积的重量。因此液体比重计所排开液体的重量等于其自重。例如:在低密度液体中,比重计下沉较深,而在高密度液体中,比重计则下沉较浅,液体比重计可用于各种范围的比重测定,它的主轴经校准刻度后可在15℃或20℃时直接读数。虽然液体比重计不如比重瓶法精确,但分析速度有时是选择分析方法的决定因素。比重计测定时可经所需比重范围的液体进行校正以提高其精确性。

根据所要测定的样品,经各种不同的标准液校正后,可使液体比重法相当精确。

(1)乳比重计用于测定牛奶比重。乳比重计从14到50个单位的读数适合于测定比重范围为:1.015到1.040r的牛奶。60℉以上每增加1℉读数时增加0.1个乳比重计单位;60℉以下每降低1℉读数时降低0.1个乳比重计单位。

(2)波美计最初用于测定盐溶液的比重(最初为10%的盐溶液),但现在已更广泛用于其他各个方面,比重大于水的液体在波美计上测得的值都能换算成该液体的比重,例如:用于测定在真空容器中浓缩牛奶的比重。

(3)白利糖度比重计是一种用于测定果汁和糖浆等糖溶液的比重计。在20℃时可直接读取蔗糖的百分含量。巴林糖比重计通过测定60℉时样液的重量来确定糖的百分含量。白利和巴林比重计都可转换成纯蔗糖的质量百分含量。

(4)酒精比重计用于测定酒精饮料中的酒精含量。该比重计可经0.1到0.2度标准酒精量校正后,用于测定蒸馏酒的酒精含量。(AOAC法957.03)。

3、折光度剂法:液态糖类产品及浓缩乳中的水分含量可由波美比重计(固形物含量),白利比重计(糖度),重量法或折光法测出。如果操作正确且无明显晶体粒子存在时,折光法是最快并且准确性非常高(AOAC法932.14C,糖浆中固形物含量的测定),折光法己广泛应用于水果及水果类产品中可溶性固

形物的测定(AOAC法932.12;976.20;983.17)。

油、糖浆或其它液体的折光度指标是可以用来表示食品性质的常数,有些折光仪仅能提供折光度指数,但其它的如手持式快速测定仪经校正后可直接读出固形物、糖浆等的百分含量。即根据仪器提供的计算表格针对待测样品不同的要求进行转换,并可调节温度补偿以校正测定值。折光法不仅仅简单地应用在实验室,它还能安装在生产线上以监测产品的波美度,如碳酸饮料、桔汁及牛奶中的固形物含量。

溶液的折射率随溶液浓度的升高而升高的现象已在碳水化合物类食品的总可溶性固形物的分析中得到了实际应用,如:糖浆、水果类产品和蕃茄类产品。在此应用中,折光仪是由0Brix较正(相当于蔗糖克数/100克样品)。尽管只有当溶液中只有蔗糖时测得的折射率才比较正确,但此测定方法仍被广泛应用于食品中糖分的近似估计。

4、红外光谱分析法: 红外光谱已成为分析食品加工中及加工后的各种组分的基本方法,它广泛运用于食品生产领域及实验室中,红外光谱测量食品中分子辐射(中、近红外)的吸收,频率不同的红外辐射被食品分子中不同的官能团所吸收,类似于紫外-可见光谱中的紫外光或可见光的运用,测定样品时放射出特定的与之对应的红外波长,由测定被测样品透过或反射的能量可知组成的含量,它与能量吸收成反比。每个样品用红外光谱分析前都必须进行校正,且分析样品必须为无序分散的。

4.2.2 水分的测定方法的选择

根据不同测定方法得到的水分含量会受到这些水在食品中存在形式的影响。为了得到准确的测量结果,首先根据食品的性质和测定目的选定方法测定中:必须保证样品中的水彻底释放;须预防在操作过程中产生的水分的得失,并尽量将它降到最低值。要求:尽量缩短在空气中暴露的时间,尽可能的减少

食品中水分的测定实验

食品中水分的测定实验 一、实验目的: 熟练掌握常压干燥法的原理、操作,使用范围及注意事项。二、原理 食品中的水分一般是指在100摄氏度左右直接干燥的情况下,所失去物质的总量。将样品置于常压恒温干燥箱内,在95~105℃下干燥至恒量。失去的重量为样品中水分的量。 三、试剂和材料 1.仪器 电热恒温干燥箱、干燥器、分析天平、研皿、扁形铝制或玻璃制称量瓶 2.样品 面包:热狗面包墨西哥 蛋糕:柠檬水果 干点:牛奶饼 四、操作及实验步骤 取洁净玻璃制称量瓶两个,置于95~105℃干燥箱中,瓶盖斜盖于瓶口或放置在旁边,加热30~60分钟,盖好取出,置于干燥其内冷却30分钟,称量,并重复干燥至恒量。取切细或磨细的两份样品,放入这两个称量瓶中(以下以“瓶1”、“瓶2”标号)加盖,精密称量后,记下称量结果。再置于95~105℃干燥箱中,瓶盖斜盖于瓶口或放置在旁边,干燥2~4h后,盖好取出,放入干燥器内冷却30分钟后称量并记录结果。然后再放入95~105℃干燥箱中干燥1h左右,取出,放干燥器内冷却30分钟后再称量。至前后两次称量差不超过2mg,即为恒量。 五、实验数据记录 整理数据

计算: X=[(M总-M总’)/(M总-m瓶)] ×100%式中: X ——样品中水分的含量(%) m瓶——称量瓶的质量(g) M总——称量瓶和样品的总质量(g) M总’ ——称量瓶和样品干燥后的总质量(g) 六、结果 1.热狗面包: =[ / – ] ×100%=% 瓶1: X 1 瓶2: X =[ – / – ] ×100%=% 2 平均值:X=%

2.墨西哥: =[ / – ] ×100%=% 瓶1: X 1 =[ – / – ] ×100%=% 瓶2: X 2 平均值:X=% 3.柠檬水果: =[ /– ] ×100%=% 瓶1: X 1 =[ – / – ] ×100%=% 瓶2: X 2 平均值:X=% 4.牛奶饼: =[ – ] ×100%=% 瓶1: X 1 =[ – / – ] ×100%=% 瓶2: X 2 平均值:X=% 七、结论 通过对两个样品水分含量的测量结果数据分析表明:两个称量瓶中所装样品一样,之所以得出的水分含量不同,除了实验仪器引起的系统误差外,还与操作的的熟练程度产生的误差有关。可能是由于两个样品放进干燥箱中的时间快慢有差别,从干燥箱取出移入天平室干燥器的途中吸收了空气中的微量水分。因此取两个样品水分含量的平均值比较接近面包、蛋糕和干点水分含量的真实值,但永远达不到其真实值。

食品中水分的测定实验报告

食品中水分的测定实验总结 1.目的 熟练掌握常压干燥法的原理、操作,使用范围及注意事项。 观察掌握蒸馏法测水分的过程及减压干燥法的仪器。最总要的是用这些方法来测定小油馕中的水分含量来达到目的。 2.原理 食品中的水分一般是指在100摄氏度左右直接干燥的情况下,所失去物质的总量。将样品置于常压恒温干燥箱内,在95~105℃下干燥至恒量。失去的重量为样品中水分的量。 3.仪器 常压恒温干燥箱、干燥器、分析天平、称量瓶 4.样品 小油馕 5.操作 取洁净铝制或玻璃制的扁形称量瓶两个,置于95~105℃干燥箱中,瓶盖斜盖于瓶口,加热0.5~1.0h,取出盖好,置于干燥其内冷却0.5小时,称量,并重复干燥至恒量。称取2.00~10.0g切细或磨细的两份样品,放入这两个称量瓶中,样品厚度约5mm.加盖,精密称量后,至95~105℃干燥箱中,瓶盖斜盖于瓶口,干燥2~4h后,盖好取出,放入干燥器内冷却0.5h 后称量。然后再放入95~105℃干燥箱中干燥1h左右,取出,放干燥器内冷却0.5h后再称量。至前后两次称量差不超过2mg,即为恒量。 6.整理数据 瓶重M瓶(g)加样后M总(g)干燥后M总’(g)瓶1 瓶2 瓶1 瓶2 瓶1 瓶2 66.296 72.842 76.660 88.221 73.863 83.327 7.计算 X=[(M总-M总’)/(M总-m瓶)] ×100% 式中: X ——样品中水分的含量(%) M瓶——称量瓶的质量(g) M总——称量瓶和样品的总质量(g) M总’ ——称量瓶和样品干燥后的总质量(g) =[(76.660 -73.863)/(76.660 -66.296)] ×100%=27% 瓶1: X 1 瓶2: X =[(88.221 – 83.327)/(88.221 – 72.842)] ×100%=31.82% 2 8.结果 =27% 瓶1:X 1 =31.82% 瓶2:X 2

食品分析实验面粉中水分含量的测定

实验五面粉中水分含量的测定 一、实验内容 利用常压干燥法测定面粉中水分的含量。 二、实验目的与要求 1、熟练掌握烘箱的使用、天平称量、恒重等基本操作。 2、学习和领会常压干燥法测定水分的原理及操作要点。 3、掌握常压干燥法测定面粉中水分的方法和操作技能。 三、实验原理 本实验是基于食品中的水分受热以后,产生的蒸汽压高于在电热干燥箱中的空气分压,从而使食品中的水分被蒸发出来。同时由于不断地供给热能及不断地排走水蒸气,而达到完全干燥的目的。食品干燥的速度取决于这个压差的大小。 食品中的水分一般是指在101~105℃直接干燥的情况下所失去物质的总量。此法适用于在101~105℃下,不含或含其他挥发性物质甚微的食品。 四、材料普通面粉 五、仪器 称量瓶(直径50 mm,矮形)、干燥器、恒温干燥箱、电子天平(最小分度值1mg)、手套或牛皮纸带。 六、实验步骤 取洁净铝制或玻璃制的扁形称量瓶,置于101~105℃干燥箱中,瓶盖斜支于瓶边,加热1.0 h,取出,盖好,置干燥器内冷却0.5 h,称重,并重复干燥至恒重。称3~5g(准确至0.001 g)面粉样品,放入此称量瓶中,样品厚度应均匀,约5 mm。加盖,精密称量后,置于101~105 ℃干燥箱中,瓶盖斜支于瓶边,干燥2~4 h后,盖好取出,放入干燥器内冷却0.5h后称量。然后放入101~105℃干燥箱中干燥1h左右,取出,放干燥器内冷却0.5 h后再称量。至前后2次质量差不超过2 mg,即为恒重。 七、结果处理 1、实验记录

2、结果计算 八、说明 1、“恒重”是指两次烘烤称量的质量差不超过规定的毫克数,本实验不超过 2 mg。 2、本法测得的水分包括微量的芳香油、醇、有机酸等挥发性物质。 3、测定结果以质量百分数计,数据保留至小数点后一位数。

实验二 食物初水分的测定(半干样品的制备)

实验二食物初水分的测定(半干样品的制备) 一、实验目的与要求 1目的半干样品又称风干样品,不含游离水,仅含吸附在物品中蛋白质和淀粉中的水分。吸附水的含量一般在15%以下。 新鲜样品由于水分含量高而不易保存。为此,可将新鲜样品先测得初水分,制成半干样品用于分析。 2要求通过本实验,学习并掌握新鲜食物水分测定的重量法及电子天平的正确使用方法。 二、实验方法 1用百分之一感量的天平称取新鲜样品两份,平铺在表面皿上,放入60~70℃烘箱中, 4h后取出,自然冷却(15~30min),称量总重和表面皿重,计算样品干物质含量。公式:新鲜样品风干物质含量=风干物质重量(g)新鲜样品重量(g)×100% 2用分析天平称取粉状样品两份,加入称量瓶,称取称量瓶重量和总重量,放入70℃烘箱中,0.5~1h 后取出,移入干燥器内冷却30min,称量总重和表面皿重。重复两次的重量相差不超过0.5g。计算样品干物质含量。公式:新鲜样品70℃干物质含量=70℃物质重量(g)新鲜样品重量(g)×100% 三、实验仪器 1公用仪器 (1)鼓风烘箱1台; (2)组织捣碎机1台; (3)千分之一电子天平1台; (4)干燥器1~2个。 2分组及仪器4人一组,每组仪器包括以下物品: (1) 25cm×35cm搪瓷盘1个; (2) 40cm×60cm搪瓷盘1个; (3)切菜板1个; (4)菜刀1把; (5)取样铲1把; (6)玻棒1根; (7)托盘天平1台; (8)分析天平1台; (9) 15cm 直径表面皿2个; (10)称量瓶2个。 四、实验步骤 1新鲜样品采集 (1)按“几何法”采集样品。 (2) 切碎,放入40cm×60cm搪瓷盘中,用“四分法”采取次级样品2份。 (3)称量表面皿中,取30~40g新鲜样品置于表面皿上铺平。 (4)将表面皿置于25cm×35cm搪瓷盘中,于60℃烘箱内烘2~3h,70℃烘箱内烘1h,自然冷却0.5h后称重。 (5)计算半干样品重量及初水分含量。

食品分析实验面粉中水分含量的测定

食品分析实验面粉中水 分含量的测定 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

实验五面粉中水分含量的测定一、实验内容 利用常压干燥法测定面粉中水分的含量。 二、实验目的与要求 1、熟练掌握烘箱的使用、天平称量、恒重等基本操作。 2、学习和领会常压干燥法测定水分的原理及操作要点。 3、掌握常压干燥法测定面粉中水分的方法和操作技能。 三、实验原理 本实验是基于食品中的水分受热以后,产生的蒸汽压高于在电热干燥箱中的空气分压,从而使食品中的水分被蒸发出来。同时由于不断地供给热能及不断地排走水蒸气,而达到完全干燥的目的。食品干燥的速度取决于这个压差的大小。 食品中的水分一般是指在101~105℃直接干燥的情况下所失去物质的总量。此法适用于在101~105℃下,不含或含其他挥发性物质甚微的食品。 四、材料普通面粉 五、仪器 称量瓶(直径50 mm,矮形)、干燥器、恒温干燥箱、电子天平(最小分度值 1mg)、手套或牛皮纸带。 六、实验步骤 取洁净铝制或玻璃制的扁形称量瓶,置于101~105℃干燥箱中,瓶盖斜支于瓶边,加热 h,取出,盖好,置干燥器内冷却 h,称重,并重复干燥至恒重。称3~5g (准确至 g)面粉样品,放入此称量瓶中,样品厚度应均匀,约5 mm。加盖,精密称量后,置于101~105 ℃干燥箱中,瓶盖斜支于瓶边,干燥2~4 h后,盖好取出,放

入干燥器内冷却后称量。然后放入101~105℃干燥箱中干燥1h左右,取出,放干燥器内冷却 h后再称量。至前后2次质量差不超过2 mg,即为恒重。 七、结果处理 1、实验记录 2、结果计算 八、说明 1、“恒重”是指两次烘烤称量的质量差不超过规定的毫克数,本实验不超过2 mg。 2、本法测得的水分包括微量的芳香油、醇、有机酸等挥发性物质。 3、测定结果以质量百分数计,数据保留至小数点后一位数。

食品中水分测定方法

方法有如下几种: 1、有损检测 则是指在测量的过程中待测物粉碎或发生了化学变化,致使其不能保持原有的形状、结构或组分。在这两类中,无损检测的方法更经济、快捷,发展也最为迅速,是当今世界水分检测的主流。 2、直接干燥法 直接干燥法是指将待测样品置于烘箱中,根据ASAE标准,在130℃的温度下保持19h,测量前后的质量差,即为其水分含量。 3、红外线加热干燥法 红外线加热干燥法是利用红外线加热样品使其失水,从而达到测量水分含量的目的。代表仪器为SFY-20,测量精度为±0.1%,测量时间为1200s,测水范围为0~100%,主要影响因素为温度和加热时间。该法不能进行在线测量。 4、微波加热法 微波加热法是利用微波炉的磁控管所产生的2450MHz或915MHz的超高频率微波快速振荡粮食中的水分子,使分子相互碰撞和摩擦,进而去除粮食中的水分。代表仪器为MMA30,测量精度≤0.01%,测量时间为100s,测水范围为12%~100%,主要影响因素为微波炉的功率、谷物质量、密度和介电特性。该法不能进行在线测量。与传统干燥法相比,这两种方法缩短了测量周期、减少了能耗。其中,红外法不需加热介质,提高了热能利用率;微波法操作方便,并可同时测量多种样品,但它存在温层效应和棱角效应,造成微波的不均匀,从而影响测量精度。 5、电容法 电容法是根据水分的介电常数远远大于粮食中其它成分的介电常数,水分含量的变化势必引起电容量变化的原理,通过测量与样品中水分变化相对应的电容变化即可知粮食的水分含量。代表仪器为SCY-1A,其测量精度≤0.3%,测量时间为5s,测水范围为10%~20%,主要影响因素为温度、品种和紧实度。该法可进行在线测量。以上两种方法的测量原理非常简单,技术相对来说也比较成熟,但都存在不足之处:直接干燥法. 测量周期较长,人为干扰因素多,并且不能进行在线测量;电容法的影响因素较多,在精度和重复性等方面难以达到国家规定标准。随着人工智能和数据融合技术的发展,为数据综合处理提供了新的途径,目前也取得了一些可喜的结果。 6、介电损失角法 研究表明:谷物含水率不同,介电损失角也不同,并且呈单值分段线性关系。该方法经济实用、测量精度高,尤为适合测量高水分谷物。代表仪器为MSA6450,测量时间为0.1s,测水范围为1%~30%,主要影响因素为温度和品种。该法可进行在线测量。 7、复阻抗分离电容法 复阻抗分离电容法通过复阻抗分离电路的设计,有效消除电阻参量的影响,而只保留电容参量的变化。这种方法对提高电容式水分计测量精度具有重要意义。 8、高频阻抗法 高频阻抗法是依据在敏感频带(100k~250kHz)施以外加电场的情况下粮食水分与其交流阻抗呈现对数关系这一理论来测量其水分的。代表仪器为LSK-1,测量精度≤0.5%,测量时间为1.2s,主要影响因素为温度、品种、紧实度与电极间距。该法不能进行在线测量。

食品中水分的测定实验报告

1.目的 熟练掌握常压干燥法的原理、操作,使用范围及注意事项。 观察掌握蒸馏法测水分的过程及减压干燥法的仪器。 2.原理 食品中的水分一般就是指在100摄氏度左右直接干燥的情况下,所失去物质的总量。将样品置于常压恒温干燥箱内,在95~105℃下干燥至恒量。失去的重量为样品中水分的量。 3.试剂 3、1盐酸(1+1) 量取100ml盐酸,加水稀释至200ml、 3、2氢氧化钠溶液 浓度为240g/L(24g氢氧化钠,加水溶解并稀释至100ml) 4.仪器 常压恒温干燥箱、干燥器、分析天平、称量瓶 5.样品 奶粉 6.操作

取洁净铝制或玻璃制的扁形称量瓶两个,置于95~105℃干燥箱中,瓶盖斜盖于瓶口,加热0、5~1、0h,取出盖好,置于干燥其内冷却0、5小时,称量,并重复干燥至恒量。称取2、00~10.0g切细或磨细的两份样品,放入这两个称量瓶中(以下以“瓶1”、“瓶2”标号),样品厚度约5mm、加盖,精密称量后,至95~105℃干燥箱中,瓶盖斜盖于瓶口,干燥2~4h后,盖好取出,放入干燥器内冷却0、5h后称量。然后再放入95~105℃干燥箱中干燥1h左右,取出,放干燥器内冷却0、5h后再称量。至前后两次称量差不超过2mg,即为恒量。 7.数据记录 7、1原始数据 7、2可疑值弃留 实验测量值合理,无可疑值。 7、3整理数据 瓶重M瓶(g) 加样后M总(g) 干燥后M总’(g)瓶1 瓶2 瓶1 瓶2 瓶1 瓶2 30、8392 30、8409 32、 8609 32、 8633 32、6092 32、5637

8.计算 X=[(M总-M总’)/(M总-m瓶)] ×100% 式中: X ——样品中水分的含量(%) M瓶——称量瓶的质量(g) M总——称量瓶与样品的总质量(g) M总’ ——称量瓶与样品干燥后的总质量(g) 瓶1: X 1 =[(32、8609 - 32、6092)/(32、8609 - 30、8392)] ×100%=12、45% 瓶2: X 2 =[(32、8633 - 32、8637)/(32、8633 - 30、8409)] ×100%=14、81% 9.结果 瓶1:X 1 =12、45% 瓶2:X 2 =14、81% 平均值:X=13、63% 10.结论 瓶1样品水分含量X 1=12、45%,瓶2样品水分含量X 2 =14、81%。 两个称量瓶中所装样品一样,之所以得出的水分含量不同,除仪器引起的系统误差外,还与操作误差有关,可能就是因为两个样品放进干燥箱中的时间有差别及从干燥箱取出移入天平室干燥器的途中吸收了空

gb5009.3水分检测方法

标准介绍 GB 5009.3-2016 食品安全国家标准食品中水分的测定 本标准规定了食品中水分的测定方法。 本标准第一法(直接干燥法)适用于在101℃~105℃下,蔬菜、谷物及其制品、水产品、豆制品、乳制品、肉制品、卤菜制品、粮食(水分含量低于18%)、油料(水分含量低于13%)、淀粉及茶叶类等食品中水分的测定,不适用于水分含量小于0.5g/100g的样品。第二法(减压干燥法)适用于高温易分解的样品及水分较多的样品(如糖、味精等食品)中水分的测定,不适用于添加了其他原料的糖果(如奶糖、软糖等食品)中水分的测定,不适用于水分含量小于0.5g/100g 的样品(糖和味精除外)。第三法(蒸馏法)适用于含水较多又有较多挥发性成分的水果、香辛料及调味品、肉与肉制品等食品中水分的测定,不适用于水分含量小于1g/100g的样品。第四法(卡尔?费休法)适用于食品中含微量水分的测定,不适用于含有氧化剂、还原剂、碱性氧化物、氢氧化物、碳酸盐、硼酸等食品中水分的测定。卡尔?费休容量法适用于水分含量大于1.0×10-3g/100g的样品。 本标准于2017年3月1日代替GB 5009.3-2010《食品安全国家标准食品中水分的测定》、GB/T 12087-2008《淀粉水分测定烘箱法》、GB/T 18798.3-2008《固态速溶茶第3部分:水分测定》、GB/T 21305-2007《谷物及谷物制品水分的测定常规法》、GB/T 5497-1985《粮食、油料检验水分测定法》第一法105℃恒重法、GB/T 8304-2013《茶水分测定》、GB/T 12729.6-2008《香辛料

和调味品水分含量的测定(蒸馏法)》、GB/T 9695.15-2008《肉与肉制品水分含量测定》、GB/T 8858-1988《水果、蔬菜产品中干物质和水分含量的测定方法》、SN/T 0919-2000《进出口茶叶水分测定方法》。 相关公告:关于发布《食品安全国家标准食品添加剂磷酸氢钙》(GB 1886.3-2016)等243项食品安全国家标准和2项标准修改单的公告 该标准文本已根据国家食品安全风险评估中心网站发布的标准勘误进行更正。点击查看勘误具体内容 标准变化 新版标准代替了GB5 0 0 9.3—2 0 1 0 《食品安全国家标准食品中水分的测定》、GB /T1 2 0 8 7—2 0 0 8《淀粉水分测定烘箱法》、GB /T1 8 7 9 8.3—2 0 0 8《固态速溶茶第3部分:水分测定》、GB /T2 1 3 0 5—2 0 0 7《谷物及谷物制品水分的测定常规法》、GB /T 5 4 9 7—1 9 8 5 《粮食、油料检验水分测定法》、GB /T8 3 0 4—2 0 1 3《茶水分测定》、GB /T1 2 7 2 9.6—2 0 0 8 《香辛料和调味品水分含量的测定(蒸馏法)》、GB /T9 6 9 5.1 5—2 0 0 8《肉与肉制品水分含量测定》、GB /T8 8 5 8—1 9 8 8《水果、蔬菜产品中干物质和水分含量的测定方法》、SN/T0 9 1 9—2 0 0 0《进出口茶叶水分测定方法》。

水分测定方法总结

水分测定方法有许多种,我们在选择时要根据食品的性质来选择。常采用的水份测定方法如下: 1、热干燥法:①常压干燥法(此法用的广泛); ②真空干燥法(有的样品加热分解时用); ③红外线干燥法; ④真空器干燥法(干燥剂法); 2、蒸馏法 3、卡尔费休法 4、水分活度AW的测定 下面我们分别讲述测定水分的方法。 一、常压干燥法 1、特点与原理 ⑴特点:此法应用最广泛,操作以及设备都简单,而且有相当高的精确度。 ⑵原理:食品中水分一般指在大气压下,100℃左右加热所失去的物质。但实际上在此温度下所失去的是挥发性物质的总量,而不完全是水。 2、干燥法必须符合下列条件(对食品而言): ⑴水分是唯一挥发成分 这就是说在加热时只有水分挥发。例如,样品中含酒精、香精油、芳香脂都不能用干燥法,这些都有挥发成分。 ⑵水分挥发要完全 对于一些糖和果胶、明胶所形成冻胶中的结合水。它们结合的很牢固,不宜排除,有时样品被烘焦以后,样品中结合水都不能除掉。因此,采用常压干燥的水分,并不是食品中总的水分含量。 ⑶食品中其它成分由于受热而引起的化学变化可以忽略不计。 例:还原糖+氨基化合物△→ 变色(美拉德反应)+H2O↑ 还有 H2C4H4O6(酒石酸)+ 2NaHCO3 → NaC4H4O6(酒石酸钠)+2H2O+2CO2

发酵糖(NaHCO3+KHC4H4O6)△→H2O+CO2+ NaKC4H4O6 高糖高脂肪食品不适应 只看符合上面三点就可采用烘箱干燥法。烘箱干燥法一般是在100~105℃下进行干燥。 我们讲的上面三点,应该是具体的具体分析,对于一个分析工作人员,或者是一个技术员,虽然干燥法必须符合三点要求,那么我们在只有烘箱的情况下,而且蓑红样品不见得符合以上讲的三点,难道就不测水分吗? 例如,啤酒厂要经常测啤酒花的水分,啤酒花中含有一部分易挥发的芳香油。这一点不符合我们的第一点要求,如果用烘箱法烘,挥发物与水分同时失去,造成分析误差。此外,啤酒花中的α—酸在烘干过程中,部分发生氧化等化学反应,这又造成分析上的误差,但是一般工厂还是用烘干法测定,他们一般采取低温长时间(80~85℃烘4小时),或者高温短时(105℃烘1小时) 所以应根据我们所在的环境和条件选择合适的操作条件,当然我们应该首先明白有没有挥发物和化学反应等所造成的误差。 3、烘箱干燥法的测定要点 ⑴取样(称样) 在采样时要特别注意防止水分的变化,对有些食品例如奶粉、咖啡等很容易吸水,在称量时要迅速,否则越称越重。 ⑵干燥条件的选择 三个因素:①温度;②压力(常压、真空)干燥;③时间。 一般是温度对热不稳定的食品可采用70~105℃;温度对热稳定的食品采用120~135℃。 4、操作方法 清洗称量皿→烘至恒重→称取样品→放入调好温度的烘箱(100~105℃)→烘1.5小时→于干燥器冷却→称重→ 再烘0.5小时→称至恒重(两次重量差不超过0.002g即为恒重) *油脂或高脂肪样品,由于脂肪氧化,而后面一次重量反而增加,应以前一次重量计算。 *对于易焦化和容易分解的食品,可以选用比较低的温度或缩短干燥时间。

食品中水分和灰分含量的测定

实验一食品中水分和灰分含量的测定 水分含量的测 一、目的及意义 通过测定食品中的水分含量,可以研究食品的最佳保存条件,食品的成熟程度,以及食品所含有的营养素浓度等一系列有关食品的问题。 二、试剂与药品 奶粉 三、实验原理 利用食品中水分的性质,在101.3Kpa (一个大气压),温度在101℃~105℃下采用挥发方法测定样品中干燥减失的重量,包括吸湿水、部分结晶水和该条件能挥发的物质,再通过干燥前后的称量数值计算出水分的含量。 四、仪器及设备 铝盒、电热恒温干燥箱、干燥器(内附有效干燥剂)、电子天平 五、分析步骤 1. 取洁净铝盒,置于101℃~105℃干燥箱中,铝盒盖斜支于铝盒边,加热1.0h ,取出盖好,置于干燥器内冷却0.5h ,称量,并重复干燥前后两次质量不超过2mg ,取为恒重 2. 称取奶粉2g 左右放入铝盒中,置于101℃~105℃干燥箱中,盒盖斜支于盒边,干燥2h~4h 后,盖好取出放入干燥器内冷却0.5h 后称量。然后再放入101℃~105℃干燥箱中干燥1h 左右,取出,放入干燥器内冷却0.5h 后再称量。并重复以上操作至前后两次质量差不超过2mg ,即为恒重。 六、结果分析与讨论 食品中(水分%+干物质%=100%) 水分%= %100%100103?--m m m 3m --------干物质与铝盒的总重 3m =18.2208g 0m --------铝盒恒重的重量 实验数据 0m =16.2665g 1m --------奶粉的称量重量 1m =2.0084g

计算可得 水分%=2.694% 由此可知奶粉中水分的百分比为2.694% 灰分含量的测定 一、 目的及意义 检测食品中矿物质的含量,是食品有机物破坏的方法之一。 二、 试剂与药品 奶粉 三、 实验原理 食品经灼烧后,所残留的无机物称灰分,灰分数值系用灼烧、称重后计算得出。 四、 仪器及设备 马弗炉、电子天平、坩埚、干燥器(内附有效干燥剂)。 五、 分析步骤 1. 取大小适宜的石英坩埚或瓷坩埚置于马弗炉中,在550℃下灼烧0.5h ,冷却至200℃左 右,取出,放入干燥器中冷却0.5h ,准确称量。重复灼烧至前后两次称量相差不超过0.5mg 为恒重。 2. 称取2g 左右奶粉,放入瓷坩埚,然后先在电热板上以小火加热使试样充分碳化至无烟, 然后置于马弗炉中,在550℃灼烧4h ,冷却至200℃左右,取出,放入干燥器中冷却30min 。重复灼烧至前后两次称量相差不超过0.5mg 为恒重。 3. 注意事项; 把坩埚放入高温炉或从炉中取出时,要在炉口停留片刻,使坩埚预热或冷却。 防止因温度剧变而使坩埚破裂. 六、 结果分析与讨论 计算 灰分%=%1001 02?-m m m 2m --------灰分与瓷坩埚的总重 2m =51.4785g 0m --------瓷坩埚恒重的重量 实验数据 0m =51.3679g 1m --------奶粉的称量重量 1m =2.0004g 计算可得 灰分%=5.528%

最新最全食品中水分的国标测定方法

食品中水分的国标测定方法 食物水分测定方法 1.原理 食物中水的存在形式为三类,即游离水,吸附于蛋白质、淀粉及细胞膜上的水,其余是与糖及盐类结合的水。一般样品用烘干法测定水分都采用105℃,主要原因是非游离水分都不能在100℃以下烘干。但是象水果和糖类等含糖多的食物不宜在105℃烘干,因糖在高温时容易分解,尤其是果糖。所以测定含糖高的食品时都采用减压低温烘箱干燥法,用烘干法测定的水分中还包括有少量芳香油,醇及有机酸等物质。 2.适用范围 GB 5009.2-85 本法适用于在95~105℃下,不含或含其他挥发性物质甚微的食品及饲料的测定。 3.仪器 电子天平电热恒温干燥箱玻璃干燥器(硅胶干燥剂) 4.操作步骤 将样品磨细或切碎。在已称得重量的玻璃皿内称入样品2~10g,将玻璃皿同样品置于温度预先调节至105℃的烘箱内,干燥4小时。然后用坩埚钳将玻璃皿放入干燥器内,待降至室温后称重。然后再将玻璃皿置于105℃的烘箱内,干燥2小时。干燥后用坩埚钳将玻璃皿放入干燥器内,降至室温后称重。需测至恒重为止。 5.计算 烘前玻璃皿及样品重量 - 烘后玻璃皿及样品重量×100 水分%= ------------------------------------------------- 样品重量 6.注意事项 (1)烘干法测定水分可用不同温度和不同时间进行干燥。如粮食可在130℃烘1小时,其结果与105℃烘4小时一致。 (2)蔬菜样品在购到后必须用水将泥沙洗净再用蒸馏水冲一次,用纱布将菜上的水吸去,再用风扇将附着的水吹去。然后用刀在玻璃板上切碎或用手撕碎,将茎叶混匀后取样。 (3)因蔬菜含水分多,所以应多取样品测定,如可采20~50g。 (4)在测定豆瓣酱、蜂蜜、油脂等粘稠样品时,可用1:1HCL浸后洗净的大粒砂子掺入样品中并用玻棒在烘干的时候,不时的搅拌,才能得到好的结果。 (5)测定水分的恒重是前后两次称得的重量之差不超过10mg

(完整版)食品中水分含量的测定

实验1 食品中水分含量的测定 一、实验原理 水分的测定方法包括加热干燥法、蒸馏法、卡尔费休法、电测法、近红外分光光度法、气相色谱法、核磁共振法、干燥剂法等,其中加热干燥法是使用最普遍的方法。加热干燥法是适合大多数食品测定的常用方法。按加热方式和设备的不同,可分为常压加热干燥法、减压加热干燥法、微波加热干燥法等。常压加热干燥法根据操作温度的不同,又可分为105℃烘箱法和130℃烘箱法。 食品中的水分一般是指在100℃左右直接干燥的情况下,所失去的物质的总量。105℃烘箱法适用于测定在95-105℃下,不含或含其他挥发性物质甚微的食品,如谷物及其制品、淀粉及其制品、调味品、水产品、都制品、乳制品、肉制品;130℃烘箱法适用于谷类作物种子水分的测定。 二、试剂与器材 海砂。 恒温干燥箱,电子天平。 三、实验步骤 1、干燥条件 温度:100-135℃,多用100℃±5℃。 时间:以干燥至恒重为准。105℃烘箱法,一般干燥时间为4-5h;130℃烘箱法,干燥时间为1h。 样品质量:样品干燥后的残留物一般控制在2-4g。 称样大致范围:固体、半固体样品,2-10g;液体样品,10-20。 2、样品制备 固体样品先磨碎、过筛。谷类样品过18目筛,其他食品过30-40目筛。 糖浆等浓稠样品为防止物理栅的发生,一般要加水稀释,或加入干燥助剂(如石英砂、海砂等)。糖浆稀释液的固形物质量分数应控制在20-30%,海砂量为样品质量的1-2倍。液态样品先在水浴上浓缩,然后用烘箱干燥。 面包等水分含量大于16%的谷类食品一般采用两步干燥法,即样品称量后,切成2-3mm薄片,风干15-20h后再次称重,然后磨碎、过筛,再用烘箱干燥至恒重。 果蔬类样品可切成薄片或长条,按上述方法进行两步干燥,或先用50-60℃低温烘3-4h,再升温至95-105℃,继续干燥至恒重。 3、样品测定 (1)105℃烘箱法 1)固体样品将处理好的样品放入预先干燥至恒重的玻璃称量皿中,置于95-105℃干燥箱中,盖斜支于瓶边,干燥2-4h后,盖好取出,置于干燥器中冷却0.5h后称重,再放入同温度的烘箱再干燥1h左右,然后冷却、称量,并重复干燥至恒重。 2)半固体或液体样品将10g洁净干燥的海砂及一根小玻璃棒放入蒸发皿中,在95-105℃下干燥至恒重。然后准确称取适量样品,置于蒸发皿中,用小玻璃棒搅匀后放在沸水浴中蒸干(注意中间要不时搅拌),擦干皿底后置于95-105℃干燥箱中干燥4h,按上述操作反复干燥至恒重。 (2)130℃烘箱法将烘箱预热至130℃,将试样放入烘箱内,关好箱门,使温度在10min 内升至130℃,在(130±2)℃下干燥1h。 4、结果计算 X=100*(m1-m2)/(m1-m0)

食品中水分的测定方法

直接干燥法 一、原理 利用食品中水分的物理性质,在101.3kPa (—个大气压),温度101C?105C 下采用挥发方法测定样品中干燥减失的重量,包括吸湿水、部分结晶水和该条件下能挥发的物质,再通过干燥前后的称量数值计算出水分的含量。 二、试剂和材料 除非另有规定,本方法中所用试剂均为分析纯。 1. 盐酸:优级纯。 2. 氢氧化钠(NaOH :优级纯。 3. 盐酸溶液(6 mol/L ):量取50m盐酸,加水稀释至100mL 4. 氢氧化钠溶液(6mol/L ):称取24g氢氧化钠,加水溶解并稀释至100mL 5. 海砂:取用水洗去泥土的海砂或河砂,先用盐酸(3.3 )煮沸0.5h,用水洗至 中性,再用氢氧化钠溶液(3.4 )煮沸0.5h,用水洗至中性,经105C干燥备用。 三、仪器和设备 1. 扁形铝制或玻璃制称量瓶。 2. 电热恒温干燥箱。 3. 干燥器:内附有效干燥剂。 4. 天平:感量为0.1mg。 四、分析步骤 1. 固体试样:取洁净铝制或玻璃制的扁形称量瓶,置于101C?105C干燥箱中, 瓶盖斜支于瓶边。加热1.0h,取出盖好,置干燥器内冷却0.5h,称量,并重复干燥至前后两次质量差不超过2mg即为恒重。 2. 将混合均匀的试样迅速磨细至颗粒小于 2mm不易研磨的样品应尽可能切碎, 称取2g?10g试样(精确至0.0001g ),放入此称量瓶中,试样厚度不超过5 mm 如为疏松试样,厚度不超过10mm加盖,精密称量后,置101C?105C干燥箱中,瓶盖斜支于瓶边,干燥2h?4h后,盖好取出,放入干燥器内冷却0.5h 后称量。 3. 然后再放入101C?105C干燥箱中干燥1 h左右,取出,放入干燥器内冷却0.5h 后再称量。并重复以上操作至前后两次质量差不超过2mg即为恒重。 注:两次恒重值在最后计算中,取最后一次的称量值。 五、分析结果的表述 1. 试样中的水分的含量按下式进行计算。 X= (m1-m2/m「m3)*100 X――试样中水分的含量,单位为克每百克(g/100g); m――称量瓶(加海砂、玻棒)和试样的质量,单位为克(g); m2——称量瓶(加海砂、玻棒)和试样干燥后的质量,单位为克(g);m3

食品中水分含量测定

食品中水分含量的测定 一、实验原理 水分的测定方法包括加热干燥法、蒸馏法、卡尔费休法、电测法、近红外分光光度法、气相色谱法、核磁共振法、干燥剂法等,其中加热干燥法是使用最普遍的方法。加热干燥法是适合大多数食品测定的常用方法。按加热方式和设备的不同,可分为常压加热干燥法、减压加热干燥法、微波加热干燥法等。常压加热干燥法根据操作温度的不同,又可分为105℃烘箱法和130℃烘箱法。 食品中的水分一般是指在100℃左右直接干燥的情况下,所失去的物质的总量。105℃烘箱法适用于测定在95-105℃下,不含或含其他挥发性物质甚微的食品,如谷物及其制品、淀粉及其制品、调味品、水产品、都制品、乳制品、肉制品;130℃烘箱法适用于谷类作物种子水分的测定。 二、试剂与器材海砂。 恒温干燥箱,电子天平。三、实验步骤 1、干燥条件 温度:100-135℃,多用100℃±5℃。 时间:以干燥至恒重为准。105℃烘箱法,一般干燥时间为4-5h;130℃烘箱法,干燥时间为1h。 样品质量:样品干燥后的残留物一般控制在2-4g。 称样大致范围:固体、半固体样品,2-10g;液体样品,10-20。 2、样品制备 固体样品先磨碎、过筛。谷类样品过18目筛,其他食品过30-40目筛。 糖浆等浓稠样品为防止物理栅的发生,一般要加水稀释,或加入干燥助剂(如石英砂、海砂等)。糖浆稀释液的固形物质量分数应控制在20-30%,海砂量为样品质量的1-2倍。液态样品先在水浴上浓缩,然后用烘箱干燥。 面包等水分含量大于16%的谷类食品一般采用两步干燥法,即样品称量后,切成2-3mm薄片,风干15-20h后再次称重,然后磨碎、过筛,再用烘箱干燥至恒重。果蔬类样品可切成薄片或长条,按上述方法进行两步干燥,或先用50-60℃低温烘3-4h,再升温至95-105℃,继续干燥至恒重。 3、样品测定 (1)105℃烘箱法

实验一 食品中水分含量的测定

实验一食品中水分含量的测定 任何食品都可以看作由水分和干物质两大部分组成。因此,直接测定干物质的方法也就是间接测定水分的方法;反之亦然。 控制食品水分含量对一于保持食品品质和提高食品稳定性有一定重要作用。因此,水分含量是食品工业管理中一项重要质量指标和经济指标。 各种食品中都含有水,但含量不等相差很大,例如新鲜水果、蔬菜含水80-95%,鱼类含水75-80%,肉类含水50-70%。食品中水有四种不同形式: 游离水、吸着水、水含水和结晶水(或结构水)。游离水存在动植物的细胞内或细胞间,其中溶解有糖、酸、盐和水溶性维生素及其他可溶性物质,食品干燥时游离水易从食品中蒸发出来;吸着水也叫吸附水,是空气中的水附着于食品的表面或被食品吸收到内部;水合水是食品中的胶体物质如蛋白质等,通过水合作用所结合的水,水合水较为稳定,虽然食品干燥时也能排除水合水,但比排除游离水和吸着水要困难得多;结晶水是指从水溶液中结晶出来的某些物质内部所含的水,结晶水在常温下有时能风化而逐渐分离出来,有时则需加热才能分离,结构水是含在物质分子中,只在高温下才能分离出来。 食品分析中测定水分含量的方法有直接法和间接测定法。利用水分本身物理性和化学性质测定水分的方法叫直接法,如105℃干燥法、真空烘干法、130℃快速法,红外线干燥法、微波干燥法、有机溶剂蒸馏法、卡尔费林法等。而利用食品比重、折射率、电导、电解常数等物理指标测定水分的方法叫做间接法。测定水分的方法要根据食品性质和测定目的来选定。今主要介绍干燥法(重量法),重点介绍面包中水分含量的二步干燥法测定。 一、干燥法概述 干燥法是基于物料中的水分受热后产生的蒸汽压高于烘箱中水蒸汽的分压,物质干燥的速度取决于分压差的大小,红外线、高频或微波加热能使物料内部与表面均匀加热,使水分迅速向表面移动。真空干燥能使水分迅速离开物料表面,因此可加快干燥速度,另外也可加入纯砂玻璃珠或塑料颗粒来增大受热与蒸发面积,防止食品结块,加快干燥速度。在用干燥法测水分含量时,应

实验二食品中水分含量的测定

实验二食品中水分含量的测定 一、水分测定的意义 没有水就没有生命,食品组成离不开水,水分是影响食品质量的因素。控制食品水分含量,对于保持食品的感官性质、维持食品各组分的平衡关系、防止食品腐败变质等起着重要的作用。 二、食品中水分的存在形式 1、按水分子间作用力不同,食品中水分分为: ①自由水(游离水)——是靠分子间力形成的吸附水。如不可移动水或滞化水、毛细管水、自由流动水。 ②结合水(束缚水)——以氢键结合的水,结晶水。 2、按水分存在形式的不同,食品中水分分为: ①物理结合水②溶液状态水③化学结合水 三、水分测定的方法 ①直接法——利用水分本身的物理性质、化学性质测定水分:重量法、蒸馏法、卡尔·费休法、化学方法。 ②间接法——利用食品的物理常数通过函数关系确定水分含量:如测相对密度、折射率、电导、旋光率等。 直接法比间接法准确度高。

一、干燥法 干燥法是在一定的温度和压力下,通过加热的方式将样品中的水分蒸发完全,根据样品加热前后的质量差来计算水分含量的方法。包括直接干燥法和减压干燥法。 以原样重量—干燥后重量 = 水分重量 (一)干燥法的注意事项 1、干燥法的前提条件(样品本身要符合三项条件) (1)水分是样品中唯一的挥发物质,不含或含其他挥发性成分极微。 (2)可以较彻底地去除水分,即含胶态物质、含结合水量少。 (3)加热过程中,如果样品中其他成分发生化学反应,由此引起的质量变化可以忽略。 2、操作条件的选择 ①称量瓶的选择(铝制、玻璃) 玻璃称量皿——能耐酸碱,不受样品性质的限制,常用于常压干燥法。 铝制称量盒——质量轻,导热性强,但对酸性食品不适宜,常用于减压干燥法或原粮水分的测定。 ②称样量

食品水分测定

实验一食品中水分的测定 一、实验原理 利用食品中水分的物理性质,在101.3 kPa(一个大气压),温度101 ℃~105 ℃下采用挥发方法测定样品中干燥减失的重量,包括吸湿水、部分结晶水和该条件下能挥发的物质,再通过干燥前后的称量数值计算出水分的含量。 二、目的及意义 1、掌握直接干燥法测定食品中水分的原理、操作,使用范围和注意事项; 2、观察掌握干燥箱、干燥器以及电子天平的使用方法。 三、实验材料 1、待测样品 全脂奶粉 2、试剂与药品 (除非另有规定,本方法中所用试剂均为分析纯。) 盐酸:优级纯。 氢氧化钠(NaOH):优级纯。 盐酸溶液(6 mol/L):量取50 mL盐酸,加水稀释至100 mL。 氢氧化钠溶液(6mol/L):称取24 g氢氧化钠,加水溶解并稀释至100 mL。 海砂:取用水洗去泥土的海砂或河砂,先用盐酸(3.3)煮沸0.5 h,用水洗至中性,再用氢氧化钠溶液(3.4)煮沸0.5 h,用水洗至中性,经105 ℃干燥备用。 3、仪器及设备 铝盒、电子天平(+0.0001g)、干燥箱、干燥器 四、分析步骤 1、铝盒恒重:取洁净铝制或玻璃制的扁形称量瓶,置于101 ℃~105 ℃干燥箱中,瓶盖斜支于瓶边,加热1.0 h,取出盖好,置干燥器内冷却0.5 h,称量,并重复干燥至前后两次质量差不超过2 mg,即为恒重。 2、称重(m0):精确称取恒重后的铝盒重量。 3、称样(m1):称取2 g全脂奶粉试样(精确至0.0001 g),放入铝盒中。 4、105 ℃干燥至恒重:精密称量后,铝盒置105 ℃干燥箱中,铝盖应打开,干燥2 h~4 h后,盖好取出,放入干燥器内冷却0.5 h后称量。然后再放入105 ℃干燥箱中干燥1 h 左右,取出,放入干燥器内冷却0.5 h 后再称量。并重复以上操作至前后两次质量差不超过2 mg,即为恒重。 5、冷却,称末重(m2):最后称取恒重后的铝盒和奶粉重量。

食品中水分含量的测定

食品中水分含量的测定 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

实验1 食品中水分含量的测定 一、实验原理 水分的测定方法包括加热干燥法、蒸馏法、卡尔费休法、电测法、近红外分光光度法、气相色谱法、核磁共振法、干燥剂法等,其中加热干燥法是使用最普遍的方法。加热干燥法是适合大多数食品测定的常用方法。按加热方式和设备的不同,可分为常压加热干燥法、减压加热干燥法、微波加热干燥法等。常压加热干燥法根据操作温度的不同,又可分为105℃烘箱法和130℃烘箱法。 食品中的水分一般是指在100℃左右直接干燥的情况下,所失去的物质的总量。105℃烘箱法适用于测定在95-105℃下,不含或含其他挥发性物质甚微的食品,如谷物及其制品、淀粉及其制品、调味品、水产品、都制品、乳制品、肉制品;130℃烘箱法适用于谷类作物种子水分的测定。 二、试剂与器材 海砂。 恒温干燥箱,电子天平。 三、实验步骤 1、干燥条件 温度:100-135℃,多用100℃±5℃。 时间:以干燥至恒重为准。105℃烘箱法,一般干燥时间为4-5h;130℃烘箱法,干燥时间为1h。 样品质量:样品干燥后的残留物一般控制在2-4g。 称样大致范围:固体、半固体样品,2-10g;液体样品,10-20。

2、样品制备 固体样品先磨碎、过筛。谷类样品过18目筛,其他食品过30-40目筛。 糖浆等浓稠样品为防止物理栅的发生,一般要加水稀释,或加入干燥助剂(如石英砂、海砂等)。糖浆稀释液的固形物质量分数应控制在20-30%,海砂量为样品质量的1-2倍。 液态样品先在水浴上浓缩,然后用烘箱干燥。 面包等水分含量大于16%的谷类食品一般采用两步干燥法,即样品称量后,切成2-3mm薄片,风干15-20h后再次称重,然后磨碎、过筛,再用烘箱干燥至恒重。 果蔬类样品可切成薄片或长条,按上述方法进行两步干燥,或先用50-60℃低温烘3-4h,再升温至95-105℃,继续干燥至恒重。 3、样品测定 (1)105℃烘箱法 1)固体样品将处理好的样品放入预先干燥至恒重的玻璃称量皿中,置于95-105℃干燥箱中,盖斜支于瓶边,干燥2-4h后,盖好取出,置于干燥器中冷却后称重,再放入同温度的烘箱再干燥1h左右,然后冷却、称量,并重复干燥至恒重。 2)半固体或液体样品将10g洁净干燥的海砂及一根小玻璃棒放入蒸发皿中,在95-105℃下干燥至恒重。然后准确称取适量样品,置于蒸发皿中,用小玻璃棒搅匀后放在沸水浴中蒸干(注意中间要不时搅拌),擦干皿底后置于95-105℃干燥箱中干燥4h,按上述操作反复干燥至恒重。

食品中水分测定方法

食品中水分测定方法内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

方法有如下几种: 1、有损检测 则是指在测量的过程中待测物粉碎或发生了化学变化,致使其不能保持原有的形状、结构或组分。在这两类中,无损检测的方法更经济、快捷,发展也最为迅速,是当今世界水分检测的主流。 2、直接干燥法 直接干燥法是指将待测样品置于中,根据ASAE标准,在130℃的温度下保持19h,测量前后的质量差,即为其水分含量。 3、红外线加热干燥法 红外线加热干燥法是利用红外线加热样品使其失水,从而达到测量水分含量的目的。代表仪器为SFY-20,测量精度为±%,测量时间为1200s,测水范围为0 ~100%,主要影响因素为温度和加热时间。该法不能进行在线测量。 4、微波加热法 微波加热法是利用微波炉的磁控管所产生的2450MHz或915MHz的超高频率微波快速振荡粮食中的水分子,使分子相互碰撞和摩擦,进而去除粮食中的水分。代表仪器为MMA30,测量精度≤%,测量时间为100s,测水范围为12%~10 0%,主要影响因素为微波炉的功率、谷物质量、密度和介电特性。该法不能进行在线测量。与传统干燥法相比,这两种方法缩短了测量周期、减少了能耗。其

中,红外法不需加热介质,提高了热能利用率;微波法操作方便,并可同时测量多种样品,但它存在温层效应和棱角效应,造成微波的不均匀,从而影响测量精度。 5、电容法 电容法是根据水分的介电常数远远大于粮食中其它成分的介电常数,水分含量的变化势必引起电容量变化的原理,通过测量与样品中水分变化相对应的电容变化即可知粮食的水分含量。代表仪器为SCY-1A,其测量精度≤%,测量时间为5s,测水范围为10%~20%,主要影响因素为温度、品种和紧实度。该法可进行在线测量。以上两种方法的测量原理非常简单,技术相对来说也比较成熟,但都存在不足之处:直接干燥法 测量周期较长,人为干扰因素多,并且不能进行在线测量;电容法的影响因素较多,在精度和重复性等方面难以达到国家规定标准。随着人工智能和数据融合技术的发展,为数据综合处理提供了新的途径,目前也取得了一些可喜的结果。 6、介电损失角法 研究表明:谷物含水率不同,介电损失角也不同,并且呈单值分段线性关系。该方法经济实用、测量精度高,尤为适合测量高水分谷物。代表仪器为MSA6 450,测量时间为,测水范围为1%~30%,主要影响因素为温度和品种。该法可进行在线测量。 7、复阻抗分离电容法

相关主题
文本预览
相关文档 最新文档