当前位置:文档之家› 最小树问题VS最短路问题

最小树问题VS最短路问题

最小树问题VS最短路问题
最小树问题VS最短路问题

最短路算法[1]

最短路算法及其应用 广东北江中学余远铭【摘要】 最短路问题是图论中的核心问题之一,它是许多更深层算法的基础。同时,该问题有着大量的生产实际的背景。不少问题从表面上看与最短路问题没有什么关系,却也可以归结为最短路问题。本文较详尽地介绍了相关的基本概念、常用算法及其适用范围,并对其应用做出了举例说明,侧重于模型的建立、思考和证明的过程,最后作出总结。 【关键字】 最短路 【目录】 一、基本概念 (2) 1.1 定义 (2) 1.2简单变体 (2) 1.3负权边 (3) 1.4重要性质及松弛技术 (4) 二、常用算法 (5) 2.1 Dijkstra算法 (5) 2.2 Bellman-Ford算法 (7) 2.3 SPFA算法 (8) 三、应用举例 (10) 3.1 例题1——货币兑换 (10) 3.2 例题2——双调路径 (11) 3.3 例题3——Layout (13) 3.4 例题4——网络提速 (15) 四、总结 (18)

【正文】 一、基本概念 1.1 定义 乘汽车旅行的人总希望找出到目的地尽可能短的行程。如果有一张地图并 在地图上标出了每对十字路口之间的距离,如何找出这一最短行程? 一种可能的方法是枚举出所有路径,并计算出每条路径的长度,然后选择最短的一条。然而我们很容易看到,即使不考虑含回路的路径,依然存在数以百万计的行车路线,而其中绝大多数是没必要考虑的。 下面我们将阐明如何有效地解决这类问题。在最短路问题中,给出的是一 有向加权图G=(V ,E),在其上定义的加权函数W:E →R 为从边到实型权值的映射。路径P=(v 0, v 1,……, v k )的权是指其组成边的所有权值之和: 11()(,)k i i i w p w v v -==∑ 定义u 到v 间最短路径的权为 {}{}min ():)w p u v u v v δυ→(,=∞ 如果存在由到的通路 如果不存在 从结点u 到结点v 的最短路径定义为权())w p v δυ=(,的任何路径。 在乘车旅行的例子中,我们可以把公路地图模型化为一个图:结点表示路口,边表示连接两个路口的公路,边权表示公路的长度。我们的目标是从起点出发找一条到达目的地的最短路径。 边的权常被解释为一种度量方法,而不仅仅是距离。它们常常被用来表示 时间、金钱、罚款、损失或任何其他沿路径线性积累的数量形式。 1.2简单变体 单目标最短路径问题: 找出从每一结点v 到某指定结点u 的一条最短路 径。把图中的每条边反向,我们就可以把这一问题转化为单源最短路径问题。 单对结点间的最短路径问题:对于某给定结点u 和v ,找出从u 到v 的一 条最短路径。如果我们解决了源结点为u 的单源问题,则这一问题也就获得了解决。对于该问题的最坏情况,从渐进意义上看,目前还未发现比最好的单源算法更快的方法。 每对结点间的最短路径问题:对于每对结点u 和v ,找出从u 到v 的最短 路径。我们可以用单源算法对每个结点作为源点运行一次就可以解决问题。

动态规划与回溯法解决0-1背包问题

0-1背包动态规划解决问题 一、问题描述: 有n个物品,它们有各自的重量和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和? 二、总体思路: 根据动态规划解题步骤(问题抽象化、建立模型、寻找约束条件、判断是否满足最优性原理、找大问题与小问题的递推关系式、填表、寻找解组成)找出01背包问题的最优解以及解组成,然后编写代码实现。 原理: 动态规划与分治法类似,都是把大问题拆分成小问题,通过寻找大问题与小问题的递推关系,解决一个个小问题,最终达到解决原问题的效果。但不同的是,分治法在子问题和子子问题等上被重复计算了很多次,而动态规划则具有记忆性,通过填写表把所有已经解决的子问题答案纪录下来,在新问题里需要用到的子问题可以直接提取,避免了重复计算,从而节约了时间,所以在问题满足最优性原理之后,用动态规划解决问题的核心就在于填表,表填写完毕,最优解也就找到。 过程: a) 把背包问题抽象化(X1,X2,…,Xn,其中 Xi 取0或1,表示第i个物品选或不选),V i表示第i个物品的价值,W i表示第i个物品的体积(重量); b) 建立模型,即求max(V1X1+V2X2+…+VnXn); c) 约束条件,W1X1+W2X2+…+WnXn (V2X2+V3X3+…+VnXn)+V1X1;

最短路问题的实际应用论文

金华双龙洞旅游路线中最短路问题 摘要: 金华双龙洞景点分布较多,通过对其旅游路线的设置,转化为图论内容中的最短路情景进行讨论,建立模型,并通过搜索资料,利用几种方法解决路线最小的问题。 关键字: 数学建模最短路问题 lingo Dijkstra法 flod算法 一、研究背景: 在旅游过程中,我们常常感觉到自己一天下来走了很多路,回到宾 馆脚痛的不行。但其实我们可以利用运筹学的知识,通过建立数学 模型,转化为图论的内容。从而较为合理的制定出选择的路线(即 最短路问题)。 因而这次的小论文,我主要探究一下几个问题: 1.从景点进口到出口的最短路程。(最短路问题) 2.从景点到出口的最长路线。 3.建立的模型是否满足能回到起点(古典图论问题) 二、研究内容: 根据从互联网中搜索的资料,金华双龙洞的主要景点:景区进口双 龙洞,冰壶洞,朝真洞,桃源洞,黄大仙祖宫五个,其余为小景点 (若要加入,同样可以按照以下问题的研究方法进行讨论)现在忽 略。 问题总假设:分别设置双龙洞,冰壶洞,朝真洞,桃源洞,黄大仙 祖宫五个景点为A,B,C,D,E五点,根据现实及假设,可以得到如图 所示的路线图:

再利用用Dijkstra算法求解无负权网络的最短路。同时也可以利用此法算出最长路程。 问题一的解决:以A为景点出口,E为出口。 故A点标号为P(a)=0 给其余所有的T标号T(i)=+∞ 考虑与A相邻的两个顶点BC,两个顶点为T标号,故修改这两个点的标号为:T(b)=min[T(b),P(a)+l12]=min[+∞,0+3]=3 T(c)=min[T(c),P(a)+l13]=min[+∞,0+2]=2 比较所有T标号,T(c)最小,所以令P(c)=2 再考察(C,B)(C,D)(C,E)的端点:同理可得 T(b)=6 T(d)=6.8 T(e)=10.2(显然已经到终点但还需要看看其余路线长短) 故又令P(b)=6.综合分析只有一条线路即A→C→B→D→E 此时总路程为2+4+3+8.4=16.4>10.2 所以,最短路程为A→C→E。即当游客不想再看双龙洞时或者因为脚伤等因素需以最小路程离开时,可以路线A→C→E离开景区。 特殊情况的处理:游客一定要去B景点则在一开始就应该先选择 B,而非C。才能使路线最短。因此,对于特殊问题,我们应当具体 问题,具体分析。

图论及其应用(精)

图论及其应用 学时:40 学分:2 课程属性:专业选修课开课单位:理学院 先修课程:高等代数后续课程:无 一、课程的性质 《图论及其应用》是数学与应用数学专业的专业选修课程。 二、教学目的 通过教学,使学生掌握图论及其算法的基本理论和基本技巧,初步掌握图论及其算法的基本应用手段、基本算法设计及编程,并能用所学理论解决一些应用问题。 三、教学内容 1.图的基本概念 2.图的连通性 3.树的基本性质及其应用 4.Euler Graphs and Hamilton Graphs with Applications 5.平面图性质 6.匹配,求最大匹配算法及应用 7.图的染色及应用 8.极图理论 四、学时分配 章课程内容学时 1 图的基本概念 4 2 图的连通性 6 3 树的基本性质及其应用 6 4 Euler Graphs and Hamilton Graphs with Applications 4 5 平面图性质 6 6 匹配,求最大匹配算法及应用 6

7 图的染色及应用 4 8 极图理论 4 合计40 五、教学方式 本课程采用多媒体课堂讲授,结合实际范例深入浅出讲解讨论。 六、考核方式 本课程考核采用平时与期末考核相结合的办法,特别注重平时的考核,作业采用简单练习、论文等形式,期末考试采用简单考题或论文形式。 七、教材及教学参考书 参考教材: [1] J.A.Bondy and U.S.R.Murty. Graph Theory with Applications, The Macmillan Press LTD,1976. [2] 蒋长浩.图论与网络流.北京:中国林业出版社,2000. 参考书目: [1] Bela Bollobas.Modern Graph Theory(现代图论,影印版).北京:科学出版社,2001. [2] 殷剑宏、吴开亚.图论及其算法.合肥:中国科学技术大学出版社,2003. [3] 谢金星、邢文训.网络优化.北京:清华大学出版社.2000. [4] 程理民、吴江、张玉林.运筹学模型与方法教程.北京:清华大学出版社,2000. [5] 三味工作室.SPSS V10.0 for Windows 实用基础教程.北京:北京希望电子出版社2001. [6] 孙魁明、张海彤.Mathematica工具软件大全.北京:中国铁道出版社,1994. [7] 楼顺天、于卫、闫华梁.MATLAB程序设计语言.西安:西安电子科技大学出版社,1997.八、教学基本内容及要求 第一章图的基本概念 1.教学基本要求 掌握的图的基本概念、特殊图概念,了解最短路问题。 2.教学具体内容 图的基本概念,路和圈,最短路问题。

01背包问题动态规划详解

动态规划是用空间换时间的一种方法的抽象。其关键是发现子问题和记录其结果。然后利用这些结果减轻运算量。 比如01背包问题。 因为背包最大容量M未知。所以,我们的程序要从1到M一个一个的试。比如,开始任选N件物品的一个。看对应M的背包,能不能放进去,如果能放进去,并且还有多的空间,则,多出来的空间里能放N-1物品中的最大价值。怎么能保证总选择是最大价值呢?看下表。 测试数据: 10,3 3,4 4,5 5,6 c[i][j]数组保存了1,2,3号物品依次选择后的最大价值. 这个最大价值是怎么得来的呢?从背包容量为0开始,1号物品先试,0,1,2,的容量都不能放.所以置0,背包容量为3则里面放4.这样,这一排背包容量为 4,5,6,....10的时候,最佳方案都是放4.假如1号物品放入背包.则再看2号物品.当背包容量为3的时候,最佳方案还是上一排的最价方案c为4.而背包容量为5的时候,则最佳方案为自己的重量5.背包容量为7的时候,很显然是5加上一个值了。加谁??很显然是7-4=3的时候.上一排c3的最佳方案是4.所以。 总的最佳方案是5+4为9.这样.一排一排推下去。最右下放的数据就是最大的价值了。(注意第3排的背包容量为7的时候,最佳方案不是本身的6.而是上一排的9.说明这时候3号物品没有被选.选的是1,2号物品.所以得9.) 从以上最大价值的构造过程中可以看出。 f(n,m)=max{f(n-1,m), f(n-1,m-w[n])+P(n,m)}这就是书本上写的动态规划方程.这回清楚了吗?

下面是实际程序: #include int c[10][100]; int knapsack(int m,int n) { int i,j,w[10],p[10]; for(i=1;ic[i-1][j]) c[i][j]=p[i]+c[i-1][j-w[i]]; else c[i][j]=c[i-1][j]; }

动态规划之01背包问题(最易理解的讲解)

01背包问题,是用来介绍动态规划算法最经典的例子,网上关于01背包问题的讲解也很多,我写这篇文章力争做到用最简单的方式,最少的公式把01背包问题讲解透彻。 01背包的状态转换方程f[i,j] = Max{ f[i-1,j-Wi]+Pi( j >= Wi ), f[i-1,j] } f[i,j]表示在前i件物品中选择若干件放在承重为j 的背包中,可以取得的最大价值。 Pi表示第i件物品的价值。 决策:为了背包中物品总价值最大化,第i件物品应该放入背包中吗? 题目描述: 有编号分别为a,b,c,d,e的五件物品,它们的重量分别是2,2,6,5,4,它们的价值分别是6,3,5,4,6,现在给你个承重为10的背包,如何让背包里装入的物品具有最 首先要明确这张表是从右到左,至底向上生成的。 为了叙述方便,用e10单元格表示e行10列的单元格,这个单元格的意义是用来表示只有物品e时,有个承重为10的背包,那么这个背包的最大价值是6,因为e物品的重量是4,背包装的了,把e装进去后价值为6。然后是e9单元格表示背包承重9,只有物品e, e装进去后,背包价值为6,接着是e8, e7单元格,一直到e3单元格表示背包承重3,但物品e承重4,装不了,所以e3=0, 对于d10单元格,表示只有物品e,d时,承重为10的背包,所能装入的最大价值,是10,因为物品e,d这个背包都能装进去。对于承重为9的背包,d9=10,是怎么得出的呢? 根据01背包的状态转换方程,需要考察两个值, 一个是f[i-1,j],对于这个例子来说就是e9的值6,另一个是f[i-1,j-Wi]+Pi; 在这里, f[i-1,j]表示我有一个承重为9的背包,当只有物品e可选时,这个背包能装入的最大价值 f[i-1,j-Wi]表示我有一个承重为4的背包(等于当前背包承重减去物品d的重量),当只有物品e可选时,这个背包能装入的最大价值 f[i-1,j-Wi]就是指单元格e4值为6,Pi指的是d物品的价值,即4 由于f[i-1,j-Wi]+Pi = 6 + 4 = 10 大于f[i-1,j] = 6,所以物品d应该放入承重为9的背包,所以d9=10.

最短路问题及其应用——最短路径

最短路问题及应用 摘要:主要介绍最短路的两种算法,迪杰斯特拉(Dijkstra)及弗罗伊德(Floyd)算法以及这两种算法在实际问题中的应用和比较。 关键词:最短路获克斯特拉(Dijkstra),弗罗伊德(Floyd)算法 1.引言 图论是应用数学的一个分支,它的概念和结果来源非常广泛,最早起源于一些数 学游戏的难题研究,如欧拉所解决的哥尼斯堡七桥问题,以及在民间广泛流传的一些游戏难题,如迷宫问题、博弈问题、棋盘上马的行走路线问题等。这些古老的难题,当时吸引了很多学者的注意。在这些问题研究的基础上又继续提出了著名的四色猜想 和汉米尔顿(环游世界)数学难题。 1847年,图论应用于分析电路网络,这是它最早应用于工程科学,以后随着科学的发展,图论在解决运筹学,网络理论,信息论,控制论,博弈论以及计算机科学 等各个领域的问题时,发挥出越来越大的作用在实践中,图论已成为解决自然科学、工程技术、社会科学、军事等领域中许多问题的有力工具之一。 最短路问题是图论理论的一个经典问题。寻找最短路径就是在指定网络中两结点 间找一条距离最小的路。最短路不仅仅指一般地理意义上的距离最短,还可以引申到其它的度量,如时间、费用、线路容量等。 最短路径算法的选择与实现是通道路线设计的基础,最短路径算法是计算机科学 与地理信息科学等领域的研究热点,很多网络相关问题均可纳入最短路径问题的范畴之中。经典的图论与不断发展完善的计算机数据结构及算法的有效结合使得新的最短路径算法不断涌现。 2.最短路算法 2.1 最短路的定义 对最短路问题的研究早在上个世纪60年代以前就卓有成效了,其中对赋权图()0 w≥的有效算法是由荷兰著名计算机专家E.W.Dijkstra在1959年首次提出的,该ij 算法能够解决两指定点间的最短路,也可以求解图G中一特定点到其它各顶点的最短

最短路问题(整理版)

最短路问题(short-path problem) 若网络中的每条边都有一个权值值(长度、成本、时间等),则找出两节点(通常是源节点与结束点)之间总权和最小的路径就是最短路问题。最短路问题是网络理论解决的典型问题之一,可用来解决管路铺设、线路安装、厂区布局和设备更新等实际问题。最短路问题,我们通常归属为三类:单源最短路径问题(确定起点或确定终点的最短路径问题)、确定起点终点的最短路径问题(两节点之间的最短路径) 1、Dijkstra算法: 用邻接矩阵a表示带权有向图,d为从v0出发到图上其余各顶点可能达到的最短路径长度值,以v0为起点做一次dijkstra,便可以求出从结点v0到其他结点的最短路径长度 代码: procedure dijkstra(v0:longint);//v0为起点做一次dijkstra begin//a数组是邻接矩阵,a[i,j]表示i到j的距离,无边就为maxlongint for i:=1 to n do d[i]:=a[v0,i];//初始化d数组(用于记录从v0到结点i的最短路径), fillchar(visit,sizeof(visit),false);//每个结点都未被连接到路径里 visit[v0]:=true;//已经连接v0结点 for i:=1 to n-1 do//剩下n-1个节点未加入路径里; begin min:=maxlongint;//初始化min for j:=1 to n do//找从v0开始到目前为止,哪个结点作为下一个连接起点(*可优化) if (not visit[j]) and (min>d[j]) then//结点k要未被连接进去且最小 begin min:=d[j];k:=j;end; visit[k]:=true;//连接进去 for j:=1 to n do//刷新数组d,通过k来更新到达未连接进去的节点最小值, if (not visit[j]) and (d[j]>d[k]+a[k,j]) then d[j]:=a[k,j]+d[k]; end; writeln(d[n]);//结点v0到结点n的最短路。 思考:在实现步骤时,效率较低需要O(n),使总复杂度达到O(n^2)。对此可以考虑用堆这种数据结构进行优化,使此步骤复杂度降为O(log(n))(总复杂度降为O(n log(n))。 实现:1. 将与源点相连的点加入堆(小根堆),并调整堆。 2. 选出堆顶元素u(即代价最小的元素),从堆中删除,并对堆进行调整。 3. 处理与u相邻(即下一个)未被访问过的,满足三角不等式的顶点 1):若该点在堆里,更新距离,并调整该元素在堆中的位置。 2):若该点不在堆里,加入堆,更新堆。 4. 若取到的u为终点,结束算法;否则重复步骤2、3。 **优化代码:(DIJKSTRA+HEAP) program SSSP;{single source shortest path} {假设一个图的最大节点数为1000,所有运算在integer范围内} {程序目标:给定有向图的邻接表,求出节点1到节点n的最短路径长度} const maxn=1000;{最大节点数} var n:integer;{节点个数} list:array[1..maxn,1..maxn] of integer;{邻接矩阵,表示边的长度}

算法分析与程序设计动态规划及回溯法解背包问题

动态规划法、回溯法解0-1背包问题 2012级计科庞佳奇 一、问题描述与分析 1.动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中,可能会 有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解。动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。我们可以用一个表来记录所有已解的子问题的答案。 不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。这就是动态规划法的基本思路。具体的动态规划算法多种多样,但它们具有相同的填表格式。 多阶段决策问题中,各个阶段采取的决策,一般来说是与时间有关的,决策依赖于当前状态,又随即引起状态的转移,一个决策序列就是在变化的状态中产生出来的,故有“动态”的含义,称这种解决多阶段决策最优化问题的方法为动态规划方法。任何思想方法都有一定的局限性,超出了特定条件,它就失去了作用。同样,动态规划也并不是万能的。适用动态规划的问题必须满足最优化原理和无后效性。1.最优化原理(最优子结构性质)最优化原理可这样阐述:一个最优化策略具有这样的性质,不论过去状态和决策如何,对前面的决策所形成的状态而言,余下的诸决策必须构成最优策略。简而言之,一个最优化策略的子策略总是最优的。一个问题满足最优化原理又称其具有最优子结构性质。2.无后效性将各阶段按照一定的次序排列好之后,对于某个给定的阶段状态,它以前各阶段的状态无法直接影响它未来的决策,而只能通过当前的这个状态。换句话说,每个状态都是过去历史的一个完整总结。这就是无后向性,又称为无后效性。3.子问题的重叠性动态规划将原来具有指数级时间复杂度的搜索算法改进成了具有多项式时间复杂度的算法。其中的关键在于解决冗余,这是动态规划算法的根本目的。动态规划实质上是一种以空间换时间的技术,它在实现的过程中,不得不存储产生过程中的各种状态,所以它的空间复杂度要大于其它的算法。 01背包是在M件物品取出若干件放在空间为W的背包里,每件物品的体积为W1,W2……Wn,与之相对应的价值为P1,P2……Pn。求出获得最大价值的方案。 2.回溯法(探索与回溯法)是一种选优搜索法,按选优条件向前搜索,以达到目 标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。 在包含问题的所有解的解空间树中,按照深度优先搜索的策略,从根结点出发深度探索解空间树。当探索到某一结点时,要先判断该结点是否包含问题的解,如果包含,就从该结点出发继续探索下去,如果该结点不包含问题的解,则逐层向其祖先结点回溯。(其实回溯法就是对隐式图的深度优先搜索算法)。若用回溯法求问题的所有解时,要回溯到根,且根结点的所有可行的子树都要已被搜索遍才结束。

01背包问题动态规划详解及C++代码

0/1背包问题动态规划详解及C++代码 1. 问题描述 给定一个载重量为C的背包 有n个物品 其重量为wi 价值为vi 1<=i<=n 要求:把物品装入背包 并使包内物品价值最大2. 问题分析 在0/1背包问题中 物体或者被装入背包 或者不被装入背包 只有两种选择。循环变量i j意义 前i个物品能够装入载重量为j的背包中 数组c意义 c[i][j]表示前i个物品能装入载重量为j的背包中物品的最大价值 若w[i]>j 第i个物品不装入背包 否则 若w[i]<=j且第i个物品装入背包后的价值>c[i-1][j] 则记录当前最大价值 替换为第i个物品装入背包后的价值 其c++代码如下 #include using namespace std; void KANPSACK_DP(int c[50][50], int w[50], int v[50], int n, int C) { for(int i = 0; i <= C; i ++) { c[0][i] = 0; } for(int i = 1; i <= n; i ++) { c[i][0] = 0; for(int j = 1; j <= C; j ++) { if(w[i] <= j) { if(v[i] + c[i - 1][j - w[i]] > c[i - 1][j]) c[i][j] = v[i] + c[i - 1][j - w[i]]; else c[i][j] = c[i - 1][j]; } else c[i][j] = c[i - 1][j]; } } } void OUTPUT_SACK(int c[50][50], int x[50], int w[50], int n, int C) { for(int k = n; k >= 2; k --) { if(c[k][C] == c[k-1][C]) x[k] = 0; else { x[k] = 1; C = C - w[k];

0-1背包问题动态规划详解及代码

0/1 背包问题动态规划详解及C代码 动态规划是用空间换时间的一种方法的抽象。其关键是发现子问题和记录其结果。然后利用这些结果减轻运算量。 问题描述: 给定N中物品和一个背包。物品i的重量是W i,其价值位V i,背包的容量为C。问应该如何选择装入背包的物品,使得转入背包的物品的总价值为最大?? 在选择物品的时候,对每种物品i只有两种选择,即装入背包或不装入背包。不能讲物品i 装入多次,也不能只装入物品的一部分。因此,该问题被称为0-1背包问题。 问题分析:令V(i,j)表示在前i(1<=i<=n)个物品中能够装入容量为就j(1<=j<=C)的背包中的物品的最大价值,则可以得到如下的动态规划函数: (1) V(i,0)=V(0,j)=0 (2) V(i,j)=V(i-1,j) jw i (1)式表明:如果第i个物品的重量大于背包的容量,则装人前i个物品得到的最大价值和装入前i-1个物品得到的最大价是相同的,即物品i不能装入背包;第(2)个式子表明:如果第i个物品的重量小于背包的容量,则会有一下两种情况:(a)如果把第i个物品装入背包,则背包物品的价值等于第i-1个物品装入容量位j-w i的背包中的价值加上第i个物品的价值v i; (b)如果第i个物品没有装入背包,则背包中物品价值就等于把前i-1个物品装入容量为j的背包中所取得的价值。显然,取二者中价值最大的作为把前i个物品装入容量为j的背包中的最优解。 比如01背包问题。 因为背包最大容量M未知。所以,我们的程序要从1到M一个一个的试。比如,开始任选N件物品的一个。看对应M的背包,能不能放进去,如果能放进去,并且还有多的空间,则,多出来的空间里能放N-1物品中的最大价值。怎么能保证总选择是最大价值呢?看下表。测试数据: 10,3 3,4 4,5 5,6

动态规划之-0-1背包问题及改进

动态规划之-0-1背包问题及改进

有N件物品和一个容量为V的背包。第i件物品的重量是w[i],价值是v[i]。求解将哪些物品装入背包可使这些物品的重量总和不超过背包容量,且价值总和最大。在选择装入背包的物品时,对于每种物品i,只能选择装包或不装包,不能装入多次,也不能部分装入,因此成为0-1背包问题。 形式化描述为:给定n个物品,背包容量C >0,重量第i件物品的重量w[i]>0, 价值v[i] >0 , 1≤i≤n.要求找一n元向量(X1,X2,…,X n,), X i∈{0,1}, 使得∑(w[i] * Xi)≤C,且∑ v[i] * Xi达最大.即一个特殊的整数规划问题。 数学描述为: 求解最优值:

设最优值m(i,j)为背包容量为j、可选择物品为i,i+1,……,n时的最优值(装入包的最大价值)。所以原问题的解为m(1,C) 将原问题分解为其子结构来求解。要求原问题的解m(1,C),可从m(n,C),m(n-1,C),m(n-2,C).....来依次求解,即可装包物品分别为(物品n)、(物品n-1,n)、(物品n-2,n-1,n)、……、(物品1,物品2,……物品n-1,物品n)。最后求出的值即为最优值m(1,C)。 若求m(i,j),此时已经求出m(i+1,j),即第i+1个物品放入和不放入时这二者的最大值。 对于此时背包剩余容量j=0,1,2,3……C,分两种情况: (1)当w[i] > j,即第i个物品重量大于背包容量j时,m(i,j)=m(i+1,j) (2)当w[i] <= j,即第i个物品重量不大于背包容量j时,这时要判断物品i放入和不放入对m的影响。 若不放入物品i,则此时m(i,j)=m(i+1,j) 若放入物品i,此时背包

最短路径问题的反思及应用

《最短路径问题》的反思及应用 我们知道,有效地开发和利用课本,对于学生的学习具有重要的意义。学生对于课本上例题或习题能否吃透,直接影响着学生的学习效果。因此教师要引导学生挖掘教材,引导学生进行反思,从中领悟问题解决过程的数学内涵。 有这样一个问题: 如图1所示,牧马人从A 地出发,到一条笔直的河边l 饮马,然后到B 地。牧马人到河边的什么地方饮马,可使所走的路径最短? 分析 我们把河边近似看做一条直线l (如图2),P 为直线l 上的一个动点,那么,上面的问题可以转化为:当点P 在直线l 的什么位置时,AP 与PB 的和最小。 如图3所示,作点B 关于直线l 的对称点'B ,连接'AB ,交直线l 于点P ,则点P 就是牧马人到河边饮马的位置。事实上,点'B 与点A 的线段'AB 最短,由对称性质知,'PB PB =,因为''PA PB PA PB AB +=+=,即点P 到点A 、B 的距离之和最小。 上述路径问题,是利用轴对称的性质,通过等线段代换,将所求路线长转化为两定点之间的距离,基本思路是运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长。从解题过程不难看出,本题蕴含着三个数学思想方法:数学模型思想,转化思想,对称思想。如果学生一旦认识或明白这些思想方法,就能举一反三,再复杂的问题也会迎刃而解。 一、基本应用 如图4,点O 是矩形ABCD 的中心,E 是AB 上的点,沿CE 折叠后,点B 恰好与点O 重合,若3BC =,则折痕CE 的长为多少? 分析 沿CE 折叠后,点B 恰好与点O 重合,则点B 、点O 关于直线CE 对称, 3CO CB ==,1122 ACB ∠=∠=∠,点O 是矩形ABCD 的中心,知26AC CO ==。所以12302 ACB ∠=∠=?,又在Rt CBE ∠中,30BCE ∠=?,3BC =,若设BE x =,则 2CE x =,得222(2)3x x -=,13x =23x -(舍去),所以223CE x == 二、拓展应用 如图5两条公路BA 、BC 相交于点B ,在两条公路之间的P 点有一个油库,若要在公

动态规划法解0-1背包问题举例

0-1背包问题举例: 设n=6,c=20, w={4,5,3,8,6,10}, v={20,10,8,18,15,12} 解: p[7]={(0,0)} q[7]=p[7]⊕(10,12)={ (10,12)} p[6]={(0,0), (10,12)} q[6]=p[6]⊕(6,15)={ (6,15),(16, 27)} p[5]= {(0,0), (6,15),(16, 27)} q[5]=p[5]⊕(8,18)={ (8,18),(14, 33)} p[4]= {(0,0), (6,15), (8,18),(14, 33) } q[4]=p[4]⊕(3,8)={(3,8),(9,23),(11,26),(17, 41)} p[3]= {(0,0),(3,8),(6,15),(8,18),(9,23),(11,26),(14, 33),(17, 41)} q[3]=p[3]⊕(5,10)={(5,10),(8,18),(11,25),(13, 28),(14,33),(16,36),(19, 43)} p[2]= {(0,0),(3,8),(5,10),(6,15),(8,18),(9,23),(11,26),(13, 28),(14, 33),(16,36),(17, 41),(19,43)} q[2]=p[2]⊕(4,20)={(4,20),(7,28),(9,30),(10,35),(12,38),(13,43),(15,46),(17, 48),(18, 53),(20,56)} p[1]={(0,0),(3,8),(4,20),(7,28),(9,30),(10,35),(12,38),(13,43),(15,46),(17, 48),(18, 53),(20,56)} 构造最优解: X={1,1,1,1

最短路问题在运输网络中的应用

第25卷第3期 Vol .25 No .3长春师范学院学报(自然科学版)Journal of Changchun Normal University (Natural Science )2006年6月Jun .2006 最短路问题在运输网络中的应用 李 玲 (陕西工业职业技术学院,陕西咸阳 712000) [摘 要]最短路问题是在图的基础上衍生出来的,也是网络优化中的一个基本问题,许多选择优化 问题都可以转化为最短路问题来求解。本文重在研究公路网络运输中的最短路问题。 [关键词]最短路;网络运输;网络优化;动态规划 [中图分类号]O221 [文献标识码]A [文章编号]1008-178X (2006)03-0058-04 [收稿日期]2006-02-01 [作者简介]李 玲(1977-),女,陕西商洛人,陕西工业职业技术学院教师,从事计算机专业基础课教学研究。 1 最短路的定义 对最短路问题的研究早在上个世纪60年代以前就卓有成效了,其中对赋权图(w ij ≥0)的有效算法是由荷兰著名计算机专家E .W .Dijkstra [1]在1959年首次提出的,该算法能够解决两指定点间的最短路,也可以求解 图G 中一特定点到其它各顶点的最短路。后来海斯[2]在Dijkstra 算法的基础之上提出了海斯算法。但这两种 算法都不能解决含有负权的图的最短路问题。因此由Ford [3]提出了Ford 算法,它能有效地解决含有负权的最 短路问题。但在现实生活中,我们所遇到的问题大都不含负权,所以我们在(w ij ≥0)的情况下选择Dijkstra 算法。 定义1[4]若图G =G (V ,E )中各边e 都赋有一个实数W (e ),称为边e 的权,则称这种图为赋权图,记为G =G (V ,E ,W )。 定义2[5] 若图G =G (V ,E )是赋权图且W (e )≥0,e ∈E (G ),若u 是v i 到v j 的路W (u )的权,则称W (u )为u 的长,长最小的v i 到v j 的路W (u )称为最短路。 若要找出从v 1到v n 的通路u ,使全长最短,即min W (u )=∑e ij ∈u W (e )。2 最短路问题算法的基本思想及基本步骤 在诸多算法中(w ij ≥0)最经典的算法当属Dijkstra 算法,该算法的基本思想是动态规划[6]最优原理,即最短路线上任意两点间的路线也是最短。因此,若v i 到v j 的最短路线经过v k ,则v i 到v k 以及v k 到v j 的部分都是相应的最短路线。 基本步骤: 令 s ={v 1},i =1, s ={v 2,v 3,…,v n } 并令 W (v 1)=0 T (v j )=∞,v j ∈ s ①对v j ∈ s ,求min {T (v j ),W (v i )+w ij }=T (v j )。 ②求min v j ∈ s {T (v j )}得T (v k ),使T (v k )=min v j ∈ s {T (v j )}

最短路径算法及其应用

湖北大学 本科毕业论文(设计) 题目最短路径算法及其应用 姓名学号 专业年级 指导教师职称 2011年 4月 20 日

目录 绪论 (1) 1 图的基本概念 (1) 1.1 图的相关定义 (1) 1.2 图的存储结构 (2) 1.2.1 邻接矩阵的表示 (2) 1.2.2 邻接矩阵的相关结论 (3) 2 最短路径问题 (3) 2.1 最短路径 (4) 2.2 最短路径算法 (4) 2.2.1Dijkstra算法 (4) 2.2.2Floyd算法 (5) 3 应用举例 (5) 3.1 Dijkstra算法在公交网络中的应用 (5) 3.1.1 实际问题描述 (5) 3.1.2 数学模型建立 (5) 3.1.3 实际问题抽象化 (6) 3.1.4 算法应用 (6) 3.2 Floyd算法在物流中心选址的应用 (7) 3.2.1 问题描述与数学建模 (7) 3.2.2 实际问题抽象化 (7) 3.2.3 算法应用 (8) 参考文献 (10) 附录 (11)

最短路径算法及其应用 摘要 最短路径算法的研究是计算机科学研究的热门话题,它不仅具有重要的理论意义,而且具有重要的实用价值。最短路径问题有广泛的应用,比如在交通运输系统、应急救助系统、电子导航系统等研究领域。最短路径问题又可以引申为最快路径问题、最低费用问题等,但它们的核心算法都是最短路径算法。经典的最短路径算法——Dijkstra和Floyd算法是目前最短路径问题采用的理论基础。本文主要对Dijkstra和Floyd算法进行阐述和分析,然后运用这两个算法解决两个简单的实际问题。 【关键字】最短路径 Dijkstra算法 Floyd算法图论

最短路问题与拱桥问题(讲义及答案).

最短路问题与拱桥问题(讲义) 课前预习 1.常用的6组勾股数:___________;__________;___________; ___________;__________;___________. 2.一个门框的尺寸如图所示,一块长3m ,宽2.2m 的薄木板 _______ (能或不能)从门框通过. 3.读一读,做一做 小聪郊游时发现了一个有趣的问题:有一只蚂蚁从易拉罐底部爬向易拉罐顶部的罐口处喝饮料,在侧面留下了其爬行的轨迹.小聪观察后发现,蚂蚁爬行的路径是一条曲线,小聪想知道蚂蚁具体爬行了多长,于是邀请小明一起来研究这个问题.经过一番讨论,小聪和小明分别准备尝试用两种方法来进行测量. 方案一:小聪准备用一根绳子沿着蚂蚁爬过的轨迹来进行测量,然后再借助绳子的长度来估计爬行的路程,如图1.方案二:小明准备将易拉罐侧面剪开,然后用尺子直接测量蚂蚁爬行的路程.小明剪开易拉罐侧面,将其展开后发现,蚂蚁爬行的路径竟然是一条笔直的线段,如图2. 请你选一张长方形纸片,画出他的对角线,然后卷成一个圆柱,并参照小聪和小明的方法,动手测量一下这条线的长度.图1 图2

知识点睛 蚂蚁爬最短路问题处理思路: (1)________________________; (2)找点,连线; (3)构造__________,利用__________进行计算. 精讲精练 1.有这样一个有趣的问题:如图所示,圆柱的高等于8cm,底 面半径等于2cm.在圆柱的下底面的A点处有一只蚂蚁,它想吃到上底面上与A相对的B点处的食物,则蚂蚁沿圆柱的侧面爬行的最短路程是__________.(π取整数3) 2.如图,一根藤蔓一晚上生长的长度是沿树干爬一圈后由点A 上升到点B,已知AB=5cm,树干的直径为4cm.你能计算出藤蔓一晚上生长的最短长度吗?(π取整数3)

最短路问题及其应用——最短路径

大连海事大学 图论论文 姓名: 学号: 专业:计算机科学与技术 院系:信息科学技术2009级

摘要: 主要介绍最短路的两种算法,迪杰斯特拉(Dijkstra)及弗罗伊德(Floyd)算法。以及这两种算法在实际问题中的应用和比较。 关键字:图论,最短路径,树,生成树,迪杰斯特拉(Dijkstra),弗罗伊德(Floyd)算法

最短路问题及其应用 1 引言 图论是应用数学的一个分支,它的概念和结果来源非常广泛,最早起源于一些数学游戏的难题研究,如欧拉所解决的哥尼斯堡七桥问题,以及在民间广泛流传的一些游戏难题,如迷宫问题、博弈问题、棋盘上马的行走路线问题等.这些古老的难题,当时吸引了很多学者的注意.在这些问题研究的基础上又继续提出了著名的四色猜想和汉米尔顿(环游世界)数学难题. 1847年,图论应用于分析电路网络,这是它最早应用于工程科学,以后随着科学的发展,图论在解决运筹学,网络理论,信息论,控制论,博弈论以及计算机科学等各个领域的问题时,发挥出越来越大的作用.在实践中,图论已成为解决自然科学、工程技术、社会科学、军事等领域中许多问题的有力工具之一。 最短路问题是图论理论的一个经典问题。寻找最短路径就是在指定网络中两结点间找一条距离最小的路。最短路不仅仅指一般地理意义上的距离最短,还可以引申到其它的度量,如时间、费用、线路容量等。 最短路径算法的选择与实现是通道路线设计的基础,最短路径算法是计算机科学与地理信息科学等领域的研究热点,很多网络相关问题均可纳入最短路径问题的范畴之中。经典的图论与不断发展完善的计算机数据结构及算法的有效结合使得新的最短路径算法不断涌现。 2 最短路 2.1 最短路的定义 w≥对最短路问题的研究早在上个世纪60年代以前就卓有成效了,其中对赋权图()0 ij 的有效算法是由荷兰著名计算机专家E.W.Dijkstra在1959年首次提出的,该算法能够解决两指定点间的最短路,也可以求解图G中一特定点到其它各顶点的最短路。后来海斯在Dijkstra 算法的基础之上提出了海斯算法。但这两种算法都不能解决含有负权的图的最短路问题。因

01背包问题(动态规划法)

0/1背包问题 1. 问题描述 给定一个载重量为m,n个物品,其重量为w i,价值为v i,1<=i<=n,要求:把物品装入背包,并使包内物品价值最大 2. 问题分析 在0/1背包问题中,物体或者被装入背包,或者不被装入背包,只有两种选择。 循环变量i,j意义:前i个物品能够装入载重量为j的背包中 (n+1)*(m+1)数组value意义:value[i][j]表示前i个物品能装入载重量为j的背包中物品的最大价值 若w[i]>j,第i个物品不装入背包 否则,若w[i]<=j且第i个物品装入背包后的价值>value[i-1][j],则记录当前最大价值(替换为第i个物品装入背包后的价值) 计算最大价值的动态规划算法如下: //计算 for(i=1;ij,第i个物品不装入背包 value[i][j]=value[i-1][j]; //w[i]<=j,且第i个物品装入背包后的价值>value[i-1][j],则记录当前最大价值 int temp=value[i-1][j-w[i]]+v[i];

if(w[i]<=j && temp>value[i][j]) value[i][j]=temp; } } 即该段程序完成以下n个阶段: 1:只装入1个物品,确定在各种不同载重量的背包下,能够得到的最大价值 2:装入2个物品,确定在各种不同载重量的背包下,能够得到的最大价值 。。。 n:以此类推,装入n个物品,确定在各种不同载重量的背包下,能够得到的最大价值3. 问题求解 确定装入背包的具体物品,从value[n][m]向前逆推: 若value[n][m]>value[n-1][m],则第n个物品被装入背包,且前n-1个物品被装入载重量为m-w[n]的背包中 否则,第n个物品没有装入背包,且前n-1个物品被装入载重量为m的背包中以此类推,直到确定第一个物品是否被装入背包为止。逆推代码如下: //逆推求装入的物品 j=m; for(i=row-1;i>0;i--) { if(value[i][j]>value[i-1][j]) { c[i]=1; j-=w[i]; } } 4. 代码如下

相关主题
文本预览
相关文档 最新文档