当前位置:文档之家› 现场总线CC-Link网络结构及传输速度和距离

现场总线CC-Link网络结构及传输速度和距离

现场总线CC-Link网络结构及传输速度和距离
现场总线CC-Link网络结构及传输速度和距离

现场总线CC-Link网络结构及传输速度和距离

————————————————————————————————作者:————————————————————————————————日期:

现场总线CC-Link网络结构及传输速度和距离

一般工业控制领域的网络分为3、4个层次,分别是上位的管理层、控制层和部件层。部件层也可以再细分为设备层和传感器层,CC-link 是一个以设备层为主的网络,同时也可以覆盖较高层次的控制层和较低层次的传感器层。

https://www.doczj.com/doc/417069046.html,-link的网络结构

一般情况下,CC-link整个一层网络可由1个主站和64个子站组成,它采用总线方式通过屏蔽双绞线进行连接。网络中的主站由三菱电动机FX系列以上的plc或计算机担当,子站可以是远程I/O模块、特殊功能模块、带有CPU的PLC本地站、人机界面、变频器、伺服系统、机器人以及各种测量仪表、阀门、数控系统等现场仪表设备。如果需要增强系统的可靠性,可以采用主站和备用主站冗余备份的网络系统构成方式。采用第三方厂商生产的网关还可以实现从CC-link到ASI、S-link、Unit-wire等网络的连接。

https://www.doczj.com/doc/417069046.html,-link的传输速度和距离

CC-link具有高的数据传输速度,最高可以达到10Mb/s,其数据传

输速度随距离的增长而逐渐减慢,传输速度和距离的具体关系如表所示。

表传输速度和距离的对应关系

CC-link的中继器目前有多种。

第一种为T型分支中继器AJ65SBT-RPT,每增加一个距离延长一倍。一层网络最多可以使用10个。

第二种为光中继器AJ65SBT-RPS或AJ65SBT-RPG,用光缆延长,因此在一些比较容易受干扰的环境可以采用。光中继器要成对使用,每一对AJ65SBT-RPS之间的延长距离为1km,最多可以使用4对;每一对AJ65SBT-RPG之间的延长距离为2km,最多可以使用2对。

第三种为空间光中继器AJ65BT-RPI-10A/AJ65BT-RPI-10B,采用红外线无线传输的方式,在布线不方便,或者连接设备位置会移动的场合使用。空间光中继器也必须成对使用,两者之间的距离不能超过

200m,还有一些方便接线的中继器和与其他网络相连的网关和网桥。

CC-link提供了110Ω和130Ω两种终端电阻,用于避免因在总线的距离较长、传输速度较快的情况下,由于外界环境干扰出现传输信号的奇偶校验出错等传输质量下降的情况。

https://www.doczj.com/doc/417069046.html,-link实现高速大容量的数据传输

CC-link提供循环传输和瞬时传输两种方式的通信。

每个内存站循环传送数据为24B,其中8B(64位)用于位数据传送,16B(4点RWr、4点RWw)用于字传送。一个物理站最大占用4个内存站,故一个物理站的循环传送数据为96B。

对于CC-link整个网络而言,其循环传输每次链接扫描的最大容量是2048位和512字。

在循环传输数据量不够用的情况下,CC-link提供瞬时传输功能,可将960B的数据,用指令传送给目标站。

CC-link在连接64个远程I/O站、通信速度为10Mb/s的情况下,循环通信的链接扫描时间为3.7ms。稳定、快速的通信速度是CC-link

的最大优势。

https://www.doczj.com/doc/417069046.html,-link丰富的功能

1)自动刷新功能、预约站功能。CC-link网络数据从网络模块到CPU 是自动刷新完成,不必用专用的刷新指令;安排预留以后需要挂接的站,可以事先在系统组态时加以设定,当此设备挂接在网络上时,CC-link可以自动识别,并纳入系统的运行,不必重新进行组态,保持系统的连续工作,方便设计人员设计和调试系统。

2)完善的RAS功能。RAS是Reliability(可靠性)、Availability (有效性)、Serviceability(可维护性)的缩写,如故障子站自动下线功能、修复后的自动返回功能、站号重叠检查功能、故障无效站功能、网络链接状态检查功能、自诊断功能等,提供了一个可以信赖的网络系统,帮助用户在最短时间内恢复网络系统。

3)互操作性和即插即用功能。CC-link提供给合作厂商描述每种类型产品的数据配置文档。这种文档称为内存映射表,用来定义控制信号和数据的存储单元(地址)。然后,合作厂商按照这种映射表的规定,进行CC-link兼容性产品的开发工作。以模拟量I/O开发工作表为例,在映射表中位数据RX0被定义为“读准备好信号”,字数据RWr0被定义为模拟量数据。由不同的A公司和B公司生产的同样类

型的产品,在数据的配置上是完全一样的,用户根本不需要考虑在编程和使用上A公司与B公司的不同,另外,如果用户换用同类型的不同公司的产品,程序基本不用修改,可实现“即插即用”连接设备。

4)循环传送和瞬时传送功能。CC-link的两种通信的模式:循环通信和瞬时通信。循环通信是数据一直不停地在网络中传送,数据是主站的不同类型,可以共享,由CC-link核心芯片MFP自动完成;瞬时通信是在循环通信的数据量不够用,或需要传送比较大的数据(最大960B)时,可以用专用指令实现一对一的通信。

5)优异抗噪性能和兼容性。为了保证多厂家网络的良好兼容性,一致性测试是非常重要的。通常只是对接口部分进行测试。而且,CC-link的一致性测试程序包含了抗噪声测试。因此,所有CC-link 兼容产品具有高水平的抗噪性能。正如我们所知,能做到这一点的只有CC-link。除了产品本身具有卓越的抗噪性能以外,光缆中继器给网络系统提供了更加可靠、更加稳定的抗噪能力。至今还未收到过关于噪声引起系统工作不正常的报告。

网络高清传输的六种方案

网络高清传输的六种方案 一、常规方式——使用网线加交换机 网线传输网络高清信号最远不能超过100米距离,所以这种方式只限于较近距离,中小项目使用。 二、较远距离,及要求效果、画质推荐使用——光纤收发器 光纤收发器是一种将短距离的双绞线电信号和长距离的光信号进行互换的信号转换传输设备,将前端的以太网信号,通过光纤收发器的发射端将以太网的电信号转换器成光信号进行远距离传输,光纤收发器的接收端将光信号还有成电信号。

三,远距离光纤传输,任意间设备可作为终端——高清网络一纤通 高清一纤通传输方式采用一芯光纤上传输多达60个光网点,实现百万高清视频、报警、对讲、控制信号同时传输。 组网方式: 1.串联组网 鸿泰一纤通采用串联组网方式将设备逐级连入线路中,避免每对设备都要使用一芯光纤。节省了光纤。 如图所示:

2.混合组网 一纤通还可与交换机一起混合组网使用,在摄像机集中的地方可以先把信号传入到交换机中,再由高清一纤通传入到机房中。 如图所示: 扩展能力强 如果需要增加节点,无需重新布线。每个光网点可以根据需要放置1-8个网络摄像机,在首尾两台设备的上光口与下光口联上光缆,可以实现环网传输,即使中间节点光缆出现异常,也可以正常传输其它无故障的视频信号。 高性能 每芯光纤最多可支持250个高清网络摄像机,在联接250个摄像机时,最远节点信号延时小于0.2MS,实现所有画面有延时,无拖尾现象。 安装简单 即插即用,无需软件硬件设置。传输稳定,网络失帧率少,实时性高,节省光纤线材,环网传输能做到有备无患。 成本低低价位的光纤传输方式。 升级快可将原系统升级成数字化,应用更全面。 质量保证三级防雷设计,品质保证。工业级设计,100%老化测试,确保产品质量万无一失。

现场总线复习题题

一、概念题 1、现场总线 现场总线是指安装在制造或过程区域的现场设备与控制室内的自控制装置 之间数字式、串行、多点通信的数据总线。 2、模拟数据编码 用模拟信号的不同幅度、频率、相位来表达数据的0、1状态。 3、数字数据编码 用高低电平的矩形脉冲信号来表达数据的0、1状态。 4、单极性码 信号电平是单极性的。 5、双极性编码 信号电平为正、负两种极性的。 6、归零码(RZ) 归零码在每一位二进制信息传输之后均返回零电平的编码。可以很方便地确定每个码元的界限和信号电平。 7、非归零码(NRZ) 非归零码在整个码元时间内维持有效电平。如果两个码元数据相同(例如都是1),则电平保持不变。而这种情况下要求区分每个码元的 电平就必须对每个码元的占用时间做精确确定。否则,就会带来不同步 的问题。 8、差分码 差分码用电平的变化与否来代表逻辑“1”和“0”。变化为“1”,不变化为“0”。 9、基带传输 人们把数字数据信号固有的频带称为基带,相应的矩形脉冲信号称为基带信号。 10、载波传输 把数字基带信号记载到连续的高频载波上进行传输的系统叫载波传输或调制传输。 11、单工通信

数据单向传输(无线电广播) 12、半双工通信 数据可以双向传输,但不能在同一时刻双向传输(对讲机) 13、全双工通信 数据可同时双向传输(电话) 两个方向的信号共享链路带宽: 1)链路具有两条物理上独立的传输线路,或 2)将带宽一分为二,分别用于不同方向的信号传输 14、广播式网络 在广播式网络中,所有连网计算机都共享一条公共通信信道。当一台计算机利用共享通信信道发送报文分组时,所有其他的计算机都会“收听”到这个分组。 15、点到点网络 与广播式网络相反,在点到点网络中,每条物理线路连接一对计算机。 假如两台计算机之间没有直接连接的线路,那么它们之间的分组传输就要通过中间结点的接收、存储与转发,直至目的结点。 采用分组存储转发与路由选择机制是点到点式网络与广播式网络的重要区别之一。 16、广播风暴 网络上的一个错误数据包的广播,它会引起多个主机立刻响应,一般说来,这种平等的错误数据包会引起风暴严重地成指数增长。 17、本质安全 18、总线供电 19、CSMA/CD 20、CTDMA 21、总线仲裁 二、填空题

宽带网速和下载速率换算基本知识

什么是光纤? 可作光纤是光导纤维的简写,是一种由玻璃或塑料制成的纤维,为光传导工具。 什么是光纤传输?光纤传输,即以光导纤维为介质进行的数据、信号传输。光导纤而且可以满足视频传维,不仅可用来传输模拟信号和数字信号,单根光导纤维的数据传输的需求。光纤传输一般使用光缆进行,传输距离能达几十公在不使用中继器的情况下,输速率能达几,里。 什么是光缆?

它机械或环境的性能规范而制造的,光缆( )是为了满足光学、是利用置于包覆护套中的一根或多根光纤作为传输媒质并可以(细如单独或成组使用的通信线缆组件。光缆主要是由光导纤维光缆内没有金、头发的玻璃丝)和塑料保护套管及塑料外皮构成,银、铜铝等金属,一般无回收价值。光缆是一定数量的光纤按照一定方式组成缆心,外包有护套,有的还包覆外护层,用以实现即:由光纤(光传输载体)经过光信号传输的一种通信线路。一定的工艺而形成的线缆。光缆的基本结构一般是由缆芯、加强钢丝、填充物和护套等几部分组成,另外根据需要还有防水层、.缓冲层、绝缘金属导线等构件 什么是中继器?

中继器()是网络物理层上面的连接设备。适用于完全相同主要功能是通过对数据信号的重新发送或者的两类网络的互连,中继器是对信号进行再生和还转发,来扩大网络传输的距离。 原的网络设备:模型的物理层设备。 中继器是局域网环境下用来延长网络距离的最简单最廉价的网 络互联设备,操作在的物理层,中继器对在线路上的信号具有放大再生的功能,用于扩展局域网网段的长度(仅用于连接相同的局域网网段)。 常用于两个网络节是连接网络线路的一种装置,()中继器点之间物理信号的双向转发工作。中继器主要完成物理层的功完成信号的复制、负责在两个节点的物理层上按位传递信息,能,调整和放大功能,以此来延长网络的长度。由于存在损耗,在线衰减到一定程度时将造成信号路上传输的信号功率会逐渐衰减,中继器就是为解决这一问题而设计因此会导致接收错误。失真,的。它完成物理线路的连接,对衰减的信号进行放大,保持与原数据

各类工业总线对比

各类工业总线对比 EtherCAT(以太网控制自动化技术)是一个以以太网为基础的开放架构的现场总线系统,EterCAT名称中的CAT为ControlAutomation Technology(控制自动化技术)首字母的缩写。最初由德国倍福自动化有限公司(Beckhoff AutomationGmbH)研发。EtherCAT为系统的实时性能和拓扑的灵活性树立了新的标准,同时,它还符合甚至降低了现场总线的使用成本。EtherCAT的特点还包括高精度设备同步,可选线缆冗余,和功能性安全协议(SIL3)。 EtherCAT EtherCAT技术突破了其他以太网解决方案的系统限制:通过该项技术,无需接收以太网数据包,将其解码,之后再将过程数据复制到各个设备。EtherCAT从站设备在报文经过其节点时处理以太网帧:嵌入在每个从站中的FMMU(现场总线存储管理单元)在帧经过该节点时读取相应的编址数据,并同时将报文传输到下一个设备。同样,输入数据也是在报文经过时插入至报文中。整个过程中,报文只有几纳秒的时间延迟。主站方面也非常经济,商用的标准网卡(NIC)或任何主板集成的以太网控制器可以用作硬件接口。这些接口的共性就是数据通过DMA(直接内存读取)传输至PC,即网络读取时无需占用CPU资源。协议EtherCAT协议在以太网帧内采用官方指定的以太类型。采用这种以太类型即可允许在以太网帧内直接传输控制数据,而无需重新定义标准以太网帧。该以太网帧可由多种子报文组成,每个子报文服务于逻辑过程映像区的特定内存区,该区域最大可达4GB。数据序列是独立于物理顺序的,所以以太网端子模块的编址可以随意排序。从站之间的广播,多播和通讯也可得以实现。当EtherCAT组件与主站控制器运行在同一个子网,或者在控制软件直接读取以太网控制器时,可以使用以太网帧直接传输数据。然而,EtherCAT不仅限于单个子网的应用。EtherCAT UDP将EtherCAT协议封装为UDP/IP数据报文,这就意味着,任何以太网协议堆栈的控制均可编址到EtherCAT系统之中,甚至通讯还可以通过路由器跨接到其它子网中。在这种情况下,系统性能显然取决于控制器及其以太网协议的实时性能。EtherCAT 网络本身的响应时间几乎不受影响:UDP数据帧只需要在第一个站点解包。性能EtherCAT使网络性能达到了一个新高度。借助于从站节点中的FMMU和网络控制器主站的直接内存存取,协议的处理过程完全在硬件中完成。整个协议的处理过程都在硬件中得以实现,因此,完全独立于协议堆栈的实时运行系统、CPU性能或软件实现方式。1000个I/O的更新时间只需30 s。单个以太网帧最多可进行1486字节的过程数据交换,几乎相当于12000个数字输入和输出,而传送这些数据耗时仅为300 s. 100个伺服轴的通讯也仅为100s。在此期间,系统更新带有命令值和控制数据的所有轴的实际位置及状态,分布时钟技术使轴的同步偏差小于1微秒。而即使是在保证这种性能的情况下,带宽仍足以实现异步通讯,如TCP/IP、下载参数或上载诊断数据。超高性能的EtherCAT技术可以实现传统的现场总线系统无法迄及的控制理念。例如,以太网系统现在不仅可以处理速度控制,也可用于分布式驱动的电流控制。巨大的带宽可以实现每个数据信息与其状态信息同时传输。EtherCAT使通讯技术和现代工业PC所具有的超强计算能力相适应,总线系统不再是控制理念的瓶颈,分布式I/O可能比大多数本地I/O接口运行速度更快。EtherCAT取代PCI由于主板集成了以太网卡,用于接口卡的插槽不再是必要条件。随着PC组件急剧向小型化经济化方向发展,工业PC的体积日趋取决于插槽的数目。而快速以太网的带宽和EtherCAT通讯硬件的过程数据长度则为该领域的发展提供了新的可能性:IPC中的传统接口现在可以转变为集成的EtherCAT接口端子。除了可以对分布式I/O进行编址,还可以对驱动和控制单元以及现场总线主站、快速串行接口、网关和其它通讯接口等复合系统进行编址。即使是其他无协议限制的以太网设备变体,也可以通过分布式交换机端口设备进行连接。由于一个以太网接口足以满足整个外围设备的通讯要求,因此,这不仅极大地精简了IPC 主机的体积,而且也降低了IPC主机的成本。拓扑结构EtherCAT几乎支持任何拓扑类型,包括线型、树型、星型等。通过现场总线而得名的总线结构或线型结构也可用于以太网,并且不受限于级联交换机或集线器的数量。最有效的系统连线方法是线型、分支或树叉结构的组合拓扑。因为所需接口在I/O 模块等很多设备中都已存在,所以无需附加交换机。当然,仍然可以使用传统的、基于以太网的星型拓扑结构。还

高速长距离网络传输性能优化_王伟杭

高速长距离网络传输性能优化 王伟杭1,2,任勇毛1,岳兆娟1,2,李 俊1 (1. 中国科学院计算机网络信息中心,北京 100190;2. 中国科学院研究生院,北京 100049) 摘 要:从传输协议和网络节点两方面分析高速长距离网络传输性能的影响因素,介绍中间节点拥塞避免、减少主机负载以及改进传输协议等各种性能优化方法,并结合仿真和实际网络实验验证,指出各种技术的优缺点。对传输性能优化技术进行总结并给出设计终端性能自适应的传输协议。 关键词:高速长距离网络;性能优化;传输协议;拥塞控制 Transport Performance Optimization for Fast Long-distance Network WANG Wei-hang 1,2, REN Yong-mao 1, YUE Zhao-juan 1,2, LI Jun 1 (1. Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China; 2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China) 【Abstract 】This paper intensively analyzes the influence factors from the aspects of transport protocol and network node, and emphatically describes all kinds of optimization mechanisms such as congestion avoidance in media node, reducing terminal load and enhancing transfer protocols, etc. Meanwhile, it demonstrates the effectiveness of all these techniques in emulations and real networks and points out their advantages and disadvantages. All these optimization technologies are concluded and a novel research direction designing terminal performance transport protocol is given. 【Key words 】Fast Long-distance network(FLDnet); performance optimization; transport protocol; congestion control DOI: 10.3969/j.issn.1000-3428.2011.14.030 计 算 机 工 程 Computer Engineering 第37卷 第14期 V ol.37 No.14 2011年7月 July 2011 ·网络与通信· 文章编号:1000—3428(2011)14—0094—03文献标识码:A 中图分类号:TP309 1 概述 近年来,由于DWDM 光网络、10 GbE 、100 GbE 高速以 太网等技术的快速发展,骨干网络带宽迅速提升,促使高速长距离网络(Fast Long-distance network, FLDnet)的快速发展。在基于中美俄环球科教网络(GLORIAD)的实际应用和性能测量实验中发现了高速长距离网络传输性能不高的问题,本文对此问题进行了研究,并总结了解决此问题的各种性能优化技术。 2 FLDnet 的传输瓶颈 随着高速长距离网络研究的不断深入,研究人员发现,在FLDnet 环境中,TCP 性能很差[1]。这一问题的产生是由多种因素决定的,总的来说可将原因归结为两方面:(1)传统的TCP 协议,采用保守的加性增加和激进的乘性减少的拥塞控制策略,在较大的往返时延(Round Trip Time, RTT)环境中,慢启动和拥塞恢复阶段带宽利用率极低;(2)除TCP 协议本身外,网络中间节点及边缘主机的处理能力对高速网络传输也有重要的影响[2-3]。近年来,针对TCP 协议的改进以及对节点的性能提高一直是高速链路传输性能优化技术研究的重点。 2.1 传输协议性能瓶颈 针对低速低时延的分组交换网而设计的TCP 协议,在FLDnet 中性能很差。 (1)拥塞避免机制过于保守。TCP 采用的加性增加、乘性减少(Additive Increase Multi- plicative Decrease, AIMD)拥塞窗口调整算法过于保守。在FL- Dnet 中,由于RTT 较大,一旦发生拥塞,拥塞窗口减小后,需要很长时间才能恢复。文献[1]指出,在带宽为622 Mb/s 、RTT 为300 ms 、报文段大小 为1 460 Byte 时, TCP 拥塞避免阶段所经历的时间长达41 m ,如此长的拥塞恢复时间导致TCP 传输速率较慢。 (2)流量控制机制过于保守。为避免接收端的缓冲区溢出,TCP 使用滑动窗口限制发送流量。默认的最大窗口大小只有64 KB ,对于低速低时延网络和早期的低性能终端,这个值较合适,但对于FLDnet ,带宽时延积(Bandwidth Delay Production, BDP)远大于这个值,链路管道容量利用率很低。另一方面,目前终端性能已经大大提高,内存早已达到2 GB 、4 GB 等容量,64 KB 大小的接收缓冲区过于保守。 2.2 网络节点性能瓶颈 用于LAN 连接的10 GbE 物理层规范(LAN PHY)在MAC 层可达到10 Gb/s 的数据速率,而用于WAN 连接的OC-192c/ STM-64c 光链路(WAN PHY)传输以太网数据的速率,则只有9.286 Gb/s ,这由OC-192c 的容量及SONET/SDH 帧封装开销决定。由于TCP 采用基于窗口的发送速率控制机制(而非基 于速率的调整策略), 以底层能达到的最大速率发送窗口所允许的数据量,突发数据在LAN PHY 与WAN PHY 间转换节点由于接入端速率(10 Gb/s)大于广域端速率(9.286 Gb/s),可 能导致缓冲区溢出。因此, FLDnet 中LAN PHY 与WAN PHY 间的节点,成为传输的性能瓶颈[2]。 基金项目:国家科技计划“ITER 计划专项”基金资助项目(2008GB 111000);2009年度中国科学院研究生科技创新基金资助项目 作者简介:王伟杭(1985-),女,硕士研究生,主研方向:高速网络;任勇毛,助理研究员、博士;岳兆娟,博士研究生;李 俊,研究员、博士生导师 收稿日期:2010-12-03 E-mail :weihang.wang09@https://www.doczj.com/doc/417069046.html,

几种常见的现场总线简介

几种常见的现场总线简介从1984年IEC开始制订现场总线国际标准至今,经过16年的努力和有关各方的协商妥协,最终,采用包括8种类型现场总线的IEC6lI58标准,并于1999年底的投票中得以通过。 2.1 Type l IEC技术报告(即FF H1)FF H1现场总线的网络协议是按照ISOOSI参考模型建立的,它由物理层、数据链路层、应用层,以及考虑到现场装置的控制功能和具体应用而增加的用户层组成。基金会现场总线(FF)是Type1现场总线的一个子集(Subset)。 2.2 Type 2 ControlNet ControlNet现场总线得到美国Rockwell公司支持。它采用了一种新的通信模式:生产者/客户(Producer/Consumermodel)模式。这种模式允许网络上的所有节点,同时从单个数据源存取相同的数据。这种模式最主要的特点是增强了系统的功能,提高了效率和实现精确的同步。 2.3 Type 3 Profibus Profibus得到德国Siemens公司支持。Profibus数据链路层总线存取有两种方式,即令牌环(Token-Ring)方式和主站/从站(Master/Slave)方式。Profibus系列由3个兼容部分组成,即Profibus-DP、Profibus-FMS和Profibus-PA。Profibus-DP适用于设备级控制系统与分散I/O之间高速通信,它使用物理层、数据链路层以及用户接口。Profibus-FMS适用于车间级监控网络,是一个令牌结构、实时多主网络。Profibus-PA专为过程自动化设计,它能够将变送器和执行器连接到一根公共总线,符合IEC61158.2物理层规范,

常用现场总线种类介绍

常用现场总线种类介绍公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

常用现场总线种类介绍 1、PROFIBUS Profibus 作为一种快速总线,被广泛应用于分布式外围组件(PROFIBUS-DP)。除了 PROFIBUS-DP 和 FMS 以外,Beckhoff 还支持驱动器通讯标准 PROFIBUS MC。过程现场总线 2、EtherCAT EtherCAT(Ethernet for Control Automation Technology,用于控制和自动化技术的以太网)是一种用于工业自动化的实时以太网解决方案,性能优越,使用简便。 3、Lightbus 这种经过验证的 Beckhoff 光纤总线系统具有极为优秀的抗 EMI 性能,易于安装,数据流快速、循环且具有确定性。 4、Interbus Interbus 易于配置,通讯快速而可靠。主/从系统的移位寄存器协议可提供高效循环通讯。 5、CANopen 通过有效利用总线带宽,CANopen 可在即使相对较低的数据传输速率时也能实现较短的系统响应时间。秉承了 CAN 的传统优点,例如数据安全性高且具备多主站能力。 6、ControlNet ControlNet 是一种开放式标准现场总线系统。该总线协议允许循环数据和非循环数据通过总线同时进行交换,而两者之间互不影响。 7、SERCOS interface SERCOS 最初作为用于驱动器的快速光纤总线系统研发。采用 Beckhoff SERCOS 总线耦合器,I/O 设备可以实现高速率数据传输和较短的循环时间。 8、Ethernet

200元使局域网传输速度从百兆变千兆

200元使局域网传输速度从百兆变千兆 一般的局域网传输速度为100M,因为它受交换机和路由器端口的制约。一旦突破核心交换 设备,传输速度便会更进一级,比如可以达到令人惊叹的千兆网速。千兆网速跟百兆网速相 比,变化有多大呢?我们看看百兆网与千兆网拷贝速度的对比。 ▲百兆网速拷贝传输速度 千兆网速拷贝传输速度从以上图示可以看出,速度变化是非常明星的,千兆网传输速度比百兆网快了差不多7倍。

千兆网更容易受到外界影响,网线长短是一个重要因素 ●网线对网速有影响吗?网线干扰会影响电脑网速。 ●与百兆网络不同的是,千兆网更容易受到外界影响,其中网线长短是一个重要因素。 比如两台具有千兆网卡的电脑互连,用20cm的普通超五类双绞线很容易达到70MB/s 以上的高速度,但双绞线如果增长到10m或20m(比如某一个房间到另一个房间), 则速度会骤降到30MB/s甚至更低,这种情况在百兆网中很少出现。 网线的品质直接影响到数据传输的速度和稳定性,对于千兆网来说,一般都选择超五类或六类线,至于五类线和三类线则最好不要使用。说起来千兆网络应当选择对应的 六类双绞线,不过六类线的线芯比较粗,做水晶头时难度相对大,而且为了增强线缆强 度以适应长距离传输,有些六类线内部还增加了十字或一字的龙骨,导致不能大角度弯 曲,再加上需要六类线对应的水晶头……实在是麻烦多多,反正家里用用要求不高,还是 超五类线既省事又物美价廉。 购买线缆时注意不要追求高档买带有屏蔽的线缆(外皮带有STP字样),因为屏蔽线要求整个网络都有足够的屏蔽措施并正确接地,对施工安装的要求很高,达不到要求 的话反而会影响数据传输。非屏蔽双绞线的外皮上带有“UTP”字样,一般买到的都是这种。 至于双绞线的选购,篇幅所限这里就不多说了,只要是品牌线缆,而且是正品的话(最 好到京东易迅之类地方购买),一般家用都完全没问题。 200元实现千兆网 绝大多数家里的局域网都是通过路由器或交换机来连接到一起,既然现在网卡和网线都是千兆的了,在这个核心交换设备上自然也不能省钱。一般来说有多台电脑的话,往往需要路由器来共享上网,而现在具有千兆网口的路由器虽然已经不是稀罕物,不过价格相对来说要略高一点。值得推荐的有D-Link DIR-655,

现场总线综述及应用实例.

现场总线技术综述 一.概述 现场总线控制系统技术是20 世纪80 年代中期在国际上发展起来的一种崭新的工业控制技术。现场总线控制系统(FCS)的出现引起了传统的PLC 和DCS控制系统基本结构的革命性变化。现场总线系统技术极大地简化了传统控制系统繁琐且技术含量较低的布线工作量,使其系统检测和控制单元的分布更趋合理。更重要的是从原来的面向设备选择控制和通信设备转变成为基于网络选择设备。尤其是20世纪90 年代现场总线控制系统技术逐渐进入中国以来,结合Internet 和Intranet 的迅猛发展,现场总线控制系统技术越来越显示出其传统控制系统无可替代的优越性。现场总线控制系统技术已成为工业控制领域中的一个热点。 1.现场总线的特点 现场总线技术实际上是采用串行数据传输和连接方式代替传统的并联信号传输和连接方式的方法,它依次实现了控制层和现场总线设备层之间的数据传输,同时在保证传输实时性的情况下实现信息的可靠性和开放性。一般的现场总线具有以下几个特点:(1)布线简单(2)开放性(3)实时性(4)可靠性2.现场总线的优点 由于现场总线以上的特点,特别是现场总线系统结构的简化,使控制系统的设计,安装,投运到正常生产运行以及检修维护,都体现出优越性。 1.节省硬件数量与投资, 2.节省安装费用 3.节省维护开销 4.用户具有高度的系统集成主动权 5.提高了系统的准确性与可靠性 3.现场总线的应用领域 目前现场总线技术的应用主要集中在冶金、电力、水处理、乳品饮料、烟草、水泥、石化、矿山以及OEM用户等各个行业,同时还有道路无人监控、楼宇自动化、智能家居等新技术领域。

二.现场总线的标准 1.IEC61158的制定 1984年IEC提出现场总线国际标准的草案。1993年才通过了物理层的标准IEC1158-2,并且在数据链路层的投票过程中几经反复。 发展61158现场总线的本意是“排他的和联合的”,各自独立的“现场总线”将给用户带来许多头疼的技术问题,牺牲的是用户的利益。在现场总线领域里,德国派(ISP,Interoperable System Project,可互操作系统规划,是一个以Profibus 为基础制定的现场总线国际组织)和法国派(WORLD FIP)的对持十分激烈,互不相让,以至于IEC无法通过国际标准。1994年6月在国际上要求联合强烈的呼声和用户的压力下,ISP 和World FIP成立了FF(Fieldbus Foundation,现场总线基金会), 推出了FF现场总线。IEC投票的文本就是以FF为蓝本的方案。这是现场总线发展的主流方向。 由于FF的目标是致力于建立统一的国际标准,它的成立实质上意味着工业界将摒弃ISP(含PROFIBUS)和WORLD FIP。它的成立导致了德国派ISP 立即解散;法国派(WORLD FIP)已经明确表示不反对IEC的方案,并且可以友好地与IEC方案互联,甚至提出了与FF“无缝连接”方案;而剩下的德国派PROFIBUS因为与FF的方案和技术途径不同,过渡将是非常困难,因此强烈反对IEC方案以保住市场份额。但是PROFIBUS提出的技术理由仅仅是一些支节问题,于是一些评论认为它是出于商业利益的驱动去反对FF,国际上的现场总线之争已经演变成为PROFIBUS的德国派与以FF为代表的“联合派”竞争。有趣的是工业国家的大公司往往“脚踏几条船”加入各种现场总线以获得更多的商业 利益,如最能说明问题的是最主要的反对者西门子公司(PROFIBUS主要成员)也参加了FF。这种具有特殊意义事实已经说明了PROFIBUS要与FF对抗在技术上处于明显的劣势。 在现场总线国际标准IEC61158中,采用了一带七的类型,即: 类型1 原IEC61158技术报告(即FF -H1) 类型2 Control Net(美国Rockwell)公司支持 类型3 Profibus(德国SIEMENS公司支持) 类型4 P-Net(丹麦Process Data公司支持)

远距离视频信号传输解决方案

在监控工程的设计和施工中,常常会遇到视频超过1000米甚至更远距离的传输和信号传输过程中遇到干扰源的问题。由于模拟视频信号通过同轴电缆在中长距离的传输过程中存在着信号的衰减和失真现象,或者当同轴电缆遇到干扰源时(如交流电线、强电磁场等)都会造成图像模糊不清或条形干扰等现象。传统解决传输距离过长的方法是在每隔300-500米左右加置一个信号放大器,这不仅大大增加了线路的建设成本,同时也增加了线路发生故障的几率。对于遇到干扰源的问题则不好解决。另一方面,在同方向存在多路视频线路和控制信号线路的布线工程施工中,多股同轴电缆加上控制信号电缆合在一起,给管道穿越和线路布放造成了比较大的困难。 由于同轴电缆自身的特性,当视频信号在同轴电缆内传输时其受到的衰减与传输距离和信号本身的频率有关。视频信号在同轴电缆内传输时不仅信号整体幅度受到衰减,而且各频率分量衰减量相差很大,特别是色彩部分衰减最大,因此同轴电缆只适合于传输距离 300米以下的视频。 光纤是为了解决远距离的视频信号传输而使用的。由于光纤整体传输系统价格太高,光纤铺设、连接需要专门设备,并且安装调试困难,故障难找,损坏不易维修等缺陷,对于3000米以内近距离视频传输而言,光纤并不是一个很好的选择。寻求一种经济、传输质量高、传输距离远的解决方案十分必要。对此情况讯维公司自主研发出双绞线视频传输器,可以将双绞线应用于监控传输系统中,很好地解决了上面的难题。 这种传输器,利用五类网络线缆代替同轴电缆,不仅解决了普通视频电缆存在的远距离传输信号严重失真和在复杂工业环境下的电磁干扰问题,而且大大节约了线路建设成本,施工和维护也变得十分简便,成为视频监控工程在解决中长距离传输问题上的一种最为经济实用的办法。 XW系列双绞线视频传输器: 双绞线视频传输器(双绞线视频收发器)是利用五类网络线缆代替同轴电缆,不仅解决了安防和视频广告工程中普通视频电缆存在的远距离传输信号严重失真和在复杂工业环境下的电磁视频干扰问题,而且大大节约了线路建设成本,施工和维护也变得十分简便,成为视频监控工程在解决1-3公里中长距离传输问题上的一种最为经济实用的办法。 VGA传输器(VGA延长器): VGA信号传输器,采用专利技术将H和V信号编码至RGB信号上加重处理后发送,仅利用CAT-5电缆的三对双绞线完成VGA、SVGA、SXGA信号的编解码,接收端采用卓越的去加重、5段极点均衡补偿和亮度、对比度控制,使SVGA的传输距离达到50米、100米、300米至500米或更远。完全代替了原来用VGA信号放大器延长VGA信号的做法,VGA信号传输器广泛应用于军事演习,大型指挥系统,酒店KTV点歌系统,电梯液晶显示系统,大型电厂图像监控系统,大型会议显示系统,电视台背景大屏幕显示系统,工业自动化远程控制系统,火车站大屏幕系统,列车车厢显示器,超市图像音响的远程传输,商务办公楼多媒体广告系统等

各类总线解析

查漏补缺-总线 以前在找工作的时候,每次笔试总会遇到各种总线协议什么的题目,每次都头大,不是没听到过,而是基本上都是了解但是不清晰的状态,需要查资料、翻书才能搞得清楚的。也没太在意,但是到了实际工作的时候,慢慢地发现它就变成一个疑难杂症了(因为他总是不能被记住,每到要的时候到处找资料),我觉得做技术的东西就是要把是事情做牢靠,把产品做稳定。那些个所谓的高科技、高技术含量的的东西,如果不稳定那就跟垃圾无异。 根据以前碰到的问题,经过查阅资料和一些自己的理解汇总如下,今天特地把他整理出来,大家如果觉得有必要的可以瞅瞅,不过高手就可以飘过了。 微机中总线一般有内部总线、系统总线和外部总线。内部总线是微机内部各外围芯片与处理器之间的总线,用于芯片一级的互连;而系统总线是微机中各插件板与系统板之间的总线,用于插件板一级的互连;外部总线则是微机和外部设备之间的总线,微机作为一种设备,通过该总线和其他设备进行信息与数据交换,它用于设备一级的互连。内部总线有以下几种类型。 1.1IIC总线 I2C串行总线一般有两根信号线,一根是双向的数据线SDA,另一根是时钟线SCL。所有接到I2C总线设备上的串行数据SDA都接到总线的SDA上,各设备的时钟线SCL接到总线的SCL上。 为了避免总线信号的混乱,要求各设备连接到总线的输出端时必须是漏极开路(OD)输出或集电极开路(OC)输出。设备上的串行数据线SDA接口电路应该是双向的,输出电路用于向总线上发送数据,输入电路用于接收总线上的数据。而串行时钟线也应是双向的,作为控制总线数据传送的主机,一方面要通过SCL输出电路发送时钟信号,另一方面还要检测总线上的SCL电平,以决定什么时候发送下一个时钟脉冲电平;作为接受主机命令的从机,要按总线上的SCL 信号发出或接收SDA上的信号,也可以向SCL线发出低电平信号以延长总线时钟信号周期。总线空闲时,因各设备都是开漏输出,上拉电阻Rp使SDA和SCL 线都保持高电平。任一设备输出的低电平都将使相应的总线信号线变低,也就是说:各设备的SDA是“与”关系,SCL也是“与”关系。

数据传输速率的定义

数据传输速率的定义 数据传输速率是描述数据传输系统的重要技术指标之一。数据传输速率在数值上等于每秒种传输构成数据代码的二进制比特数,单位为比特/秒(bit/second),记作bps。对于二进制数据,数据传输速率为:S=1/T(bps) 其中,T为发送每一比特所需要的时间。例如,如果在通信信道上发送一比特0、1信号所需要的时间是0.001ms,那么信道的数据传输速率为1 000 000bps。 在实际应用中,常用的数据传输速率单位有:kbps、Mbps和Gbps。其中:1kbps=103bps 1Mbps=106kbps 1Gbps=109bps 带宽与数据传输速率 在现代网络技术中,人们总是以“带宽”来表示信道的数据传输速率,“带宽”与“速率”几乎成了同义词。信道带宽与数据传输速率的关系可以奈奎斯特(Nyquist)准则与香农(Shanon)定律描述。 奈奎斯特准则指出:如果间隔为π/ω(ω=2πf),通过理想通信信道传输窄脉冲信号,则前后码元之间不产生相互窜扰。因此,对于二进制数据信号的最大数据传输速率Rmax与通信信道带宽B(B=f,单位Hz)的关系可以写为:Rmax=2.f(bps) 对于二进制数据若信道带宽B=f=3000Hz,则最大数据传输速率为6000bps。 奈奎斯特定理描述了有限带宽、无噪声信道的最大数据传输速率与信道带宽的关系。香农定理则描述了有限带宽、有随机热噪声信道的最大传输速率与信道带宽、信噪比之间的关系。 香农定理指出:在有随机热噪声的信道上传输数据信号时,数据传输速率Rmax与信道带宽B、信噪比S/N 的关系为:Rmax=B.log2(1+S/N) 式中,Rmax单位为bps,带宽B单位为Hz,信噪比S/N通常以dB(分贝)数表示。若S/N=30(dB),那么信噪比根据公式:S/N(dB)=10.lg(S/N) 可得,S/N=1000。若带宽B=3000Hz,则Rmax≈30kbps。香农定律给出了一个有限带宽、有热噪声信道的最大数据传输速率的极限值。它表示对于带宽只有3000Hz的通信信道,信噪比在30db时,无论数据采用二进制或更多的离散电平值表示,都不能用越过0kbps的速率传输数据。 因此通信信道最大传输速率与信道带宽之间存在着明确的关系,所以人们可以用“带宽”去取代“速率”。例如,人们常把网络的“高数据传输速率”用网络的“高带宽”去表述。因此“带宽”与“速率”在网络技术的讨论中几乎成了同义词。 频带就是指频率范围 带宽的两种概念 如果从电子电路角度出发,带宽(Bandwidth)本意指的是电子电路中存在一个固有通信频带,这个概念或许比较抽象,我们有必要作进一步解释。大家都知道,各类复杂的电子电路无一例外都存在电感、电容或相当功能的储能元件,即使没有采用现成的电感线圈或电容,导线自身就是一个电感,而导线与导线之间、导线与地之间便可以组成电容——这就是通常所说的杂散电容或分布电容;不管是哪种类型的电容、电感,都会对信号起着阻滞作用从而消耗信号能量,严重的话会影响信号品质。这种效应与交流电信号的频率成正比关系,当频率高到一定程度、令信号难以保持稳定时,整个电子电路自然就无法正常工作。为此,电子学上就提出了“带宽”的概念,它指的是电路可以保持稳定工作的频率范围。而属于该体系的有显示器带宽、通讯/网络中的带宽等等。 而第二种带宽的概念大家也许会更熟悉,它所指的其实是数据传输率,譬如内存带宽、总线带宽、网络带宽等等,都是以“字节/秒”为单位。我们不清楚从什么时候起这些数据传输率的概念被称为“带宽”,但因业界与公众都接受了这种说法,代表数据传输率的带宽概念非常流行,尽管它与电子电路中“带宽”的本意相差很远。 对于电子电路中的带宽,决定因素在于电路设计。它主要是由高频放大部分元件的特性决定,而高频电路的设计是比较困难的部分,成本也比普通电路要高很多。这部分内容涉及到电路设计的知识,对此我们就

网络高清传输的五种方案

网络高清传输的五种方案 一、常规方式——使用网线加交换机 网线传输网络高清信号最远不能超过100米距离,所以这种方式只限于较近距离,中小项目使用。 二、较远距离,及要求效果、画质推荐使用——光纤收发器 光纤收发器是一种将短距离的双绞线电信号和长距离的光信号进行互换的信号转换传输设备,将前端的以太网信号,通过光纤收发器的发射端将以太网的电信号转换器成光信号进行远距离传输,光纤收发器的接收端将光信号还有成电信号。

三、旧工程改造中,原有模拟摄像机,可以建议使用——网络串联器 普通的视频线或两芯的电源线无需任何改造,直接转换成网络高清!本产品是用同轴电缆(或两芯线)代替传统的网线传输百万高清网络视频,不但能传输2000米以上而且一根电缆还能同时传输多路视频。

本产品可以直接解决网络摄像机距离传不远的问题。安装方便,能大大节省人工和设备成本。不再需要使用光纤和交换机等设备 通讯距离长 传输可达2公里以上,中间不需要接任何信号中继设备(以太网最大通讯距离为100米),极大方便了网络布线,也可以避免在网络施工时因距离超过100米而必须加装以太网交换机的困扰,对于直通的SVY/SYWV75-5电缆,在距离2000米时,保持TCP/IP吞吐量不低于30Mbps 扩展能力强 如果需要增加节点,无需重新布线。一条同轴线上最大支持20路百万高清视频、报警、对讲、控制信号同时传输。以太网和模拟系统都为单点对单点。 高性能 支持20路高清视频同时传输,且具有很强的抗电波干扰功能,能适应各种布线环境,可装用于道路,桥梁电梯、隧道等环境。 安装简单 即插即用,无需软件硬件设置,接收发射设备相同。可以将现有的普通模拟摄像机升级为百万高清摄像机,不需更换线路。 成本低使用低价位的线材进行传输。 升级快可将原系统升级成数字化,应用更全面。 质量保证三级防雷设计,品质保证。工业级设计,100%老化测试,确保产品质量万无一失。 四、解决网络高清传输电流的传输问题——POE合成分离器 什么是POE? POE (Power Over Ethernet)指的是在现有的以太网Cat.5布线基础架构不作做何改动的情况下,在为一些基于IP的终端(如IP电话机、无线局域网接入点AP、网络摄像机等)传输数据信号的同时,还能为此类设备提供直流供电的技术。 POE通过电缆供电的原理 标准的五类网线有四对双绞线,但是在l0M BASE-T和100M BASE-T中只用到其中的两对。IEEE80 2.3af允许两种用法,应用空闲脚供电时,4、5脚连接为正极,7、8脚连接为负极。应用数据脚供电时,将DC电源加在传输变压器的中点,不影响数据的传输。在这种方式下线对1、2和线对3、6可以为任意极性。

各类总线的介绍

总线 一.总线的概念 总线是一组用于计算机之间各部件之间进行数据和命令的传送的公用信号线。二.总线的分类 (一)总线(微机通用总线)按功能和规范可分为三大类型: (1)片总线(Chip Bus, C-Bus) 又称元件级总线,是把各种不同的芯片连接在一起构成特定功能模块(如CPU模块)的信息传输通路。 (2)内总线(Internal Bus, I-Bus) 又称系统总线或板级总线,是微机系统中各插件(模块)之间的信息传输通路。例如CPU模块和存储器模块或I/O接口模块之间的传输通路。 (3) 外总线(External Bus, E-Bus) 又称通信总线,是微机系统之间或微机系统与其他系统(仪器、仪表、控制装置等)之间信息传输的通路,如EIA RS-232C、IEEE-488等。(现场总线CAN属于外总线) 三类总线在微机系统中的地位和关系 其中的系统总线,即通常意义上所说的总线,一般又含有三种不同功能的总线,即数据总线DB(Data Bus)、地址总线AB(Address Bus)和控制总线CB

(Control Bus)。 (二)总线按照传输数据的方式划分:可以分为串行总线和并行总线。串行总线中,二进制数据逐位通过一根数据线发送到目的器件;并行总线的数据线通常超过2根。常见的串行总线有SPI、I2C、USB及RS232等。 (三)总线按照时钟信号是否独立划分:可以分为同步总线和异步总线。同步总线的时钟信号独立于数据,而异步总线的时钟信号是从数据中提取出来的。SPI、I2C是同步串行总线,RS232采用异步串行总线。 按照计算机所传输的信息种类,计算机的总线可以划分为数据总线、地址总线和控制总线,分别用来传输数据、数据地址和控制信号。 三.各类总线介绍 内部总线 1.I2C总线是同步通信的一种特殊形式,具有接口线少,控制方式简化,器件封装形式小,通信速率较高等优点。在主从通信中,可以有多个I2C总线器件同时接到I2C总线上,通过地址来识别通信对象。 2.SPI总线串行外围设备接口SPI是一种同步串行接口,SPI总线是一种三线同步总线,因其硬件功能很强,所以与SPI有关的软件就相当简单,使CPU 有更多的时间处理其他事务。 3.SCI总线串行通信接口SCI是一种通用异步通信接口UART,与MCS-51的异步通信功能基本相同。 系统总线 1.ISA总线总线标准是IBM 公司推出的系统总线标准。它是对XT总线的扩展,以适应8/16位数据总线要求。它在80286至80486时代应用非常广泛,以至于现在奔腾机中还保留有ISA总线插槽,ISA总线有98只引脚。 2.EISA总线是在ISA总线的基础上使用双层插座,在原来ISA总线的98条信号线上又增加了98条信号线,也就是在两条ISA信号线之间添加一条EISA信号线。在实用中,EISA总线完全兼容ISA总线信号。 3.VESA总线是一种局部总线,简称为VL(VESA local bus)总线。该总线系统考虑到CPU与主存和Cache 的直接相连,通常把这部分总线称为CPU总线或主总线,其他设备通过VL总线与CPU总线相连,所以VL总线被称为局部总线。它定义了32位数据线,且可通过扩展槽扩展到64 位,使用33MHz时

光纤传输的真实速度

1.计算光纤传输的真实速度 使用光纤连接网络具有传输速度快。衰减少等特点。因此很多公司的网络出口都使用光纤。 一般网络服务商声称光纤的速度为“5M”,那么他的下载真实速度是多少那?我们来计算一下,一般的情况下,“5M”实际上就是5000Kbit/s(按千进位计算)这就存在一个换算的问题。Byte和bit是不同的。1Byte=8bit.而我们常说的下载速度都指的是Byte/s 因此电信所说的“5M”经过还换算后就成为了(5000/8)KByte/s=625KByte/s这样我们平时下载速度最高就是625KByte/s常常表示625KB/S 在实际的情况中。理论值最高为625KB/S。那么还要排除网络损耗以及线路衰减等原因因此真正的下载速度可能还不到600KB/S 不过只要是550KB/S以上都算正常 2.计算ADSL的真实速度ADSL是大家经常使用的上网方式。那么电信和网通声称的“512K”ADSL下载速度是多少那? 换算方法为512Kbit/s=(512/8)KByte/s=64KByte/s,考虑线路等损耗实际的下载速度在50KB/S以上就算正常了那么“1MB”那?大家算算吧答案是 125KByte/s 3.计算内网的传输速度 经常有人抱怨内网的传输的数度慢那么真实情况下的10/100MBPS网卡的速度应该有多块那? 网卡的100Mbps同样是以bit/s来定义的所以100Mb/S= 100000KByte/s=(100000/8)KByte/s=12500KByte/s 在理论上1秒钟可以传输12.5MB的速据考虑到干扰的因素每秒传输只要超过10MB就是正常了现在出现了1000Mbps的网卡那么速度就是100MB/S 特别提示: (1)关于bit(比特)/second(秒)与Byte(字节)/s(秒)的换算说明:线路单位是bps,表示bit(比特)/second(秒), 注意是小写字母b;用户在网上下载时显示的速率单位往往是Byte(字 节)/s(秒),注意是大写字母B。字节和比

相关主题
文本预览
相关文档 最新文档