当前位置:文档之家› 2014年下学期数学实验与数学建模作业习题6

2014年下学期数学实验与数学建模作业习题6

2014年下学期数学实验与数学建模作业习题6
2014年下学期数学实验与数学建模作业习题6

2014年下学期数学实验与数学建模作业习题6

1.求下列级数的和: (1) ∑∞=-1212n n n (2) ∑∞=+1)

12(1n n n (3) 112n n n n ∞=+?∑ (4) 313n n n ∞=∑

(5) ∑∞=12

sin n n x

【1】求解代码:

【2】运行结果: syms n x

s1=symsum((2*n-1)/2^n,n,1,inf)

s2=symsum(1/n/(2*n+1),n,1,inf)

s3=symsum((n+1)/n/2^n,n,1,inf)

s4=symsum(n^3/3^n,n,1,inf)

s5=symsum(sin(x)/n^2,n,1,inf)

2.求级数∑∞=021n n 的前n 项和与∑∞=121

n n 的级数和。

【1】求和代码:

2】运行结果: syms n x

s1=symsum(1/2^n,n,0,n-1)

s2=symsum(1/n^2,n,1,inf)

s=s1+s2

3.将函数sin x 展开为x 的幂级数,分别展开至5次和20次。

4.将函数(1)m x +展开为x 的幂级数,m 为任意常数。展开至4次幂。

5.将函数21()53

f x x x =+-展开为(2)x -的幂级数。 6.将函数cos x 展开成()3

x π-

的幂级数,取前10项。 【1】syms n x m t pi

%3题 taylor(sin(x),x,6)

taylor(sin(x),x,21)

%4题

taylor((1+x)^m,x,5)

%5题

taylor(1/(x*x+5*x-3),x,6,2)

%新版本用taylor(1/(x*x+5*x-3),x,'ExpansionPoint',2)

%6题

taylor(cos(x),x,10,pi/3)

【2】运行结果:

3-(1)

3-(2)

4题

5题

6题

ans =

(3^(1/2)*(pi/3 - x)^5)/240 - (3^(1/2)*(pi/3 - x)^3)/12 - (3^(1/2)*(pi/3 - x)^7)/10080 + (3^(1/2)*(pi/3 - x)^9)/725760 - (pi/3 - x)^2/4 + (pi/3 - x)^4/48 - (pi/3 - x)^6/1440 + (pi/3 - x)^8/80640 + (3^(1/2)*(pi/3 - x))/2 + 1/2

7.求函数2()f x x =在[,]ππ-上的傅立叶级数。

8.求出函数32()f x x x =+在区间[,]ππ-上的前11个傅立叶系数,即n =5。

【1】建立afourier 函数和safourier 函数

function [a0,an,bn] = afourier(f,l)

%求解傅里叶级数系数,l 半周期

syms x n l a0

a0=int(f,x,-l,l)/l;

an=int(f*cos(n*pi*x/l),x,-l,l)/l;

bn=int(f*sin(n*pi*x/l),x,-l,l)/l;

function S = safourier(f,a0,an,bn,l,m)

%求解傅里叶级数,l为半周期,m为展开到n=m

syms x n l pi

sn=an*cos((n*pi*x)/l)+bn*sin((n*pi*x)/l);

ssn=symsum(sn,n,1,m);

S=a0/2+ssn;

End

调用命令:syms x a0 m n

[a0,an,bn]=afourier(x*x,pi)

safourier(x*x,a0,an,bn,pi,5)

【2】运行结果:

a0 =(2*l^2)/3

an =(2*(pi^2*l^3*n^2*sin(pi*n) - 2*l^3*sin(pi*n) + 2*pi*l^3*n*cos(pi*n)))/(pi^3*l*n^3)

bn =0

ans =

l^2/3 - (4*l^2*cos((pi*x)/l))/pi^2 + (l^2*cos((2*pi*x)/l))/pi^2 - (4*l^2*cos((3*pi*x)/l))/(9*pi^2) + (l^2*cos((4*pi*x)/l))/(4*pi^2) - (4*l^2*cos((5*pi*x)/l))/(25*pi^2)

HIMCM 2014美国中学生数学建模竞赛试题

HIMCM 2014美国中学生数学建模竞赛试题 Problem A: Unloading Commuter Trains Trains arrive often at a central Station, the nexus for many commuter trains from suburbs of larger cities on a “commuter” line. Most trains are long (perhaps 10 or more cars long). The distance a passenger has to walk to exit the train area is quite long. Each train car has only two exits, one near each end so that the cars can carry as many people as possible. Each train car has a center aisle and there are two seats on one side and three seats on the other for each row of seats.To exit a typical station of interest, passengers must exit the car, and then make their way to a stairway to get to the next level to exit the station. Usually these trains are crowded so there is a “fan” of passengers from the train trying to get up the stairway. The stairway could accommodate two columns of people exiting to the top of the stairs.Most commuter train platforms have two tracks adjacent to the platform. In the worst case, if two fully occupied trains arrived at the same time, it might take a long time for all the passengers to get up to the main level of the station.Build a mathematical model to estimate the amount of time for a passenger to reach the street level of the station to exit the complex. Assume there are n cars to a train, each car has length d. The length of the platform is p, and the number of stairs in each staircase is q. Use your model to specifically optimize (minimize) the time traveled to reach street level to exit a station for the following: 问题一:通勤列车的负载问题 在中央车站,经常有许多的联系从大城市到郊区的通勤列车“通勤”线到达。大多数火车很长(也许10个或更多的汽车长)。乘客走到出口的距离也很长,有整个火车区域。每个火车车厢只有两个出口,一个靠近终端, 因此可以携带尽可能多的人。每个火车车厢有一个中心过道和过道两边的座椅,一边每排有两个座椅,另一边每排有三个座椅。走出这样一个典型车站,乘客必须先出火车车厢,然后走入楼梯再到下一个级别的出站口。通常情况下这些列车都非常拥挤,有大量的火车上的乘客试图挤向楼梯,而楼梯可以容纳两列人退出。大多数通勤列车站台有两个相邻的轨道平台。在最坏的情况下,如果两个满载的列车同时到达,所有的乘客可能需要很长时间才能到达主站台。建立一个数学模型来估计旅客退出这种复杂的状况到达出站口路上的时间。假设一列火车有n个汽车那么长,每个汽车的长度为d。站台的长度是p,每个楼梯间的楼梯数量是q。使用您的模型具体来优化(减少)前往主站台的时间,有如下要求: Requirement 1. One fully occupied train's passengers to exit the train, and ascend the stairs to reach the street access level of the station. 要求1.一个满载乘客的火车,所有乘客都要出火车。所有乘客都要出楼梯抵达出主站台的路上。 Requirement 2. Two fully occupied trains' passengers (all passengers exit onto a common platform) to exit the trains, and ascend the stairs to reach the street access level

数学建模期末考试A试的题目与答案

华南农业大学期末考试试卷(A 卷) 2012-2013学年第 二 学期 考试科目:数学建模 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业 一篮白菜从河岸一边带到河岸对面,由于船的限制,一次只能带 一样东西过河,绝不能在无人看守的情况下将狼和羊放在一起;羊和白菜放在一起,怎样才能将它们安全的带到河对岸去? 建立多步决策模型,将人、狼、羊、白菜分别记为i = 1,2,3,4,当i 在此岸时记x i = 1,否则为0;此岸的状态下用s =(x 1,x 2,x 3,x 4)表示。该问题中决策为乘船方案,记为d = (u 1, u 2, u 3, u 4),当i 在船上时记u i = 1,否则记u i = 0。 (1) 写出该问题的所有允许状态集合;(3分) (2) 写出该问题的所有允许决策集合;(3分) (3) 写出该问题的状态转移率。(3分) (4) 利用图解法给出渡河方案. (3分) 解:(1) S={(1,1,1,1), (1,1,1,0), (1,1,0,1), (1,0,1,1), (1,0,1,0)} 及他们的5个反状(3分) (2) D = {(1,1,0,0), (1,0,1,0), (1,0,0,1), (1,0,0,0)} (6分) (3) s k+1 = s k + (-1) k d k (9分) (4)方法:人先带羊,然后回来,带狼过河,然后把羊带回来,放下羊,带白菜过去,然后再回来把羊带过去。 ?或: 人先带羊过河,然后自己回来,带白菜过去,放下白菜,带着羊回来,然后放下羊,把狼带过去,最后再回转来,带羊过去。 (12分) 1、 二、(满分12分) 在举重比赛中,运动员在高度和体重方面差别很大,请就下面两种假设,建立一个举重能力和体重之间关系的模型: (1) 假设肌肉的强度和其横截面的面积成比例。6分 (2) 假定体重中有一部分是与成年人的尺寸无关,请给出一个改进模型。6分 解:设体重w (千克)与举重成绩y (千克) (1) 由于肌肉强度(I)与其横截面积(S)成比例,所以 y ?I ?S 设h 为个人身高,又横截面积正比于身高的平方,则S ? h 2 再体重正比于身高的三次方,则w ? h 3 (6分) ( 12分) 14分) 某学校规定,运筹学专业的学生毕业时必须至少学

数学建模作业——实验1

数学建模作业——实验1 学院:软件学院 姓名: 学号: 班级:软件工程2015级 GCT班 邮箱: 电话: 日期:2016年5月10日

基本实验 1.椅子放平问题 依照1.2.1节中的“椅子问题”的方法,将假设中的“四腿长相同并且四脚连线呈正方形”,改为“四腿长相同并且四脚连线呈长方形”,其余假设不变,问椅子还能放平吗?如果能,请证明;如果不能,请举出相应的例子。 答:能放平,证明如下: 如上图,以椅子的中心点建立坐标,O为原点,A、B、C、D为椅子四脚的初始位置,通过旋转椅子到A’、B’、C’、D’,旋转的角度为α,记A、B两脚,C、D两脚距离地面的距离为f(α)和g(α),由于椅子的四脚在任何位置至少有3脚着地,且f(α)、g(α)是α的连续函数,则f(α)和g(α)至少有一个的值为0,即f(α)g(α)=0,f(α)≥ 0,g(α)≥0,若f(0)>0,g(0)=0,

则一定存在α’∈(0,π),使得 f(α’)=g(α’)=0 令α=π(即椅子旋转180°,AB 边与CD 边互换),则 f(π)=0,g(π)>0 定义h(α)=f(α)-g(α),得到 h(0)=f(0)-g(0)>0 h(π)=f(π)-g(π)<0 根据连续函数的零点定理,则存在α’∈(0,π),使得 h(α’)=f(α’)-g(α’)=0 结合条件f(α’)g(α’)=0,从而得到 f(α’)=g(α’)=0,即四脚着地,椅子放平。 2. 过河问题 依照1.2.2节中的“商人安全过河”的方法,完成下面的智力游戏:人带着猫、鸡、米过河,船除需要人划之外,至多能载猫、鸡、米之一,而当人不在场时,猫要吃鸡、鸡要吃米,试设计一个安全过河的方案,并使渡河的次数尽量的少。 答:用i =1,2,3,4分别代表人,猫,鸡,米。1=i x 在此岸,0=i x 在对岸,()4321,,,x x x x s =此岸状态,()43211,1,1,1x x x x D ----=对岸状态。安全状态集合为 :

数学建模实验报告

在下面的题目中选做100分的题目,给出详略得当的答案。 一.通过举例简要说明数学建模的一般过程或步骤。(15分) 答:建立数学模型的方法大致有两种,一种是实验归纳的方法,即根据测试或计算数据,按照一定的数据,按照一定的数学方法,归纳出系统的数学模型;另一种是理论分析的方法,具体步骤有五步(以人口模型 为例): 1、明确问题,提出合理简化的假设:首先要了解问题的实际背景,明确题目的要求,收集各种必要的信息 2、建立模型:据所做的假设以及事物之间的联系,构造各种量之间的关系。(查资料得出数学式子或算法)。 3、模型求解:利用数学方法来求解上一步所得到的数学问题,此时往往还要做出进一步的简化或假设。注意要尽量采用简单的数学公具。例如:马尔萨斯模型,洛杰斯蒂克模型 4、模型检验:根据预测与这些年来人口的调查得到的数目进行对比检验 5、模型的修正和最后应用:所建立的模型必须在实际应用中才能产生效益,根据预测模型,制定方针政策,以实现资源的合理利用和环境的保护。 二.把一张四条腿等长的正方形桌子放在稍微有些起伏的地面上,通常只有三只脚着地,然而 只需稍为转动一定角度,就可以使四只脚同时着地,即放稳了。(1) 请用数学模型来描述和证明这个实际问题; (2)讨论当桌子是长方形时,又该如何描述和证明?(15分) 答: 模型假设: 1.椅子四条腿一样长,椅脚与地面的接触部分相对椅子所占的地面面积可视为一个点。 2.地面凹突破面世连续变化的,沿任何方向都不会出现间断(没有向台阶那样的情况),即地面可看作数学上的连续曲面。 3.相对椅脚的间距和椅子腿的长度而言,地面是相对平坦的,即使椅子在任何位置至少有三条腿同时着地。4.椅子四脚连线所构成的四边形是圆内接四边形,即椅子四脚共圆。 5.挪动仅只是旋转。 我们将椅子这两对腿的交点作为坐标原点,建立坐标系,开始时AC、BD这两对腿都在坐标轴上。将AC和BD这两条腿逆时针旋转角度θ。记AC到地面的距离之和为f(θ)。记BD到 地面的距离之和为g(θ)。易得f(θ),g(θ)至少有一个为零。

数学建模练习试题

2011年数学建模集训小题目 1.求下列积分的数值解 ? +∞ +-?23 2 2 3x x x dx 2.已知)s i n ()()c o s (),(2h t h t h t e h t f h t ++++=+,dt h t f h g ?=10 ),()(,画出 ]10,10[-∈h 时,)(h g 的图形。 3.画出16)5(2 2=-+y x 绕x 轴一周所围成的图形,并求所产生的旋转体的体积。 4.画出下列曲面的图形 (1)旋转单叶双曲面 14 92 22=-+z y x ; (2)马鞍面xy z =; 5.画出隐函数1cos sin =+y x 的图形。 6.(1)求函数x x y -+=12 ln 的三阶导数; 法一:syms x y dy; >> y=log((x+2)/(1-x)); >> dy=diff(y,3) dy = (6/(1-x)^3+6*(x+2)/(1-x)^4)/(x+2)*(1-x)-2*(2/(1-x)^2+2*(x+2)/(1-x)^3)/(x+2)^2*(1-x)-2*(2/(1-x)^2+2*(x+2)/(1-x)^3)/(x+2)+2*(1/(1-x)+(x+2)/(1-x)^2)/(x+2)^3*(1-x)+2*(1/(1-x)+(x+2)/(1-x)^2)/(x+2)^2 (2)求向量]425.00[=a 的一阶向前差分。 7.求解非线性方程组 (1)?????=-+=-+060622x y y x (2)???=+=++5 ln 10tan 10cos sin y x y e y x 8.求函数186)(2 3-++=x x x x f 的极值点,并画出函数的图形。 9.某单位需要加工制作100套钢架,每套用长为2.9m ,2.1m 和1m 的圆钢各一根。已知原料长6.9m ,问应如何下料,使用的原材料最省。 10. 某部门在今后五年内考虑给下列项目投资,已知: 项目A ,从第一年到第四年每年年初需要投资,并于次年末回收本利115%; 项目B ,从第三年初需要投资,到第五年末能回收本利125%,但规定最大投资额不超过4万元;

最新数学建模习题答案资料

数学建模部分课后习题解答 中国地质大学 能源学院 华文静 1.在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何? 解: 模型假设 (1) 椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形 (2) 地面高度是连续变化的,沿任何方向都不会出现间断(没有像台阶那样的情况), 即从数学角度来看,地面是连续曲面。这个假设相当于给出了椅子能放稳的必要条件 (3) 椅子在任何位置至少有三只脚同时着地。为了保证这一点,要求对于椅脚的间 距和椅腿的长度而言,地面是相对平坦的。因为在地面上椅脚间距和椅腿长度的尺寸大小相当的范围内,如果出现深沟或凸峰(即使是连续变化的),此时三只脚是无法同时着地的。 模型建立 在上述假设下,解决问题的关键在于选择合适的变量,把椅子四只脚同时着地表示出来。首先,引入合适的变量来表示椅子位置的挪动。生活经验告诉我们,要把椅子通过挪动放稳,通常有拖动或转动椅子两种办法,也就是数学上所说的平移与旋转变换。然而,平移椅子后问题的条件没有发生本质变化,所以用平移的办法是不能解决问题的。于是可尝试将椅子就地旋转,并试图在旋转过程中找到一种椅子能放稳的情形。 注意到椅脚连线呈长方形,长方形是中心对称图形,绕它的对称中心旋转180度后,椅子仍在原地。把长方形绕它的对称中心旋转,这可以表示椅子位置的改变。于是,旋转角度θ这一变量就表示了椅子的位置。为此,在平面上建立直角坐标系来解决问题。 设椅脚连线为长方形ABCD,以对角线AC 所在的直线为x 轴,对称中心O 为原点,建立平面直角坐标系。椅子绕O 点沿逆时针方向旋转角度θ后,长方形ABCD 转至A1B1C1D1的位置,这样就可以用旋转角)0(πθθ≤≤表示出椅子绕点O 旋转θ后的位置。 其次,把椅脚是否着地用数学形式表示出来。当椅脚与地面的竖直距离为零时,椅脚就着地了,而当这个距离大于零时,椅脚不着地。由于椅子在不同的位置是θ的函数,因此,椅脚与地面的竖直距离也是θ的函数。 由于椅子有四只脚,因而椅脚与地面的竖直距离有四个,它们都是θ的函数,而由假设(3)可知,椅子在任何位置至少有三只脚同时着地,即这四个函数对于任意的θ,其函数值至少有三个同时为0。因此,只需引入两个距离函数即可。考虑到长方形ABCD 是对称中心图形,绕其对称中心O 沿逆时针方向旋转180度后,长方形位置不变,但A,C 和B,D 对换了。因此,记A ,B 两脚与地面竖直距离之和为)(θf ,C,D 两脚之和为 )(θg ,其中[]πθ,0∈,使得)()(00θθg f =成立。 模型求解 如果0)0()0(== g f ,那么结论成立。

数学建模作业、微分方程实验、北京工业大学

2微分方程实验 1、微分方程稳定性分析 绘出下列自治系统相应的轨线,并标出随 t 增加的运动方向,确定平■衡点, 并按稳定的、渐近稳定的、或不稳定的进行分类: 解:(1)由 f (x ) =x=0, f (y ) =y=0;可得平衡点为(0,0), ___ 1 0 系数矩阵A ,求得特征值入1=1,入2=1; 0 1 p=-(入1+入2)=-2<0 , q=入1入2=1>0;对照稳定性的情况表,可知平■衡点(0, 0) 是 不稳定的。 图形如下: (2)如上题可求得平衡点为(0,0 ),特征值入1=-1,入2=2; p=-(入1+入2)=-1<0 , q-入1入2=-2<0;对照稳定性的情况表,可知平■衡点(0, 0) 是 不稳定的。 其图形如下: dx ⑴dt dt x, y; dx dt dy dt dx x, ⑶尸 2y ;晋 dx y , (4) ? 2x;也 dt x+1, 2y.

(3) 如上题可求得平■衡点为(0,0 ),特征值入1=0 + 1.4142i,入2=0 -1.4142i; p=-(入1+入2)= 0, q-入1入2=1.4142>0;对照稳定性的情况表,可知平■衡点(0, 0)是不稳定的。 其图形如下: (4) 如上题可求得平衡点为(1,0 ),特征值入1=-1,入2=-2; p=-(入1+入2)= 3>0, q=入1入2=2>0;对照稳定性的情况表,可知平■衡点(1, 0) 是稳定的。 其图形如下:

2、种群增长模型 一个片子上的一群病菌趋向丁繁殖成一个圆菌落.设病菌的数目为N,单位 成员的增长率为r1,则由Malthus生长律有竺r1 N,但是,处丁周界表面的dt 那些病菌由丁寒冷而受到损伤,它们死亡的数量与N2成比例,其比例系数为r2, 求N满足的微分方程.不用求解,图示其解族.方程是否有平衡解,如果有,是否为稳定的? 解:由题意很容易列出N满足的微分方程:坐r1N r2N; f(N) dt 令f(N)=O,可求得方程的两个平■衡点N1=0,N2=「22/r i2 1 1 d2N 1 5 5 2 (r1 r2N 2) (r1N r2N 2) dt 2 进而求得 A d2N 令r dt 2 2 0可求得N=r2 /4r〔 则N=N1 N=N2 N=r22/4r i2可以把第一象限划为三部分,且从下到上三部分中分 0,冬dt2 .2 2 c dN cdN c dN cdN 0, ;—0, —r 0; —0, ―r dt dt dt dt 则可以画出N (t) 的图形,即微分方程的解族,如下图所示:

数学建模与数学实验习题

数学建模与数学实验课程总结与练习内容总结 第一章 1.简述数学建模的一般步骤。 2.简述数学建模的分类方法。 3.简述数学模型与建模过程的特点。 第二章 4.抢渡长江模型的前3问。 5.补充的输油管道优化设计。 6.非线性方程(组)求近似根方法。 第三章 7.层次结构模型的构造。 8.成对比较矩阵的一致性分析。 第五章 9.曲线拟合法与最小二乘法。 10 分段插值法。 第六章 11 指数模型及LOGISTIC模型的求解与性质。 12.VOLTERRA模型在相平面上求解及周期平均值。 13 差分方程(组)的平衡点及稳定性。 14 一阶差分方程求解。 15 养老保险模型。

16 金融公司支付基金的流动。 17 LESLLIE 模型。 18 泛函极值的欧拉方法。 19 最短路问题的邻接矩阵。 20 最优化问题的一般数学描述。 21 马尔科夫过程的平衡点。 22 零件的预防性更换。 练习集锦 1. 在层次分析法建模中,我们介绍了成对比较矩阵概念,已知矩阵P 是成对比较矩阵 31/52a b P c d e f ?? ??=?????? ,(1)确定矩阵P 的未知元素。 (2)求 P 模最大特征值。 (3)分析矩阵P 的一致性是否可以接受(随机一致性指标RI取0.58)。 2. 在层次分析法建模中,我们介绍了成对比较矩阵概念,已知矩阵P 是三阶成对比较矩阵 322P ? ???=?????? ,(1)将矩阵P 元素补全。 (2)求P 模最 大特征值。 (3)分析矩阵P 的一致性是否可以接受。 3.考虑下表数据

(1)用曲改直的思想确定经验公式形式。 (2)用最小二乘法确定经验公式系数。 4.. 考虑微分方程 (0.2)0.0001(0.4)0.00001dx x xy dt dy y xy dt εε?=--????=-++?? (1)在像平面上解此微分方程组。(2)计算0ε=时的周期平均值。(3)计算0.1ε=时,y 的周期平均值占总量的周期平均值的比例增加了多少? 5考虑种群增长模型 '()(1/1000),(0)200x t kx x x =-= (1)求种群量增长最快的时刻。(2)根据下表数据估计参数k 值。 6. 布均匀,若环保部门及时发现并从某时刻起切断污染源,并更新湖水(此处更新指用新鲜水替换污染水),设湖水更新速率是 3 (m r s 单位:)。 (1) 试建立湖中污染物浓度随时间下降的数学模型? 求出污染物浓度降为控制前的5%所需要的时间。 7. 假如保险公司请你帮他们设计一个险种:35岁起保,每月交费400元,60岁开始领取养老金,每月养老金标准为3600元,请估算该保险费月利率为多少(保留到小数点后5位)? 8. 某校共有学生40000人,平时均在学生食堂就餐。该校共有,,A B C 3 个学生食堂。经过近一年的统计观测发现:A 食堂分别有10%,25%的学生经常去B ,C 食堂就餐,B 食堂经常分别有15%,25%的同学去

西南大学2016年春《数学建模》作业及答案(已整理)(共5次)

西南大学2014年春《数学建模》作业及答案(已整理) 第一次作业 1:[填空题] 名词解释: 1.原型 2.模型 3.数学模型 4.机理分析 5.测试分析 6.理想方法 7.计算机模拟 8.蛛网模型 9.群体决策 10.直觉 11.灵感 12.想象力 13.洞察力 14.类比法 15.思维模型 16.符号模型 17.直观模型 18.物理模型19.2倍周期收敛20.灵敏度分析21.TSP问题22.随机存储策略23.随机模型24.概率模型25.混合整数规划26.灰色预测 参考答案: 1.原型:原型指人们在现实世界里关心、研究或者从事生产、管理的实际对象。2.模型:指为某个特定目的将原形的某一部分信息简缩、提炼而构造的原型替代物。3.数学模型:是由数字、字母或其它数字符号组成的,描述现实对象数量规律的数学公式、图形或算法。4.机理分析:根据对客观事物特性的认识,找出反映内部机理的数量规律,建立的模型常有明显的物理意义或现实意义。5.测试分析:将研究对象看作一个"黑箱”系统,通过对系统输入、输出数据的测量和统计分析,按照一定的准则找出与数据拟合得最好的模型。6.理想方法:是从观察和经验中通过想象和逻辑思维,把对象简化、纯化,使其升华到理状态,以其更本质地揭示对象的固有规律。7.计算机模拟:根据实际系统或过程的特性,按照一定的数学规律用计算机程序语言模拟实际运行情况,并依据大量模拟结构对系统或过程进行定量分析。8.蛛网模型:用需求曲线和供应曲线分析市场经济稳定性的图示法在经济学中称为蛛网模型。9.群体决策:根据若干人对某些对象的决策结果,综合出这个群体的决策结果的过程称为群体决策。10.直觉:直觉是人们对新事物本质的极敏锐的领悟、理解或推断。11.灵感:灵感是指在人有意识或下意识思考过程中迸发出来的猜测、思路或判断。12.想象力:指人们在原有知识基础上,将新感知的形象与记忆中的形象相互比较、重新组合、加工、处理,创造出新形象,是一种形象思维活动。13.洞察力:指人们在充分占有资料的基础上,经过初步分析能迅速抓住主要矛盾,舍弃次要因素,简化问题的层次,对可以用那些方法解决面临的问题,以及不同方法的优劣作出判断。14.类比法:类比法注意到研究对象与以熟悉的另一对象具有某些共性,比较二者相似之处以获得对研究对象的新认识。15.思维模型:指人们对原形的反复认识,将获取的知识以经验的形式直接储存于人脑中,从而可以根据思维或直觉作出相应的决策。16.符号模型:是在一定约束条件或假设下借助于专门的符号、线条等,按一定形式组合起来描述原型。17.直观模型:指那些供展览用的实物模型以及玩具、照片等,通常是把原型的尺寸按比例缩小或放大,主要追求外观上的逼真。18.物理模型:主要指科技工作者为一定的目的根据相似原理构造的模型,它不仅可以显示原型的外形或某些特征,而且可以用来进行模拟实验,间接地研究原型的某些规律。19.2倍周期收敛:在离散模型中,如果一个数列存在两个收敛子列就称为2倍周期收敛。20.灵敏度分析:系数的每个变化都会改变线性规划问题,随之也会影响原来求得的最优解。为制定一个应付各种偶然情况的全能方法,必须研究以求得的最优解是怎样随输入系数的变化而变化的。这叫灵敏性分析。21.TSP问题:在加权图中寻求最佳推销员回路的问题可以转化为在一个完备加权图中寻求最佳哈密顿圈的问题,称为TSP问题。22.随机存储策略:商店在订购货物时采用的一种简单的策略,是制定一个下界s和一个上界S,当周末存货不小于s时就不定货;当存货少于s 时就订货,且定货量使得下周初的存量达到S,这种策略称为随机存储策略。23.随机模型:如果随机因素对研究对象的影响必须考虑,就应该建立随机性的数学模型,简称为随机模型。24.概

数学建模习题与答案课后习题

第一部分课后习题 1.学校共1000名学生,235人住在A宿舍,333人住在B宿舍,432人住在C宿舍。学生 们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数: (1)按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者。 (2)2.1节中的Q值方法。 (3)d’Hondt方法:将A,B,C各宿舍的人数用正整数n=1,2,3,…相除,其商数如 将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A,B,C行有横线的数分别为2,3,5,这就是3个宿舍分配的席位。你能解释这种方法的道理吗。 如果委员会从10人增至15人,用以上3种方法再分配名额。将3种方法两次分配的结果列表比较。 (4)你能提出其他的方法吗。用你的方法分配上面的名额。 2.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗。比如洁银牙膏50g 装的每支1.50元,120g装的3.00元,二者单位重量的价格比是1.2:1。试用比例方法构造模型解释这个现象。 (1)分析商品价格C与商品重量w的关系。价格由生产成本、包装成本和其他成本等决定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无关的因素。 (2)给出单位重量价格c与w的关系,画出它的简图,说明w越大c越小,但是随着w 的增加c减少的程度变小。解释实际意义是什么。 3.一垂钓俱乐部鼓励垂钓者将调上的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部 只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量的方法。假定鱼池中只有一种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼身的最大周长): 先用机理分析建立模型,再用数据确定参数 4.用宽w的布条缠绕直径d的圆形管道,要求布条不重叠,问布条与管道轴线的夹角 应 多大(如图)。若知道管道长度,需用多长布条(可考虑两端的影响)。如果管道是其他形状呢。

数学建模作业

习 题 1 1. 请编写绘制以下图形的MA TLAB 命令,并展示绘得的图形. (1) 221x y +=、224x y +=分别是椭圆2241x y +=的内切圆和外切圆. (2) 指数函数x y e =和对数函数ln y x =的图像关于直线y=x 对称. (3) 黎曼函数 1, (0)(0,1) 0 , (0,1), 0,1 q x p q q x y x x x =>∈?=? ∈=?当为既约分数且当为无理数且或者 的图像(要求分母q 的最大值由键盘输入). 3. 两个人玩双骰子游戏,一个人掷骰子,另一个人打赌掷骰子者不能掷出所需点数,输赢的规则如下:如果第一次掷出3或11点,打赌者赢;如果第一次掷出2、7或12点,打赌者输;如果第一次掷出4、5、6、8、9或10点,记住这个点数,继续掷骰子,如果不能在掷出7点之前再次掷出该点数,则打赌者赢. 请模拟双骰子游戏,要求写出算法和程序,估计打赌者赢的概率. 你能从理论上计算出打赌者赢的精确概率吗?请问随着试验次数的增加,这些概率收敛吗?

4. 根据表1.14的数据,完成下列数据拟合问题: (1) 如果用指数增长模型0()0()e r t t x t x -=模拟美国人口从1790年至2000年的变化过程,请用MATLAB 统计工具箱的函数nlinfit 计算指数增长模型的以下三个数据拟合问题: (i) 取定0x =3.9,0t =1790,拟合待定参数r ; (ii) 取定0t =1790,拟合待定参数0x 和r ; (iii) 拟合待定参数0t 、0x 和r . 要求写出程序,给出拟合参数和误差平方和的计算结果,并展示误差平方和最小的拟合效果图. (2) 通过变量替换,可以将属于非线性模型的指数增长模型转化成线性模型,并用MA TLAB 函数polyfit 进行计算,请说明转化成线性模型的详细过程,然后写出程序,给出拟合参数和误差平方和的计算结果,并展示拟合效果图. (3) 请分析指数增长模型非线性拟合和线性化拟合的结果有何区别?原因是什么? (4) 如果用阻滞增长模型00 () 00()()e r t t Nx x t x N x --= +-模拟美国人口从1790年至2000年的变化过程,请用MA TLAB 统计工具箱的函数nlinfit 计算阻滞增长模型的以下三个数据拟合问题: (i) 取定0x =3.9,0t =1790,拟合待定参数r 和N ; (ii) 取定0t =1790,拟合待定参数0x 、r 和N ; (iii) 拟合待定参数0t 、0x 、r 和N . 要求写出程序,给出拟合参数和误差平方和的计算结果,并展示误差平方和最小的拟合效果图. 年份 1790 1800 1810 1820 1830 1840 1850 1860 1870 1880 1890

数学建模实验作业参考例子

例1.1 求解线性方程组 命令如下: >> a=[2,3,-1;8,2,3;45,3,9]; >> b=[2;4;23]; >> x=inv(a)*b x = 0.5531 0.2051 -0.2784 例1.2 绘制正弦曲线和余弦曲线。 命令如下: >> x=[0:0.5:360]*pi/180; >> plot(x,sin(x),x,cos(x)) ; 例1.3 输入10个学生的成绩并对成绩按升序排序。 >>g=[45 56 34 24 76 89 32]; >>f=sort(g) f = 24 32 34 45 56 76 89 例1.4 设有常微分方程初值问题,试求其数值解,并与精确解相比较。 (1)建立函数文件funt.m: function yp=funt(t,y) yp=(y^2-t-2)/4/(t+1); (2)求解微分方程: t0=0;tf=10;y0=2; [t,y]=ode23('funt',[t0,tf],y0); y1=sqrt(t+1)+1; t' 例2.1 计算表达式的值,并将结果赋给变量x,然后显示出结果。 在MA TLAB命令窗口输入命令: >>x=(5+cos(47*pi/180))/(1+sqrt(7)-2*i) %计算表达式的值 2.2 A=[1 2 3;4 5 6;7 8 9] A = 1 2 3 4 5 6

7 8 9 例2.3 分别建立3×3、3×2和与矩阵A同样大小的零矩阵。 (1)建立一个3×3零矩阵:zeros(3) >> zeros(3) ans = 0 0 0 0 0 0 0 0 0 )建立一个3×2零矩阵:zeros(3,2) >> zeros(3,2) ans = 0 0 0 0 0 0 (3)建立与矩阵A同样大小零矩阵:zeros(size(A)) >> A=[2 4 7 5;7 8 9 10];zeros(size(A)) ans = 0 0 0 0 0 0 0 0 例2.4 产生5阶随机方阵A,其元素为[10,90]区间的随机整数,然后判断A的元素是否能被3整除。 (1) 生成5阶随机方阵A。 >> A=fix((90-10+1)*rand(5)+10) A = 86 71 59 42 14 28 46 74 85 38 59 11 84 84 75 49 76 69 43 10 82 46 24 82 21 (2) 判断A的元素是否可以被3整除。 >> P=rem(A,3)==0 P = 0 0 0 1 0 0 0 0 0 0

2014年美国数学建模大赛(MCM)试题译文

2014年美国数学建模大赛(MCM)试题译文 王景璟大连理工大学 问题A:超车之外靠右行原则 在一些开车必须靠右行驶的国家(比如:美国,中国,以及其他除了英国,澳大利亚,和一些前英国殖民地的国家),行驶在多车道高速路必须遵循一个规则,那就是要求驾驶员在超车之外的情况下,必须在最靠右的车道行驶,超车时,他们向左变道,超车,然后再回到之前行驶的车道。 构建一个数学模型来分析该规则在车流量很少和很大的时候的执行情况。你最好能考察车流量与安全的之间的相互关系,过低或是过量的速度限制的作用(速度设置过低或是过高),以及/或者其他在该问题陈述中没有明确提到的因素。该原则是否能有效促进更好的车流量?如果无效,请建议和分析其他更有助于提高车流量、安全、以及其他你认为重要的因素的其他方案(可以完全不包括该原则)。 在开车靠左行的国家,讨论一下你的方案在经过对方向的简单修改之后或是添加额外的要求之后是否也适用。 最后,以上原则取决于人们遵循交通规则的判断力。如果道路上的车流完全在智能系统(要么是道路体系的一部分,要么是包含在使用道路的所有车辆的设计之中)的控制之下,该改变在多大程度上会影响你先前分析的结果? 问题B: 大学教练联盟 《体育画报》,一本体育爱好者的杂志,正在寻找上世纪“最好的大学教练”,包括男性和女性。建立一个数学模型以从诸如大学曲棍球,曲棍球,橄榄球,棒球,垒球,篮球,或足球等运动的男性或女性教练中选出最好的一个教练或几个教练(过去的或现在的)。分析中使用的时间分界线是否有影响?即在1913执教和在2013年执教有不同吗?清晰地表达你们模型中的评判标准。讨论你们的模型如何能广泛地应用于两种性别及所有可能的体育运动。分别选出你模型中3种不同运动的前5位教练。 除了MCM格式及要求,准备一篇1-2页的文章给《体育画报》以解释你们的结论并包括一份能让体育迷们看懂的对你们数学模型的非技术性解释。 问题C:使用网络模型测量影响力

数学建模课后习题答案

第一章 课后习题6. 利用1.5节药物中毒施救模型确定对于孩子及成人服用氨茶碱能引起严重中毒和致命的最小剂量。 解:假设病人服用氨茶碱的总剂量为a ,由书中已建立的模型和假设得出肠胃中的药量为: )()0(mg M x = 由于肠胃中药物向血液系统的转移率与药量)(t x 成正比,比例系数0>λ,得到微分方程 M x x dt dx =-=)0(,λ(1) 原模型已假设0=t 时血液中药量无药物,则0)0(=y ,)(t y 的增长速度为x λ。由于治疗而减少的速度与)(t y 本身成正比,比例系数0>μ,所以得到方程: 0)0(,=-=y y x dt dy μλ(2) 方程(1)可转换为:t Me t x λ-=)( 带入方程(2)可得:)()(t t e e M t y λμμ λλ ----= 将01386=λ和1155.0=μ带入以上两方程,得: t Me t x 1386.0)(-= )(6)(13866.01155.0---=e e M t y t 针对孩子求解,得: 严重中毒时间及服用最小剂量:h t 876.7=,mg M 87.494=; 致命中毒时间及服用最小剂量:h t 876.7=,mg M 8.4694= 针对成人求解: 严重中毒时间及服用最小剂量:h t 876.7=,mg M 83.945= 致命时间及服用最小剂量:h t 876.7=,mg M 74.1987= 课后习题7. 对于1.5节的模型,如果采用的是体外血液透析的办法,求解药物中毒施救模型的血液用药量的变化并作图。

解:已知血液透析法是自身排除率的6倍,所以639.06==μu t e t x λ-=1100)(,x 为胃肠道中的药量,1386.0=λ )(6600)(t t e e t y λμ---= 1386.0,639.0,5.236)2(,1100,2,====≥-=-λλλu z e x t uz x dt dz t 解得:()2,274.112275693.01386.0≥+=--t e e t z t t 用matlab 画图: 图中绿色线条代表采用体外血液透析血液中药物浓度的变化情况。 从图中可以看出,采取血液透析时血液中药物浓度就开始下降。T=2时,血液中药物浓度最高,为236.5;当z=200时,t=2.8731,血液透析0.8731小时后就开始解毒。 第二章 1.用 2.4节实物交换模型中介绍的无差别曲线的概念,讨论以下的雇员和雇主之间的关系: 1)以雇员一天的工作时间和工资分别为横坐标和纵坐标,画出雇员无差别曲线族的示意图,解释曲线为什么是那种形状; 2)如果雇主付计时费,对不同的工资率画出计时工资线族,根据雇员的无差别曲线族和雇主的计时工资线族,讨论双方将在怎样的一条曲线上达成协议; 3)雇员和雇主已经达成了协议,如果雇主想使用雇员的工作时间增加到t 2,他有两种

数学建模综合实验

交通流量问题 一、问题 如图给出了某城市单行街道的交通流量(每小时过车数) x2 300 300 300x3 x1 x4 x5 x6 x7 x8 x9 x10 500 100 400 200 600 200 400 600 700 500

假设:1、全部流入网络的流量等于全部流出网络的流量; 2、全部流入一个节点的流量等于全部流出此节点的 流量。 试建立数学模型确定该交通网络未知部分的具体流量。二、实验目的: 学会应用线性代数中线性方程组的有关知识建立交通流量问题的数学模型,并用数学软件求其问题的全部解。 三、建模及使用MATLAB软件求解

动物繁殖问题 一、问题 某农场饲养的某种动物所能达到的最大年龄为15岁,将其分成三个年龄组:第一组,0~5岁;第二组,6~10岁;第三组,11~15岁。动物从第二年龄组开始繁殖后代,经过长期统计,第二年龄组的动物在其年龄段平均繁殖4个后代,第三年龄组的动物在其年龄段平均繁殖3个后代。第一年龄组和第二年龄组的动物能顺利进入下一个年龄组的存活率分别为1/2和1/4。假设农场现有三个年龄段的动物各1000头,问15年后农场三个年龄段的动物各有多少头? 二、实验目的: 巩固线性代数的有关知识,培养学生用矩阵知识解决实际问题的能力。

三、问题分析与模型建立 因年龄组为5岁一段,故将时间周期也取为5。15年后就 经过了3个周期。设)(k i x 表示第k 个时间周期第 i 组年龄阶段的动物数量(3,2,1;3,2,1==i k ) 因为某一时间周期第二年龄组和第三年龄组动物的数量是由上一时间周期上一年龄组存活的动物的数量,所以有: )3,2,1(4 1,21)1(2)(3)1(1)(2===--k x x x x k k k k 有因为某一时间周期第一年龄组动物的数量是由上一时间周期各年龄组出生的动物的数量,所以有:

数学建模试题(带答案)

数学建模试题(带答案) 第一章 4.在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四脚的连线呈正方形改为长方形,其余不变。试构造模型并求解。 答:相邻两椅脚与地面距离之和分别定义为)()(a g a f 和。f 和g 都是连续函数。椅子在任何位置至少有三只脚着地,所以对于任意的a ,)()(a g a f 和中至少有一个不为零。不妨设0)0(,0)0(g >=f 。当椅子旋转90°后,对角线互换, 0π/2)(,0)π/2(>=g f 。这样,改变椅子的位置使四只脚同时着地。就归结为证 明如下的数学命题: 已知a a g a f 是和)()(的连续函数,对任意0)π/2()0(,0)()(,===?f g a g a f a 且, 0)π/2(,0)0(>>g f 。证明存在0a ,使0)()(00==a g a f 证:令0)π/2(0)0(),()()(<>-=h h a g a f a h 和则, 由g f 和的连续性知h 也是连续函数。 根据连续函数的基本性质, 必存在0a (0<0a <π/2)使0)(0=a h ,即0)()(00==a g a f 因为0)()(00=?a g a f ,所以0)()(00==a g a f

8

第二章 7. 10.用已知尺寸的矩形板材加工半径一定的圆盘,给出几种简便有效的排列方法,使加工出尽可能多的圆盘。

第三章 5.根据最优定价模型 考虑成本随着销售量的增加而减少,则设 kx q x q -=0)( (1)k 是产量增加一个单位时成本的降低 , 销售量x 与价格p 呈线性关系0,,>-=b a bp a x (2) 收入等于销售量乘以价格p :px x f =)( (3) 利润)()()(x q x f x r -= (4) 将(1)(2)(3)代入(4)求出 ka q kbp pa bp x r --++-=02)( 当k q b a ,,,0给定后容易求出使利润达到最大的定价*p 为 b a kb ka q p 2220*+--= 6.根据最优定价模型 px x f =)( x 是销售量 p 是价格,成本q 随着时间增长,ββ,0t q q +=为增长率,0q 为边际成本(单位成本)。销售量与价格二者呈线性关系0,,>-=b a bp a x . 利润)()()(x q x f x u -=.假设前一半销售量的销售价格为1p ,后一半销售量的销售价格为2p 。 前期利润 dt bp a t q p p u T ))](([)(12 /011--=? 后期利润 dt bp a t q p p u T T ))](([)(22/22--=? 总利润 )()(21p u p u U += 由 0,02 1=??=??p U p U 可得到最优价格: )]4([2101T q b a b p β++= )]4 3([2102T q b a b P β++=

相关主题
文本预览
相关文档 最新文档