当前位置:文档之家› 5G移动通信发展趋势与若干关键技术_尤肖虎

5G移动通信发展趋势与若干关键技术_尤肖虎

5G移动通信发展趋势与若干关键技术_尤肖虎
5G移动通信发展趋势与若干关键技术_尤肖虎

中国科学:信息科学2014年第44卷第5期:551–563

https://www.doczj.com/doc/4a1658498.html,

5G移动通信发展趋势与若干关键技术

尤肖虎x?,潘志文x,高西奇x,曹淑敏y,邬贺铨z

x东南大学移动通信国家重点实验室,南京210096

y工业和信息化部电信研究院,北京100191

z中国工程院,北京100088

*通信作者.E-mail:xhyu@https://www.doczj.com/doc/4a1658498.html,

收稿日期:2014–02–19;接受日期:2014–03–21

国家高技术研究发展计划(批准号:2014AA01A704)、国家自然科学基金委员会创新群体(批准号:61221002)和Intel公司资助项目

摘要第5代移动通信系统(5G)是面向2020年之后的新一代移动通信系统,其技术发展尚处于探索阶段.结合国内外移动通信发展的最新趋势,本文对5G移动通信发展的基本需求、技术特点与可能发展途径进行了展望,并分无线传输和无线网络两个部分,重点论述了富有发展前景的7项5G移动通信关键技术,包括大规模天线阵列、基于滤波器组的多载波技术、全双工复用、超密集网络、自组织网络、软件定义网络及内容分发网络.本文还概括性地介绍了国内5G移动通信的相关研发活动及其近期发展目标.

关键词5G关键技术发展趋势无线传输技术无线网络技术

1概述与总体趋势

5G是面向2020年以后移动通信需求而发展的新一代移动通信系统.根据移动通信的发展规律, 5G将具有超高的频谱利用率和能效,在传输速率和资源利用率等方面较4G移动通信提高一个量级或更高,其无线覆盖性能、传输时延、系统安全和用户体验也将得到显著的提高.5G移动通信将与其他无线移动通信技术密切结合,构成新一代无所不在的移动信息网络,满足未来10年移动互联网流量增加1000倍的发展需求.5G移动通信系统的应用领域也将进一步扩展,对海量传感设备及机器与机器(M2M)通信的支撑能力将成为系统设计的重要指标之一.未来5G系统还须具备充分的灵活性,具有网络自感知、自调整等智能化能力,以应对未来移动信息社会难以预计的快速变化.

5G已经成为国内外移动通信领域的研究热点.2013年初欧盟在第7框架计划启动了面向5G研发的METIS(mobile and wireless communications enablers for the2020information society)项目[1],由包括我国华为公司等29个参加方共同承担;韩国和中国分别成立了5G技术论坛和IMT-2020(5G)推进组,我国863计划也分别于2013年6月和2014年3月启动了5G重大项目一期和二期研发课题.目前,世界各国正就5G的发展愿景、应用需求、候选频段、关键技术指标及使能技术进行广泛的研讨,力求在2015年世界无线电大会前后达成共识,并于2016年后启动有关标准化进程[2].

尤肖虎等:5G移动通信发展趋势与若干关键技术

移动互联网的蓬勃发展是5G移动通信的主要驱动力.移动互联网将是未来各种新兴业务的基础性业务平台,现有固定互联网的各种业务将越来越多地通过无线方式提供给用户,云计算及后台服务的广泛应用将对5G移动通信系统提出更高的传输质量与系统容量要求.5G移动通信系统的主要发展目标将是与其他无线移动通信技术密切衔接,为移动互联网的快速发展提供无所不在的基础性业务能力.按照目前业界的初步估计,包括5G在内的未来无线移动网络业务能力的提升将在3个维度上同时进行:1)通过引入新的无线传输技术将资源利用率在4G的基础上提高10倍以上;2)通过引入新的体系结构(如超密集小区结构等)和更加深度的智能化能力将整个系统的吞吐率提高25倍左右;

3)进一步挖掘新的频率资源(如高频段、毫米波与可见光等),使未来无线移动通信的频率资源扩展4倍左右.

当前信息技术发展正处于新的变革时期,5G技术发展呈现出新的如下特点.

1)5G研究在推进技术变革的同时将更加注重用户体验,网络平均吞吐速率、传输时延以及对虚拟现实、3D、交互式游戏等新兴移动业务的支撑能力等将成为衡量5G系统性能的关键指标.

2)与传统的移动通信系统理念不同,5G系统研究将不仅仅把点到点的物理层传输与信道编译码等经典技术作为核心目标,而是从更为广泛的多点、多用户、多天线、多小区协作组网作为突破的重点,力求在体系构架上寻求系统性能的大幅度提高.

3)室内移动通信业务已占据应用的主导地位,5G室内无线覆盖性能及业务支撑能力将作为系统优先设计目标,从而改变传统移动通信系统“以大范围覆盖为主、兼顾室内”的设计理念.

4)高频段频谱资源将更多地应用于5G移动通信系统,但由于受到高频段无线电波穿透能力的限制,无线与有线的融合、光载无线组网等技术将被更为普遍地应用.

5)可“软”配置的5G无线网络将成为未来的重要研究方向,运营商可根据业务流量的动态变化实时调整网络资源,有效地降低网络运营的成本和能源的消耗.

本文第2节分为5G无线传输和无线网络两个部分,对5G移动通信若干关键技术的现状与未来发展进行了评述,内容涉及大规模多输入多输出(Massive MIMO)、基于滤波器组的多载波技术、全双工等无线传输与多址技术,以及超密集异构网络、自组织网络、软件定义网络及内容分发网络等无线网络及组网关键技术;第3节简述了我国5G移动通信近期的推进计划、研发活动及发展目标;最后给出了全文的总结.

25G移动通信若干关键技术

为提升其业务支撑能力,5G在无线传输技术和网络技术方面将有新的突破[3].在无线传输技术方面,将引入能进一步挖掘频谱效率提升潜力的技术,如先进的多址接入技术、多天线技术、编码调制技术、新的波形设计技术等;在无线网络方面,将采用更灵活、更智能的网络架构和组网技术,如采用控制与转发分离的软件定义无线网络的架构、统一的自组织网络(SON)、异构超密集部署等.

5G移动通信标志性的关键技术主要体现在超高效能的无线传输技术和高密度无线网络(high den-sity wireless network)技术.其中基于大规模MIMO的无线传输技术将有可能使频谱效率和功率效率在4G的基础上再提升一个量级,该项技术走向实用化的主要瓶颈问题是高维度信道建模与估计以及复杂度控制.全双工(full duplex)技术将可能开辟新一代移动通信频谱利用的新格局.超密集网络(ultra dense network,UDN)已引起业界的广泛关注,网络协同与干扰管理将是提升高密度无线网络容量的核心关键问题.

552

中国科学:信息科学第44卷第5期

体系结构变革将是新一代无线移动通信系统发展的主要方向.现有的扁平化SAE/LTE(system architecture evolution/long term evolution)体系结构促进了移动通信系统与互联网的高度融合,高密度、智能化、可编程则代表了未来移动通信演进的进一步发展趋势,而内容分发网络(CDN)向核心网络的边缘部署,可有效减少网络访问路由的负荷,并显著改善移动互联网用户的业务体验.

1)超密集组网:未来网络将进一步使现有的小区结构微型化、分布化,并通过小区间的相互协作,化干扰信号为有用信号,从而解决小区微型化和分布化所带来的干扰问题,并最大程度地提高整个网络的系统容量.

2)智能化:未来网络将在已有SON技术的基础上,具备更为广泛的感知能力和更为强大的自优化能力,通过感知网络环境及用户业务需求,在异构环境下为用户提供最佳的服务体验.

3)可编程:未来网络将具备软件可定义(SDN)能力,数据平面与控制平面将进一步分离,集中控制、分布控制或两者的相互结合,将是网络演进发展中需要解决的技术路线问题;基站与路由交换等基础设施具备可编程与灵活扩展能力,以统一融合的平台适应各种复杂的及不同规模的应用场景.

4)内容分发边缘化部署:移动终端访问的内容虽然呈海量化趋势,但大部分集中在一些热点内容和大型门户网站,在未来的5G网络中采用CDN技术将是提高网络资源利用率的重要潜在手段.

2.1无线传输技术

2.1.1大规模MIMO技术

多天线技术作为提高系统频谱效率和传输可靠性的有效手段,已经应用于多种无线通信系统,如3G系统、LTE、LTE-A、WLAN等.根据信息论,天线数量越多,频谱效率和可靠性提升越明显.尤其是,当发射天线和接收天线数量很大时,MIMO信道容量将随收发天线数中的最小值近似线性增长.因此,采用大数量的天线,为大幅度提高系统的容量提供了一个有效的途径.由于多天线所占空间、实现复杂度等技术条件的限制,目前的无线通信系统中,收发端配置的天线数量都不多,比如在LTE系统中最多采用了4根天线,LTE-A系统中最多采用了8根天线[4].但由于其巨大的容量和可靠性增益,针对大天线数的MIMO系统相关技术的研究吸引了研究人员的关注,如单个小区情况下,基站配有大大超过移动台天线数量的天线的多用户MIMO系统的研究等[5].进而,2010年,贝尔实验室的Marzetta研究了多小区、TDD(time division duplexing)情况下,各基站配置无限数量天线的极端情况的多用户MIMO技术,提出了大规模MIMO(large scale MIMO,或者称Massive MIMO)的概念[6],发现了一些与单小区、有限数量天线时的不同特征.之后,众多的研究人员在此基础上研究了基站配置有限天线数量的情况[7].在大规模MIMO中,基站配置数量非常大(通常几十到几百根,是现有系统天线数量的1~2个数量级以上)的天线,在同一个时频资源上同时服务若干个用户.在天线的配置方式上,这些天线可以是集中地配置在一个基站上,形成集中式的大规模MIMO,也可以是分布式地配置在多个节点上,形成分布式的大规模MIMO.值得一提的是,我国学者在分布式MIMO的研究一直走在国际的前列[8~10].

大规模MIMO带来的好处主要体现在以下几个方面:第一,大规模MIMO的空间分辨率与现有MIMO相比显著增强,能深度挖掘空间维度资源,使得网络中的多个用户可以在同一时频资源上利用大规模MIMO提供的空间自由度与基站同时进行通信,从而在不需要增加基站密度和带宽的条件下大幅度提高频谱效率.第二,大规模MIMO可将波束集中在很窄的范围内,从而大幅度降低干扰.第三,可大幅降低发射功率[7],从而提高功率效率.第四,当天线数量足够大时,最简单的线性预编码和线性检测器趋于最优,并且噪声和不相关干扰都可忽略不计.

553

尤肖虎等:5G移动通信发展趋势与若干关键技术

近两年针对大规模MIMO技术的研究工作主要集中在信道模型、容量和传输技术性能分析、预编码技术、信道估计与信号检测技术等方面[11~14],但还存在一些问题:由于理论建模和实测模型工作较少,还没有被广泛认可的信道模型;由于需要利用信道互易性减少信道状态信息获取的开销,目前的传输方案大都假设采用TDD系统,用户都是单天线的,并且其数量远小于基站天线数量.导频数量随用户数量线性增加,开销较大,信号检测和预编码都需要高维矩阵运算,复杂度高,并且由于需要利用上下行信道的互易性,难以适应高速移动场景和FDD(frequency division duplexing)系统;在分析信道容量及传输方案的性能时,大都假设独立同分布信道,从而认为导频污染是大规模MIMO的瓶颈问题,使得分析结果存在明显的局限性,等等.因此,为了充分挖掘大规模MIMO的潜在技术优势,需要深入研究符合实际应用场景的信道模型,分析其对信道容量的影响,并在实际信道模型、适度的导频开销、可接受的实现复杂度下,分析其可达的频谱效率、功率效率,并研究最优的无线传输方法、信道信息获取方法、多用户共享空间无线资源的联合资源调配方法.

针对以上问题的研究,存在诸多的挑战,但随着研究的深入,大规模MIMO在5G中的应用被寄予了厚望[15],可以预计,大规模MIMO技术将成为5G区别于现有系统的核心技术之一.

2.1.2基于滤波器组的多载波技术

由于在频谱效率、对抗多径衰落、低实现复杂度等方面的优势,OFDM(orthogonal frequency di-vision multiplexing)技术被广泛应用于各类无线通信系统,如WiMaX、LTE和LTE-A系统的下行链路,但OFDM技术也存在很多不足之处.比如,需要插入循环前缀以对抗多径衰落,从而导致无线资源的浪费;对载波频偏的敏感性高,具有较高的峰均比;另外,各子载波必须具有相同的带宽,各子载波之间必须保持同步,各子载波之间必须保持正交等,限制了频谱使用的灵活性.此外,由于OFDM 技术采用了方波作为基带波形,载波旁瓣较大,从而在各载波同步不能严格保证的情况下使得相邻载波之间的干扰比较严重.在5G系统中,由于支撑高数据速率的需要,将可能需要高达1GHz的带宽.但在某些较低的频段,难以获得连续的宽带频谱资源,而在这些频段,某些无线传输系统,如电视系统中,存在一些未被使用的频谱资源(空白频谱).但是,这些空白频谱的位置可能是不连续的,并且可用的带宽也不一定相同,采用OFDM技术难以实现对这些可用频谱的使用.灵活有效地利用这些空白的频谱,是5G系统设计的一个重要问题.

为了解决这些问题,寻求其他多载波实现方案引起了研究人员的关注[16~25].其中,基于滤波器组的多载波(FBMC,?lter-bank based multicarrier)实现方案是被认为是解决以上问题的有效手段,被我国学者最早应用于国家863计划后3G试验系统中[16].滤波器组技术起源于20世纪70年代,并在20世纪80年代开始受到关注,现已广泛应用于图像处理、雷达信号处理、通信信号处理等诸多领域.在基于滤波器组的多载波技术中,发送端通过合成滤波器组来实现多载波调制,接收端通过分析滤波器组来实现多载波解调.合成滤波器组和分析滤波器组由一组并行的成员滤波器构成,其中各个成员滤波器都是由原型滤波器经载波调制而得到的调制滤波器[16].与OFDM技术不同,FBMC中,由于原型滤波器的冲击响应和频率响应可以根据需要进行设计,各载波之间不再必须是正交的,不需要插入循环前缀;能实现各子载波带宽设置、各子载波之间的交叠程度的灵活控制,从而可灵活控制相邻子载波之间的干扰,并且便于使用一些零散的频谱资源;各子载波之间不需要同步,同步、信道估计、检测等可在各资载波上单独进行处理,因此尤其适合于难以实现各用户之间严格同步的上行链路.但另一方面,由于各载波之间相互不正交,子载波之间存在干扰;采用非矩形波形,导致符号之间存在时域干扰,需要通过采用一些技术来进行干扰的消除.

FBMC技术作为5G系统多载波方案的重要选择,吸引了越来越多人的研究兴趣[26~30].由于在554

中国科学:信息科学第44卷第5期

FBMC技术中,多载波性能取决于原型滤波器的设计和调制滤波器的设计,而为了满足特定的频率响应特性的要求,要求原型滤波器的长度远远大于子信道的数量,实现复杂度高,不利于硬件实现.因此,发展符合5G要求的滤波器组的快速实现算法是FBMC技术重要的研究内容[30].

2.1.3全双工技术

全双工通信技术指同时、同频进行双向通信的技术.由于在无线通信系统中,网络侧和终端侧存在固有的发射信号对接收信号的自干扰,现有的无线通信系统中,由于技术条件的限制,不能实现同时同频的双向通信,双向链路都是通过时间或频率进行区分的,对应于TDD和FDD方式.由于不能进行同时、同频双向通信,理论上浪费了一半的无线资源(频率和时间).

由于全双工技术理论上可提高频谱利用率一倍的巨大潜力,可实现更加灵活的频谱使用,同时由于器件技术和信号处理技术的发展,同频同时的全双工技术逐渐成为研究热点,是5G系统充分挖掘无线频谱资源的一个重要方向[31~34].但全双工技术同时也面临一些具有挑战性的难题.由于接收和发送信号之间的功率差异非常大,导致严重的自干扰(典型值为70dB),因此实现全双工技术应用的首要问题是自干扰的抵消[35].近年来,研究人员发展了各类干扰抵消技术,包括模拟端干扰抵消、对已知的干扰信号的数字端干扰抵消及它们的混合方式、利用附加的放置在特定位置的天线进行干扰抵消的技术等[36,37],以及后来的一些改进技术[38].通过这些技术的联合应用,在特定的场景下,能消除大部分的自干扰.研究人员也开发了实验系统,通过实验来验证全双工技术的可行性[37,39],在部分条件下达到了全双工系统理论容量的90%左右.虽然这些实验证明了全双工技术是可行的,但这些实验系统都基本是单基站、小终端数量的,没有对大量基站和大量终端的情况进行实验验证,并且现有结果显示,全双工技术并不能在所有条件下都获得理想的性能增益.比如,天线抵消技术中需要多个发射天线,对大带宽情况下的消除效果还不理想,并且大都只能支持单数据流工作,不能充分发挥MIMO 的能力,因此,还不能适用于MIMO系统;MIMO条件下的全双工技术与半双工技术的性能分析还大多是一些简单的、面向小天线数的仿真结果的比较,特别是对大规模MIMO条件下的性能差异还缺乏深入的理论分析[40,41],需要在建立更合理的干扰模型的基础上对之进行深入系统的分析;目前,对全双工系统的容量分析大多是面向单小区、用户数比较少,并且是发射功率和传输距离比较小的情况,缺乏对多小区、大用户数等条件下的研究结果,因此在多小区大动态范围下的全双工技术中的干扰消除技术、资源分配技术、组网技术、容量分析、与MIMO技术的结合,以及大规模组网条件下的实验验证,是需要深入研究的重要问题.

2.2无线网络技术

2.2.1超密集异构网络技术

由于5G系统既包括新的无线传输技术,也包括现有的各种无线接入技术的后续演进,5G网络必然是多种无线接入技术,如5G,4G,LTE,UMTS(universal mobile telecommunications system)和WiFi (wireless?delity)等共存,既有负责基础覆盖的宏站,也有承担热点覆盖的低功率小站,如Micro,Pico, Relay和Femto等多层覆盖的多无线接入技术多层覆盖异构网络[42].在这些数量巨大的低功率节点中,一些是运营商部署,经过规划的宏节点低功率节点;更多的可能是用户部署,没有经过规划的低功率节点,并且这些用户部署的低功率节点可能是OSG(open subscriber group)类型的,也可能是CSG (closed subscriber group)类型的,从而使得网络拓扑和特性变得极为复杂.

根据统计,在1950年至2000年的50年间,相对于语音编码技术、MAC和调制技术的改进带来

555

尤肖虎等:5G移动通信发展趋势与若干关键技术

的不到10倍的频谱效率的提升和采用更宽的带宽带来的传输速率的几十倍的提升,由于小区半径的缩小从而频谱资源的空间复用带来的频谱效率提升的增益达到2700倍以上[43].因此,减小小区半径,提高频谱资源的空间复用率,以提高单位面积的传输能力,是保证未来支持1000倍业务量增长的核心技术.以往的无线通信系统中,减小小区半径是通过小区分裂的方式完成的.但随着小区覆盖范围的变小,以及最优的站点位置往往不能得到,进一步的小区分裂难以进行,只能通过增加低功率节点数量的方式提升系统容量,这就意味着站点部署密度的增加.根据预测,未来无线网络中,在宏站的覆盖区域中,各种无线传输技术的各类低功率节点的部署密度将达到现有站点部署密度的10倍以上,站点之间的距离达到10米甚至更小[44~47],支持高达每平方公里25000个用户[48],甚至将来激活用户数和站点数的比例达到1:1,即每个激活的用户都将有一个服务节点[49,50],从而形成超密集异构网络.

在超密集异构网络中,网络的密集化使得网络节点离终端更近,带来了功率效率、频谱效率的提升,大幅度提高了系统容量,以及业务在各种接入技术和各覆盖层次间分担的灵活性.虽然超密集异构网络展示了美好的前景,由于节点之间距离的减少,将导致一些与现有系统不同的问题.在5G网络中,可能存在同一种无线接入技术之间同频部署的干扰、不同无线接入技术之间由于共享频谱的干扰、不同覆盖层次之间的干扰,如何解决这些干扰带来的性能损伤,实现多种无线接入技术、多覆盖层次之间的共存,是一个需要深入研究的重要问题[51,52];由于近邻节点传输损耗差别不大,可能存在多个强度接近的干扰源,导致更严重的干扰,使现有的面向单个干扰源的干扰协调算法不能直接适用于5G系统;由于不同业务和用户的QoS(quality of service)要求的不同,不同业务在网络中的分担[53,54]、各类节点之间的协同策略、网络选择[55]、基于用户需求的系统能效最低的小区激活、节能配置策略[56]是保证系统性能的关键问题.为了实现大规模的节点协作,需要准确、有效地发现大量的相邻节点[57];由于小区边界更多、更不规则,导致更频繁、更为复杂的切换,难以保证移动性性能,因此,需要针对超密集网络场景发展新的切换算法[58];由于用户部署的大量节点的突然、随机的开启和关闭,使得网络拓扑和干扰图样随机、大动态范围地动态变化,各小站中的服务用户数量往往比较少,使得业务的空间和时间分布出现剧烈的动态变化,因此,需要研究适应这些动态变化的网络动态部署技术[59,60];站点的密集部署将需要庞大、复杂的回传网络,如果采用有线回传网络,会导致网络部署的困难和运营商成本的大幅度增加.为了提高节点部署的灵活性,降低部署成本,利用和接入链路相同的频谱和技术进行无线回传传输,是解决这个问题的一个重要方向.无线回传方式中,无线资源不仅为终端服务,而且为节点提供中继服务,使无线回传组网技术非常复杂,因此,无线回传组网关键技术,包括组网方式、无线资源管理等是重要的研究内容[2].

2.2.2自组织网络技术

在传统的移动通信网络中,网络部署、运维等基本依靠人工的方式,需要投入大量的人力,给运营商带来巨大的运行成本.根据分析[61],各大运营商的运营成本基本上占各自收入的70%左右.并且,随着移动通信网络的发展,依靠人工的方式难以实现网络的优化.因此,为了解决网络部署、优化的复杂性问题,降低运维成本相对总收入的比例,使运营商能高效运营、维护网络,在满足客户需求的同时,自身也能够持续发展,由NGMN(next generation mobile network)联盟中的运营商主导,联合主要的设备制造商提出了自组织网络(SON)的概念[62].自组织网络的思路是在网络中引入自组织能力(网络智能化),包括自配置、自优化、自愈合等[63,64],实现网络规划、部署、维护、优化和排障等各个环节的自动进行,最大限度地减少人工干预.目前,自组织网络成为新铺设网络的必备特性,逐渐进入商用,并展现出显著的优势.

5G系统采用了复杂的无线传输技术和无线网络架构,使得网络管理远远比与现有网络复杂,网络556

中国科学:信息科学第44卷第5期

深度智能化是保证5G网络性能的迫切需要.因此,自组织网络将成为5G的重要技术.

5G将是融合、协同的多制式共存的异构网络.从技术上看,将存在多层、多无线接入技术的共存,导致网络结构非常复杂,各种无线接入技术内部和各种覆盖能力的网络节点之间的关系错综复杂,网络的部署、运营、维护将成为一个极具挑战性的工作.为了降低网络部署、运营维护复杂度和成本,提高网络运维质量,未来5G网络应该能支持更智能的、统一的SON功能,能统一实现多种无线接入技术、覆盖层次的联合自配置、自优化、自愈合.

目前,针对LTE、LTE-A以及UMTS、WiFi的SON技术发展已经比较完善,逐渐开始在新部署的网络中应用.但现有的SON技术都是面向各自网络,从各自网络的角度出发进行独立的自部署和自配置、自优化和自愈合,不能支持多网络之间的协同.因此,需要研究支持协同异构网络的SON技术,如支持在异构网络中的基于无线回传的节点自配置技术,异系统环境下的自优化技术,如协同无线传输参数优化、协同移动性优化技术,协同能效优化技术,协同接纳控制优化技术等,以及异系统下的协同网络故障检测和定位,从而实现自愈合功能.

5G将采用超密集的异构网络节点部署方式,在宏站的覆盖范围内部署大量的低功率节点,并且存在大量的未经规划的节点,因此,在网络拓扑、干扰场景、负载分布、部署方式、移动性方面都将表现出与现有无线网络明显不同之处,网络节点的自动配置和维护将成为运营商面临的重要挑战.比如,邻区关系由于低功率节点的随机部署远比现有系统复杂,需要发展面向随机部署、超密集网络场景的新的自动邻区关系技术,以支持网络节点即插即用的自配置功能;由于可能存在多个主要的干扰源,以及由于用户移动性、低功率节点的随机开启何关闭等导致的干扰源的随机、大范围变化,使得干扰协调技术的优化更为困难;由于业务等随时间和空间的动态变化,使得网络部署应该适应这些动态变化,因此,应该对网络动态部署技术进行优化,如小站的动态与半静态开启和关闭的优化、无线资源调配的优化;为了保证移动平滑性,必须通过双连接等形式避免频繁切换和对切换目标小区进行优化选择;由于无线回传网络结构复杂,规模庞大,也需要自组织网络功能以实现回传网络的智能化.

由于5G将采用大规模MIMO无线传输技术,使得空间自由度大幅度增加,从而带来天线选择、协作节点优化、波束选择、波束优化、多用户联合资源调配等方面的灵活性.对这些技术的优化,是5G系统SON技术的重要内容.

2.2.3软件定义无线网络

软件定义网络(soft de?ned networking,SDN)技术是源于Internet的一种新技术.在传统的Internet网络架构中,控制和转发是集成在一起的,网络互联节点(如路由器、交换机)是封闭的,其转发控制必须在本地完成,使得它们的控制功能非常复杂,网络技术创新复杂度高.为了解决这个问题,美国斯坦福大学研究人员提出了软件定义网络的概念[65],其基本思路将路由器中的路由决策等控制功能从设备中分离出来,统一由中心控制器通过软件来进行控制,实现控制和转发的分离[65],从而使得控制更为灵活,设备更为简单.在软件定义网络中,分成应用层、控制层、基础设施层.其中控制层通过接口与基础设施层中的网络设施进行交互,从而实现对网络节点的控制.因此,在这种架构中,路由不再是分布式实现的,而是集中由控制器定义的.软件定义网络自提出后引起了广泛的关注,各研究机构进行了接口的标准化工作、关键技术的研究和实验,部分厂商也推出了解决方案等.但总体来说,SDN技术还有待进一步完善[66].

现有的无线网络架构中,基站、服务网关、分组网关除完成数据平面的功能外,还需要参与一些控制平面的功能,如无线资源管理、移动性管理等在各基站的参与下完成,形成分布式的控制功能,网络没有中心式的控制器,使得与无线接入相关的优化难以完成,并且各厂商的网络设备如基站等往往

557

尤肖虎等:5G移动通信发展趋势与若干关键技术

配备制造商自己定义的配置接口,需要通过复杂的控制协议来完成其配置功能,并且其配置参数往往非常多,配置和优化非常复杂,网络管理非常复杂,使得运营商对自己部署的网络只能进行间接控制,业务创新方面能力严重受限.因此,将SDN的概念引入无线网络,形成软件定义无线网络,是无线网络发展的重要方向[67].

在软件定义无线网络中,将控制平面从网络设备的硬件中分离出来,形成集中控制,网络设备只根据中心控制器的命令完成数据的转发,使得运营商能对网络进行更好的控制,简化网络管理,更好地进行业务创新.在现有的无线网络中,不允许不同的运营商共享同一个基础设施为用户提供服务.而在软件定义无线网络中,通过对基站资源进行分片实现基站的虚拟化,从而实现网络的虚拟化,不同的运营商可以通过中心控制器实现对同一个网络设备的控制,支持不同运营商共享同一个基础设施,从而降低运营商的成本,同时也可以提高网络的经济效益.由于采用了中心控制器,未来无线网络中的不同接入技术构成的异构网络的无线资源管理、网络协同优化等也将变得更为方便.

目前,软件定义无线网络已经吸引了许多研究人员的兴趣,就其网络架构[68~71]等方面进行了分析研究.虽然存在诸多的好处,SDN在无线网络中的应用将面临资源分片和信道隔离、监控与状态报告、切换等技术挑战,这些关键技术的研究刚刚开始,还需要深入的研究[72].

2.2.4内容分发网络

内容分发网络(CDN,content distribution network)是为了解决互联网访问质量而提出的概念.在传统的内容发布方式中,内容发布由内容提供商的服务器完成,随着互联网访问量的急剧增加,使得其服务器可能处于重负载状态,互联网中的拥塞问题更加突出,网站的响应速度受到严重影响,使网站难以为用户提供高质量的服务.CDN通过在网络中采用缓存服务器,并将这些缓存服务器分布到用户访问相对集中的地区或网络中,根据网络流量和各节点的连接、负载状况以及到用户的距离和响应时间等综合信息将用户的请求重新导向离用户最近的服务节点上,使用户可就近取得所需内容,解决Internet网络拥挤的状况,提高用户访问网站的响应速度[73].

在无线网络中,由于智能终端等应用的日益普及,使得移动数据业务的需求越来越大,内容越来越多.为了加快网络访问速度,在无线网络中采用CDN技术成为自然的选择,在各类无线网络中得以应用[74~77],也将成为5G系统的一个重要的技术.

3我国5G移动通信推进及研发进程1)

在过去的15年中,我国相继启动了3G和4G移动通信863重大研究计划,并推动实施了国家中长期发展规划“新一代宽带无线移动通信网”重大专项,极大地促进了我国移动通信技术水平的提高,实现了我国移动通信技术研发与产业化的跨越式发展.在分布式无线组网基础理论[8~10,78]等方面做出了一系列有重要国际影响的研究成果,我国所倡导的TD技术入选国际标准,华为、中兴等一批企业的全球移动通信市场份额已位居世界最前列,移动通信产业已经成为国内具有国际竞争力的规模性高技术产业之一.

5G移动通信发展是全球移动通信领域新一轮技术竞争的开始.及早布局、构造开放式研发环境,力争在未来5G技术与商业竞争中的获得领先优势,已成为我国信息技术与产业未来发展最为重要的任务之一.2013年初,在政府部门的大力支持下,成立了面向5G移动通信研究与发展的IMT-2020推

1)You X H.5G Mobile communications and its promotion.In:Proceeding of Future5G Mobile and Communication Technology,Beijing,2013

558

中国科学:信息科学第44卷第5期

进组,明确5G发展远景、业务、频谱与技术需求,研究5G主要技术发展方向及使能技术,形成5G 移动通信技术框架,协同产学研用各方力量,积极融入国际5G发展进程,为2015年之后全面参与5G 移动通信技术标准制定打下坚实的技术基础.“新一代宽带无线移动通信网”重大专项在推动LTE产业化的同时,开展了LTE的后续演进与无线新技术的研究,力争在5G国际标准化的候选技术上产生更多的自主知识产权,为我国布局5G关键技术的研究做了起步的工作.国家973计划也部署了移动网络体系创新的研究课题.

2013年6月,国家863计划启动了5G移动通信系统先期研究一期重大项目,其总体目标是:面向2020年移动通信应用需求,研究5G网络系统体系架构、无线组网、无线传输、新型天线与射频以及新频谱开发与利用等关键技术,完成性能评估及原型系统设计,开展无线传输技术试验,支持业务总速率达10Gbps,空中接口频谱效率和功率效率较4G提升10倍.主要研究任务包括:5G无线网络构架与关键技术研发、5G无线传输关键技术研发、5G移动通信系统总体技术研究及5G移动通信技术评估与测试验证技术研究等.拟采取的主要技术路线包括:重点突破高密度、高通量、超蜂窝无线网络技术,基于大规模协作天线的超高速率、超高效能无线传输技术、新型射频技术等关键核心技术,解决基于超微小区的网络协同与干扰消除等关键问题,将单位面积系统容量提高25倍左右;突破大规模天线高维度信道建模与估计以及复杂度控制等关键问题,开展无线传输技术实验,将无线传输频谱效率和功率效率提升一个量级;开展高频段等新型频谱资源无线传输与组网关键技术研究,将移动通信系统总的可用频谱资源扩展4倍左右.项目共设立7个课题,其中大规模协作和高效能无线传输技术研究开发分别由东南大学和电信科学技术研究院牵头承担;高密度、高通量、超蜂窝无线网络技术研究开发分别北京邮电大学、华为公司和清华大学牵头承担;总体技术研究由电信研究院牵头承担;技术评估与测试验证技术研究由上海无线通信研究中心牵头承担.项目成立总体专家组,负责5G移动通信863计划的综合推进、技术实施与协调等,进行5G技术框架体系的规划以及5G技术研发的顶层设计;拟设立IMT-2020推进对口工作组,包括频谱研究工作组、业务需求研究工作组,技术标准前期研究工作组,以及知识产权工作组等;拟构建面向5G发展的技术创新与产业发展联盟,研究5G 知识产权管理与协作机制等,探索5G移动通信技术、产业与商业应用的新模式、新途径,以及上下游衔接的高效协调机制;拟构建面向5G的国际性论坛,推动国际技术交流与合作研究,不断扩大我国移动通信的国际影响力.

4结束语

按照移动通信的发展规律,5G技术将在2020年之后实现商用,其基本发展目标是满足未来移动互联网业务飞速增长的需求,并为用户带来新的业务体验.5G技术的研究尚处于初期阶段,今后几年将是确定其技术需求、关键指标和使能技术的关键时期.5G移动通信系统容量的提升将从频谱效率的进一步提高、网络结构的变革和新型频谱资源开发与利用技术等途径加以实现,将派生出一系列新的无线移动通信核心支撑关键技术.结合5G移动通信的最新发展趋势,本文对富有发展前景的5G 移动通信系统若干关键技术进行了评述,并对国内移动通信的研发活动和推进目标进行了介绍.随着研究的不断深入,5G关键支撑技术将逐步得以明确,并在未来几年内进入实质性的标准化研究与制定阶段.

559

尤肖虎等:5G移动通信发展趋势与若干关键技术

参考文献

1METIS.Mobile and wireless communications enablers for the2020information society.In:EU7th Framework Programme Project,https://https://www.doczj.com/doc/4a1658498.html,

2Wen T,Zhu P Y.5G:A technology vision.Huawei,2013.https://www.doczj.com/doc/4a1658498.html,/en/about-huawei/publications/ winwin-magazine/hw-329304.htm

3Wang C X,Haider F,Gao X Q,et al.Cellular architecture and key technologies for5G wireless communication networks.IEEE Commun Mag,2014,52:122–130

43GPP.Physical Channels and Modulation(Release11).3GPP TS36.211.2010

5Marzetta T L.How Much training is required for multiuser MIMO?In:Proceedings of the40th Asilomar Conference on Signals,Systems,&Computers,Paci?c Grove,2006.359–363

6Marzetta T L.Noncooperative cellular wireless with unlimited numbers of base station antennas.IEEE Trans Wirel Commun,2010,9:3590–3600

7Ngo H Q,Larsson E G,Marzetta T L.Energy and spectral e?ciency of very large multiuser MIMO systems.IEEE Trans Commun,2013,61:1436–1449

8You X H,Wang D M,Sheng B,et al.Cooperative distributed antenna systems for mobile communications.IEEE Wirel Commun,2010,17:35–43

9You X H,Wang D M,Zhu P C,et al.Cell edge performance of cellular systems.IEEE J Sel Area Commun,2011,29: 1139–1150

10Tao X F,Xu X D,Cui Q M.An overview of cooperative communications.IEEE Commun Mag,2012,50:65–71

11Hoydis J,ten Brink S,Debbah M.Massive MIMO in the UL/DL of cellular networks:How many antennas do we need?IEEE J Sel Area Commun,2013,31:160–171

12Mohammed S K,Larsson E G.Per-antenna constant envelope precoding for large multi-user MIMO systems.IEEE Trans Commun,2013,61:1059–1071

13Yin H F,Gesbert D,Filippou M,et al.A coordinated approach to channel estimation in large-scale multiple-antenna systems.IEEE J Sel Area Commun,2013,31:264–273

14Svac P,Meyer F,Riegler E,et al.Soft-heuristic detectors for large MIMO systems.IEEE Trans Signal Process,2013, 61:4573–4586

15Larsson E G,Tufvesson F,Edfors O,et al.Massive MIMO for next generation wireless systems.IEEE Commun Mag, 2014,52:186–195

16Gao X Q,You X H,Jiang B,et al.MIMO-GMC wireless transmission technology for beyond3G mobile communica-tions.Acta Electron Sin,2004,12A:105–108[高西奇,尤肖虎,江彬,等.面向后三代移动通信的MIMO-GMC无线传输技术.电子学报,2004,12A:105–108]

17Bellanger M.FBMC Physical Layer:A Primary Technical Report,https://www.doczj.com/doc/4a1658498.html,

18Fettweis G,Krondorf M,Bittner S.GFDM-generalized frequency division multiplexing.In:Proceeding of IEEE Vehicular Technology Conference(VTC Spring),Barcelona,2009.1–4

19Michailow N,Lentmaier M,Rost P,et al.Integration of a GFDM secondary system in an OFDM primary system.In: Proceedings of Future Network&Mobile Summit,2011.1–8

20Datta R,Michailow N,Lentmaier M,et al.GFDM interference cancellation for?exible cognitive radio PHY design.

In:Proceedings of IEEE Vehicular Technology Conference(VTC Fall),Qu′e bec City,2012.1–5

21Datta R,Panaitopol D,Fettweis G.Analysis of cyclo-stationary GFDM signal properties in?exible cognitive radio.

In:Proceedings of International Symposium on Communications and Information Technologies(ISCIT),2012.663–667 22Michailow N,Gaspar I,Krone S,et al.Generalized frequency division multiplexing:Analysis of an alternative multi-carrier technique for next generation cellular systems.In:Proceedings of International Symposium on Wireless Com-munication Systems(ISWCS),Paris,2012.171–175

23Michailow N,Krone S,Lentmaier M,et al.Bit error rate performance of generalized frequency division multiplexing.

In:Proceedings of IEEE Vehicular Technology Conference(VTC Fall),Qu′e bec City,2012.1–5

24Vaidyanathan P.Multirate digital?lters,?lter banks,polyphase networks,and applications:A tutorial.Proc IEEE, 1990,78:56–93

560

中国科学:信息科学第44卷第5期

25Schaich F.Filterbank based multi carrier transmission(FBMC)-evolving OFDM.In:Proceedings of European Wireless Conference,2010.1051–1058

26Kishiyama Y.Future radio access for5G.NTT DOCOMO,Inc

27Estella I,Pascual-Iserte A,Payar M.OFDM and FBMC performance comparison for multistream MIMO systems.

In:Proceedings of Future Network and Mobile Summit,2010.1–8

28Wunder G,Kasparick M,ten Brink S.5G NOW:Challenging the LTE design paradigms of orthogonality and syn-chronicity.In:Proceedings of IEEE Vehicular Technology Conference(VTC Spring),2013.1–5

29Pinchon D,Siohan P.Derivation of analytical expressions for?exible PR low complexity FBMC Systems.In:Pro-ceedings of European Signal Processing Conference,2013.1–5

30Sahin A,Guvenc I,Arslan H.A survey on multicarrier communications:prototype?lters,lattice structures,and implementation aspects.https://www.doczj.com/doc/4a1658498.html,/abs/1212.3374v2

31Cheng W C,Zhang X,Zhang H L.Optimal dynamic power control for full-duplex bidirectional-channel based wireless networks.In:Proceedings of IEEE International Conference on Computer Communications(INFOCOM),2013.3120–3128

32Ahmed E,Eltawil A M,Sabharwal A.Rate gain region and design tradeo?s for full-duplex wireless communications.

IEEE Trans Wirel Commun,2013,12:3556–3565

33Aggarwal V,Duarte M,Sabharwal A,et al.Full-or half-duplex?A capacity analysis with bounded radio resources.

In:Proceedings of IEEE Information Theory Workshop,2012.207–211

34Ju H S,Lim S M,Kim D K,et al.Full duplexity in beamforming-based multi-hop relay networks.IEEE J Sel Area Commun,2012,30:1554–1565

35DUPLO Project.System Scenarios and Technical Requirements for Full-Duplex Concept.DUPLO Deliverable D1.1, 2013

36Jainy M,Choiy J I,Kim T M,et al.Practical,real-time,full duplex wireless.In:Proceeding of ACM Annual International Conference on Mobile Computing and Networking(MobiCom),2011.301–312

37Choiy J I,Jainy M,Srinivasany K,et al.Achieving single channel,full duplex wireless communication.In:Proceeding of ACM Annual International Conference on Mobile Computing and Networking(Mobicom),2010.1–12

38Thangaraj A,Ganti R K,Bhashyam S.Self-interference cancellation models for full-duplex wireless communications.

In:Proceedings of International Conference on Signal Processing and Communications(SPCOM),2012.1–5

39Duarte M,Dick C,Sabharwal A.Experiment-driven characterization of full-duplex wireless systems.IEEE Trans Wirel Commun,2012,11:4296–4307

40Vehkapera M,Girnyk M A,Riihonen T,et al.On achievable rate regions at large-system limit in full-duplex wireless local access.In:Proceedings of International Black Sea Conference on Communications and Networking(Black Sea Com),2013.7–11

41Hua Y B,Liang P,Ma Y M,et al.A method for broadband full-duplex MIMO radio.IEEE Signal Process Lett,2012, 19:793–796

42Osseiran A,Braun V,Hidekazu T,et al.The foundation of the mobile and wireless communications system for2020 and beyond:Challenges,enablers and technology solutions.In:Proceedings of IEEE Vehicular Technology Conference (VTC Spring),2013.1–5

43Webb W.Wireless Communications:The Future.New York:Wiley,2007

44Nokia Siemens Networks.2020:Beyond4G Radio Evolution for the Gigabit Experience.Nokia Siemens Networks Beyond4G White Paper

45Hwang I S,Song B Y,Soliman S S.A holistic view on hyper-dense heterogeneous and small cell networks.IEEE Commun Mag,2013,51:20–27

46Baldemair R,Dahlman E,Parkvall S,et al.Future wireless communications.In:Proceedings of IEEE Vehicular Technology Conference(VTC spring),2013.1–5

47Hoydis J,Kobayashi M,Debbah M.Green small cell networks:A cost-and energy-e?cient way of meeting the future tra?c demands.IEEE Veh Technol Mag,2011,31:37–43

48Liu S,Wu J J,Chung H K,et al.A25Gb/s(/km2)urban wireless network beyond IMT-advanced.IEEE Commun Mag,2011,49:122–129

49Qualcomm Research.LTE Rel-12&Beyond.2012.https://www.doczj.com/doc/4a1658498.html,/1000x/

561

尤肖虎等:5G移动通信发展趋势与若干关键技术

50Qualcomm Research.Neighborhood Small Cells for Hyper-Dense Deployments:Taking HetNets to the Next Level.

Qualcomm Technologies,Inc.,2013.https://www.doczj.com/doc/4a1658498.html,/media/documents/?les/neighborhood-small-cell-deployment-model.pdf

51Galiotto C,Marchetti N,Doyle L.Flexible spectrum sharing and interference coordination for low power nodes in heterogeneous networks.In:Proceedings of IEEE Vehicular Technology Conference(VTC Fall),2012.1–5

52Dhillon H S,Ganti R K,Baccelli F,et al.Modeling and analysis of K-tier downlink heterogeneous cellular networks.

IEEE J Sel Area Commun,2012,30:550–560

53Amani M,Aijaz A,Uddin N,et al.On mobile data o?oading policies in heterogeneous wireless networks.In: Proceedings of IEEE Vehicular Technology Conference(VTC Spring),2013.1–5

54Aijaz A,Aghvami H,Amani M.A survey on mobile data o?oading:Technical and business perspectives.IEEE Wirel Commun,2013,20:104–112

55Tabrizi H,Farhadi G,Cio?J.A learning-based network selection method in heterogeneous wireless systems.In: Proceedings of IEEE Global Telecommunications Conference(GLOBECOM),2011.1–5

56Yoon S G,Han J H,Bahk S W.Low-duty mode operation of femto base stations in a densely deployed network environment.In:Proceedings of the International Symposium on Personal,Indoor and Mobile Radio Communications (PIMRC),2012.652–656

57Prasad A,Lunden P,Tirkkonen O,et al.Mobility state based?exible inter-frequency small cell discovery for het-erogeneous networks.In:Proceedings of IEEE the International Symposium on Personal,Indoor and Mobile Radio Communications(PIMRC),2013.2057–2061

58Lopez-Perez D,Guvenc I,Chu X L.Mobility enhancements for heterogeneous networks through interference coordi-nation.In:Proceedings of IEEE Wireless Communications and Networking Conference Workshops(WCNCW),2012.

69–74

59Stefanatos S,Alexiou A.Access point density and bandwidth partitioning in ultra dense wireless networks.http://arxiv.

org/abs/1307.7249v1

60Ni W,Collings I B.A new adaptive small-cell architecture.IEEE J Sel Area Commun,2013,31:829–839

61Siebert M.Self-X Control in(future)mobile radio networks.In:Proceedings of the European-Chinese Cognitive Radio Systems Workshop,Beijing,2008.26–27

62NGMN.NGMN Recommendation on SON and O&M Requirements,2008.https://www.doczj.com/doc/4a1658498.html,/uploads/media/ NGMN Recommendation on SON and O M Requirements.pdf

63Aliu G O,Imran A,Imran M A,et al.A survey of self organisation in future cellular networks.IEEE Commun Survey Tutor,2013,15:336–361

64H¨a m¨a l¨a inen S,Sanneck H,Sartori C.LTE Self Organising Networks(SON):Network Management Automation for Operational E?ciency.John Wiley&Sons,2012

65McKeown N,Anderson t,Balakrishnan H,et al.Open?ow:Enabling innovation in campus networks.ACM SIGCOMM Computer Commun Rev,2008,38:69–74

66Sezer S,Scott-Hayward S,Chouhan P K.Are we ready for SDN?Implementation challenges for software-de?ned networks.IEEE Commun Mag,2013,51:36–43

67Demestichas P,Georgakopoulos A,Karvounas D,et al.5G on the horizon:Key challenges for the radio-access network.

IEEE Veh Technol Mag,2013,51:47–53

68Ali-Ahmad H,Cicconetti C,Oliva A D L.An SDN-based network architecture for extremely dense wireless networks.

https://www.doczj.com/doc/4a1658498.html,/621/

69Savarese G,Vaser M,Ruggieri M.A software de?ned networking-based context-aware framework combining4G cellular networks with M2M.In:Proceedings of International Symposium on Wireless Personal Multimedia Communications (WPMC),2013.1–5

70Costanzo S,Galluccio L,Morabito G,et al.Software de?ned wireless networks:Unbridling SDNs.In:Proceedings of European Workshop on Software De?ned Networking(EWSDN),2012.1–6

71Li L E,Mao Z M,Rexford J.Toward software-de?ned cellular networks.In:Proceedings of European Workshop on Software De?ned Networking(EWSDN),2012.7–12

72Chaudet C,Haddad Y.Wireless software de?ned networks:Challenges and opportunities.In:Proceedings of IEEE International Conference on Microwaves,Communications,Antennas and Electronics Systems(COMCAS),2013.1–5

562

中国科学:信息科学第44卷第5期

73Peng G.CDN:Content distribution network,https://www.doczj.com/doc/4a1658498.html,/abs/cs/0411069v1

74Abedini N,Shakkottai S.Content caching and scheduling in wireless networks with elastic and inelastic tra?c.

IEEE/ACM Trans Netw,2013,99:1

75Zhao F,Kalker T,M′e dard M.Signatures for content distribution with network coding.In:Proceedings of IEEE International Symposium on Information Theory Proceedings(ISIT),2007.1–5

76Andronache A,Rothkuge S.Multimedia content distribution in hybrid wireless using weighted clustering.In:Pro-ceedings of ACM Workshop on Wireless Multimedia Networking and Performance Modeling,2006.1–9

77Cheng C M,Kung H T,Lin C K,et al.Rainbow:A wireless medium access control using network coding for multi-hop content distribution.In:Proceedings of IEEE Military Communications Conference(MilCom),2008.1–5

78Zhou S D,Zhao M,Xu X,et al.Distributed wireless communications system:A new architecture for public wireless access.IEEE Commun Mag,2003,41:108–113

The5G mobile communication:the development trends and its emerging key techniques

YOU XiaoHu1?,PAN ZhiWen1,GAO XiQi1,CAO ShuMin2&WU HeQuan3

1National Mobile Communications Research Laboratory,Southeast University,Nanjing210096,China;

2China Academy of Telecommunications Research,Beijing100191,China;

3China Academy of Engineering,Beijing100088,China

*E-mail:xhyu@https://www.doczj.com/doc/4a1658498.html,

Abstract5G is a new generation mobile communication system that is to be commercialized in the year beyond 2020.Currently the development of5G mobile communication system is on its earlier stage.In this article,the de-velopment requirements,technique features and possible approaches for the5G are?rstly addressed.The wireless transmission and networking techniques are introduced and remarked,which include massive multiple-input-multiple-output(MIMO),?lter-bank based multi-carrier,full duplex,ultra dense network(UDN),self-organizing network(SON),software de?ned networking(SDN),and content distribution network(CDN).Furthermore,the recent R&D and promotion activities for5G mobile communication system in China are summarized.

Keywords5G,key techniques,development trends,radio transmission technology,wireless network technology

YOU XiaoHu was born in1962.He

received his master and Ph.D.degree

from Southeast University,Nanjing,

China,in Electrical Engineering in1985

and1988,respectively.Since1990,he

has been working with National Mobile

Communications Research Laboratory

at Southeast University,where he has

been holding the rank of Professor from

1992,Changjiang Scholar Program Pro-

fessor since2000,and Director since2002.His research inter-

ests include wireless transmission,wireless networking,signal

processing and its applications.

563

移动通信技术发展趋势研究论文

移动通信技术发展趋势研究论文 摘要本文详细论述了现代移动通信技术的六大最新发展趋势:网络业务的数据化、分组化,网络技术的宽带化,网络技术的智能化,更高的频段,更有效利用频率,网络趋于融合、走向统一。了解、掌握这些趋势对移动通信运营商和设备制造商均具有重要的现实意义。关键词移动通信Internet无线数据IMT-2000智能网网络融合 1前言 移动通信业务之所以发展迅猛主要是其满足了人们在任何时间。任何地点与任何个人进行通信的愿望。移动通信是实现未来理想的个人通信服务的必由之路。在信息支撑技术、市场竞争和需求的共同作用下,移动通信技术的发展更是突飞猛进,呈现出以下几大趋势:网络业务数据化、分组化,网络技术宽带化,网络技术智能化,更高的频段,更有效利用频率,各种网络趋于融合。了解、掌握这些趋势对移动通信运营商和设备制造商均具有重要的现实意义。 2网络业务数据化、分组化 2.1无线数据——生机无限当前移动数据通信发展迅速,被认为是移动通信发展的一个主要方向。近年来出现的移动数据通信主要有两种,一种是电路交换型的移动数据业务,如TACS、AMPS和GSM中的承载数据业务以及GSM系统的HSCSD;另外一种是分组交换型的移动数据业务,如摩托罗拉的DataTAC、爱立信的Mobitex和GSM系统的GPRS。 目前,无线数据业务只占GSM网络全部业务量中的很小一部分,但是在未来的两年中这种状况将开始扭转,并大大改变。1999年以后,随着HSCSD、GPRS 等新的高速数据解决方案显露峥嵘,并成为数据应用的新焦点,无线数据将成为运营商经营计划中越来越重要的部分,它预示着未来大量的商业机遇。 (1)应用驱动市场 无线数据业务的主要驱动力在于用户的应用。话音是单一的、易于被大众所接受的业务,然而无线数据则不同,无线数据最初的应用重点放在运输管理这样的专业市场。近期无线数据业务的目标市场是销售人员或现场工程师这样的用户群。从这些先发目标的应用中积累无线数据的经验,并从中受益。

未来移动通信技术的发展趋势与展望探讨

未来移动通信技术的发展趋势与展望探讨 摘要科技不断发展,人类生活在不断进步,现在的社会是科技型的社会,是信息化的时代。而信息化需要的是计算机,需要的是互联网,为了紧跟时代的潮流,为了更加方便人们的交流,方便中国信息事业的发展,移动通讯也在一代一代的更新,一步一步向前迈进。新型的通信手段将成为促进社会进步、科技发展的中坚力量,本文将根据移动通讯来探讨其未来发展趋势与展望,并且进行研究分析,为我国移动通讯将来的发展提供探索新趋势。 关键词移动通信技术;发展;数据;信息时代 前言 随着信息时代的快速发展,科学技术的不断更新,通信技术也越来越受到人们的关注,它经过四代的变革更新,处在第五代的热潮之中。人们的工作、出行、购物,都要依靠移动通信来完成,因此,移动通信技术已经成为人们日常生活中必不可少的“必需品”。经过调查统计,我国移动用户的使用者已经突破了十亿,目前的使用量还在不断增加,呈现出了前所未有的热潮。移动通信技术的发展前景极为乐观,同时也促进了我国的信息发展。 1 移动通信系统的研究背景 移动通信系统是从二十世纪八十年代诞生的,直到现在,它一共经历了四次更新换代,预计到2020年将经过第五代的發展历程。 第一代通信技术是在二十世纪九十年代初完成的,它主要是通过模拟传输数据,因此传输的速度十分的慢,而且质量相对来说也较差,并且无法加密,安全系数也很低,业务量也很小,所以很快就被第二代移动通信技术淘汰了。 第二代移动通信技术开始于二十世纪九十年代的初期,这次它引入了较为密集的技术结构,并且还引用了智能技术,虽然比起第一代的通信技术好了很多,但依然有多的不足之处,传输的速率依然很慢,安全稳定系数依然不够高。 第三代通信技术的发展就更加的智能化,前两代无法解决的宽带服务,由于第三代通信技术的到来也有了相应的提供。它具有Internet的能力,还可以实现全球漫游,传送质量较高的图像等。 第四代通信技术就是现在我们使用的4G网络,上网的速度更加的快,并且有了移动宽带和WIFI。我国现已经进入了4G生活时代,4G具有极高的下载速度和高清的电视,是前三代无法达到的。 随着科学技术的发展,网络时代的需求越来越多,这就需要更加进一步的研究未来移动通信技术的发展趋势,从而使我国的信息发展跟上时代的脚步[1]。

中国移动通信产业的发展情况和趋势经典案例报告

中国移动通信产业的发展情况和趋势 【最新资料,WORD文档,可编辑修改】

中国移动通信产业的发展情况和趋势 作者:信息产业部电子信息产品管理司 一、移动通信运营业迅猛发展 我国通信运营业在改革中发展,在发展中改革,经过5年的努力,电信运营业的发展模式已由垄断经营向竞争开放转变,通信综合能力不断提高,已基本满足经济社会发展和信息化建设的需求,技术水平也跨入世界先进行列。一个覆盖全国、联通世界、技术先进、业务多样化的国家现代通信网基本形成,全网实现了数字化,网络规模跃居世界第一位。我国计算机国际互联网从1994年开始起步,国内用户数以年均300%的增长率迅猛发展,目前已达到6000多万户,跃居世界第二位。 2003年1月-4月,全国新增电话用户3452.9万户,总数达4.55亿户,其中固话用户达2.29亿户,移动电话用户达2.26亿户。全国电信固定资产投资完成383.7亿元人民币,比上年同比增长48.4%,高于同期全社会固定资产投资,增幅17.9%。 图1 1995年—2002年我国移动用户及移动电话普及率发展情况 我国移动通信运营业的发展速度十分惊人,从1987年我国引进第一套移动通信设备至今的16年里,取得了举世瞩目的成绩。1987年我国移动通信用户只有700多户;而10年之后的1997年8月我国移动用户突破了1000万户;此后又用了3年的时间在2001年4月用户数达到了1亿户,并于同年7月超过美国成为全球移动用户最多的国家;2002年我国移动用户突破了2亿户。截止到2003年4月,我国移动电话用户总数已达2.26亿户,普及率为16.2%。

图2 1996年—2002年全国移动通信交换机容量(万户) 目前,我国的GSM移动通信网络已覆盖祖国内地的所有地(市)和99%以上的县(市)。我国不仅拥有世界最大的GSM移动通信网,而且0.33%的掉线率使得我国的GSM网络质量也已超过了欧洲发达国家。我国GSM用户占全球总用户的1/3,这些数据足以说明我国已经成为GSM网络大国。1998年以来,我国的移动通信网络容量平均每年以接近60%的速度增长,截止到2002年底,我国移动电话交换机容量合计2.7亿户。 图3 1998年—2002年移动通信运营商固定资产投资情况(亿元人民币) 2002年,全国通信业务收入完成4576亿元人民币,比上年同期增长14.4%,5年平均增长达20.1%,收入规模是1997年的2.5倍。其中,移动通信业务发展迅猛,占电信业务总收入的47%,成为第一支柱业务;全国移动电话本地通话量占本地话务总量的89.3%,明显分流了固话业务;移动长话占长话总时长的27.9%。

浅谈未来移动通信的发展趋势

浅谈未来移动通信的发展趋势 摘要:随着新世纪的到来,信息技术和移动通信技术得到了迅猛的发展,在市场需求的同时,未来的移动通信技术的趋势是:网络业务的数据化、移动互联性和分组化;以及网络设备的小型化和智能化等。这些趋势正是第四代移动通信技术的发展目标和方向。本文介绍了未来移动通信系统的特点和网络架构。讨论了未来移动通信物理层的关键技术以及相应的网络结构。最后对未来移动通信系统的发展进行了一定的展望。 关键词:4G;网络结构;移动通信;无线传输技术 1 绪论 所谓的移动通信是指在移动用户之间或者是移动和固定用户之间的通信技术。随着电子技术和计算机网络技术的不断发展,移动通信技术也得到了一定的发展。目前移动通信已经成为人类不可缺少的通信方式。 移动通信的历史主要经历三个阶段: 第一代移动通信技术。这种通信技术主要指的是蜂窝式模拟移动技术,其频率利用率不高、容量有限、制式太多且不兼容等局限促使人们开发出第二代移动通信。 第二代移动通信技术指的是蜂窝的数字移动通信技术,使得蜂窝的数据传输变成数字化,具有了数字化信号传输的所有特点。但还是存在着业务单一、通话和低速数据通信以及无法全球漫游等缺憾。于是结合Internet 和高度移动性的第三代移动通信应运而生。 第三代移动通信技术,这种技术克服了第二代移动通信技术的所有缺点,并提供了很高质量的多媒体综合业务。有了第三代移动通信,人们除通话以外,可以方便地进行WWW浏览,收发E- mail,视频点播等多媒体业务,进行电子商务如购物、交易、金融业务等。目前,因3G系统上有许多需要改进的地方,所以人们已经开始对4G 技术进行研究。这种4G技术会比3G技术的更加完善。 2 4G 移动通信简介 第四代移动通信技术的概念可称为宽带接入和分布网络,具有非对称的超

关于移动通信未来发展趋势的探讨

龙源期刊网 https://www.doczj.com/doc/4a1658498.html, 关于移动通信未来发展趋势的探讨 作者:陈宇冯杰 来源:《中国新通信》2013年第09期 【摘要】基于用户现实的需求和移动通信技术的快速发展,我国的移动通信正逐渐改变了人们的生活,在通信速度、网络带宽、增值服务、多媒体通信和智能性方面将有较大程度的提高。因此,我们必须对移动通信未来发展趋势进行深入的研究和探讨。 【关键词】移动通信智能化网络化发展趋势 一、移动通信在未来发展中的重要定位 在未来发展中,基于人们现实的需求,移动通信的定位主要表现在以下几个方面:(1)移动通信成为了网络发展的重要支撑。在未来的发展中,移动通信主要会朝着网络化的方向发展,通话和短信业务只占业务量的很少一部分,网络服务将成为移动通信的重要发展内容。(2)移动通信成为了NGN网络的重要载体。随着网络的快速发展,下一代NGN网络已经成为现有移动通信网络的替代产品,为了提高NGN网络的覆盖率,现有的移动通信网络成为了重要载体。(3)移动通信成为了人机通信的重要手段。在未来移动通信的发展中,人机通信将会成为重要的发展方向,在用户现实的人机通信的需求下,移动通信成为了人机通信的重要手段。 二、移动通信对人们生活方式的具体影响 移动通信的智能化、网络化发展,对人们的生活产生了具体的影响,其影响主要表现在以下几个方面:(1)移动通信的娱乐性更强。由于未来移动通信将会朝着智能化和网络化方向发展,因此移动通信的功能性更强,移动通信将会开发出各种娱乐功能,满足用户对娱乐的需求。(2)移动通信成为了人们工作和生活的重要帮手。在未来的发展中,移动通信的网络化发展将成为重要方向,由此也为用户的工作和生活提供了良好的网络支持,保证了人们能够随时随地利用移动网络。(3)移动通信的发展使人们的生活更加便捷。移动通信有了上网功能以后,人们可以利用移动通信网络查阅生活信息、缴纳各种费用、进行网络购物以及使用网上银行业务,提高生活品质和生活质量。 三、未来移动通信的重要发展趋势分析 从目前移动通信的发展速度来看,未来移动通信将会加快4G网络的建设,将在以下几个方面有重要的发展:(1)移动通信的通信速度更快。专家预估,第四代移动通信系统可以达到10Mb/s至20Mb/s,甚至最高可以达到100Mb/s,这种速度将相当于目前手机的传输速度的1万倍左右。(2)移动通信的网络带宽更宽。未来移动通信将会朝着构建4G通信系统方向发展,而4G通信系统在带宽方面将比目前3G系统的蜂窝系统的带宽还要宽。(3)移动通信的

移动通信技术的发展趋势(一)

移动通信技术的发展趋势(一) 摘要本文详细论述了现代移动通信技术的六大最新发展趋势:网络业务的数据化、分组化,网络技术的宽带化,网络技术的智能化,更高的频段,更有效利用频率,网络趋于融合、走向统一。了解、掌握这些趋势对移动通信运营商和设备制造商均具有重要的现实意义。关键词移动通信Internet无线数据IMT-2000智能网网络融合 1前言 移动通信业务之所以发展迅猛主要是其满足了人们在任何时间。任何地点与任何个人进行通信的愿望。移动通信是实现未来理想的个人通信服务的必由之路。在信息支撑技术、市场竞争和需求的共同作用下,移动通信技术的发展更是突飞猛进,呈现出以下几大趋势:网络业务数据化、分组化,网络技术宽带化,网络技术智能化,更高的频段,更有效利用频率,各种网络趋于融合。了解、掌握这些趋势对移动通信运营商和设备制造商均具有重要的现实意义。 2网络业务数据化、分组化 2.1无线数据——生机无限当前移动数据通信发展迅速,被认为是移动通信发展的一个主要方向。近年来出现的移动数据通信主要有两种,一种是电路交换型的移动数据业务,如TACS、AMPS和GSM中的承载数据业务以及GSM系统的HSCSD;另外一种是分组交换型的移动数据业务,如摩托罗拉的DataTAC、爱立信的Mobitex和GSM系统的GPRS。 目前,无线数据业务只占GSM网络全部业务量中的很小一部分,但是在未来的两年中这种状况将开始扭转,并大大改变。1999年以后,随着HSCSD、GPRS等新的高速数据解决方案显露峥嵘,并成为数据应用的新焦点,无线数据将成为运营商经营计划中越来越重要的部分,它预示着未来大量的商业机遇。 (1)应用驱动市场 无线数据业务的主要驱动力在于用户的应用。话音是单一的、易于被大众所接受的业务,然而无线数据则不同,无线数据最初的应用重点放在运输管理这样的专业市场。近期无线数据业务的目标市场是销售人员或现场工程师这样的用户群。从这些先发目标的应用中积累无线数据的经验,并从中受益。 在过去的十年里,传统的生活方式已经在迅速改变,人们更经常性地移动,职业和个人生活之间的分界变得模糊,人们需要不分时间、地点访问很重要的信息。发生在用户身上的这种生活方式的改变将成为驱动无线数据业务发展的重要因素。 (2)因特网的影响 和通信的其他领域一样,无线数据业务的一个最重要的驱动力来自Internet。根据最近的研究,未来两年欧洲的因特网用户数量将翻一番。在我国,因特网用户的年增长率将高达300%,显然用户在运动中接入因特网的需求将会增长。 为了满足接入因特网的需求,一个全球性的开放协议——无线应用协议(WAP)应运而生。WAP为将Internet的信息内容以及增值业务传送到移动终端提供了一种开放的通用标准,实现了IP与GSM网络的桥接,是一个为厂商提供加速市场增长、避免网络割接、保护运营商投资的标准,WAP确保任何与WAP兼容的GSM手机都能工作。 (3)数据速率的发展 GSM承载业务所提供的GSM数据速率最高只能达到9.6kbit/s。国际上1998年引入的高速电路交换数据(HSCSD)技术将实现57kbit/s的数据速率,对要求连续比特率和传输时延小的应用是理想的,如会议电视、电子邮件、远程接入企业的局域网和无线图像。1999年商用化的GPRS是第一个GSM分组数据应用,将实现超过100kbit/s的数据速率。对较短的“突发”类型业务是理想的,如信用卡认证、远程测量和远程事务处理。EDGE(增强数据速率GSM改进模式)使用修改过的GSM调制方式来实现超过300kbit/s的数据速率。EDGE

移动通信网络发展趋势分析

移动通信网络发展趋势分析

移动通信网络发展趋势分析 时间:2014-12-03 16:10来源:中国新通信作者:刘静雯瞿娟点击: 180 次 移动通信论文发表: [摘要]现代化科学技术的不断发展,现代化信息技术也在逐渐发展与革新,全球进入到一个全新的信息社会。人们的消费观念也在不停地变化着:从桌面、文件、文件夹和回收站,到平板、应用和云服务,消费者正日益背离专注型思维的计算模式。他们不再坐在办公桌旁完成各项任务,而是转向一种即时和单手处理的计算模式——排队购物时,在咖啡馆聊天时,或者是上下班坐公交车时。这也意味着IT产业与移动网络通信的完美结合将成为一种崭新的发展趋势。[关键词] 移动通信,速率,流量,4G,移动网络 一、从用户行为看发展趋势 根据爱立信调查报告显示: 1、消费观念的转变 与个人社交网络随时保持联系正日益成为可能。为了维护他们的社交圈,人们正将他们自己的智能手机以及最喜爱的应用、云服务和智能手机服务带入到他们的工作中。越来越多的人将他们的

个人智能手机用于工作,例如,发送电子邮件、规划商务旅行、查找地点等等。 2、用户终端移动化 截止至2012年底,18%的消费者有购买平板电脑的意向;与此相比,仅有15% 的人计划购买台式电脑。办公桌上的电脑变成了客厅茶几上的平板电脑,边看电视边使用;或者变成了餐桌上的平板电脑,与一家人吃早餐时使用。来自澳大利亚、中国和俄罗斯的消费者对平板电脑尤其感兴趣。29%的消费者还计划购买智能手机;与此相比,仅有25%的消费者计划购买笔记本电脑。 这一行为改变了人们的移动计算体验:从手提笨重的电脑包、寻找座位和电源插座转变为在通勤列车上收发电子邮件、在午餐时使用Facebook和购物应用、在上班休息时阅读新闻博客。通过用户行为的转变,我们可以很容易的看出以下几点: 1、移动网络存在的必然性 为了达到随时随地的即时通信,移动网络覆盖是必不可少的,因为所有年龄段的消费者都要使用他们的智能手机保持随时联网。智能手机应用主

5G移动通信技术及未来发展趋势 刘海怀

5G移动通信技术及未来发展趋势刘海怀 发表时间:2019-06-19T10:48:47.910Z 来源:《基层建设》2019年第8期作者:刘海怀 [导读] 摘要:为了给未来5G 移动通信系统的顺利推行提供保障,我们有必要对5G 移动通信关键技术进行深入地分析和研究。 中通服建设有限公司 摘要:为了给未来5G 移动通信系统的顺利推行提供保障,我们有必要对5G 移动通信关键技术进行深入地分析和研究。基于此,笔者展开了以下简述。 关键词:5G 移动通信系统;关键技术;发展趋势 一、5G 移动通信技术的研究现状 我们又把5G 移动网络称之为第五代移动通信系统,此技术是在4G 移动通信技术的基础上提出的,5G 移动通信技术的发展是为了满足人们对移动通信网络的进一步需求,而随着通信技术水平越来越高,同时伴随计算机技术以及网络技术的优化和完善,4G 移动通信逐渐趋于成熟,因此,5G 移动通信逐渐被各大通信运营商所关注,并投入研发。 二、移动通信的关键技术分析 1.超密集网络技术 随着移动网络通信的飞速发展,人们对网络的依赖和需求达到了惊人的地步。在当前移动网络背景下,随着个人流量使用和流量使用人数的飞速增加,流量供应不足成为移动通信发展亟待解决的一大问题,而超密集网络技术就是在这样的时代背景下产生的。相较于传统4G 通信技术,5G 通信可以提供多出数千倍的移动流量,而在这其中起到决定性作用的就是超密集网络技术。超密集网络技术不仅拥有着丰富的室外密集网络,而且对室外空间进行了充分的拓展,进一步强化了其增益网络的核心作用。充分利用超密集网络技术的性能,是提高移动通信灵活性,扩大 5G 移动通信覆盖面的重要保证。 2.无线传输技术 无线传输技术也在5G移动通信技术领域发挥着至关重要的作用。同多天线传输技术相比,无线传输技术在信息传输效率方面具有一定的优势。无线传输技术建立在全双工技术与大规模MOMO技术的基础之上,上述技术可以在提升信息传输效率的基础上,为用户的自由通信提供保障。也可以在提升频谱利用效率的同时,发挥出降低发射功率与减少发射干扰的作用。为保证5G移动通信技术的实效性,研究者需要在不断发现与不断探索的基础上,优化5G通信技术。 3. 多输入多输出技术 多输入多输出可以利用多天线技术抑制信道传输衰弱,获得分集增益、空间复用增益和阵列增益,多输入多输出技术在发送端和接收端均采用多天线实现信号同时发送和接收,因此就形成了一个并行的多空间信道,充分利用空间信道传输资源,在不增加系统带宽和天线发射总功率的条件下提供空间分集增益,改进多径衰落中的传输可靠性。多输入多输出技术还采用了预编码或波束成型技术,可以实现一个或多个指定方向上的能量形成一个阵列增益,允许在不同方向上的多个用户同时获得服务,多输入多输出技术可以突破传统的移动通信的信道容量存在的瓶颈问题,充分利用空间信道的弱相关性形成空间复用增益,在多个相互独立的空间信道上传递不同类型的数据流,不需要增加物理带宽就可以成倍的提升移动通信的容量,提高数据传输的峰值速率。 4.同时同频全双工技术 同时同频全双工技术可以有效提升频率资源利用效率,并且可以同时接收在一条物理信道上两个不同方向的信号,同时同频全双工技术可以同时进行发射信号和接受同频数据信息,使通信双工节点自身发射机信号产生的搅扰问题被有效解决。既能提升高频谱的利用效率,又能够使移动通信网络快速可用。一旦实行5G,通信用户以及流量使用都将迅速增加,因此,传统基站模式为主的组网方式下已经不足以满足时代对于移动通信技术的要求,所以,5G这样新的网络连接模式可以很好地实现业务要求。 5.MIMO技术 多天线技术由很多个天线链路组成,所以这项技术所需要的元件非常多样,包括接收以及发射机也要有多个配套。接收天线可以方便地分布在设备上面,但是发射天线必须集中或分布排列。这项技术不仅可以去除本身MIMO,还可以提升高频谱的利用效率降低能耗。在小区干扰、噪音以及损耗和掉线问题方面做出了很大的改进,5G移动通信技术可以使用较为简单的方式去解决这些问题,不仅可以用多天线技术简化设计,还可以分散信号将时间和频谱利用率得到很好的提升。 6.新型网络架构技术 不同于4G 移动通信网络,为了满足未来5G 高效率、大规模、大容量的用户使用需求,要求5G 网络必须具有低时延、低成本、易维护和扁平化等特点,所以需要采用新型的网络架构技术。目前,云架构和 C-RAN(如图1所示)是学术界和产业界的热点。 图1 C-RAN网络架构示意图 三、移动通信技术未来发展趋势研究 5G是目前为止移动通信技术最前沿的技术,是通信技术最高境界的表现。国家根据实际情况希望未来的5G通信技术可以朝着两个方向发展,一个是互联网方面,另一个是在物联网方面,致力于解决现存的机械存在的海量通信问题。目前5G移动通信技术成为了世界通信领域都想要研究的对象,我国在2013年就已经成立了5G通信移动技术研究的小组,为更好地服务社会,适应互联网和信息技术的快速发展。5G最开始的目标定位是能够使这项技术可以与其他无线移动通信技术之间进行无缝衔接,而且能够根据实际情况进行全方位的服务。现阶

未来移动通信发展趋势.doc

未来移动通信发展趋势随着当今科学的不断发展,技术的不断更新,未来移动通信的发展也将越来越引起人们的重视,第三代移动通信(3G) 正在走向成熟, 其发展应用前景不容质疑。未来移动通信的研究,越来越被重视, 并逐步形成研究热潮。期待数据传输速率高达100MbitPs 以上, 频谱效率达到10bitPHz.s以上、系统容量是3G 系统的10倍以上、手机集各种功能和应用业务于一身的移动通信技术和系统。QAM和OFDM结合的正交并行多路高阶调制技术,MIMO和时空编码结合的空间多路技术, 分布式交叉覆盖和异构网络重叠的新型移动小区结构和相关技术等, 是很有潜力的未来移动通信技术。QAM的高阶调制不需要扩展频带, 是实现高速传输的重要手段。但传输速率仅随调制阶数对数增长、调制阶数更大增加对速率增长的贡献会变小.并行多路传输对速率的贡献按线性增长、对提高传输速率更为有效, OFDM采用FFT快速变换,可以一次处理几千路数据并行高速传输, 但以增加频带资源为代价。因此,QAM和OFDM结合的传输技术, 是一项很有前景的未来移动通信技术。 总的来说,未来移动通信发展的趋势将会朝以下几个方面发展: 一、多媒体技术 未来的通信将会越来越智能化,功能也将会越来越多样化。其中,多媒体技术也将飞速发展。多媒体信息同传、无线数据高速传输、动态影像传送、无线网络游戏、语音同步翻译、手机钱包等多媒体技术的应用将会越来月成熟。

近年来,多媒体技术得到迅速发展,多媒体系统的应用更以极强的渗透力进入人类生活的各个领域,如游戏、教育、档案、图书、娱乐、艺术、股票债券、金融交易、建筑设计、家庭、通讯等等。其中,运用最多最广泛也最早的就是电子游戏,千万青少年甚至成年人为之着迷,可见多媒体的威力。大商场、邮局里是电子导购触摸屏也是一例,它的出现极大地方便了人们的生活。近年来又出现了教学类多媒体产品,一对一专业级的教授,使莘莘学子受益匪浅。正因为如此,许多有眼光的企业看到了这一形式,纷纷运用其做企业宣传之用甚至运用其交互能力加入了电子商务,自助式维护,教授使用的功能,方便了客户,促进了销售,提升了企业形象,扩展了商机,在销售和形象二方面都获益。 可以这样说,凡是一个有进取心的企业,都离不开这一最新的高技术产品。首先多媒体的运用领域十分广泛,注定了它可在各行各业生根开花。其二,随着计算机的普及,新一代在计算机环境中成长起来的年轻人,已经习惯了这一形式,作为一个有发展眼光的企业,是不会放弃这一未来的消费主体的。其三,由于多媒体信息技术在国外已经非常普及,面对日益国际化的市场,只有跟上国际潮流。 二、可视电话技术 可视电话、多方可视电话、手机电视。 可视电话业务是一种集视频、语音于一体的多媒体通信业务。用户进行语音通话的同时,通过终端的屏幕看到对方的视频图像.同时将自己的本地图像传 输到对方。在目前网络lP化的大趋势下.可视电话也多以沪可视电话的

现代通信技术发展现状及其趋势

现代通信技术发展现状及其趋势 2008-12-25 19:48 【摘要】本文概述了现代通信技术的发展现状,并讲述了移动、卫星、光纤等通信方式。 关键词: 通信技术发展移动通信卫星通信光纤通信 一、引言 21世纪是一个信息社会,信息交流已经成为人们生活的基本需要。通信作为传输和交换信息的重要手段,是推动人类社会文明、进步与发展的巨大动力。电话技术的演变日新月异,传输媒介、交换设备、传输设备、终端设备和通信方式的改变都是影响电信通信的因素。 二、社会的需求,市场的需求 社会和市场的需求是刺激技术发展的原动力,对于信息技术的发展,市场同样起着举足轻重的推动作用。随着社会的发展,特别是近年来全球经济的发展,信息在社会生活中的地位越来越重要。以往那种单一、低效的信息传输方式已难以满足社会的需求,人们不仅要求所获取的信息数量更多、质量更好,还要求获得信息的手段更加方便、快捷,并能对信息系统实现实时、交互控制。社会与市场的这种需求再加上现代计算机技术的发展,对现代通信技术的发展起到了举足轻重的促进和导向作用。。 三、移动通信 为了实现客户对通信业务种类及数量的需求,移动电话通信系统在经历了模拟、GSM数字系统变革后,,又提供了一种能够全球漫游、支持多媒体等数据业务且有足够容量的第三代移动通信技术,既是码分多址技术(CDMA )——数字蜂窝移动通信系统。码分多址无线电通信技术是第三代无线电通信技术, 目前已在北美、东南亚和韩国被大规模投入商用。以前的模拟手机只能在模拟网覆盖地区使用, GSM 手机只能在GSM 网覆盖区使用, 两大系统互不兼容, 造成频率资源的浪费。采用CDMA 技术的新型手机由于实行的是双模式, 所以无论是数字网, 还是模拟网覆盖的地区, 都能自动转换工作方式, 不但可以提高频率资源利用率10~20倍,而且给用户带来方便;二是通话质量高,接近市话效果;三是发射功率在0.1~2000毫瓦之间所以对,人体辐射小。四是断话率低,保密能力强,因此,倍受用户的青睐。另外, 低地球轨道卫星开辟了移动通信的新领域, 掀起了卫星全球移动通信的新浪潮。将多个卫星链接在一起, 把地球天衣无缝地覆盖起来, 由多个蜂窝交换机网, 可连通地球上任何一点, 从而实现全球卫星移动通信,实现“电子地球村”的目标。 四、卫星通信 卫星通信是在空间技术和微波通信技术的基础上发展起来的一种通信方式。其利用人造地球卫星作为中继站来转发无线电信号,可实现两个或多个地球站之间的通信。全球卫星通信产业正在飞速发展, 卫星通信技术和电子技术取得了突破性进展,包括中、低轨道全球卫星移动通信系统在内的新系统不断涌现出来, 归纳起来,分为非同步(含低轨道L EO、中轨道M EO ) 和同步(同步轨道GEO ) 两大类。以低轨道卫星为基础的系统, 具有时延短、路径损耗小、能有效地频率复用、卫星互为备份、抗毁能力强等特点,多星组网可实现真正意义上的全球覆盖。典型的有“铱”系统、“全球星”系统。以静止轨道卫星为基础的系统, 使用卫星少, 卫星静止可实现昼夜通信, 监控卫星系统简单。这些系统, 正在步入产业化、商业化和国防化的轨道。卫星通信还有几项新技术:小天线地球站

未来移动通信发展趋势

未来移动通信发展趋势 随着当今科学的不断发展,技术的不断更新,未来移动通信的发展也将越来越引起人们的重视,第三代移动通信(3G) 正在走向成熟, 其发展应用前景不容质疑。未来移动通信的研究,越来越被重视, 并逐步形成研究热潮。期待数据传输速率高达100MbitPs 以上, 频谱效率达到10bitPHz.s以上、系统容量是3G 系统的10倍以上、手机集各种功能和应用业务于一身的移动通信技术和系统。QAM和OFDM结合的正交并行多路高阶调制技术,MIMO和时空编码结合的空间多路技术, 分布式交叉覆盖和异构网络重叠的新型移动小区结构和相关技术等, 是很有潜力的未来移动通信技术。QAM的高阶调制不需要扩展频带, 是实现高速传输的重要手段。但传输速率仅随调制阶数对数增长、调制阶数更大增加对速率增长的贡献会变小.并行多路传输对速率的贡献按线性增长、对提高传输速率更为有效, OFDM采用FFT快速变换,可以一次处理几千路数据并行高速传输, 但以增加频带资源为代价。因此,QAM和OFDM结合的传输技术, 是一项很有前景的未来移动通信技术。 总的来说,未来移动通信发展的趋势将会朝以下几个方面发展: 一、多媒体技术 未来的通信将会越来越智能化,功能也将会越来越多样化。其中,多媒体技术也将飞速发展。多媒体信息同传、无线数据高速传输、动态影像传送、无线网络游戏、语音同步翻译、手机钱包等多媒体技术的应用将会越来月成熟。 近年来,多媒体技术得到迅速发展,多媒体系统的应用更以极强的渗透力进入人类生活的各个领域,如游戏、教育、档案、图书、娱乐、艺术、股票债券、金融交易、建筑设计、家庭、通讯等等。其中,运用最多最广泛也最早的就是电子游戏,千万青少年甚至成年人为之着迷,可见多媒体的威力。大商场、邮局里是电子导购触摸屏也是一例,它的出现极大地方便了人们的生活。近年来又出现了教学类多媒体产品,一对一专业级的教授,使莘莘学子受益匪浅。正因为如此,许多有眼光的企业看到了这一形式,纷纷运用其做企业宣传之用甚至运用其交互能力加入了电子商务,自助式维护,教授使用的功能,方便了客户,促进了销售,提升了企业形象,扩展了商机,在销售和形象二方面都获益。 可以这样说,凡是一个有进取心的企业,都离不开这一最新的高技术产品。首先多媒体的运用领域十分广泛,注定了它可在各行各业生根开花。其二,随着计算机的普及,新一代在计算机环境中成长起来的年轻人,已经习惯了这一形式,作为一个有发展眼光的企业,是不会放弃这一未来的消费主体的。其三,由于多媒体信息技术在国外已经非常普及,面对日益国际化的市场,只有跟上国际潮流。多媒体技术特点: 1、能够完成在内容上相关联的多媒体信息的处理和传送,如声音、活动图像、文本、图形、动画等; 2、交互式工作,而不是简单的单向或双向传输; 3、网络联结,即各种媒体信息是通过网络传输的,而不是借助CD-ROM等存储载体来传递的。 二、可视电话技术 可视电话、多方可视电话、手机电视。

现代通信技术发展的主要趋势和方向

现代通信技术发展的主要趋势和方向 摘要:本文回顾了20世纪移动通信技术发展的历程,对现代通信技术进行了概述。主要针对移动通信、卫星通信、光纤通信及数字微波通信进行了发展趋势的介绍。同时,对现代通信技术的未来发展方向进行了展望。 关键词:移动通信卫星通信光纤通信现代信息 技术发展趋势 0引言 20世纪在人类历史上写下了光辉的一章:1900年波罗的海的一群遇难渔民,通过无线电呼叫而得救,移动通信第一次在海上证明了它对人类的价值;1903年底莱特驾驶自己的飞行器飞上了蓝天,开创了航空交通新领域;1946年世界上第一架计算机诞生,开创了信息经济时代和扩展人类脑力的里程碑;1969年世界上第一个采用存储转发的分组交换计算机网络ARPANET开通,为因特网的高速发展奠定了基础。 纵观通信技术的发展,虽然只有短短的一百多年的历史,却发生了翻天覆地的变化,由当初的人工转接到后来的电路转接,以及到现在的程控交换和分组交换,还有可以作为未来分组化核心网用的ATM交换机,IP路由器;由当初只是单一的固定电话到现在的卫星电话,移动电话,IP电话等等,以及由通信和计算机结合的各种其他业务,第三代通信技术的即将上市,以及以后的第四代通信,随着通信技术的发展,人类社会已经逐渐步入信息化的社会。 21世纪是一个信息社会,信息交流已经成为人们生活的基本需要。通信作为传输和交换信息的重要手段,是推动人类社会文明、进步与发展的巨大动力。电话技术的演变日新月异,传输媒介、交换设备、传输设备、终端设备和通信方式的改变都是影响电信通信的因素。 1现代通信技术概述 现代的主要通信技术有数字通信技术,程控交换技术,信息传输技术,通信网络技术,数据通信与数据网,ISDN与ATM技术,宽带IP技术,接入网与接入技术。 1.1数字通信 数字通信即传输数字信号的通信,,是通过信源发出的模拟信号经过数字终端的心愿编码成为数字信号,终端发出的数字信号,经过信道编码变成适合与信道传输的数字信号,然后由调制解调器把信号调制到系统所使用的数字信道上,在传输到对段,经过相反的变换最终传送到信宿。 1.2程控交换 程控交换技术即是指人们用专门的电子计算机根据需要把预先编好的程序存入计算机后完成通信中的各种交换。随着电信业务从以话音为主向以数据为主转移,交换技术也相应地从传统的电路交换技术逐步转向给予分株的数据交换和宽带交换,以及适应下一代网络基于IP的业务综合特点的软交换方向发展。 1.3信息传输 信息传输技术主要包括移动通信,光纤通信,卫星通信,数字微波通信,以及图像通信。 1)移动通信 早期的通信形式属于固定点之间的通信,随着人类社会党俄发展,信息传递日益频繁,移动通信正是因为具有信息交流灵活,经济效益明显等优势,得到了迅速的发展,所谓移动通信,就是在运动中实现的通信。其最大的优点是可以在移动的时候进行通信,方便,灵活。现在的移动通信系统主要有数字移动通信系统(GSM),码多分址蜂窝移动通信系统(CDMA)。 2)光纤通信 光纤是以光波为载频,以光导纤维为传输介质的一种通信方式,其主要特点是频带宽,比常用微波频率高104~105倍;损耗低,中继距离长;具有抗电磁干扰能力;线经细,重量轻;还有耐腐蚀,不怕高温等优点。 3)卫星通信 卫星通信简单而言就是地球上的无线电通信展之间利用人在地球卫星作中继站而进行的通信。其主要特点是:通信距离远,而投资费用和通信距离

移动通信技术发展及展望

移动通信技术发展及展望 Mobile communication technology development and prospects 电子通信与物理学院 专业、班级:通信14-1 报告人:杜超 论文结题时间:2014.1

摘要:在过去的10年中,世界电信发生了巨大的变化,移动通信特别是蜂窝小区的迅速发展,使用户彻底摆脱终端设备的束缚、实现完整的个人移动性、可靠的传输手段和接续方式。进入21世纪,移动通信将逐渐演变成社会发展和进步的必不可少的工具。移动通信技术日新月异,先后经历了第一代、第二代移动通信技术的兴起与淘汰,完成了第三代移动通信技术的快速覆盖与普及,目前正在 进行第四代移动通信技术的尝试与推广,以及第五代移动通信技术的研究与探索。相信在越来越先进的科学技术的强有力支持下,以及未来移动数据通信与多媒体业务需求发展的需求下,第四代移动通信技术会给人们带来更加美好的未来。 关键词:移动通信;发展历程;发展趋势 Abstract:I n the past ten years, great changes have taken place in the world telecom, mobile communications, especially the rapid development of the cell, the user completely get rid of the bondage of terminal equipment, to achieve a complete personal mobility, reliable transmission means and ways. Entering the 21st century, mobile communication will gradually evolve into the tools of social development and progress. Mobile communication technology, has experienced the rise of the first generation and second generation of mobile communication technology and eliminated, completed the rapid coverage and popularity of the third generation mobile communication technology, is currently in the fourth generation mobile communication technology to try and promotion, as well as the fifth generation of mobile communication technology research and exploration. Believe that there are more and more advanced under the strong support of science and technology, and the future development of mobile data communication and multimedia business requirements, under the requirements of the fourth generation mobile communication technology will bring people a better future. Key words:Mobile communication; The development course; The development trend

移动通信技术发展趋势

移动通信技术发展趋势 摘要:本文详细论述了现代移动通信技术的六大最新发展趋势:网络业务的数据化、分组化,网络技术的宽带化,网络技术的智能化,更高的频段,更有效利用频率,网络趋于融合、走向统一。了解、掌握这些趋势对移动通信运营商和设备制造商均具有重要的现实意义。 关键词:移动通信 Internet 无线数据 IMT-2000 智能网网络融合一、移动通信的意义所在 移动通信业务之所以发展迅猛主要是其满足了人们在任何时间。任何地点与任何个人进行通信的愿望。移动通信是实现未来理想的个人通信服务的必由之路。在信息支撑技术、市场竞争和需求的共同作用下,移动通信技术的发展更是突飞猛进,呈现出以下几大趋势:网络业务数据化、分组化,网络技术宽带化,网络技术智能化,更高的频段,更有效利用频率,各种网络趋于融合。了解、掌握这些趋势对移动通信运营商和设备制造商均具有重要的现实意义。 二、网络业务数据化、分组化 无线数据——生机无限当前移动数据通信发展迅速,被认为是移动通信发展的一个主要方向。近年来出现的移动数据通信主要有两种,一种是电路交换型的移动数据业务,如TACS、AMPS和GSM中的承载数据业务以及GSM系统的HSCSD;另外一种是分组交换型的移动数据业务,如摩托罗拉的DataTAC、爱立信的Mobitex和GSM系统的GPRS。 (1)应用驱动市场 无线数据业务的主要驱动力在于用户的应用。话音是单一的、易于被大众所接受的业务,然而无线数据则不同,无线数据最初的应用重点放在运输管理这样的专业市场。近期无线数据业务的目标市场是销售人员或现场工程师这样的用户群。从这些先发目标的应用中积累无线数据的经验,并从中受益。 在过去的十年里,传统的生活方式已经在迅速改变,人们更经常性地移动,职业和个人生活之间的分界变得模糊,人们需要不分时间、地点访问很重要的信息。发生在用户身上的这种生活方式的改变将成为驱动无线数据业务发展的重要因素。

解析移动通信技术的历史及发展趋势

解析移动通信技术的历史及发展趋势 解析移动通信技术的历史及发展趋势 摘要:随着现代社会的发展和进步,科学技术在各个领域的发展越来越引起众多的变革。通信技术的发展变革堪称新世纪发展最大的技术变革之一,移动通信技术作为被广大民众所日益依赖的技术,它的发展历史和将来的发展趋势都是需要进行研读的。本文就移动通信技术的历史和发展趋势进行探究,以期能够为通信事业的发展贡献绵薄之力。 关键词:移动通信技术;历史;发展趋势 Abstract: with the development of modern society and the progress of science and technology, more and more development in various fields caused many changes. Development of communication technology is one of the biggest technical change and development in the new century, the mobile communication technology as people increasingly rely on technology, development history and future trend of development which are required reading. To explore the history and development trend of the mobile communication technology, in order to make some contribution to the development of communication. Keywords: mobile communication technology; history; development trend 中图分类号:TN929.5 通信技术自古就有,通信时人们衣食住行等方面的沟通工具,近年来,移动通信技术的大力发展让人们的生产生活获得了翻天覆地的变化,移动通信技术作为具有极强便利性和快捷性的技术,拥有怎样的发展历史,移动通信技术将来的发展趋势又该何去何从,本文将对此问题进行解答。 一、移动通信技术的发展历史 移动通信指的是两个或多个移动体之间的通信,或者一方是移动

相关主题
文本预览
相关文档 最新文档