当前位置:文档之家› 1452《飞行原理》期末复习

1452《飞行原理》期末复习

1452《飞行原理》期末复习
1452《飞行原理》期末复习

/.1452《飞行原理》期末复习提纲:

1.大气层的构造及飞机活动的范围,大气的重要物理参数的变化规律;

2.ISA偏差的计算; T(实际)-T(标准)

3.飞机的主要组成部分;

4.升力公式、阻力公式,影响因素;临界迎角时升力和阻力的变化特点;

5.升力系数、阻力系数、升阻比曲线;

6.马赫数的定义;飞行马赫数、局部马赫数、临界马赫数;

7.临界速度、临界马赫数的计算;

8.安装角、迎角、侧滑角、后掠角的概念;展弦比、相对厚度、相对弯度、展长

安装角:机翼弦线与机身中心线之间的夹角(从侧面看)

迎角:相对气流与机翼弦线之间的夹角 (从侧面看)

侧滑角:飞机对称面与相对来流之间的夹角(俯视)

后掠角:沿机翼展向等百分比弦线点连线与垂直机身中心线的直线之间的夹角

展弦比:展长与弦长之比

相对厚度:机翼最大厚度与弦长之比

相对弯度:最大弯度与弦长之比

展长:

9.高亚音速飞机飞行时存在的问题;高亚音速飞机的气动外形特点、翼型特点、改善原理

10.超音速及亚音速时气流速度与截面积、密度(压强)的关系

11.重心的定义;焦点的概念;机体轴、绕机体轴的运动@

重心:飞机重力作用点焦点:由于迎角变化而引起的飞机气动升力增量的作用点

12.飞机俯冲时的受力分析@

13.飞机平衡的定义;平衡的分类

指飞机的外载荷合力为零和外载荷合力距为零,速度的大小和方向都不随时间改变,分为俯仰平衡,方向平衡,横侧平衡。

14.俯仰平衡、方向平衡、横侧平衡的定义、相关力矩、响因素、保持平衡的条件;

15.载荷系数、最大平飞速度、最小平飞速度、飞行包线定义

1、为说明飞机在各种飞行状态下飞机受力情况而引入的一个无量纲系数,也称为飞机的过载。

2、是指在发动机满油门状态下,飞机做水平直线飞行时所能达到的最高稳定平飞速度

3、是指飞机维持水平飞行的最低稳定速度

4、是以飞行高度,飞信速度,载荷系数等飞行参数为坐标,一飞机的各种限制条件(如最大、最小飞行速度)为界限,将飞机飞行时可能出现的飞行参数的各种组合情况用一条封闭曲线包围起来,这个封闭曲线组成的图形就叫做飞机的飞行包线。

16.起飞定义、包含阶段;起飞安全高度;影响离地速度的因素S C G V 离地=

离地y 2

飞机从起飞线开始滑跑,加速到抬起前轮,继续加速到飞机离地,最后爬升越过安全高度点为止的过程

地面滑跑加速--拉起离地--空中加速爬升 17.着陆定义、包含阶段

飞机从通过安全高度下滑,平飞减速,接地滑跑直至完全停止下来的所经历的过程叫着陆。

下滑--拉平--平飞减速--飘落--滑跑

18.水平转弯的实现方法(P63,64)---操纵副翼,产生滚转角,有向心力分量,再向后拉杆,飞机抬头,迎角变大,升力阻力变大,再加大油门,不让飞机掉高度。

19.等速爬升、等速下滑定义;分析等速爬升、等速下滑的Xt 、Yt 轴上的受力及平衡方程式

1、为获得飞行高度,飞机沿倾斜向上的直线等速上升叫做等速爬升 ΣY=L-Wcosa=0 ΣX=P-D-W`SINa=0

2、是指飞机在零推力状态下,沿直线等速下降的运动。 ΣY=L-WCOSa=0 ΣX=Wsina-D=0

20.安装增升装置的目的、有哪些增升原理(P66+P67)

是在较低速度下得到较大的升力,降低飞机起飞着陆速度,改善飞机着陆起飞性能,提高飞机起飞着陆的安全性

(1)改变记忆剖面形状,加大翼型的弯度------加大弯度可以使上翼面气流的速度加快,增大上翼面的负压值,提高升力系数

(2)增大机翼面积--------增加升力,同时增加阻力

(3)控制机翼上的附面层,推迟气流分离--------就是利用气动力表面的一些气动装置不断的将动能输入附面层,加速附面层内的气流的流动,减小附面层的厚度,推迟附面层的分离。提高临界迎角值,防止飞机在大迎角时失速,还可以提高升力系数。

21.增升装置类型(后缘襟翼、前缘缝翼、前缘襟翼)、构造、工作原理;对升力、阻力、升力系数、临界迎角的影响

22.后退式开缝襟翼(富勒襟翼)的特点(P69);克鲁格前缘襟翼的特点(P70)

23.前缘缝翼的使用特点、作用(P70+P71);附面层增升原理(P72)

24.飞机的姿态角;空速向量的方位角;

25.飞机稳定性定义、分类、影响因素、工作原理

26.三类操纵、对应的实现舵面、如何操纵(P82+P92+P97

俯仰:平尾的附加升力,对重心产生的附加纵向力矩与0 的大小关系。

横侧:副翼上下偏转,左右机翼不对称升力产生的力矩

方向:垂尾上产生的侧向力,对重心产生的偏航力矩的作用

《大学物理AI》课程教学大纲

《大学物理AI》课程教学大纲 2016年5月制定 2016年 5 月第 0 次修订制定人:王志萍一、课程名称及代码 课程名称:大学物理AI 课程代码:BAA012001 二、适用教育层次及专业 教育层次:高职本科 适用专业:机械设计制造及其自动化、机械电子工程、电气工程及其自动化、物联网工程、软件工程 三、学分、学时 学分数:3.5 学时数:56 四、课程类型 课程性质:公共课 课程类别:纯理论课 五、先修课程名称及代码 高等数学AI(BAA011001) 六、教学目标 《大学物理》课程是我院高职本科工科各专业的一门必修的重要公共基础课。通过这门课程的学习,将为工科各专业课及其技术基础课打好基础,传授必需通用的物理基础知识,培养科学思维和利用物理规律解决实际问题的初步能力。为学生学习专业理论和专业技术打好必要的物理基础。由于物理学在自然科学中的基础地位和与社会科学的联系,以及物理科学对人的思维训练和能力形成有很大的影响,因而它在人才培养中起着十分重要和独特的作用,对培养高级工程技术人才起至关重要的作用,必须引起充分的重视。

1.知识目标 1)掌握描述质点运动的物理量。掌握牛顿三定律及其适用条件。掌握运用守恒定律分析问题的思想和方法。 2)理解刚体绕定轴转动的转动定律和刚体绕定轴转动情况下的角动量守恒定律。 3)通过把力学的研究对象抽象为三个理想模型,质点、刚体和理想流体,学会建立模型的科学研究方法。 4)注意学习矢量运算、微积分运算等方法在物理学中的应用。 5)掌握描述简谐振动和简谐波的各物理量(特别是相位)及各量间的关系。 6)掌握线性运动叠加原理,通过在周期性外力作用下阻尼摆的混沌现象分析了解非线性问题的特征。 7)理解气体动理论和热力学基础的基本概念及基本规律。 8)通过理想气体的压强和气体分子平均自由程等公式的建立,进一步理解科学研究的建模方法。 9)理解和掌握熵增加原理是自然界(包括自然科学和社会科学)最为普遍实用的定律之一。 10)了解物理学原理在现代工程技术中的应用。 2.能力目标 1)独立获取知识的能力——逐步掌握科学的学习方法,阅读并理解相当于大学物理水平的物理类教材、参考书和科技文献,不断地扩展知识面,增强独立思考的能力,更新知识结构;能够写出条理清晰的读书笔记、小结或小论文。 2)科学观察和思维的能力——运用物理学的基本理论和基本观点,通过观察、分析、演绎、归纳、科学抽象、类比联想等方法培养学生发现问题和提出

《飞行原理》练习题汇总

飞机和大气的一般介绍单选 1. 翼型的中弧曲度越大表明 A:翼型的厚度越大 B:翼型的上下表面外凸程度差别越大 C:翼型外凸程度越大 D:翼型的弯度越大 B 2. 低速飞机翼型前缘 A:较尖 B:较圆钝 C:为楔形 D:以上都不对 B 3. 关于机翼的剖面形状(翼型),下面说法正确的是 A:上下翼面的弯度相同 B:机翼上表面的弯度大于下表面的弯度 C:机翼上表面的弯度小于下表面的弯度 D:机翼上下表面的弯度不可比较 B 4. 国际标准大气规定的标准海平面气温是 A:25℃ B:10℃ C:20℃ D:15℃ D 5. 按照国际标准大气的规定,在高度低于11000米的高度上,高度每增加1000米,气温随季节变化 A:降低6.5℃ B:升高6.5℃ C:降低2℃ D:降低2℃ A 6. 在3000米的高度上的实际气温为10℃,则该高度层上的气温比标准大气规定的温度 A:高12.5℃ B:低5℃ C:低25.5℃ D:高14.5℃ D 7. 在气温比标准大气温度低的天气飞行,飞机的真实高度与气压高度表指示的高度(基准相同)相比,飞机的真实高度 A:偏高 B:偏低 C:相等 D:不确定 B 简答 1. 请解释下列术语:(1)相对厚度(厚弦比)(2)相对弯度(中弧曲度)(3)展弦比(4)后掠角(1)翼型最大厚度与弦长的比值,用百分比表示;(2)最大弧高与翼弦的比值,用百分比表示;(3)机翼翼展与平均弦长的比值;(4)机翼四分之一弦线与机身纵轴垂直线之间的夹角。 2. 请叙述国际标准大气规定。 国际标准大气(International Standard Atmosphere),简称ISA,就是人为地规定一个不变的大气环境,包括大气压温度、密度、气压等随高度变化的关系,得出统一的数据,作为计算和试验飞机的统一标准。国际标准大气由国际民航组织ICAO制定,它是以北半球中纬度地区大气物理特性的平均值为依据,加以适当修订而建立的。 3. 实际大气与国际标准大气如何换算? 确定实际大气与国际标准大气的温度偏差,即ISA偏差,ISA偏差是指确定地点的实际温度与该处ISA标准温度的差值,常用于飞行活动中确定飞机性能的基本已知条件。 飞机的低速动力学 单选 1. 空气流过一粗细不等的管子时,在管道变粗处,气流速度将 A:变大 B:变小 C:不变 D:不一定 B 2. 空气流过一粗细不等的管子时,在管道变细处,气流压强将 A:增大 B:减小C:不变 D:不一定 B 3. 根据伯努利定律,同一管道中,气流速度减小的地方,压强将 A:增大 B:减小 C:不变 D:不一定 A

教学大纲

《航空电子设备》 《航空电子设备》教学大纲 一、教学目的 航空电子设备是飞行技术本科专业的一门技术基础课。通过教学,应使学生掌握现代民航运输机电子设备的基本理论和知识,全面了解民航飞机电子设备的基本情况及发展动态,为今后学习具体机型打下良好的基础。 二、教学要求 学完本大纲规定的内容后,应达到下列基本要求; 1.掌握大气数据计算机系统的功用、输入、输出数据、典型指示器的认读; 2.掌握姿态系统、罗盘系统的概念、功用和基本使用方法。 3.掌握电子仪表系统的功用和典型显示;掌握飞机状态监控系统的功用和使用特点。 4.掌握自动飞行系统的组成、功用;掌握自动驾驶仪、飞行指引仪、偏航阻尼器、自动俯仰配平系统及自动油门系统的功用和简单工作原理。 5.掌握机载彩色气象雷达、机载二次雷达应答机、预警型风切变探测系统、无线电高度表的功用、显示特点及使用注意事项。 6.掌握TCAS2的功用、驾驶舱显示及语音通告。 7.掌握GPWS和EGPWS的功能、语音警告、驾驶舱显示及基本使用方法。 根据本课特点,教学中应理论联系实际,运用辅助设备进行直观教学。 三、课程结业标准 四、教学阶段及学时分配

五、教学内容要点及教学要求 第一课 2学时 1.本课教学内容要点 (1)大气数据计算机系统的基本概念、功用、特点及分类。 (2)数字式大气数据计算机系统的原理方框图、简单原理、典型参数计算及系统组成(原始参数传感器、计算机和显示装置)。 2.本课教学要求 (1)理解大气数据计算机系统的原理方框图、简单原理及主要输入输出参数。 (2)了解为什么要使用大气数据计算机系统,它有哪些优点;了解两类大气数据计算机的基本概念及其特点 (3)了解原始参数传感器测量大气压力、总温、迎角的简单原理;了解典型显示装置及其显示。 第二课 2学时 1.本课教学内容要点 (1)姿态系统的基本概念、功用、组成、简单原理及其使用特点。 (2)罗盘系统的基本概念、功用、常用的工作方式、组成、简单原理及其使用特点。 2.本课教学要求 (1)掌握姿态系统的功用、优点;了解姿态系统的组成和简单原理。 (2)掌握罗盘系统的概念、功用,常用的工作方式和使用特点;了解罗盘系统的组成和简单原理。 第三课 2学时 1.本课教学内容要点 (1)电子仪表系统的优点、组成。 (2)电子飞行仪表系统的功能、特点、组成和典型显示。 2.本课教学要求 (1)了解电子仪表系统的优点、组成。 (2)掌握电子飞行仪表系统的典型显示信息;了解电子飞行仪表系统的使用特点。 第四课 2学时 1.本课教学内容要点 (1)机载电子集中监控系统的功能、特点、组成和典型显示。 (2)自动飞行系统的功能、组成。 2.本课教学要求 (1)掌握机载电子集中监控系统的典型显示信息;了解机载电子集中监控系统的使用特点。 (2)掌握自动飞行系统的功能;理解自动飞行系统的组成。 第五课 2学时 1.本课教学内容要点 (1)自动驾驶仪的功用、组成和基本工作原理。 (2)飞行指引仪的功用、组成和基本工作原理。 2.本课教学要求 (1)掌握自动驾驶仪操纵(稳定)飞机的原理;理解自动驾驶仪的测量装置中,加入角速度信号装置的作用。 (2)掌握飞行指引仪的指示形式;掌握飞行指引仪的使用范围;理解指引仪表和指示仪表的区别。 第六课 2学时

飞行原理

飞机为什么能飞?空气动力学空气与物体相互作用的规律 操作飞机,原理?飞行力学研究飞行性能、操作性、稳定性 更快、更远、更经济?飞行原理 第一章飞机和大气的一般介绍 第二章飞机的低速空动力空气动力学主要是低速小飞机 第三章螺旋桨的空气动力 第十章高速空气动力学基础 第四章飞机的平衡、稳定性、操作性 第五章平飞、上升、下降飞行力学 第六章盘旋 第七章起飞、着陆 第八章特殊飞行着重于飞机的操作、实践、基本原理第九章重量、平衡 机机型相关介绍 大型宽体飞机:座位数在200以上,飞机上有双通道通行 747 波音747载客数在350-400人左右(747、74E均为波音747的不同型号) 777 波音777载客在350人左右(或以77B作为代号) 767 波音767载客在280人左右 M11 麦道11载客340人左右 340 空中客车340载客350人左右 300 空中客车300 载客280人左右(或以AB6作为代号) 310 空中客车310载客250人左右 ILW 伊尔86苏联飞机载客300人左右 中型飞机:指单通道飞机,载客在100人以上,200人以下 M82/M90 麦道82 麦道90载客150人左右 737/738/733 波音737系列载客在130-160左右 320空中客车320载客180人左右 TU54苏联飞机载客150人左右 146英国宇航公司BAE-146飞机载客108人 YK2 雅克42苏联飞机载客110人左右 小型飞机:指100座以下飞机,多用于支线飞行 YN7 运7国产飞机载客50人左右 AN4 安24苏联飞机载客50人左右 SF3 萨伯100载客30人左右 ATR 雅泰72A载客70人左右

最新无人机专业参考教学大纲汇编

无人机专业参考教学大纲 一、教学对象 针对应届大学毕业生、航模协会成员、种植大户、合作社成员。 二、教学目的 通过对学员的培训,掌握国家对飞航手的具体要求,达到操作 标准,保证培训效果,维护自身利益。 三、教学重点 学员各阶段的教学项目和教学目标 四、教学难点 学员实际动手能力 五、教学手段和方法 采用多媒体课件、课堂具体讲解和课后作业练习。 六、教学内容 (一)、理论培训

(二)、实操培训

七、教学实施 (一)教学实施建议 1.遵循航模飞行规律,注重感知体验。 要遵循无人机感知规律与学员认知特点,以学员为主体,注重其实践体验。要探索行之有效的教学策略与方法,积极创设开放的教学情境,营造浓郁的教学氛围,激发学员学习兴趣,引导学员主动参与飞行实践,开展合作学习,感受飞行魅力,愉悦身心。 2.加强课程建设,注重衔接融合。 教师应善于把握课程要求,按照模块化的教学思路合理选择课程内容,组织教学。要指导与鼓励学员主动学习探究,关注航飞与自然、社会、文化之间的有机联系。要注重不同模块间的交叉融合,加强航飞课与产业文化、职业文化的衔接,突出职业教育特色。 3.运用信息技术,创新教学方法。 教师在教学过程中应重视现代教育技术与课程的整合,收集开发数字化教学资源,合理应用网络与多媒体技术,创新教学方式,活跃课堂教学,努力推进信息技术在教学中的应用,提高教学质量。 4. 充分利用资源,拓展教学领域。

教师要密切关注教学与社会生活的联系,关注现代航飞发展的新动态,利用本地区具有地域特点和民族特色的文化优势和艺术资源,不断充实教学内容与教学资源。鼓励教师开展教学创新,改革教学方法与手段,灵活运用现代教育技术,整合各种文化、艺术资源,创设具有研究性、启发性的教学情境,拓宽学员学习视野,激发学习热情。(二)教学设施建议 1.学校应配备相应的教材、报刊和数字化教学资源,为教师提高业务水平和学生拓展学习创造条件。 2.学校应根据航模教育设施设备国家基本标准以及公共基础课教学和航飞活动的实际需要配备专用教室、活动场地和相关器材设备。(三)教材编写建议 教材编写应以本教学大纲为依据,按照教学目标要求,突出多样性、灵活性及实效性特点。教材要遵循航飞技巧规律,以学员为本,适应学员的认知特点,考虑不同地区的实际情况,密切结合学员的生长实践经验。 教材内容的选取要坚持社会主义先进文化导向,弘扬中华民族优秀文化,兼顾传统与现代、经典与通俗、国内与国外、基础与拓展,富有生活气息、积极意义与人文内涵,体现经典性、代表性和综合性。教材的呈现方式要符合航飞特点和学员的认知规律,配备数字化教学资源,图、文、声、像并茂,激发学生学习热情。 九、考核与评价

四轴飞行控制原理

四轴(1)-飞行原理 总算能抽出时间写下四轴文章,算算接触四轴也两年多了,从当初的模仿到现在的自主创作经历了不少收获了也不少。朋友们也经常问我四轴怎么入门,今天就简单写下四轴入门的基本知识。尽量避开专业术语和数学公式。 1、首先先了解下四轴的飞行原理。 四轴的一般结构都是十字架型,当然也有其他奇葩结构,比如工字型。两种的力学模型稍微有些不一样,建议先从常规结构入手(其实是其他结构我不懂)。 常规十字型结构其他结构 常规结构的力学模型如图。 力学模型 对四轴进行受力分析,其受重力、螺旋桨的升力,螺旋桨旋转给机体的反扭矩力。反扭矩影响主要是使机体自旋,可以想象一下直升机没有尾桨的情况。螺旋桨旋转时产生的力很复杂,

这里将其简化成只受一个升力和反扭矩力。其它力暂时先不管,对于目前建模精度还不需要分析其他力,顶多在需要时将其他力设为干扰就可以了。如需对螺旋桨受力进行详细研究可以看些空气动力学的书,推荐两本, 空气螺旋桨理论及其应用(刘沛清,北航出版社) 空气动力学基础上下册(徐华舫,国防科技大学) 网易公开课:这个比麻省理工的那个飞行器构造更对口一些。 荷兰代尔夫特理工大学公开课:空气动力学概论 以上这些我是没看下去,太难太多了,如想刨根问底可以看看。 解释下反扭矩的产生: 电机带动螺旋桨旋转,比如使螺旋桨顺时针旋转,那么电机就要给螺旋桨一个顺时针方向的扭矩(数学上扭矩的方向不是这样定义的,可以根据右手定则来确定方向)。根据作用力与反作用力关系,螺旋桨必然会给电机一个反扭矩。 在转速恒定,真空,无能量损耗时,螺旋桨不需要外力也能保持恒定转速,这样也就不存在扭矩了,当然没有空气也飞不起来了。反扭矩的大小主要与介质密度有关,同样转速在水中的反扭矩肯定比空气中大。 因为存在反扭矩,所以四轴设计成正反桨模式,两个正桨顺时针旋转,两个反桨逆时针旋转,对角桨类型一样,产生的反扭矩刚好相互抵消。并且还能保持升力向上。六轴、八轴…类似。 我们控制四轴就是通过控制4个升力和4个反扭矩来控制四轴姿态。 如力学模型图,如需向X轴正方向前进,只需增加桨3的转速,减少桨1的转速,1、3桨的反扭矩方向是一样的,一个加一个减总体上来说反扭矩没变。此时飞机已经有向X轴方向的分力,即可前行。 如需向X轴偏Y轴45°飞行,那么增加桨2、3的转速,减少桨1、4的转速,即可实现。 如果将X正作为正前方,那么就是”十”模式,如果将X轴偏Y45°作为正前方向,那就是”×”模式。理论上这两种都可以飞行,”十”模式稍微比”×”模式好计算,但是”十”模式不如”×”模式灵敏。 四轴如需向任意方向飞行只需改变电机的转速,至于电机转速改变的量是多少,增量之比是多少就需要算法了。对于遥控航模,不需要知道具体到度级别的方向精度,飞行时手动实时调节方向即可。 四轴除了能前后左右上下飞行,还能自旋,自旋靠的就是反扭矩,如需顺时针旋转,只需增加桨1、3转速,减少2、4转速,注意不能只增加桨1、3而不减少2、4,这样会造成总体升力增加,飞机会向上飞的。 理想情况下,四轴结构完全对称,电机转速一样,飞机就可以直上直下飞行。但事实和理想还是有差距的,不存在完全对称的结构,也没有完全一样的电机螺旋桨。所以需要飞控模块进行实时转速调节,这样才能飞起来,不像直升机,螺旋桨加速就能飞。 2、分析完飞行原理,接下来分析四轴飞行器系统的主要部件。

《飞机构造基础》课程教学大纲

《飞机构造基础》课程教学大纲 课程名称:飞机构造基础计划学时:48 计划学分:2.5 先修课程:工程力学、飞行技术基础课程性质:专业课 课程类型:必修课适用专业:飞机机电维修专业 编制单位:广州民航职业技术学院机务工程系编制时间:2001年11月 一、课程的性质和任务 本课程是飞机机电专业的一门重要专业课,其主要任务是使学生初步了解飞机的结构及飞机各系统的基本知识,为进行实际维护工作及故障诊断打下基础。本课程也是后续课程《飞机系统与附件》的基础课程 二、课程特色 本课程突出技能和能力培养,配合双证书制,使学生在校期间即可获得岗位资格证书。 本课程可利用现有737飞机附件,飞行操纵摸拟器及飞机电源系统示教板,采用现场教学方法使学生加深对飞机各系统的理解. 三、知识能力培养目标 (一)基本知识 飞机结构、载重与平衡、飞行操纵系统、液压系统、起落架系统、座舱环境控制系统、防冰排雨系统、飞机燃油系统、飞机防火系统、飞机电子系统等。 (二)应用能力 通过本课程的学习,使学生了解飞机组成、结构形式及受力特点,飞机载重与平衡的基本知识,掌握飞机飞行操纵系统、液压系统、起落架系统、座舱环境控制系统、飞机燃油系统的基本组成及工作原理;了解防冰排雨系统、飞机防火系统、飞机电子系统的基本知识。 (三)自学能力 培养学生具有对飞机构造及各系统的总的认识,为以后的飞机维护和排故工作打下基础。 四、课程内容和要求 见附表 五、考核方法和成绩评定 (一)考核方法 本课程的考核以平时作业、平时测验和期末笔试为主,平时占总成绩的40%,期34

末占总成绩的60%。 (二)成绩评定 1.基本知识,应知考核(书面、闭卷)成绩 2.上课的出勤率,学习态度 3.平时实践操作情况 六、教学参考书 ⑥《飞机构造基础》宋静波·王洪涛主编,广州民航职业技术学院出版 ⑥《航空电气》盛乐山主编 ⑥《民用航空器维修人员指南》(机体部分) 七、说明与建议 1.本大纲的总学时为48学时,学习本门课,应具有《飞行技术基础》、《工程力学》的基本知识。 2.本大纲由机务工程系宋静波老师编写。 附表: 35

直升机飞行原理(图解)

飞行原理(图解) 直升机能够垂直飞起来的基本道理简单,但飞行控制就不简单了。旋翼可以产生升力,但谁来产生前进的推力呢?单独安装另外的推进发动机当然可以,但这样增加重量和总体复杂性,能不能使旋翼同时担当升力和推进作用呢?升力-推进问题解决后,还有转向、俯仰、滚转控制问题。旋翼旋转产生升力的同时,对机身产生反扭力(初中物理:有作用力就一定有反作用力),所以直升机还有一个特有的反扭力控制问题。 直升机主旋翼反扭力的示意图 没有一定的反扭力措施,直升机就要打转转/ 尾桨是抵消反扭力的最常见的方法 直升机抵消反扭力的方案有很多,最常规的是采用尾桨。主旋翼顺时针转,对机身就产生逆

时针方向的反扭力,尾桨就必须或推或拉,产生顺时针方向的推力,以抵消主旋翼的反扭力。 抵消反扭力的主旋翼-尾桨布局,也称常规布局,因为这最常见/ 典型的贝尔407 的尾桨主旋翼当然也可以顺时针旋转,顺时针还是逆时针,两者之间没有优劣之分。有意思的是,美、英、德、意、日直升机的主旋翼都是逆时针旋转,法、俄、中、印、波兰直升机都是顺时针旋转,英、德、意、日的直升机工业都是从美国引进许可证开始的,和美国采用相同的习惯可以理解,中、印、波兰是从前苏联和法国引进许可证开始的,和法、俄的习惯相同也可以理解,但美国和俄罗斯为什么从一开始选定不同的方向,法国为什么不和选美国一样的方向,而和俄罗斯一致,可能只是一个历史的玩笑。

各国直升机主旋翼旋转方向的比较尾桨给直升机的设计带来了很多麻烦。尾桨要是太大了,会打到地上,所以尾桨尺寸受到限制,要提供足够的反扭力,就需要提高转速,这样,尾桨翼尖速度就大,尾桨的噪声就很大。极端情况下,尾桨翼尖速度甚至可以超过音速,形成音爆。尾桨需要安装在尾撑上,尾撑越长,尾桨的力矩越大,反扭力效果越好,但尾撑的重量也越大。为了把动力传递到尾桨,尾撑内需要安装一根长长的传动轴,这又增加了重量和机械复杂性。尾桨是直升机飞行安全的最大挑战,主旋翼失去动力,直升机还可以自旋着陆;但尾桨一旦失去动力,那直升机就要打转转,失去控制。在战斗中,直升机因为尾桨受损而坠毁的概率远远高于因为其他部位被击中的情况。即使不算战损情况,平时使用中,尾桨对地面人员的危险很大,一不小心,附近的人员和器材就会被打到。在居民区或林间空地悬停或起落时,尾桨很容易挂上建筑物、电线、树枝、飞舞物品。 尾桨可以是推式,也可以是拉式,一般认为以推式的效率为高。虽然不管推式还是拉式,气流总是要流经尾撑,但在尾桨加速气流前,低速气流流经尾撑的动能损失较小。尾桨的旋转方向可以顺着主旋翼,也就是说,对于逆时针旋转的主旋翼,尾桨向前转(或者说,从右

直升机飞行操控的基本原理

直升机飞行操控的基本原理

图1 直升机飞行操纵系统- 概要图

(a) (b) 图2 直升机操纵原理示意图 1.改变旋翼拉力的大小 2.改变旋翼拉力的方向 3.改变尾桨的拉力 飞行操纵系统包括周期变距操纵系统、总距操纵系统和航向操纵系统。如图2所示,周期变距操纵系统控制直升机的姿态(横滚和俯仰),总距操纵系统控制直升机的高度,航向操纵系统控制直升机的航向。 一、周期变距操纵系统 周期操纵系统用于操纵旋翼桨叶的桨距周期改变。当桨距周期改变时,引起桨叶拉力周期改变,而桨叶拉力的周期改变,又引起桨叶周期挥舞,最终使旋翼锥体相对于机身向着驾驶杆运动的方向倾斜,从而实现直升机的纵向(包括俯仰)及横向(包括横滚)运动。 纵向和横向操纵虽然都通过驾驶杆进行操纵,但二者是各自独立的。 周期变距操纵系统(见图3)包括右侧和左侧周期变距操纵杆(1)和(3)、可调摩擦装置(2)、橡胶波纹套(4)、俯仰止动件(5)、横滚连杆(7)、俯仰连杆(8)、横滚止动件及中立位置定位孔(9)、横滚拉杆(10)、横滚协调拉杆(11)、俯仰扭矩管轴组件(12)、

总距拉杆(13)、与复合摇臂相连接的拉杆(14)、伺服机构(15)、伺服机构(横滚+总距)(16)、伺服机构(俯仰+总距)(17)和可调拉杆(18)等组件。 1.右侧周期变距操纵杆3.左侧周期变距操纵杆 2.可调摩擦装置 4.橡胶波纹套 5.俯仰止动件 6.复合摇臂7.横滚连杆8.俯仰连杆9.横滚止动件及中立位置定位孔10.横滚拉杆11.横滚协调拉杆12.俯仰扭矩管轴组件1 3.总距拉杆1 4.与复合摇臂相连接的拉杆1 5.伺服机构1 6.伺服机构(横滚+总距)1 7.伺服机构(俯仰+总距)1 8.可调拉杆 图3 直升机周期变距操纵系统 (一)纵向操纵情况 当前推驾驶杆时,通过俯仰扭矩管轴组件(9)及俯仰连杆(8),使复合摇臂(6)上的纵向摇臂逆时针转动,通过其后的拉杆、摇臂,使左前侧纵向伺服机构下移,自动倾斜器固

飞行原理

飞行原理 低速飞机翼型前缘较圆鈍 高速飞机翼型前缘较尖 平直机翼有极好的低速特性 椭圆机翼诱导阻力最小 梯形机翼矩形加椭圆优点,升阻比特性和低速特性 后掠翼、三角翼------ -------- ------ 高速特性 基本术语: 翼弦---翼型前沿到后沿的连线弦。 相对厚度(厚弦比)----翼型最大厚度与弦长的比值。 翼型的中弧曲度越大表明翼型的上下表面外凸程度差别越大。 翼展---机翼翼尖之间的距离。 展弦比---机翼翼展与平均弦长的比值。 飞机展弦比越大,诱导阻力越小。 后掠角---机翼1/4弦线与机身纵轴垂直线之间夹角。后掠角为了增大临界马赫数。 迎角---- 相对气流方向与翼弦夹角。 临界迎角---升力系数最大时对应的迎角。 有利迎角---升阻比最大时对应的迎角。

阻力 阻力=诱导阻力+废阻力 诱导阻力: 1.大展弦比机翼比小展弦比机翼诱导阻力小。 2.翼梢小翼可以减小飞机的诱导阻力。 3.诱导阻力与速度平方成反比。 废阻力: 废阻力=压差阻力+摩擦阻力+干扰阻力 1.摩擦阻力: 飞机表面积越大或表面越粗糙,摩擦阻力也越大。 2.压差阻力: 与迎风面积、机翼形状、迎角有关。 3.干扰阻力: 废阻力大小与速度的平方成正比。 总阻力是诱导阻力和废阻力之和。 在低速(起降)时诱导阻力占主要,在高速(巡航)时废阻力占主导。 诱导阻力=废阻力时,总阻力最小,升阻比最大。 放下起落架,升阻比减小。 增升装置----前缘缝翼+后缘襟翼 前缘缝翼:

位于机翼前缘,延缓机翼气流分离,提高最大升力系数和临界迎角。 在迎角较小时打开,会降低升力系数。 只有在接近临界迎角时打开,才能起到增升的作用。有的飞机装有“翼尖前缘缝翼”,其主要作用是在 大迎角下延缓翼尖部分的气流分离,提高副翼的效能,改善飞机横侧稳定性和操纵性。 后缘襟翼:简单襟翼+开缝襟翼+后退襟翼+后退开缝襟翼+前缘襟翼 1.简单襟翼—改变了翼型弯度—升阻比降低。 2.开缝襟翼—机翼弯度增大;最大升力系数增大 多,临界迎角降低不多。 3.后退襟翼—增大了机翼弯度和机翼面积,增升 效果好,临界迎角降低较少。 4.后退开缝襟翼(查格襟翼+富勒襟翼)—兼有 后退襟翼和开缝襟翼优点。 5.前缘襟翼—一方面减小前缘延缓气流分离;另 一方面增大了翼型弯度。使最大升力系数和临 界迎角得到提高。 增升装置通过三个方面达到增升目的: 一是增大翼型弯度,提高机翼上、下压强差,从而增大升力系数。

飞行原理知识点

飞行原理知识点 1.后掠角:机翼四分之一弦线与机身纵轴垂直线之间的夹角。 飞行包线:飞机的平飞速度范围随飞行高度变化的曲线称为飞行包线。以速度作为横坐标,以高度作为纵坐标,把各个高度下的速度上限和下限画出来,这样就构成了一条边界线,称为飞行包线,飞机只能在这个线确定的范围内飞行。 焦点:位于飞机重心之后 最小阻力速度:平飞所需拉力最小的飞行速度 迎角:相对气流方向(飞行速度方向)与翼弦之间的夹角 2.升力基本原理: 空气流到翼型的前缘,分成上下两股,分别沿翼型的上下表面流过,并在翼型的后缘汇合后向后流去。在翼型的上表面,由于正迎角和翼面外凸的影响,流管收缩,流速增大,压力降低;而在翼型的下表面,气流受阻,流管扩张,流速减慢,压力增大。这样,翼型的上下翼面出现压力差,总压力差在垂直于相对气流方向的分量,就是升力 升力方向:向上 3.飞机俯仰稳定力矩:作用在飞机上的空气动力对其重心所产生的力矩沿横轴的分量。 俯仰阻尼力矩: .主要是由水平尾翼产生的 4.着陆滑跑距离计算公式(三种情况):书上166页 着陆距离:着陆空中段水平距离和着陆滑跑段距离组成。 5.飞机重心计算:力矩之和/飞机总重量=机头向后的延伸距离就是重心位置 6.飞机五大部件:机身、机翼、尾翼、起落装置、动力装置 7.国际标准大气规定:简称ISA,就是人为的规定一个不变的大气环境,包括大气温度、密度、气压等随高度变化的关系,得出统一的数据,作为计算的试验飞机的统一标准。标准海平面,海平面高度为0、气温288.15k15℃或59℉、气压1013.2mbar或1013.2hpa或29.92inpa即标准海压、音速661kt、对流层高度为11km或36089ft、对流层内标准温减率为每增加1km温减6.5℃或每增加1000ft温减2℃,从11~20 km之间的平流层底部气温为常值-56.5℃或216.65k 8.飞机低速飞行有哪些阻力:摩擦阻力、压差阻力、干扰阻力、诱导阻力 9.飞机在稳定飞行时遇到逆风或顺风时,上升角\上升率\下降梯度\下降距离如何变化 顺风上升,上升角和上升梯度都减小,逆风上升,上升角和上升梯度都增大;在上升气流中上升,上升角和上升率增大,在下降气流中上升,上升角和上升率减小。 顺风下降,下降角减小,下降距离增长,下降率不变;逆风下降,下降角增大,下降距离缩短,下降率不变。上升气流中下降,下降角和下降率都减小,下降距离增长;下降气流中下降,下降角和下降率都增大,下降距离缩短。 上升角是飞机上升轨迹与水平面之间的夹角。上升梯度是飞机上升高度与前进的水平距离之比,等于上升的正切。上升率是指飞机上升中单位时间所上升的高度。快升速度是指能获得最大上升率的速度。 10.飞机盘旋速度与坡度、盘旋半径关系:速度很低时,比如速度为0,可以没有坡度。 有一定的速度时,半径越小,需要的坡度越大,以平衡离心力。 半径给定时,速度越高,需要的坡度越大,以平衡离心力。 11.侧滑是什么引起的:是飞机受扰动以致方向平衡遭到破坏引起的。从操作上讲是只蹬舵或舵量过大造成的 20.什么是侧滑:飞机相对气流方向与飞机对称面不一致的飞行状态。 12.飞机起飞时V2 起飞安全速度。有一发失效时,此速度可保证飞机安全起飞。VS1 失速速度或特殊构型最低稳定飞行速度 13. 起飞抬前轮的目的:增大离地迎角,减小离地速度,缩短起飞滑跑距离 14.修正偏流方向: 由于空中风的存在,引起航空器航迹与航向不相一致,偏流修正指消除由此产生的偏流影响的措施。 15.失速的根本原因:飞机迎角超过其临界迎角。失速告警的类型: 自然失速(气动)警告和人工失速警告:失速警告灯、失速警告喇叭、振杆器 16.低速飞行中升力特性、阻力特性、升阻比特性是衡量飞机的空气动力性能,主要的空气动力性能参数包括飞机的最大升力系数、最小阻力系数和最大升阻比

《民航概论》课程学习大纲.doc

《民航概论》教学大纲 一、课程简介 《民航概论》这门课是航空服务专业的基础课,主要以从事民航事业所需的基础知识为视角,对民用航空的历史及发展、飞机的一般介绍、飞行基本原理、空中交通管理、民用机场、民航旅客运输、民航货物运输运输和客舱设备等方面的基础知识进行系统性介绍。主要针对学生能够在在校学习期间接触更多的民航运输服务知识,对民航运输服务工作的各个方面有一个全面的了解和掌握,将来走上工作岗位,能够成为一名合格的员工。 本课程在第一学期开设,共45学时,理论42学时,实践3学时。 二、课程目标 学生通过本课程的学习,使学生了解民航发展史,对飞机、发动机及电气电子设备和系统的基本结构和工作原理有系统、全面的了解,同时,要求学生了解航空气象、空中交通管制、机场、民航运输、适航维修和通用航空等领域的基本知识,为学习有关专业课程打下一定的基础。 三、教学要求 在本课程教学中,应重点突出民用航空的基础知识,强调航空服务意识的培养,充分利用幻灯片、投影、录像、VCD、多媒体等教学手段,加强学生知识、能力、素质的综合培养,同时注重指导学生加强自学能力。按照培养“实用型”高级技术人才的目的要求,通过本课程学习,学生应达到如下要求: 1、了解世界民航及中国民航的历史和发展历程 2、了解飞机的动力装置及系统

3、掌握飞机的飞行过程;了解飞机的飞行原理。 4、掌握空中交通管理的定义和任务。 5、了解民用机场的基础知识 6、掌握旅客运输流程及重要旅客服务要求 7、了解民航货物运输相关知识 8、掌握客舱设备的分布及使用。 四、教学时数分配 按照航空服务专业的培养目标,本课程开设45学时,其中理论42学时,实践(实习)课3学时,各章节教学时数分配如下:

飞行原理论文

飞行原理论文 ——张兴鹏 要了解飞机的飞行原理就必须先知道飞机的组成以及功用,飞机的升力是如何产生的等问题。这些问题将分成几个部分简要讲解。 一、飞行的主要组成部分及功用 到目前为止,除了少数特殊形式的飞机外,大多数飞机都由机翼、机身、尾翼、起落装置和动力装置五个主要部分组成: 1. 机翼——机翼的主要功用是产生升力,以支持飞机在空中飞行,同时也起到一定的稳定和操作作用。在机翼上一般安装有副翼和襟翼,操纵副翼可使飞机滚转,放下襟翼可使升力增大。机翼上还可安装发动机、起落架和油箱等。不同用途的飞机其机翼形状、大小也各有不同。 2. 机身——机身的主要功用是装载乘员、旅客、武器、货物和各种设备,将飞机的其他部件如:机翼、尾翼及发动机等连接成一个整体。 3. 尾翼——尾翼包括水平尾翼和垂直尾翼。水平尾翼由固定的水平安定面和可动的升降舵组成,有的高速飞机将水平安定面和升降舵合为一体成为全动平尾。垂直尾翼包括固定的垂直安定面和可动的方向舵。尾翼的作用是操纵飞机俯仰和偏转,保证飞机能平稳飞行。 4.起落装置——飞机的起落架大都由减震支柱和机轮组成,作用是起飞、着陆滑跑,地面滑行和停放时支撑飞机。 5.动力装置——动力装置主要用来产生拉力和推力,使飞机前进。其次还可为飞机上的其他用电设备提供电源等。现在飞机动力装置应用较广泛的有:航空活塞式发动机加螺旋桨推进器、涡轮喷气发动机、涡轮螺旋桨发动机和涡轮风扇发动机。除了发动机本身,动力装置还包括一系列保证发动机正常工作的系统。 飞机上除了这五个主要部分外,根据飞机操作和执行任务的需要,还装有各种仪表、通讯设备、领航设备、安全设备等其他设备。 二、飞机的升力和阻力 飞机是重于空气的飞行器,当飞机飞行在空中,就会产生作用于飞机的空气动力,飞机就是靠空气动力升空飞行的。在了解飞机升力和阻力的产生之前,我们还要认识空气流动的特性,即空气流动的基本规律。流动的空气就是气流,一种流体,这里我们要引用两个流体定理:连续性定理和伯努利定理: 流体的连续性定理:当流体连续不断而稳定地流过一个粗细不等的管道时,由于管道中任何一部分的流体都不能中断或挤压起来,因此在同一时间内,流进任一切面的流体的质量和从另一切面流出的流体质量是相等的。

飞行原理

關十言

1)流体力学基础 对于亚音速气流,若流管面积减小,则流速增大,而超音速则刚好相反。流体的伯努利原理表明,不管是超音速还是亚音速气流,只要流速增加,则压强就会减小。由于飞机的翼型上表面向上弯曲的稍多一些,因此从整体上来说飞机下表面的流管截面积要大于上表面,使得亚音速飞机的下表面气流流动比上表面慢,压强则比上表面大,从而产生升力。 音速是微弱扰动的传播速度,与气体的种类和温度有关,随温度的升高而增加。飞机的飞行马赫数是飞机真空速大小与飞行高度上音速之比,飞机的临界马赫数是当机翼上翼面低压力点的局部速度达到音速时的来流马赫数。 超音速气流流过外折角,则会在折点处形成膨胀波,使得气流经过膨胀波后的速度增加、压强减小;流过一个折角很小的二维内折翼面,会在折点处形成斜激波,如果折角比较大,则会形成曲面激波或者正激波。超音速气流经过激波后压强、温度和密度会突然增大,速度会突然减小。从飞机阻力增加的程度来讲,三种激波的影响从大到小依次是正激波、曲面激波和斜激波。 静止的流体中不会产生摩擦力(粘性力),只有运动的实际流体才会产生粘性力。物体在流体中运动时所受的惯性力与粘性力之比就是雷诺数,雷诺数越大,说明粘性对飞机的影响就越小。机翼表面受粘性影响比较大的区域叫做附面层,在附面层边界上,粘性使得该处的局部速度受到1%的影响,在附面层内需要考虑粘性的影响,之外则可以不考虑。 2)飞机的升阻力特性 飞机的定常飞行中,升力等于重力,推力等于阻力。飞机的升力与速度、大气密度、机翼面积、升力系数等有关。升力系数随着飞机迎角的增大,起初会线性增加,达到斗振升力后,开始曲线增加,一直到最大升力系数(临界迎角),然后开始减小。在其他条件一定时,飞机的升力系数随粘性增大而减小,随后掠角增大而减小。 临界迎角对应飞机的失速速度。飞机在转弯时,升力的垂直分量需要平衡重力,使得飞机的升力随转弯坡度增加而增加,因此大坡度转弯时飞机的升力系数(迎角)较大,可能会引起飞机的抖动。

《大学物理》课程教学大纲

《大学物理》课程教学大纲 一、课程基本信息 1、课程名称(中文):大学物理(A)课程名称(英文):University Physics(A) 2、学时/学分:128学时/8学分 3、先修课程:高等数学(一元微积分,空间解析几何,无穷级数,常微分方程) 4、面向对象:工科各专业 5、教材、教学参考书: 教材:高景《大学物理教程》,上海交通大学出版社 教学参考书:吴锡珑《大学物理教程》,高等教育出版社 二、课程性质和任务 物理学是研究物质的基本结构、相互作用和物质运动最基本最普遍的形式(包括机械运动、热运动、电磁运动、微观粒子运动等)及其相互转化规律的科学。 物理学的研究对象具有极大的普遍性,它的基本理论渗透在自然科学的一切领域,广泛地应用于生产技术的各个部门,它是自然科学和工程技术的基础。 以物理学的基础知识为内容的《大学物理》课程,它所包括的经典物理、近代物理及它们在科学技术上应用的初步知识等都是一个高级工程技术人员所必备的。因此,《大学物理》课程是我校各专业学生的一门重要必修基础课。 《大学物理》课程的作用,一方面在于为学生较系统地打好必要的物理基础,另一方面,使学生初步学习了科学的思想方法和研究问题的方法。这些都起着开阔思路、激发探求和创新精神、增强适应能力、提高人才素质的重要作用。学好本课程,不仅对学生在校的学习十分重要,而且学生毕业后的工作和进—步

学习新理论、新技术,不断更新知识,都将发生深远的影响。由于本课程是在低年级开设的,因而它在使学生树立正确的学习态度,掌握科学的学习方法,培养独立获取知识的能力,以尽快适应大学阶段的学习规律等方面也起着重要的作用,此外,学习物理知识、物理思想和物理学的研究方法,有助于培养学生建立辩证唯物主义世界观。 通过本课程的教学,应使学生对物理学所研究的各种运动形式以及它们之间联系,有比较全面和系统的认识;对本课程中的基本理论、基本知识和基本技能能够正确地理解,并具有初步应用的能力。在本课程的各个教学环节中,应注意对学生进行严肃的科学态度,严格的科学作风和科学思维方法的培养和训练,应重视对学生能力的培养。 三、教学内容和基本要求 根据《大学物理课程教学基本要求》,将教学内容的基本要求分为掌握、理解、了解三级,本大纲教学内容要求也分成三类,并用符号(1)、(2)和(3)标记在内容标题的右上角,这三类要求是: (1):要求学生对这些内容透彻理解、牢固掌握。(透彻理解其物理内容,掌握其适用条件,对定理一般要求会推导)并能熟练应用。 (2):要求学生对这些内容理解并能掌握,对定理的推导一般不作要求,但要求会用它们分析、计算有关简单问题。 (3):只要求对这些内容有所了解,一般不要求应用。

《航空航天工程课程设计》等12篇教学大纲(doc 73页)

《航空航天工程课程设计》等12篇教学大纲(doc 73页)

《管理信息系统(A)》教学大纲 一、课程基本信息 1、课程代码:AM301 2、课程名称(中文):管理信息系统(A类)课程名称(英文):Management Information System 3、学时/学分:36学时/2学分 4、先修课程:数据库基础 5、面向对象:工业工程、管理工程、机械工程 6、开课院(系)、教研室:机械与动力学院 7、推荐教学参考书: 1.教材:《管理信息系统的理论与应用》第二版,李东著北京大学出版社 2.教学参考书:《管理信息系统》第三版,薛华成主编清华大学出版社 二、课程的性质和任务

《管理信息系统》是一门综合了管理科学、系统工程、计算机科学和信息技术的学科交叉的理论与应用相结合的课程。可作为工业工程与管理、机械工程、管理科学与工程、及其相应的工程硕士专业的一门专业基础课程。它的主要任务是通过讲述管理信息系统的概念、原理、结构、技术、系统分析、规划与设计、系统实施及评价、及管理信息系统的应用实例和最新发展等内容,使学生掌握管理信息系统的基本概念和原理,学会信息系统的分析和设计规划方法,了解不同应用领域的管理信息系统及当今先进的管理信息系统的发展方向。 三、教学内容和要求 1.管理信息系统的基本概念 内容:系统、信息、管理信息系统的基本概念,管理信息系统的类型、组成和结构。 了解系统和信息的基本概念,掌握系统的基本形式、信息的基本性质及如何获取企业 中的信息资源;了解信息社会中的企业管 理、信息系统与管理的关系及管理信息系统 的发展及类型。掌握管理信息系统的基本组 成和结构。 2.管理信息系统中的技术基础 内容:计算机、操作系统、数据库、网络和

飞行器控制原理复习要点

1.航天器的基本系统组成及各部分作用。 2.航天器轨道和姿态控制的概念、内容和相互关系各是什么? 3.阐述姿态稳定的各种方式,比较其异同。 4.主动控制与被动控制的主要区别是什么? 5.利用牛顿万有引力定律推倒、分析航天器受N体引力时的运动方程,并阐述 简化为二体相对运动的合理性。 6.证明在仅有二体引力的作用下,航天器的机械能守恒。 7.证明在二体问题中,航天器的运动轨道始终处于空间的一个固定平面内。 8.比较航天器各种圆锥曲线轨道的参数a,c,e,p的特点,分析它们与轨道常 数h和 。 9.利用牛顿定律证明开普勒第三定律。 10.计算第一宇宙速度和第二宇宙速度。 11.已知一个木星探测器在距地面3400km处的逃逸速度为7900m/s,而实际速度 为11200m/s。试问该探测器飞至木-地距离的一半时,其速度为多少?轨道形状如何? 12.什么是轨道六要素,它们是如何确定航天器在空间的位置的? 13.分析描述航天器姿态运动常用的参考坐标系之间的相对关系。 14.若航天器本体坐标系Oxyz各轴不是主惯量轴,试推倒姿态欧拉动力学方程。 15.设有两颗转动惯量,, I I I完全相同的沿圆轨道运行的地球卫星,一颗轨道高 x y z 度为2000km,另一颗为200km。试定量分析这两颗卫星各通道之间耦合的强弱,并阐述产生耦合的原因。 16.比较各种常用姿态敏感器的优缺点。 17.航天器用的推力器应具有什么特点?为什么认为电推力器是最有发展前景的 推力器? 18.飞轮分为几种?各种的区别是什么? 19.分析比较各种环境执行机构适用的航天器和轨道高度。 20.分析比较航天器各类姿态控制方式的性能优劣。 21.证明航天器的自旋稳定原理,分析航天器绕最大惯量轴旋转不稳定的原因。 22.主动章动阻尼和被动章动阻尼的区别是什么? 23.与单自旋卫星相比,双自旋卫星的主要优缺点是什么?双自旋稳定原理如 何?

飞行原理教学大纲.

飞行原理教学大纲 课程名称:飞行原理 英文名称:Principles of Flight 课程编码:学时:72 实践学时:3 上机学时:0 适用专业:飞行技术 一、教学目的 《飞行原理》是飞行技术专业一门专业基础课。这门课程的主要特点是既有抽象的基础理论,又有指导飞行实践的具体原理和方法。通过本课程的学习,使学生获得空气动力的基础理论知识,了解飞机的基本运动规律和基本操纵原理,为以后进一步学习《飞行性能与计划》课程打下必要的理论基础。 二、教学要求 学习完本大纲的内容后,应达到以下要求: 1、理解空气低速流动的基本规律和飞机的低速空气动力特性; 2、充分认识飞机平衡、稳定性和操纵性的概念和规律; 3、领会飞机运动的基本规律,操纵飞机飞行的基本原理和方法; 4、掌握小型螺旋桨飞机的飞行性能的基础理论知识及飞行性能图表的使用方法; 5、了解起飞、着陆中的特殊问题和特殊飞行的特点; 6、了解高速空气动力学基础知识。 三、课程结业标准 表明学生圆满完成本课程学习的标准为:在结业考试中成绩达到60分。 四、教学阶段及课时分配

第一阶段低速空气动力学的基础知识 20学时 (一)本阶段教学目的 1.了解本学科学习内容和学习方法; 2.了解飞机和大气的一般知识; 3.理解机翼升力、阻力、螺旋桨拉力的产生及其变化规律,增升装置(襟翼和缝翼); 4.掌握螺旋桨副作用对飞行的影响及其修正方法。 通过本阶段内容学习,学生应掌握空气动力酌产生及其变化规律,为学习后面内容奠定基础。 (二)分课计划 第一课飞机和大气的一般介绍 2学时 1.本课教学内容要点 (1)前言(什么是飞行原理;为什么要学习飞行原理;怎样学好飞行原理); (2)飞机的主要组成部分及其功用; (3)操纵飞机的基本方法; (4)机翼的切面形和平面形; (5)空气的粘性和压缩性; (6)大气分层; (7)国际标准大气。 2.本课教学要求 (1)理解描述机翼切面形状和平面形状的主要参数:厚弦比、相对弯度、最大厚度位置、 展弦比、尖削比、后掠角; (2)掌握国际标准大气的规定和应用; (3)了解空气的粘住和压缩性,操纵飞机的基本方法。 第二课空气流动的描述2学时 1、本课教学内容要点 (1)相对气流; (2)迎角; (3)流线谱。 2、本课教学要求 (1)了解相对气流的概念; (2)理解相对气流速度和空气动力的关系; (3)理解相对气流速度的方向及相对气流速度与地速和风速的关系; (4)理解迎角的定义,能区分正、负和零迎角; (5)掌握流线谱的规律。 第三课空气低速流动的基本规律和升力2学时 1、本课教学内容要点 (1)连续性定理; (2)伯努利定理; (3)升力; (4)升力公式。 2、本课教学要求 (1)理解连续性定理的含义; (2)理解伯努利定理的含义和表达式; (3)掌握伯努利定理的使用条件; (4)理解升力产生的原理、升力的方向和位置;

相关主题
文本预览
相关文档 最新文档