当前位置:文档之家› 数据结构实验报告之树与二叉树

数据结构实验报告之树与二叉树

数据结构实验报告之树与二叉树
数据结构实验报告之树与二叉树

学生实验报告

学院:软通学院

课程名称:数据结构与算法

专业班级:软件142 班

姓名:邹洁蒙

学号: 0143990

学生实验报告

(二)

一、实验综述

1、实验目的及要求

目的:1)掌握树与二叉树的基本概念;

2)掌握二叉树的顺序存储,二叉链表的先序遍历中序遍历和后序遍历算法;

3)掌握树的双亲表示法。

要求:1)编程:二叉树的顺序存储实现;

2)编程:二叉链表的先序遍历中序遍历和后序遍历实现;

3)编程:树的双亲表示法实现。

2、实验仪器、设备或软件

设备:PC

软件:VC6

二、实验过程(编程,调试,运行;请写上源码,要求要有注释)

1.编程:二叉树的顺序存储实现

代码:

BiTree::BiTree()//建立存储空间

{

data = new int[MAXSIZE];

count = 0;

}

void BiTree::AddNode(int e)//加结点

{

int temp = 0;

data[count] = e;

count++;//从编号0开始保存

}

运行截图:

2.编程:二叉链表的先序遍历中序遍历和后序遍历实现代码:

void InOrderTraverse(BiTree* Head)//中序遍历

{

if (Head)

{

InOrderTraverse(Head->LeftChild);

cout << Head->data<<" ";

InOrderTraverse(Head->RightChild);

}

}

void PreOrderTraverse(BiTree* Head)//先序遍历

{

if (Head)

{

cout << Head->data << " ";

PreOrderTraverse(Head->LeftChild);

PreOrderTraverse(Head->RightChild);

}

}

void PostOrderTraverse(BiTree* Head)//后序遍历

{

if (Head)

{

PostOrderTraverse(Head->LeftChild);

PostOrderTraverse(Head->RightChild);

cout << Head->data << " ";

}

}

运行截图:

3.编程:树的双亲表示法实现

代码:

void CreateRoot(BiTree* &Head, int e)//建立一个根节点,并且把头指针给Head

{

Head = new BiTree;

Head->data = e;

Head->LeftChild = NULL;

Head->RightChild = NULL;

}

void AddLeftChild(BiTree* &T, int e)//加一个左孩子

{

T->LeftChild = new BiTree;

T->LeftChild->data = e;

T->LeftChild->LeftChild = NULL;

T->LeftChild->RightChild = NULL;

}

void AddRightChild(BiTree* &T, int e)//加一个右孩子

{

T->RightChild = new BiTree;

T->RightChild->data = e;

T->RightChild->LeftChild = NULL;

T->RightChild->RightChild = NULL;

}

运行截图:

三、结论

1、实验总结(碰到了什么问题,如何解决?)

①预习时对二叉树性质3不理解,后来上课听老师讲,弄明白了。

②刚开始对二叉树的遍历不太理解,后来我仔细看了知识点和做了几道相关例题之后,弄懂了。

③在练习树与二叉树的编程基础题时,没思路,后来自己看书和问同学能够自己编写出来了。

2、分析讨论(个人体会和心得)

一分耕耘,一分收获。不管在学习数据结构这门课程还是在做其他的事时都要认真对待,踏踏实实地去完成。一件事情,你用了多少心,结果一出来便见分晓。

面对困难,比如说比较难懂的知识点,不要灰心,要坚持,在坚持不住时再坚持一下,你便做到了常人不能做到的事情,这才是成功者该有的品质。

我觉得自己要多努力,要见贤思齐,见不贤而内自省,才能让自己不再是井底之蛙,才能使自己的大学生活变得更充实。好的生活习惯和学习习惯也是很重要的。希望通过自己一次一次的反省和思考,能够学好专业知识和完善自己的品格。

四、指导教师评语及成绩:

成绩:指导教师签名:严军勇

批阅日期:2015年5月25日

数据结构二叉树实验报告

实验三二叉树的遍历 一、实验目的 1、熟悉二叉树的结点类型和二叉树的基本操作。 2、掌握二叉树的前序、中序和后序遍历的算法。 3、加深对二叉树的理解,逐步培养解决实际问题的编程能力。 二、实验环境 运行C或VC++的微机。 三、实验内容 1、依次输入元素值,以链表方式建立二叉树,并输出结点的值。 2、分别以前序、中序和后序遍历二叉树的方式输出结点内容。 四、设计思路 1. 对于这道题,我的设计思路是先做好各个分部函数,然后在主函数中进行顺序排列,以此完成实验要求 2.二叉树采用动态数组 3.二叉树运用9个函数,主要有主函数、构建空二叉树函数、建立二叉树函数、访问节点函数、销毁二叉树函数、先序函数、中序函数、后序函数、范例函数,关键在于访问节点 五、程序代码 #include #include #include #define OK 1 #define ERROR 0 typedef struct TNode//结构体定义 {

int data; //数据域 struct TNode *lchild,*rchild; // 指针域包括左右孩子指针 }TNode,*Tree; void CreateT(Tree *T)//创建二叉树按,依次输入二叉树中结点的值 { int a; scanf("%d",&a); if(a==00) // 结点的值为空 *T=NULL; else // 结点的值不为空 { *T=(Tree)malloc(sizeof(TNode)); if(!T) { printf("分配空间失败!!TAT"); exit(ERROR); } (*T)->data=a; CreateT(&((*T)->lchild)); // 递归调用函数,构造左子树 CreateT(&((*T)->rchild)); // 递归调用函数,构造右子树 } } void InitT(Tree *T)//构建空二叉树 { T=NULL; } void DestroyT(Tree *T)//销毁二叉树 { if(*T) // 二叉树非空 { DestroyT(&((*T)->lchild)); // 递归调用函数,销毁左子树 DestroyT(&((*T)->rchild)); // 递归调用函数,销毁右子树 free(T); T=NULL; } } void visit(int e)//访问结点 { printf("%d ",e); }

数据结构实验报告-二叉树的实现与遍历

《数据结构》第六次实验报告 学生姓名 学生班级 学生学号 指导老师

一、实验内容 1) 采用二叉树链表作为存储结构,完成二叉树的建立,先序、中序和后序 以及按层次遍历的操作,求所有叶子及结点总数的操作。 2) 输出树的深度,最大元,最小元。 二、需求分析 遍历二叉树首先有三种方法,即先序遍历,中序遍历和后序遍历。 递归方法比较简单,首先获得结点指针如果指针不为空,且有左子,从左子递归到下一层,如果没有左子,从右子递归到下一层,如果指针为空,则结束一层递归调用。直到递归全部结束。 下面重点来讲述非递归方法: 首先介绍先序遍历: 先序遍历的顺序是根左右,也就是说先访问根结点然后访问其左子再然后访问其右子。具体算法实现如下:如果结点的指针不为空,结点指针入栈,输出相应结点的数据,同时指针指向其左子,如果结点的指针为空,表示左子树访问结束,栈顶结点指针出栈,指针指向其右子,对其右子树进行访问,如此循环,直至结点指针和栈均为空时,遍历结束。 再次介绍中序遍历: 中序遍历的顺序是左根右,中序遍历和先序遍历思想差不多,只是打印顺序稍有变化。具体实现算法如下:如果结点指针不为空,结点入栈,指针指向其左子,如果指针为空,表示左子树访问完成,则栈顶结点指针出栈,并输出相应结点的数据,同时指针指向其右子,对其右子树进行访问。如此循环直至结点指针和栈均为空,遍历结束。 最后介绍后序遍历: 后序遍历的顺序是左右根,后序遍历是比较难的一种,首先需要建立两个栈,一个用来存放结点的指针,另一个存放标志位,也是首先访问根结点,如果结点的指针不为空,根结点入栈,与之对应的标志位也随之入标志位栈,并赋值0,表示该结点的右子还没有访问,指针指向该结点的左子,如果结点指针为空,表示左子访问完成,父结点出栈,与之对应的标志位也随之出栈,如果相应的标志位值为0,表示右子树还没有访问,指针指向其右子,父结点再次入栈,与之对应的标志位也入栈,但要给标志位赋值为1,表示右子访问过。如果相应的标志位值为1,表示右子树已经访问完成,此时要输出相应结点的数据,同时将结点指针赋值为空,如此循环直至结点指针和栈均为空,遍历结束。 三、详细设计 源代码:

二叉树实验报告

实验题目:实验九——二叉树实验 算法设计(3) 问题分析: 1、题目要求:编写算法交换二叉树中所有结点的左右子树 2、设计思路:首先定义一个二叉树的数据类型,使用先序遍历建立该二叉树,遍历二叉树,设计左右子树交换的函数,再次遍历交换之后的二叉树,与先前二叉树进行比较。遍历算法与交换算法使用递归设计更加简洁。 3、测试数据: A、输入:1 2 4 0 0 5 0 0 3 0 0 交换前中序遍历:4 2 5 1 3 交换后中序遍历:3 1 5 2 4 交换前:交换后: B、输入:3 7 11 0 0 18 17 0 0 19 0 0 6 13 0 0 16 0 0 交换前中序遍历:11 7 17 18 19 3 13 6 16 交换后中序遍历:16 6 13 3 19 18 17 7 11 概要设计: 1、为了实现上述功能:①构造一个空的二叉树;②应用先序遍历输入,建立二叉树;③中序遍历二叉树;④调用左右子树交换函数;⑤中序遍历交换过后的二叉树。 2、本程序包括4个函数: ①主函数main() ②先序遍历二叉树建立函数creat_bt() ③中序遍历二叉树函数inorder() ④左右子树交换函数 exchange()

各函数间关系如下: 详细设计: 1、结点类型 typedef struct binode //定义二叉树 { int data; //数据域 struct binode *lchild,*rchild; //左孩子、右孩子 }binode,*bitree; 2、各函数操作 ① 先序遍历建二叉树函数 bitree creat_bt() { 输入结点数据; 判断是否为0{ 若是,为空; 不是,递归;} 返回二叉树; } ② 左右子树交换函数 void exchange(bitree t) { 判断结点是否为空{ 否,交换左右子树; 递归;} } ③ 中序遍历函数 void inorder(bitree bt) { 判断是否为空{ 递归左子树; 输出; 递归右子树;} } main () creat_bt () inorder () exchange ()

数据结构实验-二叉树的操作

******************************* 实验题目:二叉树的操作 实验者信息:班级13007102,姓名庞文正,学号1300710226 实验完成的时间3:00 ****************************** 一、实验目的 1,掌握二叉树链表的结构和二叉树的建立过程。 2,掌握队列的先进先出的运算原则在解决实际问题中的应用。 3,进一步掌握指针变量、指针数组、动态变量的含义。 4,掌握递归程序设计的特点和编程方法。 二、实验内容 已知以二叉链表作存储结构,试编写按层次遍历二叉树的算法。(所谓层次遍历,是指从二叉树的根结点开始从上到下逐层遍历二叉树,在同一层次中从左到右依次访问各个节点。)调试程序并对相应的输出作出分析;修改输入数据,预期输出并验证输出的结果。加深对算法的理解。 三、算法设计与编码 1.本实验用到的理论知识 总结本实验用到的理论知识,实现理论与实践相结合。总结尽量简明扼要,并与本次实验密切相关,最好能加上自己的解释。 本算法要采用一个循环队列que,先将二叉树根结点入队列,然后退队列,输出该结点;若它有左子树,便将左子树根结点入队列;若它有右子树,便将右子树根结点入队列,直到队列空为止。因为队列的特点是先进先出,从而达到按层次顺序遍历二叉的目的。2.算法概要设计 给出实验的数据结构描述,程序模块、功能及调用关系 #include #include #define M 100 typedef struct node //二叉链表节点结构 {int data; //数据域 struct node *lchild,*rchild; //左孩子右孩子链 }bitree; bitree *que[M]; //定义一个指针数组,说明队列中的元素bitree 指针类型 int front=0, rear=0; //初始化循环列队 bitree *creat() //建立二叉树的递归算法 {bitree *t; int x; scanf("%d",&x); if(x==0) t=NULL; //以x=0 表示输入结束 else {t=malloc(sizeof(bitree)); //动态生成节点t,分别给节点t 的数据域,t->data=x; //左右孩子域赋值,给左右孩子赋值时用到 t->lchild=creat(); // 了递归思想 t->rchild=creat(); }

二叉树的建立和遍历的实验报告doc

二叉树的建立和遍历的实验报告 篇一:二叉树的建立及遍历实验报告 实验三:二叉树的建立及遍历 【实验目的】 (1)掌握利用先序序列建立二叉树的二叉链表的过程。 (2)掌握二叉树的先序、中序和后序遍历算法。 【实验内容】 1. 编写程序,实现二叉树的建立,并实现先序、中序和后序遍历。 如:输入先序序列abc###de###,则建立如下图所示的二叉树。 并显示其先序序列为:abcde 中序序列为:cbaed 后序序列为:cbeda 【实验步骤】 1.打开VC++。 2.建立工程:点File->New,选Project标签,在列表中选Win32 Console Application,再在右边的框里为工程起好名字,选好路径,点OK->finish。至此工程建立完毕。 3.创建源文件或头文件:点File->New,选File标签,在列表里选C++ Source File。给文件起好名字,选好路径,点OK。至此一个源文件就被添加到了你刚创建的工程之中。

4.写好代码 5.编译->链接->调试 #include #include #define OK 1 #define OVERFLOW -2 typedef int Status; typedef char TElemType; typedef struct BiTNode { TElemType data; struct BiTNode *lchild, *rchild; }BiTNode,*BiTree; Status CreateBiTree(BiTree &T) { TElemType ch; scanf("%c",&ch); if (ch=='#') T= NULL; else { if (!(T = (BiTNode *)malloc(sizeof(BiTNode))))

数据结构实验报告之树与二叉树

学生实验报告 学院:软通学院 课程名称:数据结构与算法 专业班级:软件142 班 姓名:邹洁蒙 学号: 0143990

学生实验报告 (二) 一、实验综述 1、实验目的及要求 目的:1)掌握树与二叉树的基本概念; 2)掌握二叉树的顺序存储,二叉链表的先序遍历中序遍历和后序遍历算法; 3)掌握树的双亲表示法。 要求:1)编程:二叉树的顺序存储实现; 2)编程:二叉链表的先序遍历中序遍历和后序遍历实现; 3)编程:树的双亲表示法实现。 2、实验仪器、设备或软件 设备:PC 软件:VC6 二、实验过程(编程,调试,运行;请写上源码,要求要有注释) 1.编程:二叉树的顺序存储实现 代码: BiTree::BiTree()//建立存储空间 { data = new int[MAXSIZE]; count = 0; } void BiTree::AddNode(int e)//加结点 { int temp = 0; data[count] = e; count++;//从编号0开始保存 }

运行截图: 2.编程:二叉链表的先序遍历中序遍历和后序遍历实现代码: void InOrderTraverse(BiTree* Head)//中序遍历 { if (Head) { InOrderTraverse(Head->LeftChild); cout << Head->data<<" "; InOrderTraverse(Head->RightChild); } } void PreOrderTraverse(BiTree* Head)//先序遍历 { if (Head) { cout << Head->data << " "; PreOrderTraverse(Head->LeftChild); PreOrderTraverse(Head->RightChild); } } void PostOrderTraverse(BiTree* Head)//后序遍历 { if (Head) { PostOrderTraverse(Head->LeftChild); PostOrderTraverse(Head->RightChild); cout << Head->data << " "; } } 运行截图:

数据结构实验报告—二叉树

算法与数据结构》课程实验报告

一、实验目的 1、实现二叉树的存储结构 2、熟悉二叉树基本术语的含义 3、掌握二叉树相关操作的具体实现方法 二、实验内容及要求 1. 建立二叉树 2. 计算结点所在的层次 3. 统计结点数量和叶结点数量 4. 计算二叉树的高度 5. 计算结点的度 6. 找结点的双亲和子女 7. 二叉树前序、中序、后序遍历的递归实现和非递归实现及层次遍历 8. 二叉树的复制 9. 二叉树的输出等 三、系统分析 (1)数据方面:该二叉树数据元素采用字符char 型,并且约定“ #”作为二叉树输入结束标识符。并在此基础上进行二叉树相关操作。 (2)功能方面:能够实现二叉树的一些基本操作,主要包括: 1. 采用广义表建立二叉树。 2. 计算二叉树高度、统计结点数量、叶节点数量、计算每个结点的度、结点所在层次。 3. 判断结点是否存在二叉树中。 4. 寻找结点父结点、子女结点。 5. 递归、非递归两种方式输出二叉树前序、中序、后序遍历。 6. 进行二叉树的复制。 四、系统设计 (1)设计的主要思路 二叉树是的结点是一个有限集合,该集合或者为空,或者是由一个根节点加上两棵分别称为左子树和右子树、互不相交的二叉树组成。根据实验要求,以及课上老师对于二叉树存储结构、基本应用的讲解,同时课后研究书中涉及二叉树代码完成二叉树模板类,并将所需实现各个功能代码编写完成,在建立菜单对功能进行调试。 (2)数据结构的设计 二叉树的存储结构有数组方式和链表方式。但用数组来存储二叉树有可能会消耗大量的存储空间,故在此选用链表存储,提高存储空间的利用率。根据二叉树的定义,二叉

二叉树实验报告

二叉树的创建与遍历 一、试验内容 根据输入的字符串创建树或二叉树,输出树或二叉树的先序遍历和后序遍历序列。 二、运行环境 Visual C++ 三、需求分析 1、建立一棵用二叉链表方式存储的二叉树。 2、从键盘接受扩展先序序列,以二叉链表作为存储结构。 3、建立二叉树,并将遍历结果打印输出。采用递归和非递归两种 方法实现。 四、设计概要 //——————二叉树的二叉链表存储表示—————— typedef struct BiTBode{ TElemType data; Struct BiTNode *lchild, *rchild //左右孩子指针 }BiTNode, *BiTree; //—————基本操作的函数原型说明———————— Status CreateBiTree(BiTree &T); //按先序次序输入二叉树中结点的值(一个字符),空格字符表示空树。 //构造二叉树链表表示的二叉树T。 Status PreOrderTraverse(BiTree T, status(*visit)(TElemType e)); //采用二叉链表存储结构,visit是对结点操作的应用函数。 //先序遍历二叉树T,对每个结点调用函数visit一次且仅以次。 //一旦visit()失败,则操作失败。 Status PostOrderTraverse(BiTree T, status(*visit)(TElemType e)); //采用二叉链表存储结构,visit是对结点操作的应用函数。 //后序遍历二叉树T,对每个结点调用函数visit一次且仅以次。 //一旦visit()失败,则操作失败。 —————先序遍历二叉树基本操作的递归算法———— Status PreOrderTraverse(BiTree T,Status(*visit)(TElemType e)){ //采用二叉链表存储结构,visit是对数据元素操作的应用函数,

数据结构实验二叉树

实验六:二叉树及其应用 一、实验目的 树是数据结构中应用极为广泛的非线性结构,本单元的实验达到熟悉二叉树的存储结构的特性,以及如何应用树结构解决具体问题。 二、问题描述 首先,掌握二叉树的各种存储结构和熟悉对二叉树的基本操作。其次,以二叉树表示算术表达式的基础上,设计一个十进制的四则运算的计算器。 如算术表达式:a+b*(c-d)-e/f 三、实验要求 如果利用完全二叉树的性质和二叉链表结构建立一棵二叉树,分别计算统计叶子结点的个数。求二叉树的深度。十进制的四则运算的计算器可以接收用户来自键盘的输入。由输入的表达式字符串动态生成算术表达式所对应的二叉树。自动完成求值运算和输出结果。四、实验环境 PC微机 DOS操作系统或 Windows 操作系统 Turbo C 程序集成环境或 Visual C++ 程序集成环境 五、实验步骤 1、根据二叉树的各种存储结构建立二叉树; 2、设计求叶子结点个数算法和树的深度算法; 3、根据表达式建立相应的二叉树,生成表达式树的模块; 4、根据表达式树,求出表达式值,生成求值模块; 5、程序运行效果,测试数据分析算法。 六、测试数据 1、输入数据:2.2*(3.1+1.20)-7.5/3 正确结果:6.96 2、输入数据:(1+2)*3+(5+6*7); 正确输出:56 七、表达式求值 由于表达式求值算法较为复杂,所以单独列出来加以分析: 1、主要思路:由于操作数是任意的实数,所以必须将原始的中缀表达式中的操作数、操作符以及括号分解出来,并以字符串的形式保存;然后再将其转换为后缀表达式的顺序,后缀表达式可以很容易地利用堆栈计算出表达式的值。 例如有如下的中缀表达式: a+b-c 转换成后缀表达式为: ab+c- 然后分别按从左到右放入栈中,如果碰到操作符就从栈中弹出两个操作数进行运算,最后再将运算结果放入栈中,依次进行直到表达式结束。如上述的后缀表达式先将a 和b 放入栈中,然后碰到操作符“+”,则从栈中弹出a 和b 进行a+b 的运算,并将其结果d(假设为d)放入栈中,然后再将c 放入栈中,最后是操作符“-”,所以再弹出d和c 进行d-c 运算,并将其结果再次放入栈中,此时表达式结束,则栈中的元素值就是该表达式最后的运算结果。当然将原始的中缀表达式转换为后缀表达式比较关键,要同时考虑操作符的优先级以及对有括号的情况下的处理,相关内容会在算法具体实现中详细讨论。

数据结构实验三——二叉树基本操作及运算实验报告

《数据结构与数据库》 实验报告 实验题目 二叉树的基本操作及运算 一、需要分析 问题描述: 实现二叉树(包括二叉排序树)的建立,并实现先序、中序、后序和按层次遍历,计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目,以及二叉树常用运算。 问题分析: 二叉树树型结构是一类重要的非线性数据结构,对它的熟练掌握是学习数据结构的基本要求。由于二叉树的定义本身就是一种递归定义,所以二叉树的一些基本操作也可采用递归调用的方法。处理本问题,我觉得应该:

1、建立二叉树; 2、通过递归方法来遍历(先序、中序和后序)二叉树; 3、通过队列应用来实现对二叉树的层次遍历; 4、借用递归方法对二叉树进行一些基本操作,如:求叶子数、树的深度宽度等; 5、运用广义表对二叉树进行广义表形式的打印。 算法规定: 输入形式:为了方便操作,规定二叉树的元素类型都为字符型,允许各种字符类型的输入,没有元素的结点以空格输入表示,并且本实验是以先序顺序输入的。 输出形式:通过先序、中序和后序遍历的方法对树的各字符型元素进行遍历打印,再以广义表形式进行打印。对二叉树的一些运算结果以整型输出。 程序功能:实现对二叉树的先序、中序和后序遍历,层次遍历。计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目。对二叉树的某个元素进行查找,对二叉树的某个结点进行删除。 测试数据:输入一:ABC□□DE□G□□F□□□(以□表示空格),查找5,删除E 预测结果:先序遍历ABCDEGF 中序遍历CBEGDFA 后序遍历CGEFDBA 层次遍历ABCDEFG 广义表打印A(B(C,D(E(,G),F))) 叶子数3 深度5 宽度2 非空子孙数6 度为2的数目2 度为1的数目2 查找5,成功,查找的元素为E 删除E后,以广义表形式打印A(B(C,D(,F))) 输入二:ABD□□EH□□□CF□G□□□(以□表示空格),查找10,删除B 预测结果:先序遍历ABDEHCFG 中序遍历DBHEAGFC 后序遍历DHEBGFCA 层次遍历ABCDEFHG 广义表打印A(B(D,E(H)),C(F(,G))) 叶子数3 深度4 宽度3 非空子孙数7 度为2的数目2 度为1的数目3 查找10,失败。

二叉树的遍历实验报告

二叉树的遍历实验报告 一、需求分析 在二叉树的应用中,常常要求在树中查找具有某种特征的结点,或者对树中全部结点逐一进行某种处理,这就是二叉树的遍历问题。 对二叉树的数据结构进行定义,建立一棵二叉树,然后进行各种实验操作。 二叉树是一个非线性结构,遍历时要先明确遍历的规则,先访问根结点还时先访问子树,然后先访问左子树还是先访问有右子树,这些要事先定好,因为采用不同的遍历规则会产生不同的结果。本次实验要实现先序、中序、后序三种遍历。 基于二叉树的递归定义,以及遍历规则,本次实验也采用的是先序遍历的规则进行建树的以及用递归的方式进行二叉树的遍历。 二、系统总框图

三、各模块设计分析 (1)建立二叉树结构 建立二叉树时,要先明确是按哪一种遍历规则输入,该二叉树是按你所输入的遍历规则来建立的。本实验用的是先序遍历的规则进行建树。 二叉树用链表存储来实现,因此要先定义一个二叉树链表存储结构。因此要先定义一个结构体。此结构体的每个结点都是由数据域data 、左指针域Lchild 、右指针域Rchild 组成,两个指针域分别指向该结点的左、右孩子,若某结点没有左孩子或者右孩子时,对应的指针域就为空。最后,还需要一个链表的头指针指向根结点。 要注意的是,第一步的时候一定要先定义一个结束标志符号,例如空格键、#等。当它遇到该标志时,就指向为空。 建立左右子树时,仍然是调用create ()函数,依此递归进行下去,

直到遇到结束标志时停止操作。 (2)输入二叉树元素 输入二叉树时,是按上面所确定的遍历规则输入的。最后,用一个返回值来表示所需要的结果。 (3)先序遍历二叉树 当二叉树为非空时,执行以下三个操作:访问根结点、先序遍历左子树、先序遍历右子树。 (4)中序遍历二叉树 当二叉树为非空时,程序执行以下三个操作:访问根结点、先序遍历左子树、先序遍历右子树。 (5)后序遍历二叉树 当二叉树为非空时,程序执行以下三个操作:访问根结点、先序遍历左子树、先序遍历右子树。 (6)主程序 需列出各个函数,然后进行函数调用。 四、各函数定义及说明 因为此二叉树是用链式存储结构存储的,所以定义一个结构体用以存储。 typedef struct BiTNode { char data; struct BiTNode *Lchild; struct BiTNode *Rchild;

数据结构二叉树的实验报告

数据结构 实 验 报 告

1. 实验目的和内容: 掌握二叉树基本操作的实现方法2. 程序分析 2.1存储结构 链式存储 2.程序流程

2.3关键算法分析 算法一:Create(BiNode* &R,T data[],int i,int n) 【1】算法功能:创建二叉树 【2】算法基本思想:利用顺序存储结构为输入,采用先建立根结点,再建立左右孩子的方法来递归建立二叉链表的二叉树 【3】算法空间时间复杂度分析:O(n) 【4】代码逻辑: 如果位置小于数组的长度则 {创建根结点 将数组的值赋给刚才创建的结点的数据域 创建左子树,如果当前结点位置为i,则左孩子位置为2i 创建右子树,如果当前结点位置为i,则右孩子位置为2i+1 } 否则R为空 算法二:CopyTree(BiNode*sR,BiNode* &dR) ) 【1】算法功能:复制构造函数 【2】算法基本思想:按照先创建根结点,再递归创建左右子树的方法来实现。 【3】算法空间时间复杂度分析:O(n) 【4】代码逻辑: 如果源二叉树根结点不为空 则{ 创建根结点 调用函数自身,创建左子树 调用函数自身,创建右子树 } 将该函数放在复制构造函数中调用,就可以实现复制构造函数

算法三:PreOrder(BiNode*R) 【1】算法功能:二叉树的前序遍历 【2】算法基本思想:这个代码用的是优化算法,提前让当前结点出栈。【3】算法空间时间复杂度分析:O(n) 【4】代码逻辑(伪代码) 如果当前结点为非空,则 { 访问当前结点 当前结点入栈 将当前结点的左孩子作为当前结点} 如果为空 { 则栈顶结点出栈 则将该结点的右孩子作为当前结点 } 反复执行这两个过程,直到结点为空并且栈空 算法四:InOrder(BiNode*R) 【1】算法功能:二叉树的中序遍历 【2】算法基本思想:递归 【3】算法空间时间复杂度分析:未知 【4】代码逻辑: 如果R为非空: 则调用函数自身遍历左孩子 访问该结点 再调用自身访问该结点的右孩子 算法五:LevelOrder(BiNode*R) 【1】算法功能:二叉树的层序遍历 【2】算法基本思想: 【3】算法空间时间复杂度分析:O(n) 【4】代码逻辑(伪代码): 若根结点非空,入队

数据结构二叉树遍历实验报告

问题一:二叉树遍历 1.问题描述 设输入该二叉树的前序序列为: ABC##DE#G##F##HI##J#K##(#代表空子树) 请编程完成下列任务: ⑴请根据此输入来建立该二叉树,并输出该二叉树的前序、中序和后序序列; ⑵按层次遍历的方法来输出该二叉树按层次遍历的序列; ⑶求该二叉树的高度。 2.设计描述 (1)二叉树是一种树形结构,遍历就是要让树中的所有节点被且仅被访问一次,即按一定规律排列成一个线性队列。二叉(子)树是一种递归定义的结构,包含三个部分:根结点(N)、左子树(L)、右子树(R)。根据这三个部分的访问次序对二叉树的遍历进行分类,总共有6种遍历方案:NLR、LNR、LRN、NRL、RNL和LNR。研究二叉树的遍历就是研究这6种具体的遍历方案,显然根据简单的对称性,左子树和右子树的遍历可互换,即NLR与NRL、LNR与RNL、LRN 与RLN,分别相类似,因而只需研究NLR、LNR和LRN三种即可,分别称为“先序遍历”、“中序遍历”和“后序遍历”。采用递归方式就可以容易的实现二叉树的遍历,算法简单且直观。 (2)此外,二叉树的层次遍历即按照二叉树的层次结构进行遍历,按照从上到下,同一层从左到右的次序访问各节点。遍历算法可以利用队列来实现,开始时将整个树的根节点入队,然后每从队列中删除一个节点并输出该节点的值时,都将它的非空的左右子树入队,当队列结束时算法结束。

(3)计算二叉树高度也是利用递归来实现:若一颗二叉树为空,则它的深度为0,否则深度等于左右子树的最大深度加一。 3.源程序 1 2 3 4 5 6 7 8 9 10 11 12 13 14 #include #include #include #define ElemType char struct BTreeNode { ElemType data; struct BTreeNode* left; struct BTreeNode* right; }; void CreateBTree(struct BTreeNode** T) { char ch; scanf_s("\n%c", &ch); if (ch == '#') *T = NULL;

数据结构实验二叉树的遍历

南昌大学实验报告 学生姓名:李木子学号:8000113146 专业班级:软工133 实验类型:□验证□综合□设计□创新实验日期:实验成绩: 一、实验项目名称 二叉树的遍历 二、实验目的 学会链式二叉树的结构体定义,创建与前序中序后序遍历 三、实验基本原理 四、主要仪器设备及耗材 电脑,VC6.0 五、实验步骤 /**************************************/ /* 链式二叉树的创建与遍历 */ /**************************************/ /**************************************/ /* 链式二叉树的结构体定义 */ /**************************************/ #include #include typedef char datatype ; typedef struct BinTreeNode{ datatype data ; struct BinTreeNode *lchild ; struct BinTreeNode *rchild ; } BinTreeNode ;

/**************************************/ /* 链式二叉树函数声明 */ /**************************************/ BinTreeNode * CreateTree(void); void PreOrder( BinTreeNode * t ); void InOrder( BinTreeNode * t ); void PostOrder( BinTreeNode * t ); /**************************************/ /* 链式二叉树创建函数 */ /**************************************/ BinTreeNode * CreateTree(void) { char ch ; BinTreeNode * t ; ch=getchar(); if(ch=='#') t=NULL; else if( ch=='\n'); else { t=( BinTreeNode*)malloc(sizeof( BinTreeNode )); t->data =ch ; t->lchild=CreateTree(); t->rchild=CreateTree(); } return t ; } /**************************************/ /* 链式二叉树递归前序遍历函数 */ /**************************************/ void PreOrder( BinTreeNode * t ) { if(t) { printf("%c\t",t->data);

数据结构实验四 树与二叉树

数据结构实验四树与二叉树 班级学号姓名分数 一、实验目的: 1、掌握二叉树的定义、性质及存储方式,各种遍历算法。 2、掌握这种存储结构的构造算法以及基于每一种结构上的算法设计 3、初步掌握算法分析方法并对已设计出的算法进行分析,给出相应的结果。 二、实验要求: 采用二叉树链表作为存储结构,完成二叉树的建立,先序、中序和后序以及按层次遍历的操作,求所有叶子及结点总数的操作。 三、实验内容及分析: 1、分析、理解程序。 2、调试程序,设计一棵二叉树,输入完全二叉树的先序序列,用#代表虚结点(空指针), 如ABD###CE##F##,建立二叉树,求出先序、中序和后序以及按层次遍历序列,求所有叶子及结点总数。 四、程序的调试及运行结果 先序遍历 中序遍历

后序遍历 树的深度及叶子树

层次遍历 五、程序代码 #include"stdio.h" #include"stdlib.h" #include"string.h" #define Max 20 //结点的最大个数 typedef struct node{

char data; struct node *lchild,*rchild; }BinTNode; //自定义二叉树的结点类型 typedef BinTNode *BinTree; //定义二叉树的指针 int NodeNum,leaf; //NodeNum为结点数,leaf为叶子数 //==========基于先序遍历算法创建二叉树============== //=====要求输入先序序列,其中加入虚结点"#"以示空指针的位置========== BinTree CreatBinTree(void) { BinTree T; char ch; if((ch=getchar())=='#') return(NULL); //读入#,返回空指针 else{ T= (BinTNode *)malloc(sizeof(BinTNode)); //生成结点 T->data=ch; T->lchild=CreatBinTree(); //构造左子树 T->rchild=CreatBinTree(); //构造右子树 return(T); } } //========NLR 先序遍历============= void Preorder(BinTree T) { if(T) { printf("%c",T->data); //访问结点 Preorder(T->lchild); //先序遍历左子树 Preorder(T->rchild); //先序遍历右子树 } } //========LNR 中序遍历=============== void Inorder(BinTree T) { if(T) { Inorder(T->lchild); //中序遍历左子树 printf("%c",T->data); //访问结点 Inorder(T->rchild); //中序遍历右子树 } } //==========LRN 后序遍历============ void Postorder(BinTree T) { if(T) { Postorder(T->lchild); //后序遍历左子树

数据结构课程实验(树和二叉树的建立和应用)

实验四 二叉树的建立和应用 1、实验目的 (1)熟练掌握树的基本概念、二叉树的基本操作及在链式存储结构上的实现; (2)重点掌握二叉树的生成、遍历及求深度等算法; (3)掌握运用递归方式描述算法及编写递归C 程序的方法,提高算法分析和程序设计能力。 2、实验内容 按照已知二叉树,从键盘读入节点字符,建立二叉树(ABD#G###CE##FH###) ;分别采用先序、中序、后序遍历该二叉树,分别输出遍历结果。 3、实验步骤 (1)仔细分析实验内容,给出其算法和流程图; (2)用C 语言实现该算法; (3)给出测试数据,并分析其结果; (4)在实验报告册上写出实验过程。 4、测试数据 先序序列: ABDGCEFHjfkdkfakf 中序序列: DGBAECHF 后序序列: GDBEHFCA 5、结构定义 typedef struct BiTNode { char data; struct BiTNode *lchild,*rchild; }BiTNode,*BiTree; 6、实验报告要求 实验报告要求书写整齐,步骤完整,实验报告格式如下: 1、[实验目的] 2、[实验设备] 3、[实验步骤] 4、[实验内容] 5、[实验结果(结论)] G H B C D E F A

程序如下: #include "stdio.h" #include "string.h" typedef char TElemType ; typedef struct BiNode { TElemType data; struct BiNode * lchild ,* rchild; }BiNode ,*BiTree; BiTree CreateBiTree(BiTree bt) { char ch; B iTree h=NULL; c h=getchar(); i f(ch=='#') bt=NULL; e lse { if((bt=(BiNode *)malloc(sizeof(BiNode)))==NULL) exit(-2); bt->data=ch; bt->lchild=CreateBiTree(h); bt->rchild=CreateBiTree(h); } r eturn(bt); } void PreOrderTraverse(BiTree bt)

二叉树实验报告

二叉树实验报告 问题描述 (1)问题描述:①用先序递归过程建立二叉树 (存储结构:二叉链表)。 输入数据按先序遍历所得序列输入,当某结点左子树或右子树为空时,输入‘*’号,如输入abc**d**e**得到的二叉树为: ②编写递归算法,计算二叉树中叶子结点的数目。 ③按凹入表方式输出该二叉树。 (2)分析:①此题要求用二叉链表作为存储结构,首先要定义二叉链表: typedef struct BiTNode { char data; struct BiTNode *lchild, *rchild; }BiTNode, * BiTree; struct BiTNode *lchild, *rchild 中lchild ,rchild 分别表示该结点的左右孩子。 ②输入时,按先序遍历所得序列输入,当某结点左子树或右子树为空时,输入‘*’号。 ③输出以凹入表的形式输出。 算法思想 (1)按照要求,这道题采用二叉链表来存储矩阵的有关信息。 存储结构定义为: typedef struct BiTNode { char data; struct BiTNode *lchild, *rchild; }BiTNode, * BiTree; 题中共有四个函数,包括主函数main(),创建二叉树函数Status preorder(BiTree &T),计算叶子结点函数Status calLeaf(BiTree &T),输出函数Status output(BiTree &T,int)。其中,主函数首先调用preorder()创建二叉树,然后调用函数calLeaf()。最后调用函数output(),输出二叉树。 (2)算法描述: a b e c d

大数据结构实验7:二叉树子系统

验证性实验7:二叉树子系统 班级学号BX100420 姓名施程程成绩 1.实验目的 (1)掌握二叉树的特点及其存储的方式。 (2)掌握二叉树的创建和显示方法。 (3)复习二叉树遍历的概念,掌握二叉树遍历的基本方法 (4)掌握求二叉树的叶结点数、总结点数和深度等基本算法。 2.实验内容 (1)按屏幕提示用前序方法建立一棵二叉树,并能按凹入法显示二叉树结构。(2)编写前序遍历、中序遍历、后序遍历、层次遍历程序。 (3)编写求二叉树的叶结点数、总结点数和深度的程序。 (4)设计一个选择式菜单,以菜单方式选择下列操作。 二叉树子系统 ********************************************"); * 1---------建二叉树 *"); * 2---------凹入显示 *"); * 3---------先序遍历 *"); * 4---------中序遍历 *"); * 5---------后序遍历 *"); * 6---------层次遍历 *"); * 7---------求叶子数 *"); * 8---------求结点数 *"); * 9---------求树深度 *"); * 0---------返回 *"); ********************************************"); 请选择菜单号(0--9): 3.实验步骤: (1)输入并调试程序; (2)按下图建立二叉树;

二叉树子系统 ****************************************** * 1---------建二叉树* * 2---------凹入显示* * 3---------先序遍历* * 4---------中序遍历* * 5---------后序遍历* * 6---------层次遍历* * 7---------求叶子数* * 8---------求结点数* * 9---------求树深度* * 0---------返回* ****************************************** 请选择菜单号:1 请输入按先序建立二叉树的结点序列: 说明:'0'代表后继结点为空,请逐个输入,按回车键输入下一结点。请输入根结点:a 请输入a结点的左子结点:b 请输入b结点的左子结点:d 请输入d结点的左子结点:0 请输入d结点的右子结点:0 请输入b结点的右子结点:0 请输入a结点的右子结点:c 请输入c结点的左子结点:e 请输入e结点的左子结点:0 请输入e结点的右子结点:0 请输入c结点的右子结点:f 请输入f结点的左子结点:0 请输入f结点的右子结点:0 (3)检查凹入法显示的二叉树是否正确; 二叉树子系统 ****************************************** * 1---------建二叉树* * 2---------凹入显示* * 3---------先序遍历* * 4---------中序遍历* * 5---------后序遍历* * 6---------层次遍历* * 7---------求叶子数* * 8---------求结点数* * 9---------求树深度* * 0---------返回* ****************************************** 请选择菜单号:2

相关主题
文本预览
相关文档 最新文档