当前位置:文档之家› 几种定积分的数值计算方法

几种定积分的数值计算方法

几种定积分的数值计算方法
几种定积分的数值计算方法

几种定积分的数值计算方法

摘要:本文归纳了定积分近似计算中的几种常用方法,并着重分析了各种数值方法的计

算思想,结合实例,对其优劣性作了简要说明、

关键词:数值方法;矩形法;梯形法;抛物线法;类矩形;类梯形

Several Numerical Methods for Solving Definite Integrals

Abstract:Several common methods for solving definite integrals are summarized in this paper、Meantime, the idea for each method is emphatically analyzed、Afterwards, a numerical example is illustrated to show that the advantages and disadvantages of these methods、Keywords:Numerical methods, Rectangle method, Trapezoidal method, Parabolic method, Class rectangle, Class trapezoid

1. 引言

在科学研究与实际生产中,经常遇到求积分的计算问题,由积分学知识可知,若函数

)(x f 在区间],[b a 连续且原函数为)(x F ,则可用牛顿-莱布尼茨公式

?-=b

a

a F

b F x f )

()()(

求得积分、这个公式不论在理论上还就是在解决实际问题中都起到了很大的作用、 在科学研究与实际生产中,经常遇到求积分的计算问题,由积分学知识可知,若函数)(x f 在区间],[b a 连续且原函数为)(x F ,则可用牛顿-莱布尼茨公式 ?-=b

a

a F

b F x f )

()()(

求得积分、这个公式不论在理论上还就是在解决实际问题中都起到了很大的作用、另外,对于求导数也有一系列的求导公式与求导法则、但就是,在实际问题中遇到求积分的计算,经常会有这样的情况:

(1)函数)(x f 的原函数无法用初等函数给出、例如积分 dx e

x ?-1

02

, ?

1

0sin dx x

x

等,从而无法用牛顿-莱布尼茨公式计算出积分。

(2)函数)(x f 使用表格形式或图形给出,因而无法直接用积分公式或导数公式。 (3)函数)(x f 的原函数或导数值虽然能够求出,但形式过于复杂,不便使用、 由此可见,利用原函数求积分或利用求导法则求导数有它的局限性,所以就有了求解数值积分的很多方法,目前有牛顿—柯特斯公式法,矩形法,梯形法,抛物线法,随机投点法,平均值法,高斯型求积法,龙贝格积分法,李查逊外推算法等等,本文对其中部分方法作一个比较.

2、几何意义上的数值算法

s 在几何上表示以],[b a 为底,以曲线)(x f y =为曲边的曲边梯形的面积A ,因此,计算s 的近似值也就就是A 的近似值,如图1所示、沿着积分区间],[b a ,可以把大的曲边梯形

分割成许多小的曲边梯形面积之与、常采用均匀分割,假设],[b a 上等分n 的小区间

,x 1-i h x i +=b x a x n ==,0,其中n

a

b h -=

表示小区间的长度、 2、1矩形法

矩形法就就是用小矩形面积近似代替各个小曲边梯形面积,从面积得到S 的近似值、

若取小区间左端点的函数值为小矩形的高,如图1中所示,则∑=-=n

i i x f n a b A 1

).( 图1 分割曲边矩形近似积分

2、2 梯形法

梯形法则用小直边梯形的面积近似代替小曲边梯形面积,见图2,从而得到S 的近似

值,即??

?

???++-=∑-=11)(2)()(n i i x f b f a f n a b A 、

图2 分割曲边梯形近似积分

2、3抛物线法

抛物线法以抛物线为曲边梯形的曲边,曲边梯形的面积近似代替小曲边梯形的面积,如图3所示、

图3 抛物线积分

210,,x x x 对应的曲线上的点210,,P P P 可以唯一地确定一条抛物线c bx ax y ++=2,这条

抛物线将作将代替从0x 至2x 的曲线段,此时积分可以转化为对抛物线积分,而抛物线的积分可以利用牛顿—莱布尼玆公式、第1、2个小区边梯形的面积:

)]()(4)([3

)210212

x f x f x f h

dx c bx ax A x x ++=++=?(

上面利用了条件210,,P P P 就是抛物线上的点以及等式1022x x x =+、同理可证: )]()(4)([3

h

4322x f x f x f A ++=

……

)]()(4)([3

122/n n n n x f x f x f h

A ++=--

所以,})(2)(4)]()({[1

2/1

22/1

1232/21∑∑-==--+++=+++≈n i i n i i n

a b n x f x f b f a f A A A S Λ

3、概率意义上的数值算法

概率算法就是定积分问题数值求解的一类常用方法,其设计思想简单,易于实现 、尽管算法要耗费较多计算时间,但就是往往能得到问题的近似解,并且近似程度能随计算时间的增加而不断提高、概率算法可用于计算定积分的近似值、

3、1平均值法

考虑定积分?=b

a dx x f I )(的近似计算,其中)(x f 在[]

b a ,内可积,用平均值法计算该积

分,首先随机产生n 个独立的随机变量,且服从在[]b a ,上均匀分布,即),2,1(n i i Λ=ξ;其次,

计算I 的近似值I ,∑=-=n

i i f n a b I 1

)(ξ、 由中心极限定理知,若{}),2,1(n i i Λ=ξ相互独立、同分布,且数学期望及标准差0>σ存在,则当n 充分大时,随机变量n

I

I Y σ

-=

渐近服从正态分布)1,0(N ,即对任意的0>αt ,

}t I -I P{}t Y P{n

σαα<

=<

这表明,用平均值法计算定积分的收敛速度较慢,在概率意义下的误差阶仅为

)1(

n O 、

3、2“类矩形”Monte-Carlo 方法

由于平均值法计算定积分的收敛速度较慢,且在概率意义下的误差阶仅为)1(

n O ,

就有对平均值法的改进,“类矩形” Monte-Carlo 方法,改进过程为:先将积分区间[]b a ,n 等分, 随机产生n 个相互独立且服从[]1,0上均匀分布的随机变量序列),2,1(},{n i i Λ=ξ;然后由这n 个随机点类似于矩形公式构造计算公式,即作变换 n i i n

a

b a i i Λ,2,1),1(=-+-+=ξη

将}{i ξ映射到子区间 []n i b a a b n

i

a a

b n i a ,,2,1,,)}(),(1{Λ=?-+--+

最后,计算I 的近似值I ~,∑=-=n

i i f n a b I 1

)(~η.

下面用两个命题证明“类矩阵”方法的可行性、

命题1 设[][]

[]有记,,,)(max ,,)(0,1b a x x f M b a C x f b a x ∈?'=∈∈

M a b a b x f dx x f b

a

2

)())(()(2

0-≤--?

证明:由Lagrange 中值定理得

)())(()()(000之间与介于x x x x f x f x f ξξ-'+=

上式两边在[]b a ,积分,得

??-'+-=b

a

b

a

dx x x f a b x f dx x f ))(())(()(00ξ

由)(x f '得连续性,得

.2)()(21)())(())(()(222020000M a b b a x b a x M dx

x x M dx x x f a b x f dx x f b a

b

a

b

a

-≤??

????++--=-≤-'≤--???

ξ

命题2 设[],,,)(1n

a

b h b a C x f -=

∈ []

[]

n i x f M x f M ih a h i a x i b a x ,.2.1,)(max ,)(max ,)1(,Λ='=

'=+-+∈∈

I ~与I 如上,则I ~与I 的误差满足)1(~

n

O I I =-、

证明: ?

∑=--=

-b

a

n

i i f n a b dx x f I I 1

)()(~

η

∑?

∑=+-+=-=

n

i ih

a h

i a n

i i f h dx x f 1)1(1)()(η

∑?

=+-+-≤n i ih

a h

i a i hf dx x f 1

)1()()(η

由命题1得, n i h M hf dx x f i ih

a h

i a i ,,2,1,2

)()(2

)1(K =≤

-?

+-+η 于就是

∑=-≤≤-n

i i a b n M h M I I 122)(22

~

)1(~

n

O I I =-、

3、3“类梯形”Monte-Carlo 方法

再给出平均值法的另一种改进、首先将[]b a ,n 等分,再在每个子区间上随机产生n 2个相互独立且服从]1,0[上均匀分布的随机变量序列,并两两分组,得

),,3,2,1(},,{212n i i i K =-ξξ;做变换

)

12(2)22(2221212i i i i i n

a

b a i n

a

b a ξηξη+--+=+--+

=--

将12-i ξ,i 2ξ分别映射到子区间

n

i a b n

i a a b n i a a b n

i a a b n i a ,,3,2,1)],(),(212[)](21

2),(1[K =-+--+--+--+

然后在每个等分子区间上)](),(1[a b n

i

a a

b n i a -+--+利用i i 212,ηη-两点类似于梯形公式构造“类梯形”公式 )]()([212i i i f f n

a

b S ηη+-=- 近类似

?

+-+ih a h

i a dx x f )1()(、

最后计算I 的近似值I ~~,∑=-+-=n i i i f f n a b I 12122

)

()(~~ηη. 下面证明“类梯形”方法可行性的两个命题:

命题3 设()[]2,f x a b ∈C ,记[]

(),max ''x a b f x ∈M=,则()1212,x x a x x ?≤≤,有

()()()()3

12212b

a

b a b a

f x dx f x f x M ---+≤???

??

. 证明: 过()()()()1122,,,x f x x f x 两点的直线方程为

()()()211121

()()f x f x P x f x x x x x -=+--

所以 ()(),1,2.i i P x f x i ==令

12()()()()()()R x f x P x k x x x x x =-=-- (1)

将x 瞧成[],a b 上的一个定点,构造辅助函数

12()()()()()()t f t P t k x t x t x φ=----

由于12()()()0x x x φφφ===,由Rolle 中值定理,'()t φ在(),a b 内至少有两个零点,对

'()t φ再用Rolle 中值定理,知''()t φ在(),a b 内至少有一个零点,即存在(),a b ξ∈,使

''()''()2()0f k x φξξ=-=,所以''()

()2

f k x ξ=

.将它代入(1)式,并两段同时从a 到b 积分,得 ()()()121212121

2

1212122

''()

()()2

()()2

()()()()()()2

b

a b

a

b

a

x x b a x x b a

f x dx f x f x f x x x x dx M x x x x dx

M x x x x dx x x x x dx x x x x dx ξ--

+????=--≤

--??

=--+--+--??????

?

?

????

121

2

12121212(,)()()()()()()x x b

a

x x L x x x x x x dx x x x x dx x x x x dx =--+--+--???

不妨设12a x x b <<<,则将12(,)L x x 分别对求偏导数,得

12

22212

121()()()02

()()()0

2

x x a b

L b a x x x a b L b a x x x +=----=+=--+-=

解得唯一驻点:

121(3)4

1(3)4

x a b x a b ?=+???

?=+?? 又

3333()()(,),(,)44166

a b a b b a b a L L a b ++--==

故当12a x x b ≤<≤时,

()()()()3

1212

(,)2212

b

a

b a b a M

f x dx f x f x L x x M ---+≤≤?????

结论成立.

命题4 [],,)(2b a C x f ∈设

[][]n i x f M x f M n

a

b h ih a h i a x i b a x Λ,2,1,)(max ,)(max ,,)1(,=''=''=-=

+-+∈∈

I 与I ~~如上,则I 与I ~~ 的误差满足:)1(~~

2n

O I I =-、

证明:

∑?

∑?

?

∑=+-+-=+-+=-=-+-

≤+-=

---=

-n i ih

a h

i a i i n

i ih a h i a n

i i i b

a n i i i h

f f dx x f f f h dx x f f n a b dx x f I I 1

)1(2121)1(1

21212122

)

()()(2

)

()()(2

)

()(~~ηηηηηη

由命题3,得

n i h M

h f f dx x f i ih

a h

i a i i ,,2,1,12

2)()()(3)1(212K =≤+-

?

+-+-ηη

于就是

∑=-≤≤-n i i n M a b h M I I 1

2

3312)(12~~

)1(~~

2n

O I I =-、

4、例题

对于积分dx 14

1

02

?

+x ,该积分精确值为3、1416、下面分别给出本文所涉及计算方法对它的计算结果:

4、1用三种基于几何意义的算法:矩形算法,梯形法,抛物线法作比较,结果如表1:

表1 几何意义算法的比较

分割数

算法 近似值 误差

110

矩形

3、14241294

13.8-e

梯形 3、1399398 37.1-e 抛物线 3、1415569 81.4-e

210

矩形

3、1415528 13.8-e 梯形 3、1416496 57.1-e 抛物线

3、14160128

110.4-e

4、2用平均值法,及其改进“类矩形”Monte-Carlo 方法, “类梯形”Monte-Carlo 方法计算结果如表2:

表2 概率意义算法的比较

5.结语

本文介绍的几种求积公

式各有特点:梯形求积公式与抛物线法求积公式就是低精度公式,但对于光滑性较差的被积函数有时比用高精度方法能得到更好的效果,尤其就是梯形求积公式.当被积函数为周期函数时,效果更为突出、由表1分析,一般情形下,三种基于几何的算法中矩形算法的误差最大,梯形法次之,抛物线法最高、抛物线法的积分精度远远高于另外两种方法,特别就是在积分区间分割份数较小的情况下,仍然保持较高的近似程度、

“类矩形”Monte-Carlo 方法; “类梯形”Monte-Carlo 方法就是平均值法的改进,提高了平均值法的精确度.通过表2可以瞧出,直接用平均值法计算定积分,410节点的计算已经很可观了,但计算结果只有2位有效数字,而选取同样的节点数,计算量几乎不变,类矩阵法就达到了4位有效数字,类梯形法则达到了8位有效数字,恰好与上述定理中误差阶的估计就是一致的,从而也验证了“类矩形”Monte-Carlo 方法与”类梯形”Monte-Carlo 方法的高效性.从表2中也可以瞧出随着节点数的增大,积分精度会不断提高,当然计算复杂度就会增加、

参考文献

[1] 费祥历,刘奋,马铭福、高等数学(第2版上册)[M]、山东:石油大学出版社,2008: 211-287. [2] 徐萃薇,孙绳武、计算方法引论(第三版)、北京:高等教育出版社,2007、 [3] 王晓东、计算机算法分析与设计[M]、北京:电子工业出版社,2001:197-228、 [4] 徐钟济、蒙特卡罗方法[M]、上海:上海科学技术出版社,1985、

节点数

算法 近似值 误差

410

平均值法

3、13849728 31.3--e 类矩形法 3、1416903 50.7-e 类梯形法

3、14160029

90.2--e

[5] 张平文,李铁军,数值分析[M]、北京:北京大学出版社,2007、

[6] 阮宗利、计算一元定积分的若干数值算法及其比较[J]、中国石油大学学报(科技教

育),2010:182-184、

[7] 朱长青、计算方法及其应用、北京:科学出版社,2006、

[8] 张威,刘志军,李艳红、数值分析与科学计算、北京:清华大学出版社,200,5

[9] 明万元,郑华盛、求解数值积分的两类新的Monte-Carlo方法[J]、南昌航空大学学

报,2010,40(10):180-186、

[10]刘长虹,关永亮等、蒙特卡洛在数值积分上的应用[J]、上海工程技术大学学报,2010,24(1):43-46、

[11]王岩、Monte-Carlo方法应用研究[J]、云南大学学报(自然科学版),2006,28(SI):23-26、

几种定积分的数值计算方法

几种定积分的数值计算方法 摘要:本文归纳了定积分近似计算中的几种常用方法,并着重分析了各种数值方法的计 算思想,结合实例,对其优劣性作了简要说明. 关键词:数值方法;矩形法;梯形法;抛物线法;类矩形;类梯形 Several Numerical Methods for Solving Definite Integrals Abstract:Several common methods for solving definite integrals are summarized in this paper. Meantime, the idea for each method is emphatically analyzed. Afterwards, a numerical example is illustrated to show that the advantages and disadvantages of these methods. Keywords:Numerical methods, Rectangle method, Trapezoidal method, Parabolic method, Class rectangle, Class trapezoid

1. 引言 在科学研究和实际生产中,经常遇到求积分的计算问题,由积分学知识可知,若函数 )(x f 在区间],[b a 连续且原函数为)(x F ,则可用牛顿-莱布尼茨公式 ?-=b a a F b F x f ) ()()( 求得积分.这个公式不论在理论上还是在解决实际问题中都起到了很大的作用. 在科学研究和实际生产中,经常遇到求积分的计算问题,由积分学知识可知,若函数)(x f 在区间],[b a 连续且原函数为)(x F ,则可用牛顿-莱布尼茨公式 ?-=b a a F b F x f ) ()()( 求得积分.这个公式不论在理论上还是在解决实际问题中都起到了很大的作用.另外,对于求导数也有一系列的求导公式和求导法则.但是,在实际问题中遇到求积分的计算,经常会有这样的情况: (1)函数)(x f 的原函数无法用初等函数给出.例如积分 dx e x ?-1 02 , ? 1 sin dx x x 等,从而无法用牛顿-莱布尼茨公式计算出积分。 (2)函数)(x f 使用表格形式或图形给出,因而无法直接用积分公式或导数公式。 (3)函数)(x f 的原函数或导数值虽然能够求出,但形式过于复杂,不便使用. 由此可见,利用原函数求积分或利用求导法则求导数有它的局限性,所以就有了求解数值积分的很多方法,目前有牛顿—柯特斯公式法,矩形法,梯形法,抛物线法,随机投点法,平均值法,高斯型求积法,龙贝格积分法,李查逊外推算法等等,本文对其中部分方法作一个比较. 2.几何意义上的数值算法 s 在几何上表示以],[b a 为底,以曲线)(x f y =为曲边的曲边梯形的面积A ,因此,计 算s 的近似值也就是A 的近似值,如图1所示.沿着积分区间],[b a ,可以把大的曲边梯形分割成许多小的曲边梯形面积之和.常采用均匀分割,假设],[b a 上等分n 的小区间 ,x 1-i h x i +=b x a x n ==,0,其中n a b h -= 表示小区间的长度. 2.1矩形法

浅谈定积分的应用

浅谈定积分的应用 **** **** (天津商业大学经济学院,中国天津 300134) 摘要:定积分在我们日常生活和学习中有很多的用处,本文阐述了定积分的定义和几何意义,并通过举例分析了定积分在高等数学、物理学、经济学等领域的应用条件及其应用场合,通过分析可以看出利用定积分求解一些实际问题是非常方便及其准确的。 关键词 定积分 定积分的应用 求旋转体体积 变力做功 The Application of Definite Integral **** **** (Tianjin University of Commerce ,Tianjin ,300134,China) Abstract:Definite integral in our daily life and learning have a lot of use, this paper expounds the definitio n of definite integral and geometric meaning, and through the example analysis of the definite integral in t he higher mathematics, physics, economics, and other fields of application condition and its applications, t hrough the analysis can be seen that the use of definite integral to solve some practical problems is very co nvenient and accurate. Keywords: definite integral, the application of definite integral, strives for the body of revolution, volume change forces work 0、前言 众所周知,微积分的两大部分是微分与积分。一元函数情况下,求微分实际上是求一个已知函数的导数,而积分是已知一个函数的导数,求原函数,所以,微分与积分互为逆运算。在我们日常生活当中,定积分的应用是十分广泛的。定积分作为人类智慧最伟大的成就之一,既可以作为基础学科来研究,也可以作为一个解决问题的方法来使用。 微积分是与应用联系着并发展起来的。定积分渗透到我们生活中的方方面面,推动了天文学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支的发展。并在这些学科中有越来越广泛的应用,微积分是一门历史悠久而又不断发展进步的学科,历史上许多著名的数学家把毕生的心血投入到微积分的研究中,从生产实际的角度上看,应用又是重中之重,随着数学的不断前进,微积分的应用也呈现前所未有的发展[1-5]。本文将举例介绍定积分在的我们日常学习和生活当中的应用。 1定积分的基本定理和几何意义 1.1、定积分的定义 定积分就是求函数)(x f 在区间[]b a ,中图线下包围的面积。即由0=y ,a x =, b x =,()x f y =所围成图形的面积。 定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。这个重要理论就是大名鼎鼎的牛顿-莱布尼兹公式,它的容是: 如果)(x f 是[]b a ,上的连续函数,并且有())(' x f X F =,那么

求定积分的四种方法

定积分的四种求法 定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例题分析定积分计算的几种常用方法. 一、定义法 例1 用定义法求 2 30 x dx ? 的值. 分析:用定义法求积分可分四步:分割,以曲代直,作和,求极限. 解:(1)分割:把区间[0,2] 分成n 等分,则△x = 2 n . (2)近似代替:△3 2()i i i S f x x n ξ?? =?=? ??? (3)求和:3 3 111222n n n i i i i i i S x n n n ===?????? ?≈?=? ? ? ????? ??∑∑∑. (4)取极限:S=333 2242lim n n n n n n →∞?? ?????? +++?? ? ? ? ???? ?????? L =4433322 44221lim 12lim[(1)]4n n n n n n n →∞→∞??+++=?+??L =22 4(21) lim n n n n →∞++==4. ∴ 2 30 x dx ? =4.. 评注:本题运用微积分的基本定理法来求非常简单.一般地,其它方法计算定积分比较困难时,用定义法,应注意其四个步骤中的关键环节是求和,体现的思想方法是先分后合,以直代曲. 二、微积分基本定理法

例2 求定积分 2 21 (21)x x dx ++? 的值. 分析:可先求出原函数,再利用微积分基本定理求解. 解:函数y =2 21x x ++的一个原函数是y =3 23 x x x ++. 所以.2 2 1 (21)x x dx ++? =322 1()|3x x x ++=81421133????++-++ ? ????? =193. 评注:运用微积分基本定理计算定积分的关键是找到被积函数的原函数. 三、几何意义法 例3 求定积 分 1 1 dx -? 的值. 分析:利用定积分的意义是指曲边梯形的面积,只要作出图形就可求出. 解 :1 1dx -?表示圆x 2+y 2=1在第一、 二象限的上半圆的面积. 因为2 S π =半圆,又在x 轴上方. 所 以 1 1 dx -? = 2 π . 评注:利用定积分的几何意义解题,被积函数图形易画,面积较易求出. 四、性质法 例4 求下列定积分: ⑴ 44 tan xdx π π-?;⑵22 sin 1 x x dx x π π - +?. 分析:对于⑴用微积分的基本定理可以解决,而⑵的原函数很 难

定积分的几个简单应用

定积分的几个简单应用 一、定积分在经济生活中的应用 在经济管理中,由边际函数求总函数,一般采用不定积分来解决,或者求一个变上限的定积分;如果求总函数在某个范围的改变量,则采用定积分来解决. 例1 某商场某品牌衬衫的需求函数是q p 15.065-=,如果价格定在每件50元,试计算消费者剩余. 解 由p 50=,q p 15.065-=,得10000=q ,于是 dq q )5015.065(10000 0--? 10000023 ) 1.015(q q -= 50000=, 所求消费者剩余为50000元. 例2 已知某产品总产量的变化率为t t Q 1240)(+='(件/天),求从第5天到第10天产品的总产量. 解 所求的总产量为 ??+='=10 5105)1240()(dt t dt t Q Q 1052) 640(t t +=650=(件). 二、用定积分求极限 例1 求极限 ∑=∞→n k n n k 123 lim . 解 n n n n n n n n k n k 12111123 +++=∑= )21(1n n n n n +++= . 上式是函数[]1,0)(在x x f =的特殊积分和.它是把[]1,0分成n 等分,i ξ取?? ????-n i n i ,1的右端点构成的积分和.因为函数[]1,0)(在x x f =可积,由定积分定义,有

∑=∞→n k n n k 12 3lim ??????+++=∞→)21(1lim n n n n n n 3210==?dx x . 例2 求极限 2213lim k n n k n k n -∑ =∞→. 解 212213)(11n k n k n k n n k n k n k -?=-∑∑==. 上式是函数[]1,01)(2在x x x f -=的特殊积分和.它是把区间[]1,0分成n 等分,i ξ取?? ????-n i n i ,1的右端点构成的积分和.因为函数21)(x x x f -=在[]1,0可积,由定积分定义,有 2213lim k n n k n k n -∑=∞→3 1)1(311102321 02=??????--=-=?x dx x x . 三、用定积分证明不等式 定积分在不等式的证明中有着重要的应用.在不等式的证明中,可根据函数的特点,利用定积分的性质来证明. 例1 设)(x f 是闭区间[]b a ,上的连续函数,且单调增加,求证: ?? +≥b a b a dx x f b a dx x xf )(2)(. 证明 作辅助函数 dt t f x a dt t tf x x a x a ??+-=)(2)()(?, 显然0)(=a ?,且 )(2 )(21)()(x f x a dt t f x xf x x a ?+--='? )(2 ))((21)(2x f a a x f x f x ---=ξ [])()(2 ξf x f a x --=, 其中[]x a ,∈ξ.因为)(x f 在[]b a ,上单调增加,所以0)(≥'x ?,从而)(x ?在闭区间[]b a ,上单调增加,所以 0)()(=≥a x ??,

导数的数值计算方法[文献综述]

毕业论文文献综述 信息与计算科学 导数的数值计算方法 一、 前言部分 导数概念的产生有着直觉的起源,与曲线的切线和运动质点的速度有密切的关系.导数用于描述函数变化率,刻画函数的因变量随自变量变化的快慢程度.比如说,物理上考虑功随时间的变化率(称为功率),化学上考虑反应物的量对时间的变化率(称为反应速度),经济学上考虑生产某种产品的成本随产量的变化率(称为边际成本)等等,这些变化率在数学上都可用导数表示. 导数由于其应用的广泛性,为我们解决所学过的有关函数问题提供了一般性的方法,导数是研究函数的切线、单调性、极值与最值等问题的有力工具;运用它可以简捷地解决一些实际问题,导数的概念是用来研究函数在一点及其附近的局部性质的精确工具,而对于函数在某点附近的性质还可以应用另一种方法来研究,就是通过最为简单的线性函数来逼近,这就是微分的方法.微分学是数学分析的重要组成部分,微分中值定理作为微分学的核心,是沟通导数和函数值之间的桥梁, Rolle 中值定理, Lagrange 中值定理, Cauchy 中值定理, Taylor 公式是微分学的基本定理, 统称为微分学的中值定理,这四个定理作为微分学的基本定理,是研究函数形态的有力工具 ] 1[.在微分学中,函数的导数是通过极限定义的,但 当函数用表格给出时,就不可用定义来求其导数,只能用近似方法求数值导数] 2[.最简单 的数值微分公式是用差商近似地代替微商,常见的有 [3] . ()()() 'f x h f x f x h +-≈ , ()()() 'f x f x h f x h --≈, ()()() '2f x h f x h f x h +--≈ . 需要注意的是微分是非常敏感的问题,数据的微小扰动会使结果产生很大的变化] 4[.

概述定积分的发展及应用

概述定积分的发展与应用 摘要:概述了定积分发展的三个历史阶段,讨论了定积分在各个学科中的具体应用. 关键词:分割近似; 定积分; 流数法; 应用 微积分创立是数学史上一个具有划时代意义的创举,也是人类文明的一个伟大成果.正如恩格斯评价的那样:"在一切理论成就中,未必再有什么象17世纪下半叶微积分的发明那样被当作人类精神的最高胜利了." 它是科学技术以及自然科学的各个分支中被广泛应用的最重要的数学工具; 如数学研究, 求数列极限, 证明不等式等. 而在物理方面的应用,能够说是定积分最重要的应用之一,正是因为定积分的产生和发展,才使得物理学中精确的测量计算成为可能, 如:气象,弹道的计算,运动状态的分析等都要用的到微积分. 定积分的发展大致能够分为三个阶段:古希腊数学的准备阶段,17世纪的创立阶段以及19世纪的完成阶段. 1准备阶段 主要包括17世纪中叶以前定积分思想的萌芽和先驱者们大量的探索、积累工作.这个时期随着古希腊灿烂文化的发展,数学也开始散发出它不可抵挡的魅力.整个16世纪,积分思想一直围绕着"求积问题"发展,它包括两个方面:一个是求平面图形的面积和由曲面包围的体积,一个是静力学中计算物体重心和液体压力.德国天文学家、数学家开普勒在他的名著《测量酒桶体积的新科学》一书中,认为给定的几何图形都是由无穷多个同维数的无穷小图形构成的,用某种特定的方法把这些小图形的面积或体积相加就能得到所求的面积或体积,他是第一个在求积中使用无穷小方法的数学家.17世纪中叶,法国数学家费尔玛、帕斯卡均利用了"分割求和"及无穷小的性质的观点求积.可见,利用"分割求和"及无穷小的方法,已被当时的数学家普遍采用. 2 创立阶段 主要包括17世纪下半叶牛顿、莱布尼兹的积分概念的创立和18世纪积分概念的发展.牛顿和莱布尼兹几乎同时且互相独立地进入了微积分的大门. 牛顿从1664年开始研究微积分,早期的微积分常称为"无穷小分析",其原因在于微积分建立在无穷小的概念上.当时所谓的"无穷小"并不是我们现在说的"以零为极限的变量",而是含糊不清的,从牛顿的"流数法"中可见一斑,"流数法"的主要思想是把连续变动的量称为"流量",流量的微小改变称为"瞬"即"无穷小量",将这些变量的变化率称为"流数".用小点来

求定积分的四种方法

求定积分的四种方法 定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例析定积分计算的几种常用方法. 一、定义法 例1 用定义法求2 30x dx ?的值. 分析:用定义法求积分可分四步:分割,以曲代直,作和,求极限. 解:(1)分割:把区间[0,2] 分成n 等分,则△x =2n . (2)近似代替:△32()i i i S f x x n ξ??=?=? ??? (3)求和:33 111222n n n i i i i i i S x n n n ===???????≈?=? ? ? ????? ??∑∑∑. (4)取极限:S=3332242lim n n n n n n →∞????????+++?? ? ? ???????????L =4 43332244221lim 12lim[(1)]4n n n n n n n →∞→∞??+++=?+? ?L =224(21)lim n n n n →∞++==4. ∴2 30x dx ?=4.. 评注:本题运用微积分的基本定理法来求非常简单.一般地,其它方法计算定积分比较困难时,用定义法,应注意其四个步骤中的关键环节是求和,体现的思想方法是先分后合,以直代曲. 二、微积分基本定理法 例2 求定积分2 21(21)x x dx ++?的值. 分析:可先求出原函数,再利用微积分基本定理求解. 解:函数y =2 21x x ++的一个原函数是y =3 23x x x ++.

所以.2 2 1(21)x x dx ++?=3221()|3x x x ++=81421133????++-++ ? ?????=193. 评注:运用微积分基本定理计算定积分的关键是找到被积函数的原函数. 三、几何意义法 例3 求定积 分1 1dx -?的值. 分析:利用定积分的意义是指曲边梯形的 面积,只要作出图形就可求出. 解 :1 1dx -?表示圆x 2+y 2=1在第一、 二象限的上半圆的面积. 因为2S π= 半圆,又在x 轴上方. 所 以1 1dx -?=2 π. 评注:利用定积分的几何意义解题,被积函数图形易画,面积较易求出. 四、性质法 例4 求下列定积分: ⑴44tan xdx π π-?;⑵22sin 1 x x dx x ππ-+?. 分析:对于⑴用微积分的基本定理可以解决,而⑵的原函数很难找到,几乎不能解决.若运用奇偶函数在对称区间的积分性质,则能迎刃而解. 解:由被积函数tan x 及22sin 1 x x x +是奇函数,所以在对称区间的积分值均为零. 所以⑴ 4 4 tan xdx π π-?=0;

定积分在经济学中的应用

定积分在经济学中的应用 摘要:定积分是微积分中重要内容,它是解决许多实际问题的重要工具,在经济学中有着广泛的应用,而且内容十分丰富。文中通过具体事例研究了定积分在经济学中的应用,如求总量生产函数、投资决策、消费者剩余和生产者剩余等方面的应用。 关键词:定积分;原函数;边际函数;最大值最小值;总量生产函数;投资;剩余 引言 积分学是微分学和积分学的总称。由于函数概念的产生和应用的加深,也由于科学技术发展的需要,一门新的数学分支就继解析几何之后产生了,这就是微积分学。微积分学这门学科在数学发展中的地位是十分重要的。可以说是继欧氏几何后,全部数学中最大的一个创造。微积分是与应用联系着并发展起来的。定积分推动了天文学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支的发展。并在这些学科中有越来越广泛的应用,微积分是一门历史悠久而又不断发展进步的学科,历史上许多著名的数学家把毕生的心血投入到微积分的研究中,从生产实际的角度上看,应用又是重中之重,随着数学的不断前进,微积分的应用也呈现前所未有的发展。本文将重点介绍定积分在经济学中的应用。 1 利用定积分求原经济函数问题

在经济管理中, 由边际函数求总函数( 即原函数) , 一般采用不定积分来解决,或求一个变上限的定积分。可以求总需求函数,总成本函数, 总收入函数以及总利润函数。 设经济应用函数u( x ) 的边际函数为)(x u ' ,则有 dx x u u x u x )()0()(0?'+= 例1 生产某产品的边际成本函数为100143)(2+-='x x x c , 固定成本C (0) =10000, 求出生产x 个产品的总成本函数。 解 总成本函数 dx x c c x c x ?'+='0)()0()( =dx x x x )100143(1000002+-+? =x x x x 02_3|]1007[10000++ =x x x 10071000023+-+ 2 利用定积分由变化率求总量问题 如果求总函数在某个范围的改变量, 则直接采用定积分来解决。 例2 已知某产品总产量的变化率为t t Q 1240)(+=' ( 件/天) , 求从第5 天到第10 天产品的总产量。 解 所求的总产量为 dt t Q Q ?'=0 5)( 650)150200()600400(|)640()1220(105210 5=+-+=+=+=?t t dt t (件) 3 用定积分求经济函数的最大值和最小值 例3 设生产x 个产品的边际成本C = 100+ 2x , 其固定成本为10000=c 元,产品单价规定为500元。假设生产出的产品能完全销售,

基础实验二 定积分数值计算

基础实验二 定积分数值计算 一、实验目的 学习定积分的数值计算方法,理解定积分的定义,掌握牛顿-莱布尼兹公式。 二、实验材料 2.1定积分的数值计算 计算定积分?b a dx x f )(的近似值,可将积分区间n 等分而得矩形公式 n a b n a b i a f dx x f n i b a ---+≈∑?=]) 1([)(1 或 n a b n a b i a f dx x f n i b a --+≈∑?=][)(1 也可用梯形公式近似计算 n a b b f a f n a b i a f dx x f n i b a -++-+≈∑?-=]2)()()([)(11 如果要准确些,可用辛普森公式 n a b b f a f a b i a f n a b i a f dx x f n i n i b a 6)]()()2)21((4)(2[)(111-++--++-+≈∑∑?=-= 对于?1 0sin xdx ,矩形公式、梯形公式、辛普森公式的Mathematica 程序为 a=0;b=1;k=10; f[x_]:=Sin[x]; d=N[Integrate[f[x],{x,a,b}],k];(计算精确值) s1[m_]:=N[Sum[f[a+i*(b-a)/m]*(b-a)/m,{i,0,m-1}],k];(取小区间左端点的矩形公式) s2[m_]:=N[Sum[f[a+(i+1/2)*(b-a)/m]*(b-a)/m,{i,0,m-1}],k]; (取小区间中点的矩形公式) s3[m_]:=N[Sum[f[a+i*(b-a)/m]*(b-a)/m,{i,1,m}],k]; (取小区间右端点的矩形公式) s4[m_]:=N[Sum[(f[a+i*(b-a)/m]+f[a+(i+1)*(b-a)/m])/2*(b-a)/m,{i,0,m-1}],k]; (梯形公式) s5[m_]:=N[(b-a)/m/6*((f[a]+f[b])+2*Sum[f[a+i*(b-a)/m],{i,1,m-1}]

求不定积分的方法及技巧小汇总

求不定积分的方法及技巧小汇总~ 1.利用基本公式。(这就不多说了~) 2.第一类换元法。(凑微分) 设f(μ)具有原函数F(μ)。则 C x F x d x f dx x x f +==???)]([)()]([)(')]([????? 其中)(x ?可微。 用凑微分法求解不定积分时,首先要认真观察被积函数,寻找导数项内容,同时为下一步积分做准备。当实在看不清楚被积函数特点时,不妨从被积函数中拿出部分算式求导、尝试,或许从中可以得到某种启迪。如例1、例2: 例1:? +-+dx x x x x ) 1(ln )1ln( 【解】) 1(1111)'ln )1(ln(+-=-+= -+x x x x x x C x x x x d x x dx x x x x +-+-=-+-+-=+-+??2 )ln )1(ln(2 1)ln )1(ln()ln )1(ln()1(ln )1ln(例2:? +dx x x x 2 )ln (ln 1 【解】x x x ln 1)'ln (+= C x x x x x dx dx x x x +-==++??ln 1 )ln (ln )1(ln 122 3.第二类换元法: 设)(t x ?=是单调、可导的函数,并且)(')]([.0)('t t f t ???又设≠具有原函数,则有换元公式 ??=dt t t f dx f )(')]([x)(?? 第二类换元法主要是针对多种形式的无理根式。常见的变换形式需要熟记会 用。主要有以下几种: acht x t a x t a x a x asht x t a x t a x a x t a x t a x x a ===-===+==-;;:;;:;:csc sec )3(cot tan )2(cos sin )1(222222

c语言用六种方法求定积分

C语言实验报告 求定积分 班级10信息与计算科学一班姓名戴良伟 学号 21

1. 描述问题 利用①左矩形公式,②中矩形公式,③右矩形公式 ,④梯形公式,⑤simpson 公式,⑥Gauss 积分公式求解定积分。 2. 分析问题 定积分 定积分的定义 定积分就是求函数()f x 在区间[],a b 中图线下包围的面积。即()0,,,y x a x b y f x ====所包围的面积。这个图形称为曲边梯形,特例是曲边梯形。如下图: (图1) 设一元函数()y f x =,在区间[],a b 内有定义。将区间[],a b 分成n 个小区间[][][][]00112,,,,,......,i a x x x x x x b 。设1i i i x x x -?=-,取区间i x ?中曲线上任意一点记做()i f ξ,作和式: ()1lim n n i f i xi ξ→+∞=??? ??? ∑ 若记λ为这些小区间中的最长者。当0λ→时,若此和式的极限存在,则称这个和式是函数()f x 在区间[],a b 上的定积分。 记作:()b a f x dx ? 其中称a 为积分下限, b 为积分上限,()f x 为被积函数,()f x dx 为被积式,∫ 为积分号。 之所以称其为定积分,是因为它积分后得出的值是确定的,是一个数,而不是一个函数。 定积分的几何意义[1] 它是介于x 轴、函数f(x)的图形及两条直线x=a ,x=b 之间的各个部分面积的代数和。在x 轴上方的面积取正号;在x 轴下方的面积取负号。如图 言实现定积分计算的算法 利用复合梯形公式实现定积分的计算

1.7定积分的简单应用

§1.7定积分的简单应用(二课时) 一:教学目标 知识与技能:初步掌握利用定积分求曲边梯形的几种常见题型及方法;让学生深刻理解定积 分的几何意义以及微积分的基本定理。 过程与方法:进一步让学生深刻体会“分割、以直代曲、求和、逼近”求曲边梯形的思想方 法 情感态度与价值观:体会定积分在物理中应用(变速直线运动的路程、变力沿直线做功), 培养学生唯物主义思想。 二:教学重难点 重点 曲边梯形面积的求法 难点 定积分求体积以及在物理中应用 三:教学过程:(第一课时) 1、复习 1、求曲边梯形的思想方法是什么? 2、定积分的几何意义是什么? 3、微积分基本定理是什么? 2、定积分的应用 (一)利用定积分求平面图形的面积 例1.计算由两条抛物线2 y x =和2 y x =所围成的图形的面积. 【分析】两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。 解:2 01y x x y x ?=?==?=??及,所以两曲线的交点为(0,0)、(1,1),面积 S=1 20 0x dx = -? ? ,所以 ?1 20S =x )dx 32 1 3023 3x x ??=-????=13 【点评】在直角坐标系下平面图形的面积的四个步骤: 1.作图象;2.求交点;3.用定积分表示所求的面积;4.微积分基本定理求定积分。 巩固练习 计算由曲线3 6y x x =-和2 y x =所围成的图形的面积. 例2.计算由直线4y x =- ,曲线y = x 轴所围图形的面积S. 分析:首先画出草图(图1.7 一2 ) ,并设法把所求图形的面积问题转化为求曲边梯形 2 x y =y x A B C D O

定积分的5大几何应用和4大物理应用

定积分的5大几何应用和4 大物理应用 上下(曲)原函横(绕X 轴旋转)面积(纵周长), 左右(曲)反函横周长(纵面积); 两轴轮换形(心) 除外, 平移(轴)双函识减符。 一、5大几何应用 1.1 平面图形的面积应用 称为左右曲不相交图形 []()() d c S y y dy ψ??=-?, 称为上下曲相交图形 既然是定积分应用,当然积分方向以常数区间为准。对上下曲不相交图形,被积函数为上原函数减去下原函数(远减近),对左右曲不相交图形,被积函数为右反函数减去下反函数(远减近),对于相交图形则为远减近的绝对值,画图以面积所在的位置定正负。 1.2 平面曲线的弧长 1.3 旋转体积 。如果旋转轴为平行于x 或y 的直线,比

如上下曲绕x t =,如t 在两曲线的上方,则旋转的体积,则计算如下(其余类推): 设()11y f x =为离旋转轴的近曲线,()22y f x =为离旋转轴的远曲线,则体积元及体积为: 形象记忆法:上述公式靠死记是不行的,时间长了必会混淆,但你仔细观察一下有规律: 上下曲绕x 及其平行轴和上下曲绕y 及其平行轴利用圆面积,其余情形用圆的周长。而且上下曲,定积分方向为x ,左右曲为y ,这是定积分要求的;x V 和y V 在形式上满足“导数”关系;还有个特征就是x ,y 是交替出现的,如[]212()()b y a V x f x f x dx π=-?中y V x →,而 ()()2d x c V y y y d y πψ?=-?????中 x V y →。 1.4 旋转体的侧面积(对于上下曲图形) 形象记忆法:x ,y 交替出现。 1.5 形心(重点) 质心是针对实物体而言的,而形心是针对抽象几何体而言的,对于密度均匀的实物体,质心和形心是重合的。 ● 曲线形心(在多元函数积分应用时,还有平面和图形和空间图形的形心问题,请对照。) 静力矩定义: 形心坐标 对质心只要在每项积分中加入线密度为()x λ即可,当()x λ=常数,即几何体均匀时, 质心与形心完全重合,上述公式通用,下同。 上述形心公式与旋转体的侧面积联系起来,便得到:

微积分的数值计算方法

第七章 微积分的数值计算方法 7.1 微积分计算存在的问题/数值积分的基本概念 1. 微分计算问题 求函数的导数(微分),原则上没有问题。当然,这是指所求函数为连续形式且导数存在的情形。但如果函数一表格形式给出,要求函数在某点的导数值;或者是希望某点的导数值只用其附近离散点上的函数值近似地表示,这就是新问题了,它称为微分的数值计算,或称为数值微分。 2.定积分计算问题 计算函数f 在],[b a 上的定积分 dx x f I b a ?= )( 当被积函数f 的原函数能用有限形式)(x F 给出时,可用积分基本公式来计算: )()()(a F b F dx x f I b a -==? 然而,问题在于:① f 的原函数或者很难找到,或者根本不存在;②f 可能给出一个函数表;③仅仅知道f 是某个无穷级数的和或某个微分方程的解等等。这就迫使人们不得不寻求定积分的近似计算,也称数值积分。 3.数值积分的基本形式 数值积分的基本做法是构造形式如下的近似公式 ∑?=≈n k k k b a x f A dx x f 0 )()( (7.1.1) 或记成 ∑?=+=n k n k k b a f R x f A dx x f 0 ][)()( (7.1.2) ∑==n k k k x f A I 0 * )( 和 ][f R n 分别成为],[b a 上的f 的数值求积公式及其 余项(截断误差),k x 和k A ),,1,0(n k =分别称为求积节点和求积系数(求积系数与被积函数无关)。 这种求积公式的特点是把求积过(极限过程)程转化为乘法与加法的代数运算。构造这种求积公式需要做的工作是:确定节点k x 及系数 k A ),,1,0(n k =,估计余项][f R n 以及讨论* I 的算法设计及其数值稳定 性。 4.插值型求积公式 如何构造求积公式呢?基本的技术是用被积函数f 的Lagrange 插值多项式 )(x L n 近似代替f ,也即对],[b a 上指定的1+n 个节点

定积分在几何上的应用教案(5)

定积分在几何上的应用教案(2) 目的要求 1.了解旋转体的概念,理解旋转体体积公式的推导过程,继续了解“分割——近似代替——求和——取极限”的思想方法. 2.掌握用旋转体的体积公式求旋转体的体积,学会用定积分解决一些在几何中用初等数学方法无法解决的体积问题. 3.对几何图形的基本度量——体积的概念有较完整的认识,知道在求旋转体的体积时,定积分是一种普遍适用的方法,进一步体会学习定积分的必要性. 4.培养学生应用数学的意识和能力,进一步培养学生的逻辑思维能力、空间想象能力以及应用定积分的基本思想解决问题的能力. 内容分析 1.本节课是在学习了定积分的概念与计算的基础上,介绍定积分在几何中的又一种应用,它是微积分解决初等数学的一个生动实例,这充分体现了新教科书对培养学生应用数学的意识的重视.大家知道,微积分是十七世纪数学发展史上的里程碑,是人类思想史上的重大飞跃,微积分可以解决初等数学难以解决或无法解决的许多问题.通过这部分内容的学习,可使旋转体的体积在理论上解决得更彻底,并使学生对体积的概念有较完整的认识. 2.“旋转体的体积”这部分内容包括旋转体的定义、旋转体的体积公式的推导、旋转体体积的计算.教学中以旋转体体积的计算为重点;由于旋转体体积公式的推导比较抽象,空间想象能力要求较高,故为本节课的教学难点;突破难点的关键是数形结合,充分采用现代化的多媒体教学手段显示旋转体的形成过程,在计算机中虚拟几何体的分割过程的“真实”情景,“放大”微观世界,使抽象问题形象化、直观化. 3.考虑到本课内容比较抽象,故宜采用启发引导、讲练结合的教学方法,同时采用计算机辅助教学.在具体教学中要注意到以下几点: 关于旋转体的定义,要与以前学习过的柱、锥、球等旋转体的定义结合起来教学,使学生明确旋转体的形成有两个要素:一是被旋转的平面图形,二是旋转轴.柱、锥、球等旋转体的平面图形都是直线或圆弧,而在这里是一般的曲线. 关于旋转体体积公式的推导,其实在第二册(下)关于体积公式的推导过程中已经渗透了定积分的思想方法.教学中,可通过对球的体积公式的推导及曲边梯形面积公式的推导作一简单的回顾,采用类比的方法,遵循“有限→无限→有限、连续→离散→连续、精确→近似→精确”的原则,化曲为直,化整为零,变未知为已知. 关于旋转体体积公式的计算,课本例3显然可直接应用圆锥的体积公式求出圆锥的体积.之所以安排这道例题,是为了让学生明白用定积分求旋转体的体积是一种普遍适用的方法,教学中切勿一带而过.在讲完例3后,要注意总结求旋转体体积的解题步骤.本课的练习要紧紧围绕旋转体的体积公式展开,让学生通过一定的练习,加深对定积分概念的了解,并达到熟练掌握公式的教学效果. 4.本节课是定积分应用的一个高潮,有必要在知识和能力方面有所突破,即安排一些综合性较强的例题或课外练习题,让学有余力的学生继续探讨,以提高他们分析问题与解决实际问题的能力. 教学过程 (一)铺垫引入,创设情景 1.铺垫引入 ①数轴可表示什么样的图形? ②什么样的图形叫做圆? ③什么样的图形叫做球?(多媒体演示球的形成过程) 2.创设情景 (1)问题一下列几何体是如何形成的?(多媒体演示形成过程) ①圆柱②圆锥③花瓶 归纳: ①什么叫旋转体?(平面图形绕这个平面内的一条直线旋转一周所成的几何体) ②旋转体形成的两个要素是什么?(一是被旋转的平面图形,二是旋转轴) ③举一些日常生活中的旋转体的例子,并说明被旋转的平面图形及旋转轴分别是什么.(多媒体演示一些旋转体) (2)问题二如何求旋转体的体积?

不定积分求解方法及技巧

不定积分求解方法及技巧小汇总 摘要:总结不定积分基本定义,性质和公式,求不定积分的几种基本方法和技巧,列举个别典型例子,运用技巧解题。 一.不定积分的概念与性质 定义1如果F(x)是区间I上的可导函数,并且对任意的x∈I,有F’(x)=f(x)dx则称F(x)是f(x)在区间I上的一个原函数。 定理1(原函数存在定理)如果函数f(x)在区间I上连续,那么f(x)在区间I上一定有原函数,即存在可导函数F(x),使得F(x)=f(x)(x∈I) 简单的说就是,连续函数一定有原函数 定理2设F(x)是f(x)在区间I上的一个原函数,则 (1)F(x)+C也是f(x)在区间I上的原函数,其中C是任意函数; (2)f(x)在I上的任意两个原函数之间只相差一个常数。 定义2设F(x)是f(x)在区间I上的一个原函数,那么f(x)的全体原函数F(x)+C称为f(x)在区间I上的不定积分,记为?f(x)d(x),即?f(x)d(x)=F(x)+C 其中记号?称为积分号,f(x)称为被积函数,f(x)d(x)称为被积表达式,x称为积分 变量,C称为积分常数。 性质1设函数f(x)和g(x)存在原函数,则?[f(x)±g(x)]dx=?f(x)dx±?g(x)dx.性质2设函数f(x)存在原函数,k为非零常数,则?kf(x)dx=k?f(x)dx. 二.换元积分法的定理 如果不定积分?g(x)dx不容易直接求出,但被积函数可分解为g(x)=f[?(x)] ?’(x). 做变量代换u=?(x),并注意到?‘(x)dx=d?(x),则可将变量x的积分转化成变量u的积 分,于是有?g(x)dx=?f[?(x)] ?’(x)dx=?f(u)du. 如果?f(u)du可以积出,则不定积分?g(x)dx的计算问题就解决了,这就是第一类换 元法。第一类换元法就是将复合函数的微分法反过来用来求不定积分。 定理1 设F(u)是f(u)的一个原函数,u=?(x)可导,则有换元公式

数值计算方法课程总结

标题:数值计算及其应用随着计算机的迅速发展和广泛应用,在众多领域内,人们越来使越认识到科学计算是科学研究的第三种方法,数值计算是研究数学问题的数值解及其理论的一个数学分支,它涉及面很广,如:代数、微积分、微分方程、无穷级数、概率论等多方面数学基础知识。自计算机成为数值计算的主要工具来,人们主要研究适合于在计算机上用的数值计算方法及与此相关的理论,包括方法的敛散性、稳定性及误差分析,还要根据计算机的特点研究计算时间最短、需要内存最少的计算方法。它除了具有数学的抽象性与严格性外,还具有应用的广泛性与实际实验的技术性。 数值计算有很多重要的应用,下面举例说明: 1. 在科学技术工程和实验中,经常需要从实验数据中寻找拟合直线,如:天文学家通过对天体运行的观测数据进行分析和处理得到天体的运动轨迹,这就需要用到“多项式逼近”理论和“曲线拟合”的相关知识。 2. 现实生活中经常遇到最优化问题,如:商家寻求最大收益、投资者寻求最小风险等。这就需要用到“数值优化”的知识。 3. 很多数学物理问题都涉及到偏(常)微分方程、科学工程领域建立的许多数学模型也经常用到微分方程,但通常我们无法计算其解析解(事实上也没有必要计算解析解),那么此时数值近似解就具有重要的意义,要求得其数值解就要用到“微分方程求解”的相关理论。

4. 在很多关键领域:如航天领域要研究系统的稳定性,实际上就是研究“收敛”和“发散”,对与这些问题就要用到“方程根的求解”的相关知识。 5. 现实中还有很大一类问题需要求解线性方程组,这就需要“线性方程组求解”及“特征值与特征向量”理论。 综上所述:数值计算在现实生活中发挥着重要的作用,在高科技领域占中有举足轻重的地位!

求积分的几种常规方法

合肥学院论文 求积分的若干方法 姓名:陈涛 学号:1506011005 学院:合肥学院 专业:机械设计制造及其自动化 老师:左功武 完成时间:2015年12月29日 求积分的几种常规方法 陈涛 摘要:数学分析中,不定积分是求导问题的逆运算,而且是联系微分学和积分学的一条纽带。为灵活运用积分方法求不定积分,本文介绍了求积分的几种重要方法和常用技巧,讨论和分析了求积分的几种方法:直接积分法,换元积分法,分部积分法以及有理函数积分的待定系数法,对于快速求不定积分有重要意义,适当的运用积分方法求不定积分,才可以简捷,准确。 关键词:定积分、不定积分、换元积分法、分部积分法、待定系数法 引言 数学分析是师范大学数学专业必修专业课,微分和积分都是数学分析的重点,而不定积分是积分学的基础,更是关键,直接关系到学习数学的重点。其任务是掌握逻辑思维方法和提高使用数学手段解决问题的能力。一般地,求不定积分要比求导数难很多,运用积分法则

和积分公式只能解决一些简单的积分,更多的不定积分要因函数的不同形式和不同类型选用不同的方法,巧妙运用恰当的方法,可以化难为易,从而简单、快捷、准确的求出不定积分。本文为解决求积分的困难问题给出了相应的解决方法,帮助理解不定积分。 1 积分的概念 设F(x)为函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分(indefinite integral)。 记作∫f(x)dx。其中∫叫做积分号(integral sign),f(x)叫做被积函数(integrand),x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数的不定积分的过程叫做对这个函数进行积分。 1.1 不定积分 积分还可以分为两部分。第一种,是单纯的积分,也就是已知导数求原函数,而若F(x)的导数是f(x),那么F(x)+C(C是常数)的导数也是f(x),也就是说,把f(x)积分,不一定能得到F(x),因为F(x)+C的导数也是f(x),C是任意的常数,所以f(x)积分的结果有无数个,是不确定的,我们一律用F(x)+C代替,这就称为不定积分。 用公式表示是:f'(x)=g(x)->∫g(x)dx=f(x)+c 不定积分是为解决求导和微分的逆运算而提出的。例如:已知定义在区间I上的函数f(x),求一条曲线y=F(x),x∈I,使得它在每一点的切线斜率为F′(x)= f(x)。函数f(x)的不定积分是f(x)的全体原函数(见原函数),记作。如果F(x)是f(x)的一个原函数,则,其中C为任意常数。 1.2 定积分 相对于不定积分,还有定积分。所谓定积分,其形式为∫[a:b]f(x)dx 。之所以称其为定积分,是因为它积分后得出的值是确定的,是一个数,而不是一个函数。 微积分的最初发展中,定积分即黎曼积分。用自己的话来说,就是把直角坐标系上的函数的图象用平行于y轴的直线和x轴把其分割成无数个矩形,然后把某个区间[a,b]上的矩形的面积累加起来,所得到的就是这个函数的图象在区间[a,b]的面积。实际上,定积分的上下限就是区间的两个端点a、b。而实变函数中,可以利用测度论将黎曼积分推广到更加一般的情况,如勒贝格积分. 用公式表示是:∫[a,b]f(x)dx=lim(n->∞)∑(0-n)a+f(ti)*(b-a)/n 定积分是以平面图形的面积问题引出的。y=f(x)为定义在[a,b]上的函数,为求由x=a,x=b ,y=0和y=f(x)所围图形的面积S,采用古希腊人的穷竭法,先在小范围内以直代曲,求出S的近似值,再取极限得到所求面积S,为此,先将[a,b]分成n等分:a=x0

相关主题
文本预览
相关文档 最新文档