当前位置:文档之家› 用卷积法证明中心极限定理

用卷积法证明中心极限定理

用卷积法证明中心极限定理
用卷积法证明中心极限定理

中心极限定理的内涵和应用

中心极限定理的内涵和应用 在概率论与数理统计中,中心极限定理是非常重要的一节内容,而且是概率论与数理统计之间承前启后的一个重要纽带。中心极限定理是概率论中讨论随机变量和的分布以正态分布为极限的一组定理。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量之和近似服从于正态分布的条件。故为了深化同学们的理解并掌握其重要性,本组组员共同努力,课外深入学习,详细地介绍了中心极限定理的内涵及其在生活实践中的应用。 一、独立同分布下的中心极限定理及其应用 在对中心极限定理的研究中,我们不妨由浅入深地来学习,为此我们先来研究一下在独立同分布条件下的中心极限定理,即如下的定理1: 定理l (林德伯格-勒维中心极限定理)设{}n X 是独立同分布的随机变量序列,且0)(,)(2>==σμi i X Var X E 存在,若记 n n X Y n i i n σμ-= ∑=1 则对任意实数y ,有 {}?∞--∞→=Φ=≤y t n n t y y Y P .d e π21)(lim 22 (1) 证明:为证明(1)式,只须证}{n Y 的分布函数列弱收敛于标准正态分布。由定理可知:只须证}{n Y 的特征函数列收敛于标准正态分布的特征函数。为此,设μ-n X 的特征函数为)(t ?,则n Y 的特征函数为 n Y n t t n ??????=)()(σ?? 又因为E(μ-n X )=0,Var(μ-n X )=2σ,所以有()0?'=0,2)0(σ?-=''。 于是,特征函数)(t ?有展开式 )(2 11)(2)0()0()0()(22222t o t t o t t +-=+''+'+=σ???? 从而有 =??????+-=+∞→+∞→n n Y n n t o n t t n )(21lim )(lim 22?22t e - 而22 t e -正是N(0,1)分布的特征函数,定理得证。

卷积定理验证实验

信息与通信工程学 院实验报告 课程名称:数字信号处理 实验题目:卷积定理 指导教师: 班级: 学号: 学生姓名: 一、实验目的与任务 通过本实验,验证卷积定理,掌握利用DFT 与FFT 计算线性卷积的方法。 二、实验原理 时域圆周卷积在频域上相当于两序列DFT 的相乘,因而可以采用FFT 的算法来计算圆周卷积,当满足121-+≥N N L 时,线性卷积等于圆周卷积,因此可利用FFT 计算线性卷积。 三、实验内容及步骤 1. 给定离散信号)(n x 与)(n h ,用图解法求出两者的线性卷积与圆周卷积; 2. 编写程序计算线性卷积与圆周卷积; 3. 比较不同列长时的圆周卷积与线性卷积的结果,分析原因。 三、实验数据及程序代码 给定两个序列[][]1,6,0,5,0,3,4,2,4,3,1,6,0,5,0,3,4,2X Y ==,点数N=18,分别用conv()函数与FFT 与IFFT 计算卷积。代码如下: clc;clear; x = [1 6 0 5 0 3 4 2 4 3]; %原始序列 y = [1 6 0 5 0 3 4 2]; N = length(x) + length(y); %两序列的长度与 z=conv(x,y); %直接计算线性卷积 %利用 FFT 计算 % %手动补零 % x1 = [x zeros(1,N-length(x))]; %利用对序列 x 补零点 % y1 = [y zeros(1,N-length(y))]; %利用对序列 x 补零点 X = fft(x , N); %对两序列分别求 FFT Y = fft(y, N); Z = X 、*Y; %对两序列的 FFT 相乘并求 IFFT z1=ifft(Z); figure('numbertitle','off','name','1605034243刘桢'); subplot(221),stem(x);axis([1 N -inf inf]);title('序列 x'); subplot(222),stem(y);axis([1 N -inf inf]);title('序列 y'); subplot(223),stem(z);axis([1 N -inf inf]);title('直接卷积'); subplot(224),stem(z1);axis([1 N -inf inf]);title('N=18 点的圆周卷积'); 成绩

(完整版)大数定律及中心极限定理

第五章大数定律及中心极限定理 【基本要求】1、了解切比雪夫不等式; 2、了解切比雪夫大数定律,Bernoulli大数定律和辛钦大数定律成立的条件及结论; 3、了解独立同分布的中心极限定理(列维—林德伯格定理)和德莫佛—拉普拉斯 中心极限定理(二项分布以正态分布为极限分布)的应用条件和结论,并会用 相关定理近似计算有关随机事件的概率。 【本章重点】切比雪夫不等式,切比雪夫大数定理及Bernoulli大数定理。 【本章难点】对切比雪夫大数定理及独立同分布的中心极限定理的理解。 【学时分配】2学时 【授课内容】 §5.1 大数定律 0.前言 在第一章我们提到过事件发生的频率具有稳定性,即随着试验次数的增加,事件发生的频率逐渐稳定于某个常数,这一事实显示了可以用一个数来表征事件发生的可能性大小,这使人们认识到概率是客观存在的,进而由频率的三条性质的启发和抽象给出了概率的定义,而频率的稳定性是概率定义的客观基础。在实践中人们还认识到大量测量值的算术平均值也具有稳定性,而这种稳定性就是本节所要讨论的大数定律的客观背景,而这些理论正是概率论的理论基础。 下面介绍三个定理,它们分别反映了算术平均值及频率的稳定性。 一、切比雪夫大数定律 1

2 事件的频率稳定于概率,能否有p n lim n n =μ∞→,答案是否定的。而是用)(0}{ ∞→→ε≥-μn p n P n [依概率收敛]来刻划 (弱)。或者用{}1n n P p n →∞ μ???→=[a.e.收敛] 来刻划(强)。 1.定义:设ΛΛ,,,,21n X X X 是一个随机变量序列,a 是一个常数,若对于任意正数ε,有 ()1lim =<-∞ →εa X P n n , 则称序列ΛΛ,,,,21n X X X 依概率收敛于a .记为a X P n ?→? . 2.切比雪夫不等式 设随机变量ξ具有有限的期望与方差,则对0>?ε,有 2 ) ())((ε ξεξξD E P ≤ ≥-或2 ) (1))((ε ξεξξD E P - ≥<- 证明:我们就连续性随机变量的情况来证明。设~()p x ξ,则有 2 2 ()()(())(())()()x E x E x E P E p x dx p x dx ξ ε ξ ε ξξξεε -≥-≥--≥= ≤ ?? 22 2 1 () (())()D x E p x dx ξξεε+∞ -∞ ≤ -= ? 该不等式表明:当)(ξD 很小时,))((εξξ≥-E P 也很小,即ξ的取值偏离)(ξE 的可能性很小。这再次说明方差是描述ξ取值分散程度的一个量。 切比雪夫不等式常用来求在随机变量分布未知,只知其期望和方差的情况下,事件 {}E ξξε-≥概率的下限估计;同时,在理论上切比雪夫不等式常作为其它定理证明的工具。 3.定理1(切比雪夫大数定律) 设}{n ξ是相互独立的随机变量序列,每一随机变量都有有限的方差,且一致有界,即存在 常数C ,使Λ,2,1)(=≤i C D i ξ,则对任意的0>ε,有01111 =ε≥ξ-ξ∑∑==∞→})(E n n {P lim n i n i i i n [即

中心极限定理与大数定理的关系

渤海大学学士学位论文 题目: 中心极限定理与大数定理的关系 系别: 渤海大学 专业: 数学系 班级: 2002级1班 姓名:于丹 指导教师:金铁英 完成日期:2006年5月19日 中心极限定理与大数定理的关系 于丹 (渤海大学数学系辽宁锦州 121000 中国) 摘要:中心极限定理是概率与数理统计的一个重要分支,大数定理和中心极限定理都是讨论的随机变量序列的极限问题,它们是概率论中比较深入的理论结果。 本篇论文从研究大数定理开始,然后由大数定理以及收敛性引出了中心极限定理,最后通过对定理在实际应用中的举例和定理的一些反例的研究使我们弄清中心极限定理的内涵与外延,进一步弄清了大数定理与中心极限定理之间的关系。 关键词:大数定理中心极限定理收敛性 The relation of the central limit theorem and large numbers law Yu Dan (Department of Mathematics Bohai University Liaoning jinzhou 121000 China) Abstract:The Central limit theorem is an important branch of probability and mathematical statistic. The large numbers law and the central limit theorem is limit question of random variable sequence .They are the quite thorough theory result in the theory of probability. This paper commences from large numbers law,then the central limit theorem is cited by large numbers law and convergence.Eventually,we can understand connotation and extension of the central limit theorem by its examples and relationship between large numbers law and the central limit theorem . Key words:large numbers law ; the central limit theorem ; convergence. 引言

中心极限定理证明

中心极限定理证明 目录 第一篇:中心极限定理证明 第二篇:大数定理中心极限定理证明 第三篇:中心极限定理 第四篇:中心极限定理应用 第五篇:中心极限定理 更多相关范文 正文 第一篇:中心极限定理证明 中心极限定理证明 一、例子 高尔顿钉板试验. 图中每一个黑点表示钉在板上的一颗钉子.每排钉子等距排列,下一排的每个钉子恰在上一排两相邻钉子之间.假设有排钉子,从入口中处放入小圆珠.由于钉板斜放,珠子在下落过程中碰到钉子后以的概率滚向左边,也以的概率滚向右边.如果较大,可以看到许多珠子从处滚到钉板底端的格子的情形如图所示,堆成的曲线近似于正态分布. 如果定义:当第次碰到钉子后滚向右边,令;当第次碰到钉子后滚向左边,令.则是独立的,且 那么由图形知小珠最后的位置的分布接近正态.可以想象,当越来越大时接近程度越好.由于时,.因此,显然应考虑的是的极限分布.历史

上德莫佛第一个证明了二项分布的极限是正态分布.研究极限分布为正态分布的极限定理称为中心极限定理. 二、中心极限定理 设是独立随机变量序列,假设存在,若对于任意的,成立 称服从中心极限定理. 设服从中心极限定理,则服从中心极限定理,其中为数列. 解:服从中心极限定理,则表明 其中.由于,因此 故服从中心极限定理. 三、德莫佛-拉普拉斯中心极限定理 在重贝努里试验中,事件在每次试验中出现的概率为为次试验中事件出现的次数,则 用频率估计概率时的误差估计. 由德莫佛—拉普拉斯极限定理, 由此即得 第一类问题是已知,求,这只需查表即可. 第二类问题是已知,要使不小于某定值,应至少做多少次试验?这时利用求出最小的. 第三类问题是已知,求. 解法如下:先找,使得.那么,即.若未知,则利用,可得如下估计:. 抛掷一枚均匀的骰子,为了至少有0.95的把握使出现六点的概率与之差不超过0.01,问需要抛掷多少次? 解:由例4中的第二类问题的结论,.即.查表得.将代入,便得.由此可见,利用比利用契比晓夫不等式要准确得多.

中心极限定理的发展

中心极限定理的创立和发展 1141010113 万帅 关键词:中心极限定理,创立,严格证明,新的发展,三阶段。 引言:这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量近似服从正态分布的条件。该定理为人们用正态分布来描述和解决大量的概率问题提供了坚实的理论基础。 中心极限定理,是概率论中讨论随机变量和的分布以正态分布为极限的一组定理。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量近似服从正态分布的条件。该定理为人们用正态分布来描述和解决大量的概率问题提供了坚实的理论基础。 “中心极限定理”这一名称的来源有两种说法。波利亚认为这个定理十分重要,在概率论中具有中心地位,所以他加上了“中心”这一名称,于1920年引入这一术语。另一种说法是,现代法国概率论学派认为极限定理描述了分布函数中心的情况,而不是尾部的情况。 历史上有不少数学家对中心极限定理的研究做出了贡献。中心极限定理的发展主要分为三个阶段。 创立阶段:1733-----1853年 人们通常认为,法国数学家隶莫弗在1733年首次证明了,二项发布近似正态分布。然而,当时正态发布的概念,隶莫弗并不知道自己本质上证明了“中心极限定理” 法国数学家拉普拉斯写了很多论文,想推广棣莫弗的工作。他意识到需要一种新的数学技巧,并在1785年成功地发明了这个技巧:特征函数的简单形式和反演公式。拉普拉斯把他的两个主要研究方向结合起来得到了这个方法-----母函数和积分的监禁展开。通过把母函数中的t换成it e ,就得到了特征函数。然而,直到1810年他才发表了特征函数与反演公示的一般理论,并证明了中心极限定理。他之所以推迟到1810年,有一种解释是,从1786年开始,他就专注于《天体力学》的写作,这本书1805年才完成。1810年,拉普拉斯证明了中心极限定理,先是服从均匀发布的连续随机变量的情形,接着是服从任意分布的随机变量。拉普拉斯的证明显然对独立有界的随机变量和成立,证明过程使用了现在所谓的特征函数,或傅里叶变换,即itXEe(t为实数)。在1812年,他先后考虑了对称的、离散的均匀分布,对称的连续分布,任意分布情形。最后,拉普拉斯在他的名著《概率的分析理论》中对任意的p证明了如下中心极限定理:【1】 泊松完善和推广了拉普拉斯关于中心极限定理的证明。在所有考虑的情况里,都假设随机变量是独立的。泊松证明了服从相同分布的随机变量的情况,还推广到服从不同分布的随机变量的情况。1824年,泊松证明了连续随机变量的中心极限定理,并给出了三个反例,其中包括服从柯西分布的随机变量和,这时中心极限定理不成立。受当时传统的影响,泊松没有明确阐明中心极限定理成立的条件。但是,从他的证明和例子中,可以看到,他假设每个变量的方差都是有界的,且不等于零。其他数学家也做了这方面工作,比如贝塞尔和柯西。拉普拉斯等人给出证明的前提假设是,和的分布是有限的,因此所有的矩都存在。他们把结果推广到无限情形,但没有给出证明,并隐含假定了矩的存在。以现在的观点来看,只要沿着拉普拉斯的方向继续下去,法国数学家们是可以给出中心极限定理的严格证明的,比如柯西,他知道特征函数和稳定率。 从当时环境来看,大约1870年代,概率学家还处于心理上的劣势,苦于自己的研究领

概率论中的大数定律及中心极限定理

概率论中的大数定律及中心极限定理 唐南南 摘要 概率论是从数量上研究随机现象的规律的学科,概率论的特点是先提出数学模型,然后去研究它的性质,特点和规律。它在自然科学,技术科学和社会科学等科学中有广泛的应用。而大数定律和中心极限定理的内容是概率论中极限理论极为重要的一部分内容。在这篇文章中,我们从贝努力试验中的频率出发,讨论了独立随机变量和分布的极限问题。在一定条件下,这些分布弱收敛于退化分布,这就是大数定律。在另一些条件下,这些分布弱收敛于N(0,1)分布,这一类收敛于N(0,1)分布的定理统称为中心极限定理.大数定律说明了随机现象都具有稳定性而中心极限定理是研究相互独立随机变量序列{}i x 的部分和∑== n i i n x S 1 的分布,在适当条件下向正态分布收放的问题。在这篇文章 里,我们只介绍了一些定理的提出,内容以证明以及在其他学科上的应用,而大数定律和中心极限定理还有许多更深入,更广泛的内容,限于篇幅这里就不再介绍了。掌握定理的结论是重要的,这些结论一方面使频率稳定于概率,n 次观察的算术平均值稳定于数学期望都有了明确的含义和理论依据;另一方面,又将给数理统计中大样本的统计推断等提供理论依据。 关键词 大数定律 中心极限定理 随机现象 随机变量 引言 大数定律和中心极限定理是概率论中重要的一部分内容,但对读者来说,多数人对于这部分内容感到很难掌握,这篇文章就是对这部分内容进行浅入的分析,但对其内容进行详细的说明,而且进行了归纳性的总结,指出了各定律之间的联系及其差别,希望通过本篇文章内容的介绍,能使读者对于这部分知识有一个清晰的印象,能整体地把握这部分内容。 一 、大数定律 (一)、问题的提法(大数定律的提法) 重复实验中事件的频率的稳定性,是大量随机现象的统计规律性的典型表现。人们在实践中认识到频率具有稳定性,进而由频率的稳定性预见概率的存在;由频率的性质推断概率的性质,并在实际应用中(当n

卷积定理验证实验

信息与通信工程学院实验报告 课程名称:数字信号处理 实验题目:卷积定理 指导教师: 班级: 学号: 学生姓名: 一、实验目的和任务 通过本实验,验证卷积定理,掌握利用DFT 和FFT 计算线性卷积的方法。 二、实验原理 时域圆周卷积在频域上相当于两序列DFT 的相乘,因而可以采用FFT 的算法来计算圆周卷积,当满足121-+≥N N L 时,线性卷积等于圆周卷积,因此可利用FFT 计算线性卷积。 三、实验内容及步骤 1. 给定离散信号)(n x 和)(n h ,用图解法求出两者的线性卷积和圆周卷积; 2. 编写程序计算线性卷积和圆周卷积; 3. 比较不同列长时的圆周卷积与线性卷积的结果,分析原因。 三、实验数据及程序代码 给定两个序列[][]1,6,0,5,0,3,4,2,4,3,1,6,0,5,0,3,4,2X Y ==, 点数N=18,分别用conv()函数和FFT 与IFFT 计算卷积。代码如下: clc;clear; x = [1 6 0 5 0 3 4 2 4 3]; %原始序列 y = [1 6 0 5 0 3 4 2]; N = length(x) + length(y); %两序列的长度和 z=conv(x,y); %直接计算线性卷积 %利用 FFT 计算 % %手动补零 % x1 = [x zeros(1,N-length(x))]; %利用对序列 x 补零点 % y1 = [y zeros(1,N-length(y))]; %利用对序列 x 补零点 X = fft(x , N); %对两序列分别求 FFT Y = fft(y, N); Z = X.*Y; %对两序列的 FFT 相乘并求 IFFT

中心极限定理证明

中心极限定理证明)题的方法应用于统计学,这从另一个方面也间接地开辟了统计学的方法领域,其在现代推断统计学方法论中居于主导地 位。参考文献 [1]邓永录著应用概率及其理论基础.清华大学出版社。 [2]魏振军著概率论与数理统计三十三讲.中国统计出版社。 [3]程依明等著概率论与数理统计习题与解答.高等数学出版社。 第五篇:中心极限定理 中心极限定理 中心极限定理(central limit theorems) 什么是中心极限定理 大数定律揭示了大量随机变量的平均结果,但没有涉及到随机变量的分布的问题。而中心极限定理说明的是在一定条件下,大量独立随机变量的平均数是以正态分布为极限的。 中心极限定理是概率论中最著名的结果之一。它提出,大量的独立随机变量之和具有近似于正态的分布。因此,它不仅提供了计算独立随机变量之和的近似概率的简单方法,而且有助于解释为什么有很多自然群体的经验频率呈现出钟形(即正态)曲线这一事实,因此中心极限定理这个结论使正态分布在数理统计中具有很重要的地位,也使正态分布有了广泛的应用。 中心极限定理的表现形式 中心极限定理也有若干个表现形式,这里仅介绍其中四个常用定理: (一)辛钦中心极限定理 设随机变量相互独立,服从同一分布且有有限的数学期望a和方差σ2,则 随机变量,在n无限增大时,服从参数为a 和的正态分布即n→∞时, 将该定理应用到抽样调查,就有这样一个结论:如果抽样总体的数学期望a和方差σ2是有限的,无论总体服从什么分布,从中抽取容量为n的样本时,只要n足够大,其样本平均数的分布就趋于数学期望为a,方差为σ2 / n的正态分布。

(二)德莫佛——拉普拉斯中心极限定理 设μn是n次独立试验中事件a发生的次数,事件a在每次试验中发生的概率为p,则当n无限大时,频率设μn / n 趋于服从参数为的正态分布。即: 该定理是辛钦中心极限定理的特例。在抽样调查中,不论总体服从什么分布,只要n充分大,那么频率就近似服从正态分布。 (三)李亚普洛夫中心极限定理 设 差:是一个相互独立的随机变量序列,它们具有有限的数学期望和方 。 记,如果能选择这一个正数δ>0,使当n→∞ 时, ,则对任意的x有: 该定理的含义是:如果一个量是由大量相互独立的随机因素影响所造成的,而每一个别因素在总影响中所起的作用不很大,则这个量服从或近似服从正态分布。 (四)林德贝尔格定理 设是一个相对独立的随机变量序列,它们具有有限的数学期望和方差满足林德贝尔格条件,则当n→∞时,对任意的x ,有 。 中心极限定理案例分析 案例一:中心极限定理在商业管理中的应用 水房拥挤问题:假设西安邮电学院新校区有学生5000人,只有一个开水房,由于每天傍晚打开水的人较多,经常出现同学排长队的现象,为此校学生会特向后勤集团提议增设水龙头。假

第四章 大数定律与中心极限定理答案

第四章 大数定律与中心极限定理答案 一、单项选择 1. 设)(x Φ为标准正态分布函数,?? ?=不发生, 事件发生; 事件A A X i ,0,1100,,2,1Λ=i ,且 8.0)(=A P ,10021,,,X X X Λ相互独立。令∑==1001 i i X Y ,则由中心极限定理知Y 的分 布函数)(y F 近似于( ) (A ))(y Φ (B )Ф()y -80 4 (C ))8016(+Φy (D ))804(+Φy 答案:D 二、填空 1. 设X 的期望和方差分别为 μ和2σ,则由切比雪夫不等式可估计 )2(σμ<-X P 。 答案:34 ≥ 2.设随机变量X 和Y 的数学期望分别为-2和2,方差分别为1和4,而相关系数为-0.5,则根据切比雪夫不等式,有≤≥+}6|{|Y X P ________. 答案: 12 1 3. 已知随机变量ξ的均值μ=12,标准差σ=3,试用切比雪夫不等式估计ξ落在6到18之间的概率为________.与3到21之间 解 由题意得,2212,3,E D ξξσ=== 由切比雪夫不等式得 222{618}{126}3311466 P P D ξξξ≤≤=-≤≥-=-= 3 {618}4 P ξ∴≤≤≥

4. 已知随机变量ξ的均值μ=12,标准差σ=3,试用切比雪夫不等式估计ξ落在3到21之间的概率为________. 解 由题意得,2212,3,E D ξξσ=== 由切比雪夫不等式得 222{321}{129}3811999 P P D ξξξ≤≤=-≤≥-=-= 8 {321}9 P ξ∴≤≤≥ 5.假定生男孩、生女孩的概率均为0.5,用切比雪夫不等式估计200个新生婴儿中男孩在80个到120个之间的概率为________. 解 设ξ表示在200个新生婴儿中男孩的个数, 则~(,),B n p ξ 其中0.5p 200,n ==, 则 ()2000.5100,E np ξ==?= ()(1)2000.5(10.5)50.D np p ξ=-=??-= 由切比雪夫不等式得 22{80120}{10020}507 118 2020P P D ξξξ≤≤=-≤≥- =-= 6.用切比雪夫不等式估计下题的概率: 废品率为0.03, 求1000个产品中废品多 于20个且少于40个的概率为________. 答案:0.709 7.用切比雪夫不等式估计下题的概率: 求200个新生婴儿中, 男孩多于80个且少于120个的概率为________. (假定生女孩和生男孩的概率均为0.5.) 答案: 0.875

还原正态分布之高斯推导过程

《概率论与数理统计》大作业 题目:还原正态分布之高斯推导过程 学院:化学工程学院 姓名:赵振华 学号: 班级序号:14 专业班级:装控1407 任课教师:李明 2016年4月27日还原正态分布之高斯推导过程 摘要:正态分布是概率中最重要的分布,其发现极大的促进了概率论和数理统计的发展,虽然正态分布的获得过程本身包含着大量的数理统计思想,对之有详尽的了解有益于对其他理论的理解,但其推导过程一般少见于统计着作,因此本文将正态分布函数形式的推导过程还原与众,弥补众多着作的正态分布的发现和推导过程。

背景前言 正态分布又称高斯分布,是由数学家棣莫弗和数学王子高斯各自独立发现的,1733年,棣莫弗有二项分布的逼近推导出正态分布,1809年高斯在推导误差分布函数是发现正态分布,两位数学家在不同的数学文化背景下,采用不同的方式得到相同的正态分布,可谓知识都是相同的,两种方式可相互证明,更体现正态分布的客观性和科学性。中心极限定理表明:“任何随机分布当样本足够大时,都会逼近正态分布。”正态分布在数理统计研究历史上具有里程碑式的意义。但是正态分布的推导过程能被统计学着作提到的少之又少,又有许多想本人一样的学生对正太分布的来源和其推导过程有着强烈的兴趣,于是几费周折在陈希孺院士《数理统计学简史》一书上找到一两百字的有关介绍,再结合其他资料整理得到两种推导过程,但是本人还是大二,目前只能理解和深入研究高斯的推导过程,故本主要介绍了高斯的正态分布的推导过程。 1、高斯正态分布之推导 最初的高斯密度分布函数思想动机来源于对误差规律的认识。众所周知,随机误差属于一种典型的随机变量。直觉上,对一个物体的测量,用多次测量的结果的算术平均数作为总体平均真值的估计肯定优于用单次测量结果作为其估计值,而且似乎并不存在其它更好的估计量。那么误差随机变量所服从的分布或者说其密度函数一定是这么一个“周密”的函数,它总能使样本的算术平均数成为总体真值估计量

卷积证明及研究卷积在时域-频域信号中的应用

研究卷积在时域-频域信号中的应用 卷积定义:若已知函数()1f t ,()2f t ,称积分()()12d f f t τττ+∞-∞ -?为函数()1f t ,()2f t 的卷积,记为()()12f t f t *,即 ()()()()1212d f t f t f f t τττ+∞ -∞*=-? 卷积积分是一种数学方法,它是沟通时域-频域的一个桥梁,在信号与系统的理论研究中占有重要的地位。在很多情况下,卷积积分的计算比较困难,但是根据卷积的特性可以将卷积积分变成乘法运算,从而使信号分析人工化。变成的乘法运算即 若 ()(f)x t X ? ()(f)y t Y ? 则()()(f)Y(f)x t y t X *?,()()(f)Y(f)x t y t X ?* ※现给出卷积定理在时域-频域中应用的证明 ()()()()1212d f t f t f f t τττ+∞ -∞*=-? 上式两边进行傅里叶变换,有 ()()()()j 1212d e d F t f t f t f f t t ωτττ+∞+∞--∞-∞??=???*-???? ? ?? 交换积分次序 ()()()()j 1212e d d F t f t f t f f t t ωτττ+∞ +∞--∞-∞=???*-?????? ???

()()j j ()12e e d()d t t f f t t ωωτττττ+∞ +∞----∞-∞??=--???? ??根据时移特性,上式的中括号内的积分就是()2f t 的傅里叶变换,即 ()()()j 1212F e F ()d t f t f t f ωτωτ+∞--∞*=????? ()j 21F ()e d t f ωωττ+∞--∞=? 同理,上式中的积分就是()1f t 的傅里叶变换,即 ()()122112F F ()F ()F ()F ()f t f t ωωωω*==???? 因此, ()()1212F ()F ()f t f t ωω*? 总结:时域中的信号卷积,对应着频域乘积;而时域中的信号乘积,对应着频域卷积,即 若 ()(f)x t X ? ()(f)y t Y ? 则()()(f)Y(f)x t y t X *?,()()(f)Y(f)x t y t X ?*

中心极限定理证明

中心极限定理证明 一、例子 高尔顿钉板试验. 图中每一个黑点表示钉在板上的一颗钉子.每排钉子等距排列,下一排的每个钉子恰在上一排两相邻钉子之间.假设有排钉子,从入口中处放入小圆珠.由于钉板斜放,珠子在下落过程中碰到钉子后以的概率滚向左边,也以的概率滚向右边.如果较大,可以看到许多珠子从处滚到钉板底端的格子的情形如图所示,堆成的曲线近似于正态分布. 如果定义:当第次碰到钉子后滚向右边,令;当第次碰到钉子后滚向左边,令.则是独立的,且 那么由图形知小珠最后的位置的分布接近正态.可以想象,当越来越大时接近程度越好.由于时,.因此,显然应考虑的是的极限分布.历史上德莫佛第一个证明了二项分布的极限是正态分布.研究极限分布为正态分布的极限定理称为中心极限定理. 二、中心极限定理 设是独立随机变量序列,假设存在,若对于任意的,成立 称服从中心极限定理. 设服从中心极限定理,则服从中心极限定理,其中为数列. 解:服从中心极限定理,则表明 其中.由于,因此

故服从中心极限定理. 三、德莫佛-拉普拉斯中心极限定理 在重贝努里试验中,事件在每次试验中出现的概率为为次试验中事件出现的次数,则 用频率估计概率时的误差估计. 由德莫佛—拉普拉斯极限定理, 由此即得 第一类问题是已知,求,这只需查表即可. 第二类问题是已知,要使不小于某定值,应至少做多少次试验这时利用求出最小的. 第三类问题是已知,求. 解法如下:先找,使得.那么,即.若未知,则利用,可得如下估计:. 抛掷一枚均匀的骰子,为了至少有的把握使出现六点的概率与之差不超过,问需要抛掷多少次 解:由例4中的第二类问题的结论,.即.查表得.将代入,便得.由此可见,利用比利用契比晓夫不等式要准确得多. 已知在重贝努里试验中,事件在每次试验中出现的概率为为次试验中事件出现的次数,则服从二项分布: 的随机变量.求. 解:

信号与系统 各种公式性质证明

第一章 绪论 1、证明:)(1 )(t a at δδ=,利用结论?∞ ∞ -dt t )(δ ?∞ ∞ -dt at )(δ计算 利用换元法,令ττ τd a dt t at 1 1 = ?= ?=,则: )(1)()(1)(t a at dt t a dt at δδδδ=?= ??∞ ∞ -∞ ∞ - 此证明的物理意义层面的解释,因为)(t δ表示的是强度为“1”的一个冲激函数,即是此函数包含的面积为“1”,但是持续时间无穷小,瞬间量值无穷大的一个物理量。而)(at δ是对 )(t δ函数的尺度变换,其函数持续时间变化为原来的 a 1 倍,但是量值大小不变,所以相当于冲激强度变为原来的 a 1倍,所以可以表示为)(1 )(t a at δδ=。 2、证明)(1 )(00a t t a t at -= -δδ 设??∞∞-∞∞--=-dt a t t a dt t at )([)(00δδ 令? ??∞ ∞ -∞∞-∞∞-= =-?=?-=ττδττδδττd a d a dt a t t a d dt a t t )(1 )()([00 )(1 )()(1 )([00000a t t a t at dt a t t a dt a t t a d dt a t t -=-?- = -?=?- =? ?∞ ∞ -∞∞-δδδδττ 3、证明)(1||1)()(1||1)() ()(' ' t a a at t a a at n n n δδδδ= = 先证明)(1||1)(' ' t a a at δδ= ,利用冲激函数的广义函数定义证明。 dt t t a a dt t t a a dt t t t t a a dt t t a a dt t t a a dt t at a t at a dt t at a dt t at ? ? ??????∞ ∞-∞ ∞ -∞∞-∞ ∞-∞∞-∞∞-∞∞-∞ ∞-∞ ∞-∞ ∞-== ???? ??--=-=-=-==)()('1 1)()('11)()(')()(11)(')(11)(')(11)(')(1)()](1[)()]'(1[)()(' ?δ?δ?δ?δ?δ?δ?δ?δ?δ?δ

中心极限定理证明

中心极限定理证明 中心极限定理证明 中心极限定理证明 一、例子 高尔顿钉板试验. 图中每一个黑点表示钉在板上的一颗钉子.每排钉子等距排列,下一排的每个钉子恰在上一排两相邻钉子之间.假设有排钉子,从入口中处放入小圆珠.由于钉板斜放,珠子在下落过程中碰到钉子后以的概率滚向左边,也以的概率滚向右边.如果较大,可以看到许多珠子从处滚到钉板底端的格子的情形如图所示,堆成的曲线近似于正态分布. 如果定义:当第次碰到钉子后滚向右边,令;当第次碰到钉子后滚向左边,令.则是独立的,且 那么由图形知小珠最后的位置的分布接近正态.可以想象,当越来越大时接近程度越好.由于时,.因此,显然应考虑的是的极限分布.历史上德莫佛第一个证明了二项分布的极限是正态分布.研究极限分布为正态分布的极限定理称为中心极限定理. 二、中心极限定理 设是独立随机变量序列,假设存在,若对于任意的,成立 称服从中心极限定理. 设服从中心极限定理,则服从中心极限定理,其中为数列. 解:服从中心极限定理,则表明 其中.由于,因此 故服从中心极限定理.

三、德莫佛-拉普拉斯中心极限定理 在重贝努里试验中,事件在每次试验中出现的概率为为次试验中事件出现的次数,则 用频率估计概率时的误差估计. 由德莫佛—拉普拉斯极限定理, 由此即得 第一类问题是已知,求,这只需查表即可. 第二类问题是已知,要使不小于某定值,应至少做多少次试验?这时利用求出最小的. 第三类问题是已知,求. 解法如下:先找,使得.那么,即.若未知,则利用,可得如下估计: . 抛掷一枚均匀的骰子,为了至少有0.95的把握使出现六点的概率与之差不超过0.01,问需要抛掷多少次? 解:由例4中的第二类问题的结论,.即.查表得.将代入,便得. 由此可见,利用比利用契比晓夫不等式要准确得多. 已知在重贝努里试验中,事件在每次试验中出现的概率为为次试验中事件出现的次数,则服从二项分布: 的随机变量.求. 解: 因为很大,于是 所以 利用标准正态分布表,就可以求出的值.

第四章大数定律和中心极限定理

第四章 大数定律和中心极限定理 教学内容:本章主要讲述契比雪夫不等式,契比雪夫大数定律,贝努里大数定律和中心极限定理等内容. 教学重点:讲清大数定律的条件、结论和中心极限定理的条件、结论。 教学难点:随机变量序列的两种收敛性及大数定律和中心极限定理的应用。 在本课程一开始引入概率这个概念时,我们曾经指出,频率是概率的反映,随着观察次数n 的增大,频率将会逐渐稳定到概率。还曾经指出,当n 很大时,频率会概率是会非常“靠近”的,某些读者可能早就有了疑问:这里说的“逐渐稳定”和非常“靠近”究竟是什么意思?与数学分析中的极限概念有关系吗?这个问题提得非常好,前面提到的“逐渐稳定”和非常“靠近”都只是一种直观的说法,它的严格的数学家意义确实需要我们进一步阐明,本章就是要讨论这一类问题。 第一节 切比雪夫不等式 一、 契比雪夫不等式(Chebyshev inequality ) 设随机变量X 的均值()E X 及方差()D X 存在,则对于任意正数ε,有不等式 22 }|)X (E X {|P εσ≤ε≥- 或22 1}|)X (E X {|P ε σ-≥ε<- 成立。 我们称该不等式为契比雪夫(Chebyshev )不等式。 证明:(我们仅对连续性的随机变量进行证明)设()f x 为X 的密度函数,记μ=)X (E , 2)(σ=X D 则 ??≥-≥ --≤= ≥-ε μ εμεμεx x dx x f x dx x f X E X P )()()(}|)({|2 2 2 22 22 ) (1 )()(1 εσεμεX D dx x f x = ?≤ -≤ ? ∞ +∞ - 从定理中看出,如果()D X 越小,那么随机变量X 取值于开区间((),())E X E X εε-+中的概率就越大,这就说明方差是一个反映随机变量的概率分布对其分布中心(distribution center)()E X 的集中程度的数量指标。 利用契比雪夫不等式,我们可以在随机变量X 的分布未知的情况下估算事件 {}()X E X ε-<的概率。

频域卷积定理证明

频域: 频域frequency domain 是描述信号在频率方面特性时用到的一种坐标系。在电子学,控制系统工程和统计学中,频域图显示了在一个频率范围内每个给定频带内的信号量。频域表示还可以包括每个正弦曲线的相移的信息,以便能够重新组合频率分量以恢复原始时间信号。 卷积定理: 卷积定理是傅立叶变换满足的一个重要性质。卷积定理指出,函数卷积的傅立叶变换是函数傅立叶变换的乘积。具体分为时域卷积定理和频域卷积定理,时域卷积定理即时域内的卷积对应频域内的乘积;频域卷积定理即频域内的卷积对应时域内的乘积,两者具有对偶关系。 模数转换: 模拟信号只有通过A/D转化为数字信号后才能用软件进行处理,这一切都是通过A/D转换器(ADC)来实现的。与模数转换相对应的是数模转换,数模转换是模数转换的逆过程,接下来本文将主要介绍几种模数转换的方法以及模数转换器的参数等。 简介: 与传统无线电不同,软件无线电要求尽可能地以数字形式处理无线信号,因此必须将A/D和D/A转换器尽可能地向天线端推移,这就对A/D和D/A转换器的性能提出了更高的要求。主要体现在两个方面。

(1)采样速率。依据采样定理,A/D转换器的抽样频率fs应大于2Wa(Wa为被采样信号的带宽)。在实际中,由于A/D转换器件的非线性、量化噪声、失真及接收机噪声等因素的影响,一般选取fs>2.5Wa。 (2)分辨率。采样值的位数的选取需要满足一定的动态范围及数字部分处理精度的要求,一般分辨率80dB的动态范围要求下不能低于12位。 模数变换方法: 软件无线电对模数变换的技术要求包括以下几个方面: (1)采样方法应满足采样定理,适当加入抗混迭滤波器; (2)宽带化,如在中频对模拟信号进行数字化,信号带宽通常在十几到几十兆赫兹; (3)保持较高的信号动态范围; (4)高采样率,应尽量在中频或射频工作,以尽可能保证整机的软件化处理; (5)减少量化噪声。 模数变换主要是对模拟信号进行采样,然后量化编码为二进制数字信号;数模变换是模数变换的逆过程,主要是将当前数字信号重建为模拟信号。下面主要介绍采样和重建的方法。 1.低通采样 低通采样定理表述如下。 一个频带限制在(0,fH)内的连续信号x(t),如果抽样频率fs

中心极限定理证明_1

本文共有7444.5字,如对您有帮助,可购买打赏目录 第一篇:中心极限定理证明第二篇:大数定理中心极限定理证明第三篇:中心极限定理第四篇:中心极限定理应用第五篇:中心极限定理 正文第一篇:中心极限定理证明中心极限定理证明一、例子 高尔顿钉板试验. 图中每一个黑点表示钉在板上的一颗钉子.每排钉子等距排列,下一排的每个钉子恰在上一排两相邻钉子之间.假设有排钉子,从入口中处放入小圆珠.由于钉板斜放,珠子在下落过程中碰到钉子后以的概率滚向左边,也以的概率滚向右边.如果较大,可以看到许多珠子从处滚到钉板底端的格子的情形如图所示,堆成的曲线近似于正态分布. 如果定义:当第次碰到钉子后滚向右边,令;当第次碰到钉子后滚向左边,令.则是独立的,且 那么由图形知小珠最后的位置的分布接近正态.可以想象,当越来越大时接近程度越好.由于时,.因此,显然应考虑的是的极限分布.历史上德莫佛第一个证明了二项分布的极限是正态分布.研究极限分布为正态分布的极限定理称为中心极限定理. 二、中心极限定理 设是独立随机变量序列,假设存在,若对于任意的,成立 称服从中心极限定理. 设服从中心极限定理,则服从中心极限定理,其中为数列.

解:服从中心极限定理,则表明 其中.由于,因此 故服从中心极限定理. 三、德莫佛-拉普拉斯中心极限定理 在重贝努里试验中,事件在每次试验中出现的概率为为次试验中事件出现的次数,则 用频率估计概率时的误差估计. 由德莫佛—拉普拉斯极限定理, 由此即得 第一类问题是已知,求,这只需查表即可. 第二类问题是已知,要使不小于某定值,应至少做多少次试验?这时利用求出最小的. 第三类问题是已知,求. 解法如下:先找,使得.那么,即.若未知,则利用,可得如下估计:. 抛掷一枚均匀的骰子,为了至少有0.95的把握使出现六点的概率与之差不超过0.01,问需要抛掷多少次? 解:由例4中的第二类问题的结论,.即.查表得.将代入,便得.由此可见,利用比利用契比晓夫不等式要准确得多. 已知在重贝努里试验中,事件在每次试验中出现的概率为为次试验中事件出现的次数,则服从二项分布: 的随机变量.求. 解:

(完整版)8-第五章大数定律和中心极限定理解析

第五章 大数定律和中心极限定理 大数定律和中心极限定理是概率论中两类极限定理的统称,前者是从理论上证明随机现象的“频率稳定性”,并进一步推广到“算术平均值法则”;而后者证明了独立随机变量标准化和的极限分布是正态分布或近似正态分布问题,这两类极限定理揭示了随机现象的重要统计规律,在理论和应用上都有很重要的意义。 §5.1 大数定律 设ΛΛ,,,,21n X X X 是互相独立的一列随机变量,每个随机变量取值于二元集合{0,1},并有相同的概率分布函数 ()()0, 1,1j j P X q P X p p q ====+= 易计算它们的数学期望和方差为 (), ()j j E X p D X pq == 如果取这些j X 的部分和 n n X X X S +++=Λ21 并考虑它们的平均值∑==n j j n n X n S 1/)(/,易知它的数学期望和方差为 ;n n S S pq E p D n n n ????== ? ????? 利用定理4.2.13给出的切比雪夫不等式可知:对任何一个正数t 有 2n S pq P p t n t n ??-≥≤ ??? 令∞→n ,有 2lim lim 0n n n S pq P p t n t n →∞→∞??-≥≤= ??? 即 lim 0n n S P p t n →∞??-≥= ??? (5.1.1) 可见当n 很大时,部分和的平均值/n S n 与p 相距超过任何一个数0>t 的概率都很小,而当∞→n 时, 这个概率趋于0。 (5.1.1)式的结果称为弱大数定律,也称伯努利大数定律, 因为这个定律是伯努利在1713年首先证明的,是从理论上证明随机现象的频率具有稳定性的第一个定律。注意式(5.1.1)等价于

相关主题
文本预览
相关文档 最新文档