当前位置:文档之家› 地质统计学复习提纲

地质统计学复习提纲

地质统计学复习提纲
地质统计学复习提纲

一掌握变差函数的概念,变差函数理论模型的数学公式及含义,变差函数各参

数的意义。

1.变差函数的概念

假设空间点x只在一维的x轴上变化,我们把区域化变量Z(x)在x,x+h

两点处的值之差的方差之半定义为Z(x)在x 轴方向上的变差函数,记为r (x,h)。

r (x,h)=1/2V ar[Z(x)-Z(x+h)]

=1/2E[Z(x)-Z(x+h)]2-1/2{E[Z(x)]-E[Z(x+h)]}2

在二阶平稳假设,或作本征假设,此时:

E[Z(x+h)]= E[Z(x)]

则:r (x,h) =1/2Var[Z(x)-Z(x+h)]

=1/2E[Z(x)-Z(x+h)]2-1/2{E[Z(x)]-E[Z(x+h)]}2

=1/2E[Z(x)-Z(x+h)]2

2.变差函数参数:

1)a变程(Range) :指区域化变量在空间上具有相关性的范围。在变程范围之内,即h≤a时,数据具有相关性,且相关性随h变大而减小;而在变程之外,即h>a时,数据之间互不相关,即在变程以外的观测值不对估计结果产生影响。

意义:通过“变程”反映变量的影响范围。变程越大,影响范围越大。

2)C0块金值(Nugget) :变差函数如果在原点间断,在地质统计学中称为“块金效应”,表现为在很短的距离内有较大的空间变异性,无论h多小,两个随机变量都不相关。它可以由测量误差引起,也可以来自矿化现象的微观变异性。在数学上,块金值C0相当于变量纯随机性的部分。

意义:通过块金值反映颗粒分布的均匀性。块金值越小,说明砂体颗粒越均匀,连通性越好。块金常数Co的大小可反映区域化变量的随机性的大小。

3)基台值(Sill):代表变量在空间上的总变异性大小。反映区域化变量在研究范围内变异的强度,为先验方差。即为变差函数在h大于变程时的值,为块金值C0和拱高cc之和。

意义:变差函数如果是跃迁型的,其基台值的大小可反映变量在该方向上变化幅度的大小。

4)拱高为在取得有效数据的尺度上,可观测得到的变异性幅度大小。当块金值等于0时,基台值即为拱高。拱高为先验方差与块金效应之差。

3. 变差函数的理论模型

二掌握实验变差函数的计算方法

一维实验变差函数的计算公式:

对不同的滞后h,进行计算,得出各个h的变差函数值。

例1:设Z(x)为一维区域化变量,满足本征假设,又已知Z(1)=2,Z(2)=4,Z(3)=3,

Z(4)=1,Z(5)=5,Z(6)=3,Z(7)=6,Z(8)=4,试求

答案:3.00 1.67 2.80

例2:2D情况

α3 方向

三掌握普通克里金方法的概念,计算公式以及计算过程,特别是普通克里金方程组的形式(参阅线性地质统计学P126-136)

1. 普通克里金方法的概念

普通克里金是一种对空间分布数据求最优、线性、无偏内插估计量(一种特定的滑动加权平均法)。

2.计算

例设有一个层状矿床,在平面上S1,S2,S3,S4处取了4个样品,其品位分别为Z1,Z2,Z3,Z4。据此估计S0点处的品位Z0

设品位Z(x)是二阶平稳的。其在平面上的二维变差函数是个各向同性的球状模型,其参数为:块金值C0=2,变程a=200,拱高C=20,即

及不同建模方法的优缺点?

所谓指示变换,即将数据按照不同的门槛值编码为1或0的过程。对于模

拟目标区内的每一类相,当它出现于某一位置时,指示变量为1,否则为0。

建模原理:在类型变量的模拟过程中,对于三维空间的每一网格(象元),首先通过指示克里金估计各变量的条件概率,并归一化,使所有类型变量的条件概率之和为1,以确定该处的条件概率分布函数);

然后随机提取一个0至1之间随机数,该随机数在条件概率分布函数中所对应的变量即为该象元的相类型。这一过程在其它各个象元进行运行,便可得到研究区内相分布的一个随机图象。

步骤:1)数据准备与处理(指示变换)

2)求取变差函数

3)产生一条随机路径,顺序模拟每一个未知点。

4)利用各种克里金方法建立累积概率分布

5)蒙特卡罗抽样获得待估点值

6)转入下一个节点,直到所有节点模拟完成

指示变换的最大优点是可将软数据(如试井解释、地质推理和解释)进行编码,因而可使其参与随机模拟。

2.序贯高斯:高斯随机域是最经典的随机函数模型。最大特征是随机变量符合

高斯分布(正态分布)。

建模原理:①随机地选择一个还没有被模拟的网格点。

②在该处估计局部条件概率分布(LCPD)。

③从LCPD中随机地抽取一个值。

④把新模拟的值包括到条件数据集中。

⑤重复步骤①—④,直到所有的网格点都被模拟。

步骤:1数据准备与处理(分相处理,利用各种转换方法使得条件数据服从正态分布)

2求取变差函数

3产生一条随机路径,顺序模拟每一个未知点。

4利用各种克里金方法建立累积概率分布

5蒙特卡罗抽样获得待估点值

6转入下一个节点,直到所有节点模拟完成

3.示性点过程

建模原理:标点过程的基本思路是根据点过程的概率定律按照空间中几何物体的分布规律,产生这些物体的中心点的空间分布,然后将物体性质(即marks,如物体几何形状、大小、方向等)标注于各点之上。从地质统计学角度来讲,标点过程模拟即是要模拟物体点(points)及其性质(marks)在三维空间的联合分布。

步骤:1设计一个目标函数,并确定一个目标函数阈值;2根据先验地质认识随机产生目标体,计算目标函数值并检验;3用各种参数分布和相互作用的多种组合进行迭代,直至最终得到一个满意的随机模拟结果,即达到目标函数阈值为止。

基于目标的方法

优点:能再现目标的特定几何形状

不足:

?对每类具有不同几何形状的目标要有自己特定的一套参数,不能通用。复杂形态的参数化较为困难.

?对于一个目标体内的多个数据较难拟合,有时不能拟合(算法不收敛)。

?算法要求大量机时。

基于象元的方法(两点变差函数)

优点:能很容易忠实于条件数据

不足:只能保持两点统计一致性,不能同时反映多于两个点间的空间相关性或连续性。不能显示出目标的几何形状

五、确定性建模与随机建模的概念与区别及随机建模的优势

确定性建模:以确定性资料为基础,以储层地震地质学、储层沉积学为指导,运用地质统计学克里金方法给出井间确定的、唯一的储层参数而产生的储层模型。

随机建模:以已知的信息为基础,以随机函数为理论,应用随机模拟方法,产生可选的、等可能的储层模型。

区别:①确定性建模为局部估计方法,力图对待估点的未知值作出最优的、无偏的估计,而不专门考虑所有估计值的空间相关性,而随机建模模拟方法首先考虑的是模拟值的全局空间相关性,其次才是局部估计值的精确程度;②确定性

建模给出观测值间的光滑估值,对真实观测数据的离散性进行了平滑处理,从而忽略了井间的细微变化;而条件随机模拟结果在在光滑趋势上加上系统的“随机噪音”,这一“随机噪音”正是井间的细微变化,虽然对于每一个局部的点,模拟值并不完全是真实的,估计方差甚至比插值法更大,但模拟曲线能更好地表现真实曲线的波动情况;③确定性建模只产生一个储层模型,因而不能了解和评价模型中的不确定性,而随机模拟则产生许多可选的模型,各种模型之间的差别正是空间不确定性的反映。

随机建模的优势:评价由于资料限制和储层复杂性而导致的井间储层预测的不确定性,以满足油田开发决策在一定风险范围的正确性。

生物统计学考试复习题库

生物统计学各章题目 一 填空 1.变量按其性质可以分为(连续)变量和(非连续)变量。 2.样本统计数是总体(参数)的估计值。 3.生物统计学是研究生命过程中以样本来推断(总体)的一门学科。 4.生物统计学的基本内容包括(试验设计)和(统计分析)两大部分。 5.生物统计学的发展过程经历了(古典记录统计学)、(近代描述统计学)和(现代推断统计学)3个阶段。 6.生物学研究中,一般将样本容量(n ≥30)称为大样本。 7.试验误差可以分为(随机误差)和(系统误差)两类。 判断 1.对于有限总体不必用统计推断方法。(×) 2.资料的精确性高,其准确性也一定高。(×) 3.在试验设计中,随机误差只能减小,而不能完全消除。(∨) 4.统计学上的试验误差,通常指随机误差。(∨) 二 填空 1.资料按生物的性状特征可分为(数量性状资料)变量和(质量性状资料)变量。 2. 直方图适合于表示(连续变量)资料的次数分布。 3.变量的分布具有两个明显基本特征,即(集中性)和(离散性)。 4.反映变量集中性的特征数是(平均数),反映变量离散性的特征数是(变异数)。 5.样本标准差的计算公式s=( )。 判断题 1. 计数资料也称连续性变量资料,计量资料也称非连续性变量资料。(×) 122 --∑∑n n x x )(

2. 条形图和多边形图均适合于表示计数资料的次数分布。(×) 3. 离均差平方和为最小。(∨) 4. 资料中出现最多的那个观测值或最多一组的中点值,称为众数。(∨) 5. 变异系数是样本变量的绝对变异量。(×) 单项选择 1. 下列变量中属于非连续性变量的是( C ). A. 身高 B.体重 C.血型 D.血压 2. 对某鱼塘不同年龄鱼的尾数进行统计分析,可做成( A )图来表示. A. 条形 B.直方 C.多边形 D.折线 3. 关于平均数,下列说法正确的是( B ). A. 正态分布的算术平均数和几何平均数相等. B. 正态分布的算术平均数和中位数相等. C. 正态分布的中位数和几何平均数相等. D. 正态分布的算术平均数、中位数、几何平均数均相等。 4. 如果对各观测值加上一个常数a ,其标准差( D )。 A. 扩大√a 倍 B.扩大a 倍 C.扩大a 2倍 D.不变 5. 比较大学生和幼儿园孩子身高的变异度,应采用的指标是( C )。 A. 标准差 B.方差 C.变异系数 D.平均数 三 填空 1.如果事件A 和事件B 为独立事件,则事件A 与事件B 同时发生的概率P (AB )= P (A )?P (B )。 2.二项分布的形状是由( n )和( p )两个参数决定的。 3.正态分布曲线上,( μ )确定曲线在x 轴上的中心位置,( σ )确定曲线的展开程度。 4.样本平均数的标准误 =( )。 5.t 分布曲线与正态分布曲线相比,顶部偏( 低 ),尾部偏( 高 )。 n /σx σ

医学统计学简答题35506

医学统计学简答题 1.简述标准差、标准误的区别与联系? 区别:(1)含义不同:标准差S表示观察值的变异程度,描述个体变量值(x)之间的变异度大小,S越大,变量值(x)越分散;反之变量值越集中,均数的代表性越强。标准误..估计均数的抽样误差的大小,是描述样本均数之间的变异度大小,标准误越大,样本均数与总体均数间差异越大,抽样误差越大;反之,样本均数越接近总体均数,抽样误差越小。 (2)与n的关系不同: n增大时,S趋于σ(恒定),标准误减少并趋于0(不存在抽样误差)。 (3)用途不同:标准差表示x的变异度大小、计算变异系数、确定医学参考值范围、计算标准误等,标准误用于估计总体均数可信区间和假设检验。 联系:二者均为变异度指标,样本均数的标准差即为标准误,标准差与标准误成正比。 2.简述假设检验的基本步骤。 1.建立假设,确定检验水准。 2.选择适当的假设检验方法,计算相应的检验统计量。 3.确定P值,下结论 3.正态分布的特点和应用: 特点:1、集中性:正态曲线的高峰位于正中央,即均数所在的位置; 2、对称性:正态分布曲线位于直角坐标系上方,以x=u为中心,左右对称,曲线两端永远不与横轴相交; 3、均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均

匀下降; 4、正态分布有两个参数,即均数μ和标准差σ,可记作N(μ,σ):均数μ决定正态曲线的中心位置;标准差σ决定正态曲线的陡峭或扁平程度。σ越小,曲线越陡峭;σ越大,曲线越扁平; 5、u变换:为了便于描述和应用,常将正态变量作数据转换; 应用: 1.估计医学参考值范围 2.质量控制 3.正态分布是许多统计方法的理论基础 4.简述参考值范围与均数的可信区间的区别和联系 可信区间与参考值范围的意义、计算公式和用途均不同。 1.从意义来看95%参考值范围是指同质总体内包括95%个体值的估计范围,而总体均数95%可信区间是指95%可信度估计的总体均数的所在范围 2.从计算公式看若指标服从正态分布,95%参考值范围的公式是:±1.96s。总体均数95%可信区间的公式是:前者用标准差,后者用标准误。前者用1.96,后者用α为0.05,自由度为v的t界值。 5.频数表的用途和基本步骤。 用途:(1)揭示资料的分布特征和分布类型;(2)便于进一步计算指标和分析处理;(3)便于发现某些特大或特小可疑值。 基本步骤:(1)求出极差;(2)确定组段,一般设8~15个组段;(3)确定组距;组距=R/组段数,但一般取一方便计算的数字;(4)列出各个组段并确定每一组段频数。 6.非参数统计检验的适用条件。 (1)资料不符合参数统计法的应用条件(总体为正态分布、且方差相等)或总体分布类型未知;(2)等级资料;(3)分布呈明显偏态又无适当的变量转换方法使之满足参数统计条件;(4)在资料满足参数检验的要求时,应首选参数法,以免降低检验效能

统计学复习提纲

旅游统计学复习提纲 考试题型 一、单项选择题(每小题1分,共10分) 二、多项选择题(每小题2分,共10分) 三、名词解释(每小题4分,共20分) 四、简答题(每小题6分,共30分) 五、计算题(每小题15分,共30分) 第一章绪论 第一节统计的概念及其产生和发展 一、“统计”的概念(三种涵义,两重关系) 1、统计工作:资料收集、整理和分析研究等活动。 2、统计资料:工作成果。包括统计数据和分析报告。 3、统计学:研究如何搜集、整理、分析数据资料的一门方法论科学。统计的科学定义: 它是人们认识客观世界总体数量变动关系和变动规律的活动的总称,是人们认识客观世界的一种有力工具。 第三节旅游统计的基本方法 二、旅游统计的基本环节 (一)统计调查 有组织、有计划地搜集资料。要求:准确、完整、及时。 (二)统计整理 对调查资料去伪存真、去粗取精、科学分类、浓缩简化。 (三)统计分析 运用各种统计方法,揭示被研究对象的发展变化趋势和规律性,作出科学结论。包括描述性分析、推断分析、决策分析。要求:定性定量结合。 第四节旅游统中的几个基本概念 一、统计总体和总体单位 ①统计总体:统计研究所确定的客观对象,是具有共同性质的许多单位组成的整体。 ②总体单位:组成总体的各个单位(或元素),是各项统计数字的原始承担者。 二、标志与指标 ①标志:说明总体单位属性、特征的名称,标志值是标志的具体表现。 ②指标:综合反映总体数量特征的概念和数值,由指标名称和指标数值组成。

三、变异和变量 ①变异:总体各单位的标志表现存在一定的差异,是统计存在的前提。分 为品质变异和数量变异。 ②变量:可变的数量标志和统计指标。分为⑴确定性变量和随机性变 量、 ⑵离散性变量和连续性变 量。 第二章统计调查 第一节统计调查的意义 一、统计调查的概念和意义 ㈠概念:统计调查是根据统计目的,取得相应数据的统计资料搜集活动。 ㈡意义:①是统计工作的开始阶段;②是统计整理和统计分析的前提; ③统计调查在整个统计工作中,担负着提供基础资料的任务,是一切 统计资料的来源。 二、统计调查的任务和要求 ⑴基本任务:根据统计指标体系,通过每一项的具体调查,取得反映社 会经济总体现象及各个部分间相互关系的原始统计资料 ⑵基本要求:准确性、及时性、全面性、系统性(前三个是衡量统计调查 工作质量的重要标志) 第二节统计调查的基本方法 ★统计调查的基本方法有哪些? 答:直接观察法、报告法、采访法、问卷法、通讯调查法、特尔菲法(专家调查法)、 集中意见法 第三节统计调查方案 第四节几种专门调查 第三章统计资料的整理与分析 第二节资料的整理 一.资料整理的概念 资料整理是指对统计调查所搜集到的数据进行分类和汇总,使其系统化、条理化、科学化,以得出反映事物总体综合特征的资料的工作过

生物统计学重要知识点

生物统计学重要知识点 (说明:下列知识点为考试内容,没涉及的不需要复习。注意加粗的部分为重中之重,一定要弄懂。大家要进行有条理性的复习,望大家考出好成绩!) 第一章概论(容易出填空题和名词解释) 1、生物统计学的目的、内容、作用及三个发展阶段 2、生物统计学的基本特点 3、会解释总体、个体、样本、样本容量、变量、参数、统计数、效应和互作 4、会区分误差(随机误差和系统误差)与错误以及产生的原因 5、会区分准确度和精确度 第二章试验资料的整理与特征数的计算(容易出填空和名词解释) 1、随机抽样必须满足的两个条件 2、能看懂次数分布表和次数分布图,会计算全距、组数、组距、组限和组中值 3、会求平均数(算数、加权和几何)、中位数、众数,算术平均数的重要特性 4、会求极差、方差、标准差和变异系数,理解标准差的性质 第三章概率与概率分布(选择、填空和计算) 1、理解事件、频率及概率,事件的相互关系,加法定理和乘法定理的运用 2、概率密度函数曲线的特点和大数定律 3、二项分布、泊松分布和正态分布的概率函数和标准分布图像特征,会计算概率值 4、理解分位数的概念,弄清什么时候用单尾,什么时候用双尾 5、样本平均数差数的分布 第四章统计推断(计算) 1、无效假设和备择假设、显著水平、双尾检验和单尾检验、假设检验的两类错误,会根据 小概率原理做出是否接受无效假设的判断 2、总体方差已知和未知情况下如何进行U检验 3、一个样本平均数的t检验(例4.5) 成组数据平均数比较的t检验(例4.6和4.7) 4、一个样本频率的假设检验(例4.11),知道连续性矫正 5、参数的区间估计(置信区间)和点估计

统计学原理韩兆洲期末考试复习提纲

第一章绪论(小题) 1、统计的含义 人们对客观事物的数量表现、数量关系和数量变化进行描述和分析的一种计量活动。 2、统计的特点 数量性、具体性、综合性 3、统计学的若干基本概念 (1)总体与总体单位;总体的特征; 总体是指在某种共性的基础上由许多个别事物结合起来的整体。 例:制造业企业是一个总体、由所有从事制造业的企业所组成,每一个制造业企业都是一个总体单位。 特征:同质性(都是制造业)、大量性、差异性(不同的总体单位间,除了某方面必须有共性之外,其他方面的差异性,如员工人数等等) (2)总体的分类:有限总体与无限总体 总体单位有限为有限总体,总体单位无限称为无限总体 (3)标志、变异与变量 标志:指说明总体单位特征的名称,由标志名称+标志值构成。 变异:可变的品质标志 变量:离散变量、连续变量,(指的是标志,不是标志值) 例:中华人民共和国人口普查 总体:具有中华人民共和国国籍的所有公民 总体单位:每一位公民

标志名称标志值 国籍:中国(不变标志) 姓名:张三(品质标志) 性别:男(品质标志) 民族:汉(品质标志) 婚姻状况:已婚(品质标志) 数量标志: 家庭成员数:4人(离散变量) 年龄:50(连续变量) 身高:172cm (连续变量) 体重:72.5kg(连续变量) 收入:2000元/月(连续变量) (4)连续型变量与离散型变量联系和区别 离散变量:以整数出现 连续变量:可做无限分割的变量 在某些特殊场合,连续变量可做离散化处理。(当人口按年龄分组)(5)指标与标志 指标:是说明总体数量特征的概念。由指标名称+指标值组成。例:工业普查 总体:工业企业 总体单位:每一个工业企业 指标名称指标值

应用统计学概念整理

并根据样本调查结果来推断总体特征 自下而上地逐级提供基本数据的调查方 应用统计学概念整理 第一章:导论 1. 只能归类于某一类别的非数字型数据称为分类数据 2. 只能归于某一有序类别的非数字型数据称为顺序数据 3. 按数字尺度测量的观测值称为数值型数据 4. 包含所研究的全部个体的集合称为总体 5. 从总体中抽取的一部分的元素的集合称为样本 6. 用来描述总体特征的的概括性数字度量称为参数 7. 用来描述样本特征的概括性数字度量称为统计量 8. 说明事物类别的一个名称称为分类变量 9. 说明事物有序类别的一个名称称为顺序变量 10. 说明事物数字特征的一个名称称为数值型变量 11. 只能取可数值的变量称为离散型变量 12. 可以在一个或多个区间中取任何值的变量称为连续型变量 第二章:数据收集 1. 从总体中随机抽取一部分单位作为样本进行调查, 的数据收集方法,称为抽样调查。 2. 为特定目的而专门组织的全面调查称为普查 3. 按照国家有关法律规定, 自上而下地统一布置, 式 称为统计报表 第三章:数据的图表展示 1. 落在某一特定类别或组中的数据个数,称为频数 2. 把各个类别及其落在其中的相应频数全部列出, 并用表格形式表示出来, 称为频数分布 3. 一个样本或总体中各个部分的数据与全部数据之比,称为比例 4. 将比例乘以 100 得到的数值,称为百分比或百分数,用 %表示 5. 样本或总体中各不同类别数值之间的比值,称为比率 6. 分类数据的图示:条形图, pareto 图,对比条形图,饼图 7. 将各有序类别或组的频数逐级累加起来得到的频数称为累计频数 8. 将各有序类别或组的百分比逐级累加起来称为累计频率 9. 顺序数据的图示:累计频数分布图,环形图 10. 根据统计研究的需要,将原始数据按照某种标准划分成不同的组别称为数据分组 11. 分组后的数据称为分组数据 12. 把变量值作为一组称为单变量值分组 13. 将全部变量值一次划分为若干个区间, 并将这一区间的变量值作为一组, 称为组距分组 14. 在组距分组中,一个组的最小值称为下限,最大值称为上限 15. 一个组的上限与下限的差称为组距 16. 各组组距相等的组距分组称为等距分组 17. 各组组距不相等的组距分组称为不等距分组 18. 每一组的下限和上限之间的重点值称为组中值 19. 用矩形的宽度和高度即面积来表示频数分布的图形称为直方图

医学统计学第七版课后答案及解析

练习题答案 第一章医学统计中的基本概念 练习题 一、单向选择题 1. 医学统计学研究的对象是 A. 医学中的小概率事件 B. 各种类型的数据 C. 动物和人的本质 D. 疾病的预防与治疗 E.有变异的医学事件 2. 用样本推论总体,具有代表性的样本指的是 A.总体中最容易获得的部分个体 B.在总体中随意抽取任意个体 C.挑选总体中的有代表性的部分个体 D.用配对方法抽取的部分个体 E.依照随机原则抽取总体中的部分个体 3. 下列观测结果属于等级资料的是 A.收缩压测量值 B.脉搏数 C.住院天数 D.病情程度 E.四种血型 4. 随机误差指的是 A. 测量不准引起的误差 B. 由操作失误引起的误差 C. 选择样本不当引起的误差 D. 选择总体不当引起的误差 E. 由偶然因素引起的误差 5. 收集资料不可避免的误差是 A. 随机误差 B. 系统误差 C. 过失误差 D. 记录误差 E.仪器故障误差 答案: E E D E A 二、简答题 1.常见的三类误差是什么?应采取什么措施和方法加以控制? [参考答案] 常见的三类误差是:

(1)系统误差:在收集资料过程中,由于仪器初始状态未调整到零、标准试剂未经校 正、医生掌握疗效标准偏高或偏低等原因,可造成观察结果倾向性的偏大或偏小,这叫系统误差。要尽量查明其原因,必须克服。 (2)随机测量误差:在收集原始资料过程中,即使仪器初始状态及标准试剂已经校正, 但是,由于各种偶然因素的影响也会造成同一对象多次测定的结果不完全一致。譬如,实验操作员操作技术不稳定,不同实验操作员之间的操作差异,电压不稳及环境温度差异等因素 造成测量结果的误差。对于这种误差应采取相应的措施加以控制,至少应控制在一定的允许范围内。一般可以用技术培训、指定固定实验操作员、加强责任感教育及购置一定精度的稳 压器、恒温装置等措施,从而达到控制的目的。 (3)抽样误差:即使在消除了系统误差,并把随机测量误差控制在允许范围内,样本 均数(或其它统计量)与总体均数(或其它参数)之间仍可能有差异。这种差异是由抽样引 起的,故这种误差叫做抽样误差,要用统计方法进行正确分析。 2.抽样中要求每一个样本应该具有哪三性? [参考答案] 从总体中抽取样本,其样本应具有“代表性”、“随机性”和“可靠性”。 (1)代表性: 就是要求样本中的每一个个体必须符合总体的规定。 (2)随机性: 就是要保证总体中的每个个体均有相同的几率被抽作样本。 (3)可靠性: 即实验的结果要具有可重复性,即由科研课题的样本得出的结果所推测 总体的结论有较大的可信度。由于个体之间存在差异, 只有观察一定数量的个体方能体现出 其客观规律性。每个样本的含量越多,可靠性会越大,但是例数增加,人力、物力都会发生 困难,所以应以“足够”为准。需要作“样本例数估计”。 3.什么是两个样本之间的可比性? [参考答案] 可比性是指处理组(临床设计中称为治疗组)与对照组之间,除处理因素不同外,其他可能影响实验结果的因素要求基本齐同,也称为齐同对比原则。 (马斌荣) 第二章集中趋势的统计描述 练习题 一、单项选择题 1. 某医学资料数据大的一端没有确定数值,描述其集中趋势适用的统计指标是

统计学复习提纲

第一章绪论 第一节统计的产生和发展 一、统计的产生:源于人类的计数与统计实践活动。 二、统计的发展 1、英国的政治算术学派(17世纪)【“有实无名”的统计学】 创始人:英国的威廉·配第(政治经济学之父) 代表作:《政治算术》——统计学诞生的标志; 文中针对英、法、荷兰的国情,利用数字、重量、尺度的方法,并配以朴素的图表(现代统计学广为采用的方法和内容)进行三国国力的比较,但没有使用“统计学”一词。 2、德国的国势学派(又称记述学派)(18世纪)【“有名无实”的统计学】 代表人物:康令、阿亨瓦尔 康令在大学开设“国势学”课程,以文字技术和比较为主,反映各国的国情国力;阿亨瓦尔继承和发展了康令的思想,并于1749年首次使用“统计学”代替“国势学”,认为统计学是关于各国基本制度的学问,但缺乏数字和内容。 3、数理统计学派(19世纪) 代表人物:凯特勒(比利时)(古典统计学的完成者,近代统计学的先驱者) 代表作:《社会物理学》——他将概率论引进统计学,完成了统计学和概率论的结合。 第二节统计学的性质和特点 一、统计的三个含义:统计工作(过程)、统计资料(成果)和统计学(理论)。 二、统计学的研究对象:大量社会现象(主要是经济现象)的总体数量方面的方法论科学。 三、统计学的特点:数量性、总体性、具体性、社会性、广泛性。 第四节统计学中的几个基本概念 一、统计总体与总体单位 1、统计总体:是指客观存在的、在同一性质基础上结合起来的许多个别单位的整体。统计总体可以分为有限总体和无限总体,总体所包含的单位数有限的比如人口数、企业数,反之比如大海里的鱼资源数。 2、总体单位:是指构成总体的个别单位。 注:总体和总体单位的划分是相对的,它们随着统计研究对象和研究目的变化而相互转化。 二、统计标志与统计指标 1、统计标志:用来说明总体单位所具有的属性或特征的名称。可分为品质标志和数量标志。品质标志是说明总体单位质的特征,不能用数字来表示的,如性别、籍贯、工种等; 数量标志是说明总体单位量的特征,是可用数字来表示的,如年龄、身高、收入等。 2、统计指标:综合反映统计总体数量特征的名称,包括指标名称和指标数值两部分。 可分为数量指标和质量指标。数量指标是说明总体规模、总数量的指标,一般用绝对数表示;质量指标是说明总体结构、比例、强度等质方面的指标,一般用相对数或平均数表示。又按其作用和表现形式分为总量指标(绝对数)、相对指标(相对数)、平均指标(平均数)。 指标与标志的联系和区别: 区别:标志是说明总体单位特征的,而指标是说明统计总体特征的;指标都能用数字表示,而标志中的品质标志是用文字来描述的,不能用数值表示。指标一般是经过一定的汇总取得,而标志值一般是经过测量、观察直接取得的。标志一般不需要说明时间、地点、条件,但完整的指标必须说明时间、地点、条件等。 联系:大多数指标的数值是从总体单位的数量标志值综合而来;例如,某企业的工资总额是

应用统计学

应用统计学 课程编码:202136 课程英文译名:Practical Statistics 课程类别:学科基础选修课 开课对象:工业工程专业 开课学期:5 学分: 2学分; 总学时: 32学时; 理论课学时: 32 学时; 实验学时: 0学时; 上机学时: 0 学时 先修课程:概率论 教材:应用统计,朱洪文,高等教育出版社,2001.2 参考书:【1】应用统计学,倪加勋,中国人民大学出版社,1994 一、课程的性质、目的和任务 应用统计学是一门认识方法论的科学,通过对社会经济现象的数量方面资料的搜索、整理、分析和推断,阐明社会经济现象本质及其内在的规律性,以达到对社会经济现象整体的具体的认识。该课程作为经济、管理类专业的专业基础课开设。 通过本课程的教育需达到以下目的:1、为经济管理提供统计调查,资料整理汇总和统计分析的一般原则和方法;2、为进一步学习有关专业知识,奠定理论和方法基础;3、为学习其他经济管理课程和从事经济研究工作提供数量分析的方法。学习中要正确理解课程中的各个基本概念,了解统计工作的各个阶段,掌握统计的基础理论和基本方法,并能综合运用所学的理论知识分析应用经济统计信息,以满足工作的需要。 二、课程的基本要求 1.明确统计的对象及其特点,了解统计的性质与作用以及统计工作的基本环节。透彻理解统计学中的基本范畴,初步建立统计思想。 2.理解统计调查的概念,了解统计调查方法的种类,掌握统计报表制度和各种专门调查的概念、特点以及各种调查方法的结合运用。 3.了解统计调查方案的基本内容,理解统计整理的概念,统计分组的概念和作用,了解次数分布的类型,统计表的结构,掌握制表的一

生物统计学期末考试题

生物统计学期末考试题 一名词解释(每题2分,共10分) 1.生物统计学期末考试题 2.样本:从总体中抽出的若干个体所构成的集合称为样本 3.方差:用样本容量n来除离均差平方和,得到的平方和,称为方差 4.标准差:方差的平方根就是标准差 5.标准误:即样本均数的标准差,是描述均数抽样分布的离散程度及衡量均数抽样误差大小的尺度, 反映的是样本均数之间的变异。 6.变异系数:将样本标准差除以样本平均数,得出的百分比就是变异系数 7.抽样:通常按相等的时间间隔对信号抽取样值的过程。 8.总体参数:所谓总体参数是指总体中对某变量的概括性描述。 9.样本统计量:样本统计量的概念很宽泛(譬如样本均值、样本中位数、样本方差等等),到现在 为止,不是所有的样本统计量和总体分布的关系都能被确认,只是常见的一些统计量和总体分布之间 的关系已经被证明了。 10.正态分布:若随机变量X服从一个数学期望为μ、标准方差为σ2的高斯分布, 正态分布又名 高斯分布 11.假设测验:又称显著性检验,就是根据总体的理论分布和小概率原理,对未知或不完全知道的总 体提出两种彼此对立的假设,然后由样本的实际结果,经过一定的计算,做出在一定概率意义上应该 接受的那种假设的推断。 12.方差分析:又称“变异数分析”或“F检验”,用于两个及两个以上样本均数差别的显著性检验。 13.小概率原理:一个事件如果发生的概率很小的话,那么它在一次试验中是几乎不可能发生的,但 在多次重复试验中几乎是必然发生的,数学上称之小概率原理。 15.决定系数:决定系数定义为相关系数r的平方 16.随机误差:在实际相同条件下,多次测量同一量值时,其绝对值和符号无法预计的测量误差。 17.系统误差:它是在一定的测量条件下,对同一个被测尺寸进行多次重复测量时,误差值的大小和 符号(正值或负值)保持不变;或者在条件变化时,按一定规律变化的误差 二. 判断题(每题2分,共10分) 1. 在正态分布N(μ ;σ)中,如果σ相等而μ不等,则曲线平移, ( ) 2. 如果两个玉米品种的植株高度的平均数相同,我们可以认为这两个玉米品种是来自同一总体() 3. 当我们说两个处理平均数有显著差异时,则我们有99%的把握肯定它们来自不同总体. 4小概率原理是指小概率事件在一次试验中可以认为不可能发生() 5 激素处理水稻种子具有增产效应,现在在5个试验区内种植经过高、中、低三种剂量的激素处理的水稻种此试验称为三处理五重复试验() 6.系统误差是不可避免的,并且可以用来计算试验精度。() 7.精确度就是指观察值与真值之间的差异。() 8. 实验设计的三个基本原则是重复、随机、局部控制。() 9. 正交试验设计就是从全部组合的处理中随机选取部分组合进行试验。() 10.如果回归方程Y=3+1.5X的R2=0.64,则表明Y的总变异80%是X造成。() 三. 简答题(每题5分共20分) 1. 完全随机试验设计与随机区组试验设计有什么不同? 2. 什么是小概率原理?在统计推断中有何 作用? 3. 什么是多重比较中的FISHER氏保护测验?4. 样本的方差计算中,为什么要离均差平方和 除以n-1而不是除以n? 5. 如果两个变量X和Y的相关系数小于0.5,是否它们就没有显著相关性? 6. 单尾测验与双尾测验有何异同?

医学统计学简答题

医学统计学简答题 1.简述标准差、标准误得区别与联系? 区别:(1)含义不同:标准差S表示观察值得变异程度,描述个体变量值(X)之间得变异度大小,S越大,变量值(X)越分散;反之变量值越集 中,均数得代表性越强。标准误、、估计均数得抽样误差得大小,就是描述样本均数之间得变异度大小,标准误越大,样本均数与总体均数间差异越大,抽样误差越大;反之,样本均数越接近总体均数,抽样误差越小。(2)与n得关系不同:n增大时,S趋于。(恒定),标准误减少并趋于 0(不存在抽样误差)。 (3)用途不同:标准差表示X得变异度大小、计算变异系数、确定医学参考值范围、计算标准误等,标准误用于估计总体均数可信区间与假设检验。联系:二者均为变异度指标,样本均数得标准差即为标准误,标准差与标准误成正比。 2.简述假设检验得基本步骤。 1.建立假设,确定检验水准。 2.选择适当得假设检验方法,计算相应得检验统计量。 3、确定P值,下结论3.正态分布得特点与应用: 特点:1、集中性:正态曲线得高峰位于正中央,即均数所在得位置; 2、对称性:正态分布曲线位于直角坐标系上方,以x=u为中心,左右对称,曲线两端永远不与横轴相交; 3、均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均 匀下降; 4、正态分布有两个参数,即均数》与标准差0 ,可记作N(?,。):均数卩决定正态曲线得中心位置;标准差。决定正态曲线得陡峭或扁平程度。0越小,

曲线越陡峭;0越大,曲线越扁平; 5、U变换:为了便于描述与应用,常将正态变量作数据转换; 应用:1、估计医学参考值范围2、质量控制3、正态分布就是许多统计方法得理论基础 4.简述参考值范围与均数得可信区间得区别与联系 可信区间与参考值范围得意义、计算公式与用途均不同。 1、从意义来瞧95%参考值范围就是指同质总体内包括95%个体值得估计范围,而总体均数95%可信区间就是指95%可信度估计得总体均数得所在范围 2、从计算公式瞧若指标服从正态分布,95%参考值范围得公式就是: ±l、96s。总体均数95%可信区间得公式就是:前者用标准差,后者用标准误。前者用1、96,后者用a为0、05,自由度为V得t界值。 5.频数表得用途与基本步骤。 用途:(1)揭示资料得分布特征与分布类型;(2)便于进一步计算指标与分析处理;(3)便于发现某些特大或特小可疑值。 基本步骤:(1)求出极差;(2)确定组段,一般设8~15个组段;(3)确定组距;组距二R/组段数,但一般取一方便计算得数字;(4)列出各个组段并确定每一组段频数。 6.非参数统计检验得适用条件。 (1)资料不符合参数统计法得应用条件(总体为正态分布、且方差相等)或总体分布类型未知:(2)等级资料:(3)分布呈明显偏态又无适当得变量转换方法使之满足参数统计条件;(4)在资料满足参数检验得要 求时,应首选参数法,以免降低检验效能 7.线性回归得主要用途。

统计学复习提纲

统计学基础复习提纲 复习内容: 第一章:统计数据;第二章;数据搜集;第四章:数据分布特征的测度;第五章:抽样与参数估计;第六章:假设检验;第七章:相关与回归分析;第八章:时间序列分析和预测:第九章:指数。 重点内容: 第一章统计和数据 (1)统计的概念和应用(2)统计数据类型:分类数据、顺序数据、数值型数据;观测数据和实验数据;截面和时间序列数据。 (3)统计中的基本概念:总体与样本;参数与统计量;变量。 第二章数据搜集 (1)数据来源:直接来源和间接来源(2)调查设计:调查方案设计和调查问卷设计 (3)统计数据质量 第四章数据分布特征的测度 (1)集中趋势的测度:平均数;中位数和分位数;众数 (2)离散程度的度量:极差和四分位差;平均差;方程和标准差;离散系数 (3)偏态与峰态度量:偏态系数;峰态系数 第五、六章参数估计与假设检验 (1)参数估计的基本原理:点估计与区间估计(2)总体均值的区间估计和总体比率的区间估计(3)样本容量的确定(4)假设检验的基本原理:原假设与备择假设;两类错误与显著性水平;检验统计量与拒绝域。(5)总体均值的检验:大样本检验方法;小样本检验方法。第七章相关与回归分析 (1)变量间关系度量:相关关系的描述和测度;散点图与离散系数。 (2)一元线性回归:一元线性回归模型;参数的最小二乘估计;回归方程的拟合优度;显著性检验。(3)利用回归房产进行估计和预测 第八章时间序列分析与预测 (1)时间序列的分解和描述:图形描述;增长率分析 (2)预测方法的选择和估计 (3)平稳序列的预测:移动平均法;指数平滑法 (4)趋势序列的预测:线性趋势预测;非线性趋势预测

应用统计学概念整理

应用统计学概念整理 第一章:导论 1.只能归类于某一类别的非数字型数据称为分类数据 2.只能归于某一有序类别的非数字型数据称为顺序数据 3.按数字尺度测量的观测值称为数值型数据 4.包含所研究的全部个体的集合称为总体 5.从总体中抽取的一部分的元素的集合称为样本 6.用来描述总体特征的的概括性数字度量称为参数 7.用来描述样本特征的概括性数字度量称为统计量 8.说明事物类别的一个名称称为分类变量 9.说明事物有序类别的一个名称称为顺序变量 10.说明事物数字特征的一个名称称为数值型变量 11.只能取可数值的变量称为离散型变量 12.可以在一个或多个区间中取任何值的变量称为连续型变量 第二章:数据收集 1.从总体中随机抽取一部分单位作为样本进行调查,并根据样本调查结果来推断总体特征 的数据收集方法,称为抽样调查。 2.为特定目的而专门组织的全面调查称为普查 3.按照国家有关法律规定,自上而下地统一布置,自下而上地逐级提供基本数据的调查方 式称为统计报表 第三章:数据的图表展示 1.落在某一特定类别或组中的数据个数,称为频数 2.把各个类别及其落在其中的相应频数全部列出,并用表格形式表示出来,称为频数分布 3.一个样本或总体中各个部分的数据与全部数据之比,称为比例 4.将比例乘以100得到的数值,称为百分比或百分数,用%表示 5.样本或总体中各不同类别数值之间的比值,称为比率 6.分类数据的图示:条形图,pareto图,对比条形图,饼图 7.将各有序类别或组的频数逐级累加起来得到的频数称为累计频数 8.将各有序类别或组的百分比逐级累加起来称为累计频率 9.顺序数据的图示:累计频数分布图,环形图 10.根据统计研究的需要,将原始数据按照某种标准划分成不同的组别称为数据分组 11.分组后的数据称为分组数据 12.把变量值作为一组称为单变量值分组 13.将全部变量值一次划分为若干个区间,并将这一区间的变量值作为一组,称为组距分组 14.在组距分组中,一个组的最小值称为下限,最大值称为上限 15.一个组的上限与下限的差称为组距 16.各组组距相等的组距分组称为等距分组 17.各组组距不相等的组距分组称为不等距分组 18.每一组的下限和上限之间的重点值称为组中值

生物统计学期末复习题

统计选择题 1,由于(1,研究对象本身的性质)造成我们所遇到的各种统计数据的不齐性。 2,研究某一品种小麦株高,因为该品种小麦是个极大的群体,其数量甚至于是个天文数字,该体属于(4,无限总体) 3,从总体中(2,随机抽出)一部分个体称为样本。 4,用随机抽样方法从总体中获得一个样本的过程称为(3,抽样) 5,身高,体重,年龄这一类数据属于(3,连续型数据;1,度量数据) 6,每10个中男性人数,每亩麦田中杂草株数,喷洒农药后每100只害虫中死虫数等,这一类数据属于(1,离散型数据;2,计数数据) 7,把频数按其组值的顺序排列起来,称为(3,频数分布) 8,以组值作为一个边,相应的频数为另一个边,做成的连续矩形图称为(2,直方图)9,绘制(4,多边形图)的方法是在坐标平面内点上各点(中值,频数),以线段连接各点,最高和最低非零频数点与相邻零频数点相连。 10,累积频数图是根据(3,累积频数表)直接绘出的。 11,样本数据总和除以样本含量,称为(算数平均数 12,已知样本平方和为360,样本含量为10,以下4种结果中(2,6.0)是正确的标准差。 13,概率的古典定义是(2,基本事件数与事件总数之比) 14,下面第(2,概率是事物所固有的特性) 15,对于事件A和B,P(A∪B)等于(2,P(AB)) 16,对于事件A和事件B,P(A|B)等于(P(AB)/P(B)) 17,对于任意事件A和B,P(AB)等于(P(B)P(B|A)) 18,下述(3随机试验中所输入的变量)项称为随机变量 19,关于连续型随机变量,有以下4种提法,其中(1,可取某一区间内的任何数值)20,总体平均数可以用以下4种符号中的一种表示,它是(2,μ) 21,样本标准差可以用以下4种符号中的一种表示,它是(1,s) 22,在养鱼场中,A鱼塘的面积占10%,A鱼塘中鱼的发病率为1%,问从养鱼场中任意捕捞一条鱼,它既是A鱼塘,又是生病的鱼的概率是(4,0.003) 23,以下4点是描述连续型随机变量特征的,其中(2,f(x)=lim △x→0P(x

《医学统计学》样题一

《医学统计学》样题一 选择题答案表(涂黑所选答案,未填此表者不给分) 一、单选题(每题2分,共40分) 1. 样本率与总体率差别的假设检验可用。 A 四格表直接概率法计算 B 四格表χ2检验 C 不能检验 D 由样本率制定总体率的可信区间来判断 E 以上都不是 2.在抽样研究中,当样本例数逐渐增多时_____。 A 标准误逐渐加大 B 标准差逐渐加大 C 标准差逐渐减小 D 标准误逐渐减小 E 标准差趋近于0 3.2008年某乡卫生院接诊结核病患者100人,其中男性76人,女性24人,分别占76%和24%,则可以推断出的结论为。 A 该病男性易患 B 该病男女患病率不同 C该病女性易患 D 该病男女发病率不同 E 尚不能得出男女间患病率孰高孰低的结论 4.要减少抽样误差,通常的做法是_____。 A 适当增加样本例数 B 将个体变异控制在一个范围内 C 减少样本例数 D 增加抽样次数 E 减小系统误差 5. 同样性质的两项研究工作中,都作两样本均数差别的假设检验,结果均为P<0.05 P值越小,则获得的结论是。

A 两样本均数差别越大 B 两总体均数差别越大 C 越有理由说两总体均数不同 D 越有理由说两样本均数不同 E 越有理由说两总体均数差别很大 6 在两样本均数比较的t检验中,无效假设是_____。 A两样本均数不等 B 两样本均数相等 C 两总体均数不等 D两总体均数相等 E样本均数等于总体均数 7.要评价某市一名12岁男孩的身高是否偏高或偏矮,应选用的统计方法是。 A 用该市8岁女孩身高的95%或99%正常值范围来评价????????? B 作身高差别的假设检验来评价 C 用身高均数的95%或99%可信区间来评价 D 不能作评价 E 以上都不是 H是_____。 8.两个独立样本秩和检验时的 A 两样本秩和相等 B 两总体秩和相等 C 两总体均数相等 D 两总体分布相同 E 两总体分布没有关联 9.在配对设计数值变量资料的对比分析中,配对的目的是为了。 A 提高测量精度 B 操作方便 C 应用t检验 D 提高组间可比性 E 减少实验误差 10.配对t检验中,用药前的数据减去用药后的数据与用药后的数据减去用药前的数据,两次t检验的结果_____。 A t值符号相反,但结论相同 B t值符号相反,结论相反 C t值符号相同,但大小不同,结论相反 D t值符号相同,结论相同 E 结论可能相同或相反 11. 总体是由组成的。 A 部分个体 B 全部个体 C 相同的观察指标 D 全部研究对象 E 同质个体的所有观察值 12.关于构成比,不正确的是。 A 构成比中某一部分比重的增减相应地会影响其他部分的比重 B 构成比说明某现象发生的强度大小

统计学复习提纲(整理)

统计学复习提纲(学生用) 一、单选题 1.一项调查表明,在所抽取的1000个消费者中,他们每月在网上购物的平均花费是200元,他们选择在网上购物的主要原因是“价格便宜”。这里的参数是( C ) A.1000个消费者 B.所有在网上购物的消费者 C.所有在网上购物的消费者的平均花费 D.1000个消费者的平均花费 2.为了调查某学校学生的购书费用支出,从男生中抽取60名学生调查,从女生中抽取40名学生调查,这种抽样方法属于( D ) A.简单随机抽样 B.整群抽样 C.系统抽样 D.分层抽样 3.某班学生平均成绩是80分,标准差10分。如果已知该班学生的考试分数为对称分布,可以判断考试分数在70-90分之间的学生大约占( C )一个标准差范围 A. 95% B.89% C.68% D.99% 4.已知总体的均值为50,标准差为8,从该总体中随机抽取容量为64的样本,则样本均值的期望(等于总体均值)和抽样分布的标准差分别为( B ) A. 50,8 B. 50,1 C. 50,4 D. 8,8 5.根据某班学生考试成绩的一个样本,用95%的置信水平构造的该班学生考试分数的置信区间为75-85分。全班学生的平均分数( B&D )【有争议,两个中任选一个都对】A.肯定在这一区间内 B.有95%的可能在这一区间内 C.有5%的可能在这一区间内 D. 或者在区间内,或者不在。 6.一项研究发现,2000年新购买小汽车的人中有40%是女性,在2005年所做的一项调查中,随机抽取120个新车主中有57人为女性,检验2005年薪车主中女性的比

例是否显著增加,建立的原假设和备择假设为( C ) A. H 0: π=40%,H 1: π≠40% B. H 0: π≥40%,H 1: π<40% C. H 0: π≤40%,H 1: π>40% D. H 0: π<40%,H 1: π≥40% 7.在回归分析中,因变量的预测区间估计是指( B )。 A. 对于自变量x 的一个给定量x 0,求出因变量y 的平均值的区间 B. 对于自变量x 的一个给定量x 0,求出因变量y 的个别值的区间 C. 对于自变量y 的一个给定量y 0,求出自变量x 的平均值的区间 D. 对于自变量y 的一个给定量y 0,求出自变量x 的个别值的区间 8.在多元线性回归分析中,如果F 检验表明线性关系显著,则意味着( A ) A. 至少有一个自变量与因变量之间的线性关系显著 B. 所有自变量与因变量之间的线性关系显著 C. 至少有一个自变量与因变量之间的线性关系不显著 D. 所有自变量与因变量之间的线性关系不显著 9.如果时间序列的逐期观察值按一定的增长率增长(即增长的增长)或衰落,则适合的预测模型是( D ) A.移动平均模型 B.指数平滑模型 C.线性模型 D.指数模型 10.设p 为商品价格,q 为销售量,则指数∑∑0010 q p q p 的实际意义是综合反映了( C ) A. 商品销售额的变动程度 B.商品价格变动对销售额的影响 [D. 商品价格和销售量的变动对销售额的影响 11. 根据所使用的计量尺度,统计数据分为( A ) A.分类数据,顺序数据和数值型数据 B.观测数据和试验数据

生物统计学期末复习题库及答案

第一章 填空 1.变量按其性质可以分为(连续)变量和(非连续)变量。 2.样本统计数是总体(参数)的估计值。 3.生物统计学是研究生命过程中以样本来推断(总体)的一门学科。 4.生物统计学的基本内容包括(试验设计)和(统计分析)两大部分。 5.生物统计学的发展过程经历了(古典记录统计学)、(近代描述统计学)和(现代推断统计学)3个阶段。 6.生物学研究中,一般将样本容量(n ≥30)称为大样本。 7.试验误差可以分为(随机误差)和(系统误差)两类。 判断 1.对于有限总体不必用统计推断方法。(×) 2.资料的精确性高,其准确性也一定高。(×) 3.在试验设计中,随机误差只能减小,而不能完全消除。(∨) 4.统计学上的试验误差,通常指随机误差。(∨) 第二章 填空 1.资料按生物的性状特征可分为(数量性状资料)变量和(质量性状资料)变量。 2. 直方图适合于表示(连续变量)资料的次数分布。 3.变量的分布具有两个明显基本特征,即(集中性)和(离散性)。 4.反映变量集中性的特征数是(平均数),反映变量离散性的特征数是(变异数)。 5.样本标准差的计算公式s=( )。 判断题 1. 计数资料也称连续性变量资料,计量资料也称非连续性变量资料。(×) 2. 条形图和多边形图均适合于表示计数资料的次数分布。(×) 3. 离均差平方和为最小。(∨) 4. 资料中出现最多的那个观测值或最多一组的中点值,称为众数。(∨) 5. 变异系数是样本变量的绝对变异量。(×) 单项选择 1. 下列变量中属于非连续性变量的是( C ). A. 身高 B.体重 C.血型 D.血压 2. 对某鱼塘不同年龄鱼的尾数进行统计分析,可做成( A )图来表示. A. 条形 B.直方 C.多边形 D.折线 3. 关于平均数,下列说法正确的是( B ). A. 正态分布的算术平均数和几何平均数相等. B. 正态分布的算术平均数和中位数相等. C. 正态分布的中位数和几何平均数相等. D. 正态分布的算术平均数、中位数、几何平均数均相等。 4. 如果对各观测值加上一个常数a ,其标准差( D )。 A. 扩大√a 倍 B.扩大a 倍 C.扩大a 2倍 D.不变 5. 比较大学生和幼儿园孩子身高的变异度,应采用的指标是( C )。 A. 标准差 B.方差 C.变异系数 D.平均数 第三章 12 2--∑∑n n x x )(

相关主题
文本预览
相关文档 最新文档