当前位置:文档之家› 硅稳压管稳压电路

硅稳压管稳压电路

硅稳压管稳压电路

硅稳压管稳压电路

一、有“特异功能”的二极管稳压管

一般二极管都是正向导通,反向截止;加在二极管上的反向电压、如果超过二极管的承受能力,二极管就要击穿损毁。但是有一种二极管,它的正向特性与普通二极管相同,而反向特性却比较特殊:当反向电压加到一定程度时,虽然管子呈现击穿状态,通过较大电流,却不损毁,并且这种现象的重复性很好;反过来着,只要管子处在击穿状态,尽管流过管子的电在变化很大,而管子两端的电压却变化极小起到稳压作用。这种特殊的二极管叫稳压管。

稳压管的型号有2CW 、2DW 等系列,它的电路符号如图所示。

由硅稳压管组成的简单稳压电路如图5-l9 (a)所示。硅稳压管DW与负载Rfz ,并联,R1为限流电阻。

这个电路是怎样进行稳压的呢?若电网电压升高,整流电路的输出电压Usr 也随之升高,引起负载电压Usc 升高。由于稳压管DW与负载Rfz 并联,Usc 只要有根少一点增长,就会使流过稳压管的电流急剧增加,使得I1也增大,限流电阻R1上的电压降增大,从而抵消了Usr 的升高,保持负载电压Usc 基本不变。反之,若电网电压降低,引起Usr 下降,造成Usc 也下降,则稳压

管中的电流急剧减小,使得I1减小,R1上的压降也减小,从而抵消了Usr 的下降,保持负载电压Usc 基本不变。

二极管的分类与特性参数(精)

二极管的分类与参数 一、半导体二极管 1.1二极管的结构 半导体二极管简称二极管,由一个PN 结加上相应的电极引线和管壳构成,其基本结构和符号如图1所示。 图1 二极管的结构及符号 1.2 二极管的分类 1、根据所用的半导体材料不同,可分为锗二极管和硅二极管。 2、按照管芯结构不同,可分为: (1)点接触型二极管 由于它的触丝与半导体接触面很小,只允许通过较小的电流(几十毫安以下),但在高频下工作性能很好,适用于收音机中对高频信号的检波和微弱交流电的整流,如国产的锗二极管2AP 系列、2AK 系列等。 (2)面接触型二极管 面接触型二极管PN 结面积较大,并做成平面状,它可以通过较大了电流,适用于对电网的交流电进行整流。如国产的2CP 系列、2CZ 系列的二极管都是面接触型的。 (3)平面型二极管 它的特点是在PN 结表面被覆一层二氧化硅薄膜,避免PN 结表面被水分子、气体分子以及其他离子等沾污。这种二极管的特性比较稳定可靠,多用于开关、脉冲及超高频电路中。国产2CK 系列二极管就属于这种类型。 3、根据管子用途不同,可分为整流二极管、稳压二极管、开关二极管、光电二极管及发光二极管等。 1.3 二极管的特性 引线 外壳线 触丝线 基片 二极管的电路符号: P N 阳极 阴极 点接触型

1、正向特性 二极管正向连接时的电路如图所示。二极管的正极接在高电位端,负极接在低电位端,二极管就处于导通状态(灯泡亮),如同一只接通的开关。实际上,二极管导通后有一定的管压降(硅管0.6~0.7V,锗管0.2~0.3V)。我们认为它是恒定的,且不随电流的变化而变化。 但是,当加在二极管两端的正向电压很小的时候,正向电流微弱,二极管呈现很大的电阻,这个区域成为二极管正向特性的“死区”,只有当正向电压达到一定数值(这个数值称为“门槛电压”,锗二极管约为0.2V,硅二极管约为0.6V)以后,二极管才真正导通。此时,正向电流将随着正向电压的增加而急速增大,如不采取限流措施,过大的电流会使PN结发热,超过最高允许温度(锗管为90℃~100℃,硅管为125℃~200℃)时,二极管就会被烧坏。 2、反向特性 二极管反向连接时的电路如图所示。二极管的负极接在电路的高电位端,正极接在电路的低电位端,二极管就处于截止状态,如同一只断开的开关,电流被PN结所截断,灯泡不亮。 但是,二极管承受反向电压,处于截止状态时,仍然会有微弱的反向电流(通常称为反向漏电流)。反向电流虽然很小(锗二极管不超过几微安,硅二极管不超过几十纳安),却和温度有极为密切的关系,温度每升高10℃,反向电流约增大一倍,称为“加倍规则”。反向电流是衡量二极管质量好坏的重要参数之一,反向电流太大,二极管的单向导电性能和温度稳定性就很差,选择和使用二极管时必须特别注意。 图1-2-7 二极管的正向连接图1-2-8二极管的反向连接当加在二极管两端的反向电压增加到某一数值时,反向电流会急剧增大,这种状态称为二极管的击穿。对普通二极管来说,击穿就意味着二极管丧失了单向导电特性而损坏了。 3、伏安特性 1.在正向电压作用下,当正向电压较小时,电流极小。而当超过某一值时(锗管约为0.1V,硅管约为0.5V),电流很快增大。人们习惯地将锗二极管正向电压小于0.1,硅二极管正向电压小于0.5V的区域称为死区。而将0.1V称为锗

常用稳压二极管大全,

常用稳压管型号对照——(朋友发的) 美标稳压二极管型号 1N4727 3V0 1N4728 3V3 1N4729 3V6 1N4730 3V9 1N4731 4V3 1N4732 4V7 1N4733 5V1 1N4734 5V6 1N4735 6V2 1N4736 6V8 1N4737 7V5 1N4738 8V2 1N4739 9V1 1N4740 10V 1N4741 11V 1N4742 12V 1N4743 13V 1N4744 15V 1N4745 16V 1N4746 18V 1N4747 20V 1N4748 22V 1N4749 24V 1N4750 27V 1N4751 30V 1N4752 33V 1N4753 36V 1N4754 39V 1N4755 43V 1N4756 47V 1N4757 51V 需要规格书请到以下地址下载, 经常看到很多板子上有M记的铁壳封装的稳压管,都是以美标的1N系列型号标识的,没有具体的电压值,刚才翻手册查了以下3V至51V的型号与电压的对 照值,希望对大家有用 1N4727 3V0 1N4728 3V3 1N4729 3V6 1N4730 3V9

1N4733 5V1 1N4734 5V6 1N4735 6V2 1N4736 6V8 1N4737 7V5 1N4738 8V2 1N4739 9V1 1N4740 10V 1N4741 11V 1N4742 12V 1N4743 13V 1N4744 15V 1N4745 16V 1N4746 18V 1N4747 20V 1N4748 22V 1N4749 24V 1N4750 27V 1N4751 30V 1N4752 33V 1N4753 36V 1N4754 39V 1N4755 43V 1N4756 47V 1N4757 51V DZ是稳压管的电器编号,是和1N4148和相近的,其实1N4148就是一个0.6V的稳压管,下面是稳压管上的编号对应的稳压值,有些小的稳压管也会在管体 上直接标稳压电压,如5V6就是5.6V的稳压管。 1N4728A 3.3 1N4729A 3.6 1N4730A 3.9 1N4731A 4.3 1N4732A 4.7 1N4733A 5.1 1N4734A 5.6 1N4735A 6.2 1N4736A 6.8 1N4737A 7.5 1N4738A 8.2 1N4739A 9.1 1N4740A 10 1N4741A 11 1N4742A 12 1N4743A 13

二极管的结构及性能特点

PN结主要的特性就是其具有单方向导电性,即在PN加上适当的正向电压(P 区接电源正极,N区接电源负极),PN结就会导通,产生正向电流。若在PN结上加反向电压,则PN结将截止(不导通),正向电流消失,仅有极微弱的反向电流。当反向电压增大至某一数值时,PN结将击穿(变为导体)损坏,使反向电流急剧增大。 (二)普通二极管 1.二极管的基本结构 二极管是由一个PN结构成的半导体器件,即将一个PN结加上两条电极引线做成管芯,并用管壳封装而成。P型区的引出线称为正极或阳极,N型区的引出线称为负极或阴极,如图所示。 普通二极管有硅管和锗管两种,它们的正向导通电压(PN结电压)差别较大,锗管为0.2~0.3V,硅管为0.6~0.7V。 2.点接触型二极管 如图所示,点接触型二极管是由一根根细的金属丝热压在半导体薄片上制成的。在热压处理过程中,半导体薄片与金属丝接触面上形成了一个PN结,金属丝为正极,半导体薄片为负极。

点接触型二极管的金属丝和半导体的金属面很小,虽难以通过较大的电流,但因其结电容较小,可以在较高的频率下工作。点接触型二极管可用于检波、变频、开关等电路及小电流的整流电路中。 3.面接触型二极管 如图所示,面接触型二极管是利用扩散、多用合金及外延等掺杂质方法,实现P型半导体和N型半导体直接接触而形成PN结的。 面接触型二极管PN结的接触面积大,可以通过较大的电流,适用于大电流整流电路或在脉冲数字电路中作开关管。因其结电容相对较大,故只能在较低的频率下工作。 二极管的分类及其主要参数 一.半导体二极管的分类

半导体二极管按其用途可分为:普通二极管和特殊二极管。普通二极管包括整流二极管、检波二极管、稳压二极管、开关二极管、快速二极管等;特殊二极管包括变容二极管、发光二极管、隧道二极管、触发二极管等。 二.半导体二极管的主要参数 1.反向饱和漏电流I R 指在二极管两端加入反向电压时,流过二极管的电流,该电流与半导体材料 和温度有关。在常温下,硅管的I R 为纳安(10-9A)级,锗管的I R 为微安(10-6A) 级。 2.额定整流电流I F 指二极管长期运行时,根据允许温升折算出来的平均电流值。目前大功率整 流二极管的I F 值可达1000A。 3. 最大平均整流电流I O 在半波整流电路中,流过负载电阻的平均整流电流的最大值。这是设计时非常重要的值。 4. 最大浪涌电流I FSM 允许流过的过量的正向电流。它不是正常电流,而是瞬间电流,这个值相当大。 5.最大反向峰值电压V RM 即使没有反向电流,只要不断地提高反向电压,迟早会使二极管损坏。这种能加上的反向电压,不是瞬时电压,而是反复加上的正反向电压。因给整流器 加的是交流电压,它的最大值是规定的重要因子。最大反向峰值电压V RM 指为避 免击穿所能加的最大反向电压。目前最高的V RM 值可达几千伏。 6. 最大直流反向电压V R 上述最大反向峰值电压是反复加上的峰值电压,V R 是连续加直流电压时的值。用于直流电路,最大直流反向电压对于确定允许值和上限值是很重要的. 7.最高工作频率f M

齐纳二极管

齐纳二极管 齐纳二极管(又叫稳压二极管),此二极管是一种直到临界反向击穿电压前都具有很高电阻的半导体器件.在这临界击穿点上,反向电阻降低到一个很少的数值,在这个低阻区中电流增加而电压则保持恒定,稳压二极管是根据击穿电压来分档的,因为这种特性,稳压管主要被作为稳压器或电压基准元件使用.其伏安特性,稳压二极管可以串联起来以便在较高的电压上使用,通过串联就可获得更多的稳定电压。 齐纳二极管不同于锗二极管的是:如果反向电压,有时简称为“偏压”增加到某个特殊值,对于一个微小偏压的变化,就会使电流产生一个可观的增加。引起这种效应的电压称为“击穿”电压或“齐纳”电压。2DW7型管的击穿电压在5.8-6.5V之间,极大电流是30mA。 肖特基二极管 肖特基(Schottky)二极管又称肖特基势垒二极管(简称SBD),它属一种低功耗、超高速半导体器件。最显著的特点为反向恢复时间极短(可以小到几纳秒),正向导通压降仅0.4V左右。其多用作高频、低压、大电流整流二极管、续流二极管、保护二极管,也有用在微波通信等肖特基(Schottky)二极管又称肖特基势垒二极管(简称SBD),它属一种低功耗、超高速半导体器件。最显著的特点为反向恢复时间极短(可以小到几纳秒),正向导通压降仅0.4V左右。其多用作高频、低压、大电流整流二极管、续流二极管、保护二极管,也有用在微波通信等电

路中作整流二极管、小信号检波二极管使用。在通讯电源、变频器等中比较常见。供参考。电路中作整流二极管、小信号检波二极管使用。在通讯电源、变频器等中比较常见。供参考。 我知道的一个应用是在BJT的开关电路里面, 通过在BJT上连接Shockley二极管来箝位,使得晶体管在导通状态时其实处于很接近截至状态.从而提高晶体管的开关速度.这种方法是74LS,74ALS, 74AS等典型数字IC TTL内部电路中使用的技术. 稳压二极管是应用在反向击穿区的特殊的面接触型硅晶体二极管。稳压二极管的伏安特性曲线与硅二极管的伏安特性曲线完全一样,稳压二极管伏安特性曲线的反向区、符号和典型应用电路如图1所示。稳压二极管的特性曲线与普通二极管基本相似,只是稳压二极管的反向特性曲线比较陡。稳压二极管的正常工作范围,是在伏安特性曲线上的反向电流开始突然上升的部分。这一段的电流,对于常用的小功率稳压管来讲,一般为几毫安至几十毫安。 (a)符号(b)伏安特性(c)应用电路图1 稳压二极管的伏安特性

稳压二极管伏安特性

稳压二极管伏安特性 稳压管也是一种晶体二极管,它是利用PN结的击穿区具有稳定电压的特性来工作的。稳压管在稳压设备和一些电子电路中获得广泛的应用。我们把这种类型的二极管称为稳压管,以区别用在整流、检波和其他单向导电场合的二极管。如图画出了稳压管的伏安特性及其符号。 稳压管的主要参数如下: (1)稳定电压Uz Uz就是PN结的击穿电压,它随工作电流和温度的不同而略有变化。对于同一型号的稳压管来说,稳压值有一定的离散性。 (2)稳定电流Iz 稳压管工作时的参考电流值。它通常有一定的范围,即Izmin——Izmax (3)动态电阻rz 它是稳压管两端电压变化与电流变化的比值,如上图所示,即这个数值随工作电流的不同而改变。通常工作电流越大,动态电阻越小,稳压性能越好。 下图示出了稳压管工作时的动态等效电路,图中二极管为理想二极管。

(4)电压温度系数它是用来说明稳定电压值受温度变化影响的系数。不同型号的稳压管有不同的稳定电压的温度系数,且有正负之分。稳压值低于4v的稳压管,稳定电压的温度系数为负值;稳压值高于6v的稳压管,其稳定电压的温度系数为正值;介于4V和6V之间的,可能为正,也可能为负。在要求高的场合,可以用两个温度系数相反的管子串联进行补偿(如2DW7)。 (5)额定功耗Pz 前已指出,工作电流越大,动态电阻越小,稳压性能越好,但是最大工作电流受到额定功耗Pz的限制,超过P2将会使稳压管损坏。 选择稳压管时应注意:流过稳压管的电流Iz不能过大,应使Iz≤Izmax,否则会超过稳压管的允许功耗,I z也不能太小,应使Iz≥Izmin,否则不能稳定输出电压,这样使输入电压和负载电流的变化范围都受到一定限制。

1N系列稳压二极管参数及应用

1N系列稳压二极管参数

常用1N系列稳压二极管参数与代换 型号功率(W) 稳压(V) 最大电流(mA) 可代换型号 1N5236/A/B 0。5 7。5 61 2CW105-7。5V,2CW5236 1N5237/A/B 0。5 8。2 55 2CW106-8。2V,2CW5237 1N5238/A/B 0。5 8。7 52 2CW106-8。7V,2CW5238 1N5239/A/B 0。5 9。1 50 2CW107-9。1V,2CW5239 1N5240/A/B 0。5 10 45 2CW108-10V,2CW5240 1N5241/A/B 0。5 11 41 2CW109-11V,2CW5241 1N5242/A/B 0。5 12 38 2CW11O-12V,2CW5242 1N5243/A/B 0。5 13 35 2CW111-13V,2CW5243 1N5244/A/B 0。5 14 32 2CW111-14V,2CW5244 1N5245/A/B 0。5 15 30 2CW112-15V,2CW5245 1N5246/A/B 0。5 16 28 2CW112-16V,2CW5246 1N5247/A/B 0。5 17 27 2CW113-17V,2CW5247 1N5248/A/B 0。5 18 25 2CW113-l8V,2CW5248 1N5249/A/B 0。5 19 24 2CW114-19V,2CW5249 1N5250/A/B 0。5 20 23 2CW114-20V,2CW5250 1N5251/A/B 0。5 22 21 2CW115-22V,2CW5251 1N5252/A/B 0。5 24 19。1 2CW115-24V,2CW5252 1N5253/A/B 0。5 25 18。2 2CW116-25V,2CW5253 1N5254/A/B 0。5 27 16。8 2CW1l7-27V,2CW5254 1N5255/A/B 0。5 28 16。2 2CW118-28V,2CW5255 1N5256/A/B 0。5 30 15。1 2CW119-30V,2CW5256 1N5257/A/B 0。5 33 13。8 2CW120-33V,2CW5257 1N5730 0。4 5。6 65 2CW752 1N5731 0。4 6。2 62 2CW753,RD6。2EB 1N5732 0。4 6。8 58 2CW754,2CW957 1N5733 0。4 7。5 52 2CW755,2CW958

(完整word版)【硬件设计】稳压管工作原理

【硬件设计】稳压二极管工作原理介绍 现在常用的稳压管的主要材料是半导体硅。 在硅稳压管的反向电压击穿区内,电流变化很大,而其电压基本不变。 在小于5V的稳压管,主要是齐纳击穿,大于7V的稳压管,主要是雪崩击穿,在5—7V间,两种击穿同时存在。 要理解稳压二极管的工作原理,只要了解二极管的反向特性就行了。所有的晶体二极管,其基本特性是单向导通。就是说,正向加压导通,反向加压不通。这里有个条件就是反向加压不超过管子的反向耐压值。那么超过耐压值后是什么结果呢?一个简单的答案就是管子烧毁。但这不是全部答案。试验发现,只要限制反向电流值(例如,在管子与电源之间串联一个电阻),管子虽然被击穿却不会烧毁。而且还发现,管子反向击穿后,电流从大往小变,电压只有很微小的下降,一直降到某个电流值后电压才随电流的下降急剧下降。正是利用了这个特性人们才造出了稳压二极管。使用稳压二极管的关键是设计好它的电流值。 稳压二极管(齐纳二极管,Zener diode): 是一种专门工作于反向(崩溃,Breakdown)区域的二极管,如有一适量的电流流经此二极管,则其两端点间产生一固定不变的电压,名为:”稳压电压”,由于其电压稳定,故被广泛用于稳压电路或用作参考电压源。 崩溃现象: 在PN结上,加以反向电压时,反向电流很小,叫反向饱和电流,当反向电压加大到一定值时,反向电流会突然增加,这现象叫PN结的击穿。 电路符号和曲线图: 理想的等效实际的等效

工作原理: 稳压二极管特性曲线中,当反向电压达到击穿电压后,二极管由截止转为导通,此时的电流为最低稳压电流IZ(Min),而形成的电压为最低稳压电压VZ(Min),如继续加大反向电压,则电流便急速变大,但稳压二极管有一定的最大可通过电流IZ(Max),若通过的电流超过IZ(Max),会损坏此二极管。(简单来说:反向电压到达VZ后,相对电流不断增加,电压变化却很少。),如下图: 、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、 什么是稳压二极管稳压二极管(又叫齐纳二极管)它的电路符号是:,稳压二极管是一种用于稳定电压的单PN结二极管。此二极管是一种直到临界反向击穿电压前都具有很高电阻的半导体器件。在这临界击穿点上,反向电阻降低到一个很少的数值,在这个低阻区中电流增加而电压则保持恒定,稳压二极管是根据击穿电压来分档的,因为这种特性,稳压管主要被作为稳压器或电压基准元件使用。 稳压二极管可以串联起来以便在较高的电压上使用,通过串联就可获得更多的稳定电压。 稳压管的应用: 1、浪涌保护电路(如图2):稳压管在准确的电压下击穿,这就使得它可作为限制或保护之元件来使用,因为各种电压的稳压二极管都可以得到,故对于这种应用特别适宜。图中的稳压二极管D是作为过压保护器件。只要电源电压VS超过二极管的稳压值D就导通。使继电器J吸合负载RL就与电源分开。

稳压二极管原理及应用

什么是稳压二极管稳压二极管(又叫齐纳二极管)它的电路符号是:,稳压二极管是一种用于稳定电压的单PN结二极管。此二极管是一种直到临界反向击穿电压前都具有很高电阻的半导体器件。在这临界击穿点上,反向电阻降低到一个很少的数值,在这个低阻区中电流增加而电压则保持恒定,稳压二极管是根据击穿电压来分档的,因为这种特性,稳压管主要被作为稳压器或电压基准元件使用。 稳压二极管可以串联起来以便在较高的电压上使用,通过串联就可获得更多的稳定电压。 稳压管的应用: 1、浪涌保护电路(如图2):稳压管在准确的电压下击穿,这就使得它可作为限制或保护之元件来使用,因为各种电压的稳压二极管都可以得到,故对于这种应用特别适宜。图中的稳压二极管D是作为过压保护器件。只要电源电压VS超过二极管的稳压值D就导通。使继电器J吸合负载RL就与电源分开。 2、电视机里的过压保护电路(如图3):EC是电视机主供电压,当EC电压过高时,D导通,三极管BG导通,其集电极电位将由原来的高电平(5V)变为低电平,通过待机控制线的控制使电视机进入待机保护状态。 3、电弧抑制电路如图4:在电感线圈上并联接入一只合适的稳压二极管(也可接入一只普通二极管原理一样)的话,当线圈在导通状态切断时,由于其电磁能释放所产生的高压就被二极管所吸收,所以当开关断开时,开关的电弧也就被消除了。这个应用电路在工业上用得比较多,如一些较大功率的电磁吸控制电路就用到 它。

4、串联型稳压电路(如图5):在此电路中。串联稳压管BG的基极被稳压二极管D钳定在13V,那么其发 射极就输出恒定的12V电压了。这个电路在很多场合下都有应用 国产稳压二极管产品的分类 二极管的击穿通常有三种情况,即雪崩击穿、齐纳击穿和热击穿。 (1)雪崩击穿 对于掺杂浓度较低的PN结,结较厚,当外加反向电压高到一定数值时,因外电场过强,使PN结内少数载流子获得很大的动能而直接与原子碰撞,将原子电离,产生新的电子空穴对,由于链锁反应的结果,使少数载流子数目急剧增多,反向电流雪崩式地迅速增大,这种现象叫雪崩击穿。雪崩击穿通常发生在高反压、低掺杂的情况下。 (2)齐纳击穿 对于采用高掺杂(即杂质浓度很大)形成的PN结,由于结很薄(如0.04μm)即使外加电压并不高(如4V),就可产生很强的电场(如)将结内共价键中的价电子拉出来,产生大量的电子一空穴对,使反向电流剧增,这种现象叫齐纳击穿(因齐纳研究而得名)。齐纳击穿一般发生在低反压、高掺杂的情况下。(3)热击穿 在使用二极管的过程中,如由于PN结功耗(反向电流与反向电压之积)过大,使结温升高,电流变大,循环反复的结果,超过PN结的允许功耗,使PN结击穿的现象叫热击穿。热击穿后二极管将发生永久性损坏。

稳压二极管参数大全

稳压二极管参数大全 稳压二极管的主要参数 (1)稳定电压Vz:稳定电压就是稳压二极管在正常工作时,管子两端的电压值。这个数值随工作电流和温度的不同略有改变,既是同一型号的稳压二极管,稳定电压值也有一定的分散性,例如2CW14硅稳压二极管的稳定电压为6~7.5V。 (2)耗散功率PM:反向电流通过稳压二极管的PN结时,要产生一定的功率损耗,PN结的温度也将升高。根据允许的PN结工作温度决定出管子的耗散功率。通常小功率管约为几百毫瓦至几瓦。 最大耗散功率PZM:是稳压管的最大功率损耗取决于PN结的面积和散热等条件。反向工作时,PN结的功率损耗为:PZ=VZ*IZ,由PZM和VZ可以决定IZmax。 (3)稳定电流IZ、最小稳定电流IZmin、大稳定电流IZmax 稳定电流:工作电压等于稳定电压时的反向电流;最小稳定电流:稳压二极管工作于稳定电压时所需的最小反向电流;最大稳定电流:稳压二极管允许通过的最大反向电流。 (4)动态电阻rZ:其概念与一般二极管的动态电阻相同,只不过稳压二极管的动态电阻是从它的反向特性上求取的。rZ愈小,反映稳压管的击穿特性愈陡。

rz=△VZ/△IZ (5)稳定电压温度系数:温度的变化将使VZ改变,在稳压管中,当|VZ| >7 V时,VZ具有正温度系数,反向击穿是雪崩击穿。 当|VZ|<4V时,VZ具有负温度系数,反向击穿是齐纳击穿。 当4V<|VZ|<7V时,稳压管可以获得接近零的温度系数。这样的稳压二极管可以作为标准稳压管使用。 稳压二极管1N992B 齐纳电压--Vz(Nom):200Vz取值为每一项时的齐纳电流--Iz:650μ最大功率--Pdmax:400m基准电压的容限率--Tol:5每 10KΩ的温度系数--TempC11 齐纳电压--Vz(Nom):200 Vz取值为每一项时的齐纳电流--Iz:650μ 最大功率--Pdmax:400m 基准电压的容限率--Tol:5 每10KΩ的温度系数--TempC11 稳压二极管1N992A 齐纳电压--Vz(Nom):200Vz取值为每一项时的齐纳电流--Iz:650μ最大功率--Pdmax:400m基准电压的容限率--Tol:10每10KΩ的温度系数--TempC 齐纳电压--Vz(Nom):200

稳压二极管的使用方法《别下》

稳压二极管工作在反向击穿状态时,其两端的电压是基本不变的。利用这一性质,在电路里常用于构成稳压电路。 稳压二极管构成的稳压电路,虽然稳定度不很高,但却具有简单、经济实用的优点,因而应用非常广泛。 在实际电路中,要使用好稳压二极管,应注意如下几个问题。 1、要注意一般二极管与稳压二极管的区别方法。不少的一般二极管,特别是玻璃封装的管,外形颜色等与稳压二极管较相似,如不细心区别,就会使用错误。区别方法是:看外形,不少稳压二极管为园柱形,较短粗,而一般二极管若为园柱形的则较细长;看标志,稳压二极管的外表面上都标有稳压值,如5V6,表示稳压值为 5.6V;用万用表进行测量,根据单向导电性,用X1K挡先把被测二极管的正负极性判断出来,然后用X10K挡,黑表笔接二极管负极,红表笔接二极管正极,测的阻值与X1K挡时相比,若出现的反向阻值很大,为一般二极管的可能性很大,若出现的反向阻值变得很小,则为稳压二极管。 2、注意稳压二极管正向使用与反向使用的区别。稳压二极管正向导通使用时,与一般二极管正向导通使用时基本相同,正向导通后两端电压也是基本不变的,都约为0.7V。从理论上讲,稳压二极管也可正向使用做稳压管用,但其稳压值将低于1V,且稳压性能也不好,一般不单独用稳压管的正向导通特性来稳压,而是用反向击穿特性来稳压。反向击穿电压值即为稳压值。有时将两个稳压管串联使用,一个利用它的正向特性,另一个利用它的反向特性,则既能稳压又可起温度补偿作用,以提高稳压效果。 3、要注意限流电阻的作用及阻值大小的影响。在稳压二极管稳压电路中,一般都要串接一个电阻R,如图1或2示。该电阻在电路中起限流和提高稳压效果的作用。若不加该电阻即当R=0时,容易烧坏稳压管,稳压效果也会极差。限流电阻的阻值越大,电路稳压性能越好,但输入与输出压差也会过大,耗电也就越多。 4、要注意输入与输出的压差。正常使用时,稳压二极管稳压电路的输出电压等于稳压管反向击穿后两端的稳压值,若输入到稳压电路中的电压值小于稳压管的稳压值,则电路将失去稳压作用,只有是大于关系时,才有稳压作用,

稳压二极管工作原理

稳压二极管工作原理 一、稳压二极管原理及特性 一般三极管都是正向导通,反向截止;加在二极管上的反向电压如果超过二极管的承受能力,二极管就要击穿损毁。但是有一种二极管,它的正向特性与普通二极管相同,而反向特性却比较特殊:当反向电压加到一定程度时,虽然管子呈现击穿状态,通过较大电流,却不损毁,并且这种现象的重复性很好;只要管子处在击穿状态,尽管流过管子的电在变化很大,而管子两端的电压却变化极小起到稳压作用。这种特殊的二极管叫稳压管。 稳压管的型号有2CW、2DW 等系列,它的电路符号如图5-17所示。 稳压管的稳压特性,可用图5一18所示伏安特性曲线很清楚地表示出来。 稳压管是利用反向击多区的稳压特性进行工作的,因此,稳压管在电路中要反向连接。稳压管的反向击穿电压称为稳定电压,不同类型稳压管的稳定电压也不一

样,某一型号的稳压管的稳压值固定在口定范围。例如:2CW11的稳压值是3.2伏到4.5伏,其中某一只管子的稳压值可能是3.5伏,另一只管子则可能是4,2伏。 在实际应用中,如果选择不到稳压值符合需要的稳压管,可以选用稳压值较低的稳压管,然后串联几只硅二极管“枕垫”,把稳定电压提高到所需数值。这是利用硅二极管的正向压降为0.6~0.7伏的特点来进行稳压的。因此,二极管在电路中必须正向连接,这是与稳压管不同的。 稳压管稳压性能的好坏,可以用它的动态电阻r来表示: 显然,对于同样的电流变化量ΔI,稳压管两端的电压变化量ΔU越小,动态电阻越小,稳压管性能就越好。 稳压管的动态电阻是随工作电流变化的,工作电流越大,动态电阻越小。因此,为使稳压效果好,工作电流要选得合适。工作电流选得大些,可以减小动态电阻,但不能超过管子的最大允许电流(或最大耗散功率)。各种型号管子的工作电流和最大允许电流,可以从手册中查到。 稳压管的稳定性能受温度影响,当温度变化时,它的稳定电压也要发生变化,常用稳定电压的温度系数来表示,这种性能例如2CW19型稳压管的稳定电压Uw= 12伏,温度系数为0.095%℃,说明温度每升高1℃,其稳定电压升高11.4毫伏。为提高电路的稳定性能,往往采用适当的温度补偿措施。在稳定性能要求很高时,需使用具有温度补偿的稳压,如2DW7A、2DW7W、2DW7C 等。 二、稳压二极管稳压电路图 由硅稳压管组成的简单稳压电路如图5- l9(a)所示。硅稳压管DW与负载Rfz,并联,R1为限流电阻。

常用稳压管型号参数大全

常用稳压管型号 2009-12-06 22:56 美标稳压二极管型号 TLV4732运算放大器,可饱和输出。当单电源供电时,可作为0V和5V的稳压器。 其他的如LM358等放大器,输出均不能达到0V或者5V,一般为4V。 1N4727 3V0 1N4728 3V3 1N4729 3V6 1N4730 3V9 1N4731 4V3 1N4732 4V7 1N4733 5V1 1N4734 5V6 1N4735 6V2 1N4736 6V8 1N4737 7V5 1N4738 8V2 1N4739 9V1 1N4740 10V 1N4741 11V 1N4742 12V 1N4743 13V 1N4744 15V

1N4746 18V 1N4747 20V 1N4748 22V 1N4749 24V 1N4750 27V 1N4751 30V 1N4752 33V 1N4753 36V 1N4754 39V 1N4755 43V 1N4756 47V 1N4757 51V 需要规格书请到以下地址下载, https://www.doczj.com/doc/4115351843.html,/products/Rectifiers/Diode/Zener/ 经常看到很多板子上有M记的铁壳封装的稳压管,都是以美标的1N系列型号标识的,没有具体的电压值,刚才翻手册查了以下3V至51V的型号与电压的对照值,希望对大家有用 1N4727 3V0 1N4728 3V3 1N4729 3V6 1N4730 3V9 1N4731 4V3 1N4732 4V7

1N4734 5V6 1N4735 6V2 1N4736 6V8 1N4737 7V5 1N4738 8V2 1N4739 9V1 1N4740 10V 1N4741 11V 1N4742 12V 1N4743 13V 1N4744 15V 1N4745 16V 1N4746 18V 1N4747 20V 1N4748 22V 1N4749 24V 1N4750 27V 1N4751 30V 1N4752 33V 1N4753 36V 1N4754 39V 1N4755 43V

分析整流与稳压二极管伏安特性曲线的异同

分析整流与稳压二极管伏安特性曲线的异同 方案一:伏安法 试验目的:1.了解整流与稳压二极管伏安特性曲线。 2.熟悉用伏安法测整流与稳压二极管伏安特性曲线的一般步骤。 3.用整流与稳压二极管伏安特性曲线解决实际生活中的问题。 试验原理 用伏安法测量各种元器件的特性时,为减少误差,除合适地选择测量电表外,实际测量时还要注意正确地选择合适的侧量线路.通常有两种方法:外接法和内接法,.在测量线性元件的电阻时,根据估计的阻值大小,适当地选取某种方法阁,可得到精确地侧量结果.但对非线性元件,如二极管,其直流电阻的大小与加在二极管两端电压的大小和方向都有关系.以ZCW(或ZCP)型二极管为例,当加在它两端的正向电压从零增加到0.7V左右时,其电流电阻阻值,可以从接近无穷大,逐渐变化到数十欧姆.对于这种阻值变化范围很大的元件,在测量其伏安特性曲线时,不论采用电流表外接或内接,由于电流表内阻的影响,所得测量结果,均不可能在整个侧量范围内都与实际值保持较小的偏差.如果选择内阻较小的电压表和内阻较大的电流表,这一现象将更为明显。.因此,为得到准确的测量结果,必须对测量数据加以修正.本文给出了修正公式,分别按电流表外接法和内接法测量了2Cw53型稳压二极管的正向特性曲线,计算得出了相应的修正值,描绘了该二极管的伏安特性曲线.结果显示,两种方法的测量结果都有很大误差,修正后二者结果却完全一致,说明在采用伏安法测量二级管的特性时,对测量结果必须加以修正,对此也给出了相应的理论解释. 试验仪器电压表:C43型,量程:1.5V,内阻:R。=1498欧;电流表:MF20型万用表,量程:6mA,内阻:R=49.8欧;整流与稳压二极管各一个。 试验内容

稳压二极管检测

稳压二极管的检测 (1)正、负电极的判别从外形上看,金属封装稳压二极管管体的正极一端为平面形,负极一端为半圆面形。塑封稳压二极管管体上印有彩色标记的一端为负极,另一端为正极。对标志不清楚的稳压二极管,也可以用万用表判别其极性,测量的方法与普通二极管相同,即用万用表R×1k档,将两表笔分别接稳压二极管的两个电极,测出一个结果后,再对调两表笔进行测量。在两次测量结果中,阻值较小那一次,黑表笔接的是稳压二极管的正极,红表笔接的是稳压二极管的负极。 若测得稳压二极管的正、反向电阻均很小或均为无穷大,则说明该二极管已击穿或开路损坏。 (2)稳压值的测量用0~30V连续可调直流电源,对于13V以下的稳压二极管,可将稳压电源的输出电压调至15V,将电源正极串接1只1.5kΩ限流电阻后与被测稳压二极管的负极相连接,电源负极与稳压二极管的正极相接,再用万用表测量稳压二极管两端的电压值,所测的读数即为稳压二极管的稳压值。若稳压二极管的稳压值高于15V,则应将稳压电源调至20V以上。 也可用低于1000V的兆欧表为稳压二极管提供测试电源。其方法是:将兆欧表正端与稳压二极管的负极相接,兆欧表的负端与稳压二极管的正极相接后,按规定匀速摇动兆欧表手柄,同时用万用表监测稳压二极管两端电压值(万用表的电压档应视稳定电压值的大小而定),待万用表的指示电压指示稳定时,此电 压值便是稳压二极管的稳定电压值。 若测量稳压二极管的稳定电压值忽高忽低,则说明该二极管的性不稳定。 稳压管常用在整流滤波电路之后,用于稳定直流输出电压的小功率电源设备中。 如图2所示,由R、Dz组成的就是稳压电路,稳压管在电路中稳定电压的原理如下: 只要R参数选得适当,就可以基本上抵消Vi的升高值,因而使Vo基本保持不变。 可见,在这种稳压电路中,起自动调节作用的主要是稳压二极管Dz,当输出电压有较小的变化时,将引起稳压二极管电流Iz的较大变化,通过限流电阻R的补偿作用,保持输出电压Vo基本不变。

稳压调压电路试题及答案解析

第四章稳压调压电路 一、填空题 1、(4-1,低)一个直流电源必备的4个环节是变压、、和。 2、(4-1,低)最简单的稳压电路是带的稳压电路, 3、(4-1,低)稳压电路的作用是保持的稳定,不受电网电压和变化的影响. 4、(4-1,低)稳压电路的作用就是在和变化时,保持输出电压基本不变。 5、(4-1,中)负载电阻R L越,滤波电容C越,电容滤波的效果越好。 6、(4-1,中)单相桥式整流电路二极管两端承受的最大反向电压U DRM= U2。 7、(4-1,难)桥式整流电路,若VD2接反了,则输出。 8、(4-1,中)桥式整流电路,若VD1管开路,则输出。 9、(4-2,低)三端固定式集成稳压器的负载改变时,其输出电压值(a.变化、b不变)。 10、(4-2,低)三端可调式集成稳压器的3个引出端是输入端、、。 11、(4-3,中)将单相半波整流电路中的二极管换成晶闸管,即构成单相半波整流主电路。 12、(4-2,中)开关式稳压电路具有功耗、效率等特点。 13、(4-1,中)稳压过程实质上是通过(a.正反馈,b.负反馈)使输出电压保持稳定的过程。 14、(4-3,低)电压对晶闸管的导通起控制作用。 15、(4-1,低)硅稳压管稳压电路中的电容起作用。 16、(4-1,低)硅稳压管的击穿是(a.可逆的,b.不可逆)。 17、(4-1,低)稳压管的选择是根据(a.输入电压,b.输出电压)的要求。 18、(4-2,中)三端集成稳压器的输出端并接的电容是为了消除可能产生的。 19、(4-1,中)为解决硅稳压管电路存在的问题常采用直流稳压电路。 20、(4-3,中)单向晶闸管的导通条件是,,其关断条件为。 二、选择题 1、(4-1,低)整流的目的是。

稳压二极管并联型稳压电路

河北经济管理学校教案 序号:1编号:JL/JW/7.5.1.03 4.18授课主题稳压二极管并联型稳压电路 教学目的1.掌握稳压二极管并联型稳压电源电路的组成及各部分作用 2.能按工艺流程安装与测试稳压二极管并联型稳压电源电路 教学 重点、难点重点:稳压电源的组成及各部分作用 难点:稳压电源安装完成后,各部分参数的测量及故障的解决 教学准备教案,板书,教材 教学过程设计与时间分配 一、课堂导入与提问(10min) 二、讲授新课(55min) 1.直流稳压电源的概念 2.稳压电源中的稳压电路按电压调整元件与负载RL连接方式之不同可分为两种稳压类型 3.简单的直流稳压电源及其结构 4.并联型直流稳压电路的优缺点 5.串联型稳压电路简介 三、课堂小结(15min) 四、布置作业(10min)

河北经济管理学校教案 教案内容 一、导入与提问(10min) 举例手机充电器 二、讲授新课(55min) 1.直流稳压电源的概念 直流稳压电源是一种当电网电压变化时,或者负载发生变化时,输出电压能基本保持不变的直流电源 2.稳压电源中的稳压电路按电压调整元件与负载RL连接方式之不同可分为两种稳压类型(1)并联型稳压电路(2)串联型稳压电路 调整元件与负载RL并联,如上图所示 3.简单的直流稳压电源及其结构 (1)第一部分为变压器 它的作用是改变电压 我们接入的市电是交流电,电压有效值是220V,而我们平时用的直流电压较小,并且稳压

就是把原来交流电的负半周整流到正半周,而原正半周仍保持不变 (3)第三部分是一个电容器,为滤波电路 它的作用是对整流后的电流进行滤波,利用电容器的充放电功能,把原来起伏变化较大电压转换成起伏变化较小的电压 (4)第四部分为调整元件部分 它的作用是对输出电压进行稳定,使输出电压为一个稳定的值 它是利用稳压二极管的反向击穿特性,如下图所示为二极管的伏安特性曲线 二极管在反向电压击穿的时候其两端电压能其本保持稳定,即使在通过它的电流发生一些变化时也能基本保持稳定。 在这里我们把稳压二极管与负载并联后,反偏接入电路,调整电压,使其呈反向电击穿状

稳压二极管在电路中的作用及工作原理

稳压二极管在电路中的作用及工作原理 稳压二极管工作原理一种用于稳定电压的单结二极管。它的伏安特性,稳压二极管符号如图1所示。结构 同整流二极管。加在稳压二极管的反向电压增加到一定数值时,将可能有大量载流子隧穿伪结的位垒,形 成大的反向电流,此时电压基本不变,称为隧道击穿。当反向电压比较高时,在位垒区内将可能产生大量 载流子,受强电场作用形成大的反向电流,而电压亦基本不变,为雪崩击穿。因此,反向电压临近击穿电 压时,反向电流迅速增加,而反向电压几乎不变。这个近似不变的电压称为齐纳电压(隧道击穿)或雪崩 电压(雪崩击穿)。 图1稳压二极管伏安特性曲线 图2等效电路理想模式

图3理想模式导通状态常见的两种稳压电路接法 图4实际模式导通状态 图5实际模式导通状态常见的两种稳压接线电路

稳压二极管的主要参数 1.Vz—稳定电压。 指稳压管通过额定电流时两端产生的稳定电压值。该值随工作电流和温度的不同而略有改变。由于制造工艺的差别,同一型号稳压管的稳压值也不完全一致。例如,2CW51型稳压管的Vzmin为3.0V,Vzmax则为3.6V。 2.Iz—稳定电流。 指稳压管产生稳定电压时通过该管的电流值。低于此值时,稳压管虽并非不能稳压,但稳压效果会变差;高于此值时,只要不超过额定功率损耗,也是允许的,而且稳压性能会好一些,但要多消耗电能。 3.Rz—动态电阻。 指稳压管两端电压变化与电流变化的比值。该比值随工作电流的不同而改变,一般胜作电流愈大,动态电阻则愈小。例如,2CW7C稳压管的工作电流为5mA时,Rz为18Ω;工作电流为1OmA时,Rz为8Ω;为20mA时,Rz为2Ω;>20mA则基本维持此数值。 4.Pz—额定功耗。 由芯片允许温升决定,其数值为稳定电压Vz和允许最大电流Izm的乘积。例如2CW51稳压管的Vz为3V,Izm为20mA,则该管的Pz为60mWo 5.Ctv—电压温度系数。 是说明稳定电压值受温度影响的参数。例如2CW58稳压管的Ctv是+0.07%/°C,即温度每升高1°C,其稳压值将升高0.07%。6.IR—反向漏电流。 指稳压二极管在规定的反向电压下产生的漏电流。例如2CW58稳压管的VR=1V时,IR=O.1uA;在VR=6V时,IR=10uA。 (三)选择二极管的基本原则 1.要求导通电压低时选锗管;要求反向电流小时选硅管。 2.要求导通电流大时选面结合型;要求工作频率高时选点接触型。 3.要求反向击穿电压高时选硅管。 4.要求耐高温时选硅管。

稳压二极管工作原理及故障特点

稳压二极管工作原理及故障特点

稳压二极管工作原理及故障特点 稳压二极管的稳压原理: 稳压二极管的特点就是击穿后,其两端的电压基本保持不变。这样,当把稳压管接入电路以后,若由于电源电压发生波动,或其它原因造成电路中各点电压变动时,负载两端的电压将基本保持不变。 稳压二极管在电路中常用“ZD”加数字表示,如:ZD5表示编号为5的稳压管。 故障特点: 稳压二极管的故障主要表现在开路、短路和稳压值不稳定。在这3种故障中,前一种故障表现出电源电压升高;后2种故障表现为电源电压变低到零伏或输出不稳定。 常用稳压二极管的型号及稳压值如下表: 型号 1N4728 1N4729 1N4730 1N4732 1N4733 1N4734 1N4735 1N4744 1N4750 1N4751 1N4761 稳压 值 3.3V 3.6V 3.9V 4.7V 5.1V 5.6V 6.2V 15V 27V 30V 75V 稳压管也是一种晶体二极管,它是利用PN结的击穿区具有稳定电压的特性来工作的。稳压管在稳压设备和一些电子电路中获得广泛的应用。我们把这种类型的二极管称为稳压管,以区别用在整流、检波和其他单向导电场合的二极管。如图画出了稳压管的伏安特性及其符号。

(1)稳定电压Uz Uz就是PN结的击穿电压,它随工作电流和温度的不同而略有变化。对于同一型号的稳压管来说,稳压值有一定的离散性。 (2)稳定电流Iz 稳压管工作时的参考电流值。它通常有一定的范围,即Izmin——Izmax。 (3)动态电阻rz 它是稳压管两端电压变化与电流变化的比值,如上图所示,即这个数值随工作电流的不同而改变。通常工作电流越大,动态电阻越小,稳压性能越好。 (4)电压温度系数它是用来说明稳定电压值受温度变化影响的系数。不同型号的稳压管有不同的稳定电压的温度系数,且有正负之分。稳压值低于4v的稳压管,稳定电压的温度系数为负值;稳压值高于6v的稳压管,其稳定电压的温度系数为正值;介于4V和6V之间的,可能为正,也可能为负。在要求高的场合,可以用两个温度系数相反的管子串联进行补偿(如2DW7)。 (5)额定功耗Pz 前已指出,工作电流越大,动态电阻越小,稳压性能越好,但是最大工作电流受到额定功耗Pz的限制,超过P2将会使稳压管损坏。 选择稳压管时应注意:流过稳压管的电流Iz不能过大,应使Iz≤Izmax,否则会超过稳压管的允许功耗,Iz也不能太小,应使Iz≥Izmin,否则不能稳定输出电压,这样使输入电压和负载电流的变化范围都受到一定限制。下图示出了稳压管工作时的动态等效电路,图中二极管为理想二极管。

相关主题
文本预览
相关文档 最新文档