当前位置:文档之家› 高炉矿渣混凝土的设计与应用

高炉矿渣混凝土的设计与应用

高炉矿渣混凝土的设计与应用
高炉矿渣混凝土的设计与应用

矿渣粉基本知识

矿渣粉基本知识 1、什么是矿渣粉? 矿渣,是高炉炼铁产生的水渣,矿渣粉是高炉水渣通过细磨后,达到 相当细度且符合相当活性指数的粉体。 2、矿渣粉国家标准是什么? 目前执行的国家标准是GB/T18046-2008《用于水泥和混凝土中的粒化 高炉矿渣粉》。 3、什么是矿渣粉的活性指数? 简言之:即用50%矿粉和50%水泥拌合制作标准砂浆试件测试的强度,与用100%水泥制作标准砂浆试件测试强度的百分比,就是矿粉的活性指数。 4、矿渣粉分几个等级? 共分为S105、s95、S75三个级别,具体的意义是:如:S105-28天活性指数不小于105%。也就是说:50%矿粉和50%水泥拌合制作试件测试的强度大于100%水泥制作试件测试强度的105%以上的矿粉才符合S105级的要求。其他依此类推。 5、GB/T18046-2008矿渣粉的技术要求有哪几项? 共10项:密度、比表面积、活性指数、流动度比、含水量、三氧化硫 含量、氯离子含量、烧失量、玻璃体含量、放射性等,如下表:

6、矿渣粉的作用及特点? (1)减少坍落度损失;(2)大大提高混凝土耐久性;(3)对混凝土的显著增 强作用;(4)优良的碱骨料抑制剂y(5)增强混凝土的抗腐蚀性;(6)提 高混凝土的可泵性;(7)减少混凝土泌水。(8)改善了混凝土的微现结构 使水泥浆体的空障率明显下降,强化了集料界面的粘结力,使得混凝土的物理力学性能大大提高(8)减少水泥用量节约成本 8、如何确定矿粉(s95级)在混凝土中的掺量? “单掺”矿粉时,可按等量取代原则并根据以下方法确定矿粉的合适掺量 (1)对于地上结构以及有较高早期强度要求的混凝土结构,掺量一般为2030%。 (2)对于地下结构、强度要求中等的混凝土结构,排量一般为30-50%° (3)对于大体积混凝土或有严格温升限制的混凝土结构,掺量一般为50-65%。 (4)对于有较高耐久性能更求的特殊混凝土结构(如海工防腐蚀结构、污水处理设施等),掺量可达50-70%。 9、销售中客广重点关注哪些矿粉质量指标? (1)矿渣粉的7天活性指数:对于矿粉的28天活性指数一般都能够满足要求,而7天活性指标,就不容易达标了7天活性越高,混凝士里就可以 加矿粉,从而为混凝土企业增加利润。s95级7天活性指数一般要大于75%

高钛重矿渣混凝土在工程中的应用综述

高钛重矿渣混凝土在工程中的应用综述 【摘要】高钛型高炉重矿渣混凝土是指攀钢用铁矿冶炼生铁时产生的熔融矿渣,经自然冷却或水淬而成的以南钛辉石、钙钛矿等矿物为主的无机固体材料。其浇筑的混凝土结构耐久性、经济性和社会效益显著,是处理高钛重矿渣生产和环境保护的主要途径。本文从攀西地区高钛重矿渣混凝土使用的实际情况出发,对目前高钛重矿渣混凝土在工程中具有一定代表性的应用实例做了简要介绍和分析,提出以后的研究方向,具有一定的现实意义。 【关键词】高钛重矿渣;建筑工程;工程应用;混凝土 1.引言 目前,攀钢高钛型高炉重矿渣(以下简称高炉重矿渣)的堆积量达数千万吨,每年新增300余万吨,大量的高炉重矿渣堆积不仅造成环境污染,也是对二次资源的极大浪费[1]。上世纪70年代,攀钢展开了以高钛重矿渣碎石、渣砂作为混凝土粗、细骨料的一系列试验研究,试验研究表明,攀钢高钛重矿渣作为混凝土粗细骨料是可行的,能满足一般工程的需要。上世纪70年代末开始广泛应用在攀枝花道路桥梁、攀钢工业厂房、攀枝花民用机场、教学楼等重大混凝土工程当中,至今已用了300×104 m3左右。其施工质量优良,工程使用数年后仍保持完好,经钻芯取样,未发现界面有碱骨料反应破坏产生。实践证明,高钛重矿渣碎石具有2~3级石料的力学强度,耐磨性不亚于石灰岩,各项指标均符合冶金部颁布的《高炉重矿渣应用暂行技术条件》的规定,可配置不同强度的混凝土[2.3]。用高钛重矿渣作建筑材料,其结构的耐久性、经济性和社会效益显著,是处理高钛重矿渣生产和环境保护的主要途径,对于解决攀钢矿渣过量堆积,节约自然资源,降低工程成本,保护长江上游生态环境等具有重要的意义。 2.高钛重矿渣混凝土在公路工程中的应用 大量的道路工程证实:混凝土道路路面在长时间且持续性的运行过程当中表现出了较好的刚性与抗疲劳性能,路面整体外观流畅舒适,在运行过程当中的结构稳定性性能发挥同样出色,与之相对应的是较为低廉的养护费用[4]。而将高钛重矿渣浇筑混凝土路面,已在攀枝花地区广泛使用。例如倮果公路、矿山机修二加工室外公路、物资处公路、倮果火车站装卸线公路、选矿公路、石华公路、大花地生活区公路、重院公路、提钒车间六号公路等[5]。孙金坤[6]等以清一乌复线道路为工程背景。采用高钛重矿渣作粗、细骨料,并掺加磨细高钛矿渣复合微粉部分取代水泥来配制复高钛重矿渣路面混凝土。通过对已建成清一乌复线工程路面的调查显示:从过车率,路面损坏情况统计分析,CHTHSPC质量优良,合格率100%,水泥用量与同等级、同工作性能的天然砂石配制的混凝土相等或略低,具有优良的抗弯拉性能,运行半年来未发现断板、翻砂现象。中国水利水电第五工程局[7]将高钛重矿渣混凝土应用于重载公路路面工程中,比如攀枝花境内观音岩水电站主体工程主要工程材料、金属结构和大型设备的进场公路(格观公路,全长6224.577m)。

粒化高炉矿渣资源化利用的技术现状_程福安

第42卷第3期2010年6月西安建筑科技大学学报(自然科学版) J1Xi c an U niv.of Ar ch.&T ech.(N atural Science Edit ion) V ol.42N o.3 Jun.2010 粒化高炉矿渣资源化利用的技术现状 程福安1,2,魏瑞丽2,李辉1,2 (11西部建筑科技国家重点实验室(筹);21西安建筑科技大学材料科学与工程学院粉体工程研究所,陕西西安710055) 摘要:高炉渣是炼铁过程中产生的副产品,目前我国普遍采用急冷的方法将高炉渣制备成粒化高炉矿渣.基 于不同的性质,对粒化高炉矿渣在建材、肥料及污水处理中的利用技术进行了详细的介绍,最后对其发展进行 了展望. 关键词:高炉渣;建材;肥料;污水处理 中图分类号:X757文献标识码:A文章编号:1006-7930(2010)03-0446-05 高炉渣是生铁冶炼过程中从高炉排出的一种废渣.在高炉冶炼生铁时,从炉顶加入的铁矿石、焦炭、助溶剂等通过热交换发生复杂的化学反应,当炉温达到1300~1500e时,炉料熔融,矿石中的脉石,焦炭中的灰分和助溶剂等非挥发性组分形成以硅酸盐和铝酸盐为主、浮在铁水上面的熔渣,即高炉渣.通常每炼1t生铁产生高炉渣0.3~0.9t[1].2009年我国生铁产量为54374.8万t,以每生产1t生铁产生0.3t高炉渣计算,产生高炉渣1.6312亿t. 高炉渣出炉后在大量水的作用下被急冷成海绵状浮石类物质,即粒化高炉矿渣.其化学成分与硅酸盐水泥熟料相似,具有较高的潜在活性.经适当处理后被大量作为建筑材料的原料使用,不仅降低熟料消耗、节约能源,还可降低由于CO2排放引起的温室效应和废渣堆放产生的环境污染.目前我国80%的高炉渣为粒化高炉矿渣.基于不同的性质,粒化高炉矿渣的具体利用途径也大相径庭.本文将对粒化高炉矿渣在建材、农肥和污水处理领域的资源化利用技术做较深入的介绍与分析. 1在建材领域的应用 1.1作为水泥混合材料 粒化高炉矿渣具有潜在的水硬性,在水泥熟料、石膏等激发剂的作用下可以显示出水化活性,是生产水泥的优质原料,在扩大水泥品种、增加产量、调节标号、改进性能和保证水泥安定性合格方面发挥着重大作用.在前苏联和日本,约有50%的高炉渣被用于生产水泥.我国用于制备矿渣水泥的高炉渣占利用量的78%左右,约有75%的水泥中掺有粒化高炉渣.根据高炉渣用量和激发剂的不同,可将掺加矿渣的水泥分为普通硅酸盐水泥、矿渣硅酸盐水泥、复合硅酸盐水泥、石膏矿渣水泥、石灰矿渣水泥、钢渣矿渣水泥[1-2].其中普通硅酸盐水泥、矿渣硅酸盐水泥和复合硅酸盐有国家标准.其他应用矿渣的水泥产品尚处于研发阶段. 早期人们制备矿渣水泥采用将水泥熟料和矿渣混合粉磨的方法,但因矿渣的易磨性比熟料差,且矿渣水泥中水泥的粒度一般为300~350m2/kg,而矿渣的粒度较细(450~500m2/kg),在水泥细度合格时,矿渣细度无法达到要求,难以发挥其在水泥中的作用.西安建筑科技大学粉体工程研究所于2002年率先在山西长治年产150万t矿渣水泥生产线工程采用将矿渣和水泥熟料分开粉磨的技术,解决了矿渣超细粉磨的技术难题. 1.2作为混凝土掺合料 矿渣微粉除用于配制矿渣水泥,还可作为高活性的掺合料配制高性能矿渣混凝土.矿渣微粉粒度越 *收稿日期:2009-11-30修改稿日期:2010-04-12 基金项目:中国工程院咨询项目(2009-XZ-06);陕西省重点学科建设专项资金资助项目 作者简介:程福安(1966-),男,陕西铜川人,高级工程师,硕士,主要从事工业固体废弃物的的资源化利用研究.

矿渣、混凝土路面田间道路施工方法

本标段为道路:宽4米厚18厘米水泥路。20cm矿渣,18cmC25水泥混凝土。 1、测量放线: 1.1测量控制:针对本工程的特点,现场建立平面及高程控制系统,以便在整个施工期间针对所有工程项目的施工进行测量控制。 1.1.1平面控制系统 拟采用导线测量的方法建立平面控制系统,测量仪器采用经纬仪及钢尺。用设计院提供的控制点进行控制,设直线控制桩,控制桩位臵应在稳定可靠、便于施工期间保护及使用方便。 1.1.2高程控制系统 测量仪器采用水准仪,根据设计院提供的水准点,将标高引至各临时水准点上,临时水准点必须坚固稳定。 1.2 放线控制 1.2.1本标段的放线控制主要包括以下几个方面: 1)路的中心线和坡脚平面控制及高程控制 2)路基的高程控制 1.2.2 保证测量准确度及精度的措施。 测量需严格遵守中华人民共和国行业标准的相关规定,作业前各种测量仪器应做好规范要求的检验项目,应保证测量准确及精度。 2、道路施工流程 施工准备→测量放线→地面素土打夯夯实→压实度检验→路面铺填→交工验收

2.1素土夯实 路基施工注意事项:为保证路面使用寿命及质量,路基压实度必须达到设计要求。施工前应对拟取土填料进行击实试验确定最大干密度及最佳含水量,并选择试验路段进行压实试验以确定正确的压实方法、种类、压实设备及组合工序、最佳组合下的压实遍数及压实层厚度。 一般路基处理:为保证路基应有的强度,避免路基出现过大沉陷,必须对路面下路床进行处理,使其达到路床应有的压实度,路床下做15cm石灰土(12%)。路床压实度及弯沉值满足设计要求后,再做路面结构。如遇特殊情况,必须处理。 填筑路基:路基要分层填筑碾压,路基压实度采用重型压实度标准。 填方路基:施工前应对原地面的草皮、树根、杂物等全部清除干净,并大致找平压实。路基施工应注意保护生态环境,清除的杂物应妥善处理,不能倾倒于河流水域中。 路基填土应选用塑性指数12-18的土质。对于塑性指数在18-26的土质,应加强施工期间的翻晒、打碎或采用戗灰(5%)处理的方法。 不能使用使用液限大于50%塑性指数大于26的粘质土以及淤泥、沼泽土、含草皮土、生活垃圾和腐植土填筑路基。 路基要分层填筑碾压。含水量应控制在压实最佳含水量±2%之内。如填土土源过湿,碾压有困难时可将土翻晒或换填处理。 填土肩应路基一起填筑,并满足设计的坡度及压实度要

国内矿渣综合利用现状

xx大学xx (250022) 一、国内矿渣综合利用现状 矿渣是黑色冶金工业的主要固体废弃物,2005年我国产钢3.49亿吨,冶炼废渣产生14619万吨,(其中钢渣约为5000万吨,高炉矿渣约9000万吨),综合利用12848万吨,加上历年累积,总贮存量为2亿吨,占地3万亩,这些露天储存的冶炼废渣堆存侵占土地,污染毒化土壤、水体和大气,严重影响生态环境,造成明显或潜在的经济损失和资源浪费。据估算以每吨冶炼废渣堆存的经济损失14.25元计,每年造成经济损失28.5亿元。所以,冶炼废渣的无害化、资源化处理是我国乃至世界各国十分重视的焦点,也是我们推进循环经济的中心内容之一。 矿渣在水泥工业中的综合利用主要经过了三个阶段。 1.第一阶段主要是在1995年以前,粒化高炉矿渣主要是作为水泥混合材使用。以混合粉磨为主。矿渣由于难磨,在水泥中的掺量有限,一般不超过30%。 2.第二阶段是1995~2000年,学习国外技术,矿渣微粉作为高性能混凝土的高掺合料,在建筑工程中推广使用。但要求矿渣微粉比表面积要达到 600m2/kg以上,国内仅有几家粉磨站生产。主要原因是: 进口设备价格昂贵、生产线投资相当大。以年产30万吨矿渣微粉生产线为例,一次性投资至少在5000万元左右。 3.第三阶段是在2000年之后,粉磨设备节能技术和矿渣微粉应用经济技术研究的深入,使广大水泥企业认识到,矿渣微粉最经济的粉磨细度应控制在400m2/kg左右。这样的矿渣微粉,既能直接供给混凝土搅拌站作掺合料,又能与熟料、石膏粉合成高掺量矿渣水泥。随着循环经济的大力发展,矿渣微粉的产量年年翻番,目前已接近1000万吨/年,建材行业内一个新兴产业正逐步在形成。 二、什么是矿渣

高炉渣处理、回收利用技术的现状

高炉渣处理、回收利用技术的现状与进展 学院:矿业工程学院 班级:矿加10 姓名:范明阳 学号:120103707026

高炉渣处理、回收利用技术的现状与进展 范明阳 (辽宁科技大学矿业工程学院) 摘要:介绍了目前国内外高炉渣处理、回收利用的现状,对比分析了高炉渣各种处理工艺的优点和不足,指出目前的高炉渣处理存在新水消耗大、炉渣物理热无法回收和二氧化硫、硫化氢等污染物排放的问题,提出了解决高炉渣处理和回收利用过程中渣粒化及热量回收问题的新方法,并展望了高炉渣综合利用的发展趋势. 关键词:高炉渣;处理;回收利用;发展趋势 Abstract:The current status of the recovery and utilization of blast furnace slag both at home and abroad a.re described,andthe advantages and the disadvantages of various treatment processes compared in the present discussion.It is indieated thatthe treatment method of blast furnace slag now in use has the shortcomings of large fresh water consumption,impossibility torecover the physical heat of the slag,and emission of contaminants SO2 and H2 S. Key words:blast furnace slag;treatment;recovery and utilization;developing trend 0 .前言 钢铁工业是我国国民经济的重要基础产业.高炉渣是一种性能良好的硅酸盐材料,可作为生产水泥的原料.高炉渣的主要成分是氧化钙、氧化镁、三氧化二铝、二氧化硅,属于硅酸盐质材料,其化学组成与天然矿石、硅酸盐水泥相似.在急冷处理的过程中,熔态炉渣中的绝大部分物质没能形成稳定的化合物晶体,以无定形体或玻璃体的状态将没能释放的热能转化为化学能储存起来,从而具有潜在的化学活性,是优良的水泥原料.据统计,我国冶金企业每年用于处理废弃炉渣资金高达上亿元,尤其是对于高炉渣的显热,国内还没有一家钢铁联合企业将

国内外粒化高炉矿渣粉标准及产业发展概况

国内外粒化高炉矿渣粉标准及产业发展概况近年来我国矿渣粉行业产能过剩严重,产品竞争激烈。国内有些矿渣粉企业为求发展,在深挖国内市场的同时,将眼光聚焦海外。高炉矿渣经不同处理方法形成的几种产物,在世界各国的矿渣市场上分别占有不同的比例。只有掌握当地标准并了解当地的市场行情,才能切实保证企业和用户的利益。本文通过对磨细粒化矿渣粉生产及应用较为活跃的国家和地区的标准、产业发展情况调研,对比中国国标和其他国家标准的异同,研究矿粉走出国门的标准,集中讨论磨细粒化高炉矿渣粉作为混凝土掺合料标准和各国产业发展情况(对钢渣、矿渣骨料等其他产品不做讨论),旨在为国家标准和行业标准与国际标准对接提供技术依据,为准备进军海外市场的厂家提供研究方向和参考依据。 一、总体概念、分类、产出流程及发展 当今世界主流的炼钢方法主要分成两种:一种是高炉、转炉(BOF)炼钢法,另一种是电弧炉(EAF)炼钢法(如图1所示)。目前在世界范围内,高炉、转炉法生产的生钢产量约占总产量的71%,电弧炉炼钢法的产量占29%[1]。高炉矿渣是高炉炼铁时所排出的一种废渣。高炉矿渣的处理方法根据冷却方式不同,主要分为水淬渣、气冷渣和造粒渣三种产品。水淬渣指的是高炉渣经冷水急速冷却形成的5毫米以下粒径的高炉水淬渣颗粒,以高炉水淬渣为主要原料,经干燥、粉磨处理而制成的粉末材料,即为磨细高炉矿渣粉。高炉矿渣粉中玻璃质占80%~90%,具有潜在水硬性,用于混凝土中可增加混凝土强度、提高耐久性,多应用于水泥厂作为混合材料以及混凝土搅拌站作为掺合料。气冷渣指的是高炉渣在空气中慢慢冷却后,经破碎、筛分等处理而形成的块状颗粒,一般用于公路建设或混凝土中取代部分天然砂石。造粒渣是指高炉渣在空气中快速冷却后,经造粒处理形成的20毫米以下粒径的颗粒,较细的颗粒经破碎、粉磨等处理后可

矿渣粉在砼中的应用

矿渣粉在砼中的应用 一、矿渣粉及其在国内外的应用情况 矿渣粉是水淬粒化高炉矿渣经粉磨后达到规定细度的一种粉体材料。自从1862年德国人发现水淬粒化高炉矿渣具有潜在活性后,矿渣长期作为水泥混合材使用。2000年以前,矿渣在作为水泥混合材使用上国内外存在差异,国外除将矿渣和水泥熟料混磨生产矿渣水泥外,还有将矿渣单独磨细,然后与磨细后的熟料混合,生产矿渣水泥,而国内只是通过混磨生产矿渣水泥。由于矿渣较熟料难磨细,混磨时水泥中矿渣的细度较熟料小的多,水泥细度控制在300m2/kg左右的情况下,矿渣粉的细度仅能达到200~250m2/kg左右,因而不但水泥中矿渣粉的活性不能充分发挥,而且矿渣用过高时,使混凝土的粘聚性很差,混合料容易离析和泌水,混凝土抗渗性能降低。这样矿渣在水泥中的掺量受到了较大限制,一般不超过30%。 随着国际上对矿粉研究的不断深入和大规模的开发利用,我国20世纪80 年代改革开发的力度不断加大,预拌混凝土的崛起与发展以及政府日益注重环境保护,自20世纪90年代起,我国开始了矿粉的特点及应用研究。清华大学对矿粉在高强混凝土的应用进行了研究,在其编写的《高强混凝土结构设计与施工指南》一书中,特别提出矿粉在配制高强混凝土方面的巨大潜力。冶金部建筑研究总院在搜集大量国内外有关资料,尤其是在日本资料的基础上,立项进行矿粉成套技术的开发研究工作,在产品性能、矿粉混凝土性能等方面获得了大量数据,完成了“宝钢高炉矿渣微粉在混凝土中应用研究”课题的第一阶段工作,上海建筑材料科学研究院和上海宝钢企业开发总公司共同完成了该课题。此课题的完成为1998年上海市地方标准《混凝土和砂浆用粒化高炉矿渣微粉》,1999年《粒化高炉矿渣微粉在混凝土中应用技术规程》的制定颁布创造了条件。2000年国家标准《用于水泥和混凝土的粒化高炉矿渣粉》(GB18046-2000)颁布实施。 随着矿渣磨细技术的不断发展,矿渣被磨至相应细度的能耗越来越低,并且细度也很容易达到400m2/kg以上,为矿渣粉的大量应用打下了良好基础。2000年11月上海宝钢率先从日本引进的年产60万吨矿粉立磨生产线投产。随后的几年内,武钢、鞍钢、宝钢二线、唐钢、首钢、安徽朱家桥等大型矿粉立磨生产线

粒化高炉矿渣知识汇总

粒化高炉矿渣 粒化高炉矿渣是在高炉冶炼生铁时,所得以硅酸盐与硅铝酸盐为主要成分的熔融物,经淬冷后来不及结晶而形成的细颗粒状玻璃态物质。 一、矿渣在水泥工业中的综合利用主要经过了三个阶段: 第一阶段(1995年以前)粒化高炉矿渣主要是作为水泥混合材使用。以混合粉磨为主。矿渣由于难磨,在水泥中的掺量有限,一般不超过30%。 第二阶段(1995~2000年)学习国外技术,矿渣粉作为高性能混凝土的高掺合料,在建筑工程中推广使用。但要求矿渣粉比表面积要达到600m2/kg以上,国内仅有几家粉磨站生产。主要原因是:进口设备价格昂贵、生产线投资相当大。 第三阶段(2000年后)矿渣粉最经济的粉磨细度应控制在400m2/kg左右。这样的矿渣粉,既能直接供给混凝土搅拌站作掺合料,又能与熟料、石膏粉合成高掺量矿渣水泥。随着循环目前已接近一亿吨/经济的大力发展,矿渣粉的产量年年翻番,年,正在国内形成一个生产建材的新兴产业。 二、什么是矿渣 “矿渣”的全称是“粒化高炉矿渣”它是钢铁厂冶炼生铁时产生的废渣。在高炉炼铁过程中,除了铁矿石和燃料(焦炭)之外,为降低冶炼温度,还要加入适当数量的石灰石和白云石作为助熔剂。它们在高炉内分解所得到的氧化钙、氧化镁、和铁矿石中的废矿、以及焦炭中的灰分相熔化,生成了以硅酸盐与硅铝酸盐为主要成分的熔融物,浮在铁水表面,定期从排渣口排出,经空气或水急冷处理,形成粒状颗粒物,这就是矿渣。含有95%以上的玻璃体和硅酸二钙,钙黄长石、硅灰石等矿物,与水泥成份接近。 未经淬水的矿渣,其矿物这些形态呈稳定形的结晶体,结晶体除少部分C2S尚有一些活性外,其它矿物基本上不具有活性。如经淬水急冷,形成了玻璃态结构,就使矿渣处于不稳定的状态。因而具有较大的潜在化学能。出渣温度愈高,冷却速度愈快,则矿渣玻璃化矿渣的潜在化学能程度愈高,愈大,活性也愈高。因此,经水淬急冷的高炉矿渣的潜在活性较好。 每生产1吨生铁,要排出0.3-1吨矿渣。 表1我国部分钢铁厂的高炉矿渣化学成分

高炉炉渣资源化利用研究与现状

高炉炉渣资源化利用研究与现状 摘要:钢铁生产行业在高速发展的同时,高炉炼铁工艺产生的高炉渣不断累积。由于缺乏有效的资源化利用方式,高炉矿渣就地堆积,占用了大量土地资源,并对周边的土壤及水体环境造成了污染。有效利用高炉矿渣等二次资源,减少高炉矿渣对环境的污染,达到高炉矿渣的减量化、无害化、资源化处理,并进一步提高高炉矿渣基产品的附加值,是我国钢铁行业可持续发展的有力保障,对于建立环境友好型、资源节约型社会具有促进意义。 关键词:高炉矿渣;制备方法;陶瓷纤维;资源化 高炉矿渣是在高炉炼铁过程中,铁矿石中含有的SiO},A1}03等杂质与熔剂中的CaO,Mg0等反应生成硅酸盐熔融物,经水淬处理得到含有较多孔隙且无定形、不规则的副产物[y0作为我国国民经济一大支柱的钢铁生产行业,在全行业高速发展的同时,其主要的冶炼工艺—高炉炼铁工艺产生的高炉矿渣不断累积。由于缺乏有效的资源化利用方式,高炉矿渣就地堆积,占用了大量的土地资源,并对周边的土壤及水体环境造成了污染。就普通的炼铁工艺而言,每冶炼It铁矿石会产生0.5一0.9t的矿渣,如不能合理地处理大储存量的高炉矿渣,不仅会造成环境污染,浪费大量能源,且会给我国经济建设带来巨大的压力,不利于钢铁行业的可持续发展。近年来,国内的高炉矿渣主要应用于建筑材料和混凝土掺合料,其附加值较低,大量高炉矿渣等二次资源被浪费。因此,如何对高炉矿渣更好的资源化利用,是当今钢铁行业面临的又一主要问题[0据不完全统计,我国矿业固体废弃物累计超过70亿t,占地6万多h时。高效的开发和利用工业二次资源,变废为宝、化害为利,实现工业的可持续发展显得尤为重要[[3]

2 GBT 18046-2008用于水泥和混凝土中的粒化高炉矿渣粉

用于水泥和混凝土中的粒化高炉矿渣粉 GB/T 18046-2008 标准发布单位:国家技术监督局发布 1范围 本标准规定了粒化高炉矿渣的定义、组分与材料、技术要求、试验方法、检验规则、包装、标志、运输和贮存等。 本标准适用于作水泥活性混合材和混凝土掺合料的粒化高炉矿渣粉。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误)或修订版均不适用于本标准,然而鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB 175 通用硅酸盐水泥 GB/T 176 水泥化学分析方法(GB/T 176-1996,eqv ISO 680:1990) GB/T 203 用于水泥中粒化高炉矿渣 GB/T 208 水泥密度测定方法 GB/T 2419 水泥胶砂流动度测定方法 GB/T 5483 石膏和硬石膏(GB/T 5483-1996,neq ISO 1587:1975) GB 6566 建筑材料放射性核素限量 GB/T 8074 水泥比表面积测试方法(勃氏法) GB 9774 水泥包装袋 GB 12573 水泥取样方法 GB/T 17671 水泥胶砂强度检验方法(ISO法)(GB/T 17671-1999,idt ISO 679:1989)》JC/T 420 水泥原材料中氯的化学分析方法 JC/T 667 水泥助磨剂 3术语和定义 下列术语和定义适用于本标准。 粒化高炉矿渣粉:以粒化高炉矿渣为主要原料,可掺加少量石膏磨细制成一定细度的粉体,称作粒化高炉矿渣粉,简称矿渣粉。 4组分与材料 4.1矿渣

钢渣与矿渣的区别

矿渣与钢渣的区别 高炉矿渣 高炉矿渣是冶炼生铁时从高炉中排出的一种废渣。在高炉冶炼生铁时,从高炉加入的原料,除了铁矿石和燃料(焦炭)外,还要加入助熔剂。当炉温达到1400-1600℃时,助熔剂与铁矿石发生高温反应生成生铁和矿渣。 高炉矿渣是由脉石、灰分、助熔剂和其他不能进入生铁中的杂质组成的,是一种易熔混合物。例如采用贫铁矿炼铁时,每吨生铁产出1.0-1.2t高炉渣;用富铁矿炼铁时,每t生铁只产出0.25t高炉渣 按照高炉矿渣化学成分中的碱性氧化物的多少。高炉矿渣又可分为碱性矿渣、中性矿渣和酸性矿渣。高炉熔渣用大量水淬冷后,可制成含玻璃体为主的细粒水渣,有潜在的水硬胶凝性能,在水泥熟料、石灰、石膏等激发剂作用下,显示出水硬胶凝性能,是优质水泥原料。我国生产的水泥有70%-80%掺用了不同数量的水渣。水渣还可作保温材科,湿碾和湿磨矿渣,混凝土和道路工程的细骨料;土壤改良材料等。 钢渣 钢渣是炼钢过程中排出的废渣,按其炼钢炉型区分有平炉渣、转炉渣、电炉渣三大类。大约每炼1t钢,排渣0.25t左右。 炼钢炉出渣往往在出钢前后分几次排出(或扒出)。例如转炉炼钢有前期渣和后期渣;平炉炼钢有初期渣、中期渣、后期渣,还有粘

在钢水包等处的残余渣;电炉炼钢有氧化渣和还原渣。另外用生铁或废铁炼钢,在化铁炉中先熔化成铁水,所产生的废渣称为化铁炉渣。 钢渣的成分一般含有:CaO40%~50%、MgO5%~10%、SiO210%~20%,FeO和Fe2O3 15%~25%,其主要矿物组成为硅酸二钙、硅酸三钙、铁酸钙及RO等,它与水泥熟料的化学成分相似,具有水硬胶凝性,因此被人们称为劣质熟料。 钢渣的处理工艺主要有冷弃法、热泼法、盘泼水冷法、钢渣水淬法。

矿渣微粉质量技术标准

QB 佳木斯市松江水泥有限公司质量技术标准 QB/ZL 1006-2011 受控状态 分发号 程序编号: 2011-03-01制订2011-04-26实

施佳木斯市松江水泥有限公司化验室制 订 QB/SJJC001--2010佳木斯市松江建材有限公司 粒化高炉矿渣粉质量技术标准 1. 范围 本标准规定了粒化高炉矿渣粉的定义、组分与材料、粒化高炉矿渣粉的质量技术要求及试验方法、检验规则、包装标志、运输和贮存等。 本标准适用于佳木斯市松江建材有限公司粒化高炉矿渣粉的生产、检验与销售。 2.规范性引用文件 GB/T 18046 用于水泥和混凝土中的粒化高炉矿渣粉 GB/T 203 用于水泥中的粒化高炉矿渣 3.术语和定义 下列术语和定义适用于本标准 3.1 粒化高炉矿渣 在高炉冶炼生铁时,所得以硅铝酸钙为主要成分的熔融物,经淬冷成粒后,具有潜在水硬性材料,即为粒化高炉矿渣(简称矿渣)

3.2 粒化高炉矿渣粉 以粒化高炉矿渣为主要原料,可掺加少量石膏或粉煤灰制成一定细度的粉体,称作粒化高炉矿渣,简称矿渣粉。 4.组分与材料 4.1 矿渣 符合GB/T 203 规定的粒化高炉矿渣。 4. 1 .1 进厂矿渣水分≤10.0%,烘干矿渣水分≤2.0%, 4.1.2 质量系数K≥1.2 4.1.3 目测矿渣中不得混有外来夹杂物,如含有铁尘泥,未经充分淬冷矿渣等。 4.2 石膏 符合GB/T 5483中规定的G类或M类二级(含)以上的石膏或混合石膏。 4.3 粉煤灰 符合GB/T 1596 中规定的F类或C类粉煤灰。 4.4 助磨剂 符合JC/T 667的规定,其中加入量不应超过矿渣粉质量的0.5%。 5.矿渣粉质量技术标准 矿渣粉应符合下表的技术指标规定

C30西昌全高钛重矿渣骨料混凝土性能试验研究

第37卷第6期 硅 酸 盐 通 报 Vol .37 No.62018年6月 BULLETINOFTHECHINESECERAMICSOCIETY June,2018 C30西昌全高钛重矿渣骨料混凝土性能试验研究 钱 波1,胡建春1,戚明强2,郑发平1,赵 杰2 (1.西昌学院,西昌 615013;2.钢城集团凉山瑞海实业有限公司冶金渣综合利用分公司,西昌 615000) 摘要:为研究西昌高钛重矿渣骨料配制工业与民用建筑工程泵送混凝土的可行性,针对天然砂石骨料和全高钛重矿渣骨料,结合相关规范,分别进行C30混凝土配合比设计,通过对比试验研究了混凝土拌合性能、力学性能和耐久性能。研究表明对西昌高钛重矿渣骨料进行12h的饱水预湿机制,可以显著提高混凝土的性能;西昌高钛重矿渣骨料可以替代天然骨料配制泵送混凝土,其拌合性能、力学性能、耐久性能和结构性能,符合相关规范的要求。 关键词:混凝土;高钛重矿渣骨料;配合比设计;拌合性能;力学性能;耐久性能 中图分类号:TU528.04 文献标识码:A 文章编号:1001-1625(2018)06-2062-05ExperimentalResearchonPerformanceofC30ConcretewithAggregateofHighTitaniumHeavySlaginXichangCity QIAN Bo 1,HU Jian -chun 1,QI Ming -qiang 2,ZHENG Fa -ping 1,ZHAO Jie 2 (1.XichangUniversity,Xichang615013,China; 2.Metallurgical SlagUtilizationBranchofLiangshanRuihaiIndustryCo.,Ltd.,GangchengGroup,Xichang615000,China) 基金项目:四川省教育厅科技成果转化重大培育项目(15CZ0024);西昌市技术研究开发与推广应用项目(17JSYJ07);西昌学院“两高”项 目(LGLZ201822) 作者简介:钱 波(1969-),男,教授.主要从事工程施工与建筑材料的教学和研究工作.Abstract:Inaccordancewithrelevantstandards,experimental researchwascarriedoutrespectivelytoverifythefeasibilityofpumpingconcreteofindustrial andcivil constructionengineering,whichconcretepreparedbyaggregateofhightitaniumheavyslag(HTHSaggregate)inXichangCity.Accordingtonatural aggregateconcreteandHTHSaggregateconcreteofC30,comparativeexperimental researchcontainedmixproportiondesignofconcrete,mixingperformance,mechanical performance,long-termperformanceanddurability.Experimental researchshowsthatitcansignificantlyincreaseconcreteperformancethatpre-wettingtimeofHTHSaggregateis12h;HTHSaggregateinXichangCitycanbeusedinsteadofnatural aggregatetopreparepumpingconcrete,whichmixingperformance,mechanical performance,long-termperformanceanddurability,structureperformancemetrelevantstandardrequirements.Keywords:concrete;aggregateofhightitaniumheavyslag;mixproportiondesign;mixingperformance;mechanical performance;long-termperformanceanddurability 1 引 言 西昌钒钛资源综合利用项目是国家级重点项目,投产后长期积压堆放的巨量高钛重矿渣,形成了极大的 资源浪费、环保污染和土地占用问题。限于技术与环保、效益与规模,目前主要以非回收提炼为主[1-2]。即将 高钛重矿渣加工成不同级配的骨料或集料,应用于混凝土或公路路基工程中,具有产品化、资源化、专业化和企业化优势,工艺简单,适应批量就地处理。诚然在国内外作为混凝土骨料建筑材料,高钛渣矿渣应用于混凝土工程中具有较长的历史,但不同地域的矿物化学组成成分、不同冶炼技术、不同矿渣陈化方式和不同矿渣加工工艺,形成的高钛重矿渣骨料性能能否满足工业与民用混凝土砂石要求,生产的混凝土的拌和性能、力学性能、耐久性能能否满足工业与民用混凝土性能要求,不可照搬移植,尚需进行可行性研究。 已有研究表明,西昌高钛重矿渣渣砂和渣石可以作为混凝土骨料使用[3]。虽然目前高钛重矿渣骨料应 万方数据

矿渣微粉对混凝土性能的影响以及实际应用

矿渣微粉对混凝土性能的影响以及实际应用 玉溪新平永发新型建材有限公司 矿渣的全称是粒化高炉矿渣。它是钢铁厂冶炼生铁时产生的废渣,在高炉炼铁过程中,生成了以硅酸盐与硅铝酸盐为主要成分的熔融物浮在铁水表面,定期从排渣口排出,经过空气或水急冷处理,形成粒状颗粒物,这就是粒化高炉矿渣。 矿渣微粉是将符合GB/T203 标准规定的粒化高炉矿渣经干燥、粉磨(或添加少量石膏一起粉磨)达到相当细度且符合相应活性指数的粉体。(矿渣微粉磨时允许加入助磨剂,加入量不得大于矿渣微粉质量的1%),这就是矿渣微粉。 矿渣微粉的意义作用:矿渣微粉具有潜在的水硬性和较强的混凝土活性,是水泥和混凝土的优质掺合料。随着粉磨工艺技术的发展及预拌混凝土的兴起,超细矿渣微粉得以广泛应用。自八十年代以来,英、美、加、日、法、澳等国相继制定了国家标准,使矿渣微粉的应用得到有序的发展,我国在多年研究的基础上,也于2000 年4 月发布、12 月开始实施国家新标准GB/T18046-2000 《用于水泥和混凝土中的粒化高炉矿渣微粉》,必将促进我国矿渣粉的推广使用和提高混凝土的性能及质量。 矿渣微粉用于配制预拌混凝土,不但可以高比例的等量替代水泥(一般可代替30%~50%的水泥),而且可以大大改善混凝土的性能,如泌水少、流动度和可塑性好,水化热降低,有利于防止大体积混凝土内部温升引起的裂缝和变形。掺有矿渣微粉的硬化混凝土具有良好的抗硫酸盐、抗氯盐、抗碱性能,并且能大幅度提高长期强度,具有良好的耐久性,可达到节能、降本、环保、利废的目的,已越来越多地应用于各类重点建设工程。 1 矿渣微粉对混凝土性能的影响 1.1 矿渣微粉对混凝土强度的影响 在标准养护条件下,水泥硬化28 天后,矿渣微粉仍继续水化,发挥强度效应,其强度增长幅度在14%~38%,并与矿渣微粉的比表面积呈负相关(见表1)。 表1 矿渣微粉水泥胶砂强度发展 备注:我公司生产的95矿渣微粉比表已经达到430-450m2/kg

高炉渣的综合利用。

再生金属冶金学课程论文 高炉渣的综合利用 摘要 高炉渣是高炉炼铁过程中排出的固体废弃物,随着弃置量增大,产生的问题也日趋严重。通过分析我国高炉渣的现状及特点,阐述了对其综合利用的重要意义,回顾了高炉渣综合利用的研究进展。系统地介绍了高炉渣在制备混凝土材料、矿渣砖、墙体材料和新型矿棉、微晶玻璃等材料的应用情况。阐述了二次资源综合利用的社会效益、经济效益和环境效益。从资源有效利用和产业化的角度,指出了未来高炉渣的技术开发与综合利用的发展方向。 关键词: 高炉渣;利用途径;综合利用;矿棉;微晶玻璃; 前言 高炉渣是冶金行业产生数量最多的一种副产品,其处理过程中不仅消耗大量的能源,同时也排出大量的有害物质。因此,开展高炉渣回收利用方面的研究十分必要。国内外的生产企业十分注重高炉渣再利用技术的研究,近年来从能源节约和资源综合利用来看,提高炉渣的利用率和再利用价值,寻求高炉渣资源化利用新途径和利用高炉渣开发高附加值产品已成为国内外研究的热点。积极探索利用量大、附加值高的高炉渣利用新途径以促进经济社会与环境协调发展。 本文阐述了高炉矿渣的分类及主要成分,本着综合利用的原则,详细介绍了各种高炉矿渣的综合利用途径及工艺。积极探索利用量大、附加值高的高炉渣利用新途径以促进经济社会与环境协调发展。 研究背景 我国工业发展长期以来侧重于资源密集型产业,由此造成的大量工业固体废弃物处理问题也随着经济发展而不断突出。工业废物数量庞大,种类繁多,成分复杂,不仅占用大量土地,而且污染环境经过日晒、风吹雨淋,造成二次污染[1]。工业固体废弃物资源的回收再利用产业,是国内外循环经济发展的一个重要链条,发达国家已将其视为继现有三大产业之后的又一个重要产业支柱,又称“第

普通高炉炼铁渣的利用现状

普通高炉炼铁渣的利用现状 随着我国钢铁工业的发展,高炉矿渣排量日益增多,我国每年排放高炉渣达数千万吨,而这些炉渣都用到什么地方了呢? 首先,我们先来了解一下什么是高炉渣,高炉矿渣是冶炼生铁时从高炉中排出的一种废渣,是由脉石、灰分、助熔剂和其他不能进入生铁中的杂质所组成的易熔混合物,从其化学组成成分上来看,主要是SiO2、CaO、Al2O3等,这些成分都属于硅酸盐质,便于加工成多品种的建筑材料;除此之外,高炉矿渣还可以用来生产一些用量不大而产品价值高,又有特殊性能的高炉渣产品。 我们通过对相关资料的了解,大体上总结了一下当今普通高炉炼铁渣的利用情况。下面详细介绍一下具体的利用途径。 (一)在建筑材料方面的应用,从《高炉矿渣处理和利用》[1]一文中,我们了解了高炉炼铁渣在建筑方面的利用,例如,水淬成粒状矿渣(简称水渣)是生产水泥、矿渣砖瓦和砌块的好原料;经急冷加工成膨胀矿渣珠或膨胀矿渣,可做轻混凝土骨料;吹制成矿渣棉可制造各种隔热、保温材料;轧制成型可做微晶玻璃。 生产的矿渣水泥包括以下几种:1、矿渣硅酸盐水泥;2、石膏矿渣水泥;3、石灰矿渣水泥。它们都是将矿渣与其他生产水泥的原材料按一定比例配合磨细而成的。这种水泥对其抗拉和抗压强度没什么影响,具有较好的抗硫酸盐侵蚀和抗渗透性,生产成本较低。 矿渣砖是用水渣加入一定量的水泥等胶凝材料,经过搅拌、成型和蒸汽养护而成的,用于普通房屋建筑和地下建筑,这样就节省了普通砖的消耗量。 膨胀矿渣珠主要用作混凝土轻骨料,也用作防火隔热材料,用膨胀矿渣制成的轻质混凝土,不仅可以用于建筑物的围护结构,而且可以用于承重结构。并且具有工艺简单,不用燃料,成本低廉等优点。 矿渣棉是以矿渣为主要原料,在熔化炉中熔化后获得熔融物再加以精制而得到一种白色棉状矿物纤维。它具有保温、隔音、绝冷等性能。 微晶玻璃[2]是综合玻璃和陶瓷技术发展起来的一种新型材料, 微晶玻璃是由结晶相与玻璃相组成,其物理化学性能集中了玻璃和陶瓷的双重优点, 既具有陶瓷的强度, 又具有玻璃的致密性和耐酸、碱、盐的耐蚀性。 (二)上文提及的利用途径在当前的技术已经是十分成熟的了,所以高炉渣的利用必然向一个更高层次发展,经过近几年的研究,又开发出来了高炉渣新的利用途径,从其简单的物理

粒化高炉矿渣粉检测实施细则

粒化高炉矿渣粉检测实施细则 1. 适用范围、检测项目及技术标准 1.1适用范围 用于水泥和混凝土中的粒化高炉矿渣粉(简称矿渣粉)、 1.2检测参数 比表面积、含水量、密度、流动度比、活性指数、烧失量、三氧化硫。 1.3技术标准 1.3.1产品标准(判定标准)及其需引用标准 GB/T 18046-2008 用于水泥和混凝土中的粒化高炉矿渣粉 1.3.2试验方法标准及其需引用标准 a.G B/T 176-2008 水泥化学分析方法 b.GB/T 208-1994 水泥密度测定方法 c.G B/T 2419-2005 水泥胶砂流动度测定方法 d.GB/T 8074-2008 水泥比表面积测定方法(勃氏法) e.G B 12573-2008 水泥取样方法 f.GB/T 17671-1999 水泥胶砂强度检验方法(ISO法) 2. 检测环境条件 a. 试件成型试验室的温度应保持在20℃±2℃、相对湿度不低于50%。 b. 试件养护池水温应保持在20℃±1℃范围内。 3. 检测设备和标准物质 3.1 检测设备

见表1 3.2标准物质 GSB14-1511水泥细度和比表面积标准粉。 表1 4. 取样方法及试样数量 对于同一产家、同一等级、同一品种、连续进场且不超过10d的掺合料为一验收批,但一批的总量不宜超过200t。不足200t者应按一验收批进行验收。 取样按GB 12573-2008规定进行,取样应有代表性,可连续取样,也可以在

20个以上部位取等量样品总量至少

20kg。试样应混合均匀,按四分法缩取出比试验所需量大一倍的试样(称平均样)。 5. 检测方法 5.1 比表面积 5.1.1设备、标准、环境检查 检查核对所需设备正常与否,必要时作记录; 检查核对产品标准和试验方法标准,并记录; 检查核对环境温度,并记录。 5.1.2试样检查 核对和检查试样是否符合要求,并记录。 5.1.3 检测与计算 5.1.3.1检测 检测依据标准:GB/T 8074-2008。 操作步骤、细节,注意事项: 5.1. 3.1.1仪器校准 a.仪器的校准采用GSB 14-1511或相同等级的其他标准物质。有争议时以前者为准。 b.校准周期:至少每年进行一次。仪器设备维修后也要重新标定。 5.1.3.1.2操作步骤 a.测定矿渣粉密度 按GB/T 208测定矿渣粉密度。 b.漏气检查

矿渣知识简介

矿渣知识简介 高炉矿渣是高炉炼铁过程中,由矿石中的脉石,燃料中的灰分和助熔剂(石灰石)等炉料中的非挥发组分形成的废物。主要有高炉水渣和重矿渣之分。高炉水渣是炼铁高炉排渣时,用水急速冷却而形成的散颗粒状物料,其活性较高,目前这类矿渣约占矿渣总量的85%左右。重矿渣是指在空气中自然冷却或极少量水促其冷却形成容重和块度较大的石质物料。 高炉矿渣的主要成分是由CaO、MgO、Al2O3、MgO、SiO2、MnO、Fe2O3等组成的硅酸盐和铝酸盐。SiO2和MnO主要来自矿石中的脉石和焦碳的灰分,CaO 和MgO主要来自熔剂。上述四种主要成分在高炉矿渣中占90%以上。根据铁矿石成分、熔剂质量、焦碳质量以及所炼生铁种类不同,一般每生产1吨生铁,要排出0.3~1.0吨废渣,因此它也是一种量大面广的工业废渣。 粒化高炉矿渣是一种具有良好的潜在活性的材料,它已成为水泥工业活性混合材的重要来源。水泥企业使用粒化高炉矿渣可以扩大水泥品种、改善水泥性能(抗蚀性)。粒化高炉矿渣的活性以质量系数K=(CaO+MgO+Al2O3)/(SiO2+MnO+TiO2)来衡量,系数大则活性高。高炉矿渣的活性与化学成分有关,但更取决于冷却条件。慢冷的矿渣具有相对均衡的结晶结构,主要矿物为钙铝黄长石、镁黄长石、钙长石、硫化钙、硅酸二钙等。除硅酸二钙具有缓慢水硬化性外,其他矿物成分常温下水硬性很差。水淬急冷阻止了矿物结晶,因而形成大量的无定形活性玻璃体结构或网络结构,具有较高的潜在活性。在激发剂的作用下,其活性被激发出来,能起水化硬化作用而产生强度。 在利用高炉矿渣前,需要进行加工处理,根据用途不同,通常是把高炉矿渣加工成水渣、矿渣碎石、膨胀矿渣和膨胀矿渣珠等形式加以利用。其中水渣可用于生产水泥、砖和混凝土制品,而矿渣碎石、膨胀矿渣和膨胀矿渣珠则多用作骨料来制耐热、轻质混凝土。 水渣具有潜在的水硬性胶凝性能,在水泥熟料、石灰、石膏等激发剂作用下,可显示出水硬胶凝性能,是优质的水泥原料。水渣既可以作为水泥混合料使用,也可以制成无熟料水泥。

相关主题
文本预览
相关文档 最新文档