当前位置:文档之家› 金属材料焊接性知识要点

金属材料焊接性知识要点

金属材料焊接性知识要点
金属材料焊接性知识要点

金属材料焊接性知识要点

1. 金属焊接性:指同质材料或异质材料在制造工艺条件下,能够形成完整接头并满足预期使用要求的能力。包括(工艺焊接性和使用焊接性)。

2. 工艺焊接性:金属或材料在一定的焊接工艺条件下,能否获得优质致密无缺陷和具有一定使用性能的焊接接头能力。

3. 使用焊接性:指焊接接头和整体焊接结构满足各种性能的程度,包括常规的力学性能。

4. 影响金属焊接性的因素:1、材料本因素2、设计因素3、工艺因素4、服役环境

5. 评定焊接性的原则:(1)评定焊接接头中产生工艺缺陷的倾向,为制定合理的焊接工艺提供依据;(2)评定焊接接头能否满足结构使用性能的要求。

6. 实验方法应满足的原则:1可比性 2针对性 3再现性 4经济性

7. 常用焊接性试验方法:

A:斜Y坡口焊接裂纹试验法: 此法主要用于评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性。 B:插销试验 C:压板对接焊接裂纹试验法 D:可调拘束裂纹试验法

一问答:1、“小铁研”实验的目的是什么,适用于什么场合了解其主要实验步骤,分析影响实验结果稳定性的因素有哪些

答:1、目的是用于评定用于评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性。评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性时,影响结果稳定因素焊接接头拘束度预热温度角变形和未焊透。(一般认为低合金钢“小铁研实验”表面裂纹率小于20%时。用于一般焊接结构是安全的)

2、影响工艺焊接性的主要因素有哪些

答:影响因素:(1)材料因素包括母材本身和使用的焊接材料,如焊条电弧焊的焊条、埋弧焊时的焊丝和焊剂、气体保护焊时的焊丝和保护气体等。

(2)设计因素焊接接头的结构设计会影响应力状态,从而对焊接性产生影响。

(3)工艺因素对于同一种母材,采用不同的焊接方法和工艺措施,所表现出来的焊接性有很大的差异。

(4)服役环境焊接结构的服役环境多种多样,如工作温度高低、工作介质种类、载荷性质等都属于使用条件。

3、举例说明有时工艺焊接性好的金属材料使用焊接性不一定好。

答:金属材料使用焊接性能是指焊接接头或整体焊接结构满足技术条件所规定的各种使用性能主要包括常规的力学性能或特定工作条件下的使用性能,如低温韧性、断裂韧性、高温蠕变强度、持久强度、疲劳性能以及耐蚀性、耐磨性等。而工艺焊接性是指金属或材料在一定的焊接工艺条件下,能否获得优质致密、无缺陷和具有一定使用性能的焊接接头的能力。比如低碳钢焊接性好,但其强度、硬度却没有高碳钢好。

4、为什么可以用热影响区最高硬度来评价钢铁材料的焊接冷裂纹敏感性焊接工艺条件对热影响区最高硬度有什么影响

答:因为(1).冷裂纹主要产生在热影响区;

(2)其直接评定的是冷裂纹产生三要素中最重要的,接头淬硬组织,所以可以近似用来评价冷裂纹。

一般来说,焊接接头包括热影响区,它的硬度值相对于母材硬度值越高,证明焊接接头的

韧性就越差,综合机械性能也就越差,容易出现脆化,断裂等危害。合理的焊接工艺条件就是减少这种硬度值的差异,保证焊接接头的使用性能。碳当量增大时,热影响区淬硬倾向随之提高,但并非始终保持线性关系。

三合金结构钢的焊接

低碳调质钢的焊接性分析

低碳调质钢主要是作为高强度的焊接结构用钢,因此含碳量限制的较低,在合金成分的设计上考虑了焊接性的要求。低碳调质钢碳的质量分数不超过%,焊接性能远优于中碳调质钢。由于这类钢的焊接热影响区是低碳马氏体,马氏体转变温度Ms较高,所形成的马氏体具有“自回火”特性,使得焊接冷裂纹倾向比中碳调质钢小。

低碳调质钢热影响区获得细小的低碳马氏体(ML)组织或下贝氏体(B)组织时,韧性良好,而韧性最佳的组织为ML与低温转变贝氏体组织(B)的混合组织下贝氏体的板条间结晶位相差较大,有效晶粒直径取决于板条宽度,比较微细,韧性良好,当ML与BL混合生成时,原奥氏体晶粒被先析出的B有效地分割,促使ML有更多的形核位置,且限制了ML的生长,因此ML+B混合组织有效晶粒最为细小。 Ni是发展低温钢的一个重要元素。为了提高钢的低温性能,可加入Ni元素,形成含Ni的铁素体低温钢,如钢等在提高Ni的同时,应降低含碳量和严格限制S、P的含量及N、H、O的含量,防止产生时效脆性和回火脆性等。这类钢的热处理条件为正火、正火+回火和淬火+回火等。

1在低温钢中由于含碳量和杂质S、P的含量控制的都很严格,所以液化裂纹在这类钢中不是很明显。

2另一个问题是回火脆性,要控制焊后回火温度和冷却速度。

低温钢焊接的工艺特点:除要防止出现裂纹外,关键是要保证焊缝和热影响区的低温韧性,这是制定低温钢焊接工艺的一个根本出发点。

9Ni钢具有优良的低温韧性但用与9Ni钢相似的铁素体焊材时所得焊缝的韧性很差。这除了与铸态焊缝组织有关外,主要与焊缝中的含氧量有很大的关系。与9Ni钢同质的11Ni铁素体焊材,只有在钨极氩弧焊时才能获得良好的低温韧性。因为此时能使焊缝金属中氧的质量分数降低到与母材相同的%以下。

二中碳调质钢的焊接性分析

(一)焊缝中的热裂纹中碳调质钢含碳量及合金元素含量都较高,因此液-固相区间大,偏析也更严重,具有较大的热裂纹倾向。

(二)冷裂纹中碳调质钢由于含碳量高,加入的合金元素多,淬硬倾向明显;由于M s点低,在低温下形成的马氏体一般难以产生自回火效应,冷裂倾向严重。

(三)再热裂纹(四)热影响区的性能变化

1、过热区的脆化

(1)中碳调质钢由于含碳量高,加入的合金元素多,有相当大的淬硬性,因而在焊接过热区内容易产生硬脆的高碳马氏体,冷却速度越大,生成的高碳马氏体越多,脆化倾向越严重。(2)即使大线能量也难以避免高碳M出现,反而会使M更粗大,更脆。(3)一般采用小线能量,同时预热、缓冷和后热措施改善过热区性能。

2、热影响区软化

焊后不能进行调质处理时,需要考虑热影响区软化问题。调质钢的强度级别越高,软化问题越严重。软化程度和软化区的宽度与焊接线能量、焊接方法有很大关系。热源越集中的焊接方法,对减小软化越有利。

三、中碳调质钢的焊接工艺特点

(1)中碳调质钢一般在退火状态下焊接,焊后通过整体调质处理才能获得性能满足要求的均匀焊接接头。 (2) 时必须在调质后进行焊接时,热影响区性能恶化往往难以解决。 (3) 焊前所处的状态决定了焊接时出现问题的性质和采取的工艺措施。

一:分析Q345钢的焊接性特点,给出相应的焊接材料及焊接工艺要求。

答:Q345钢属于热轧钢,其碳当量小于%,焊接性良好,一般不需要预热和严格控制焊接热输入,从脆硬倾向上,Q345钢连续冷却时,珠光体转变右移,使快冷下的铁素体析出,剩下富碳奥氏体来不及转变为珠光体,而转变为含碳量高的贝氏体与马氏体具有淬硬倾向,

Q345刚含碳量低含锰高,具有良好的抗热裂性能,在Q345刚中加入V、Nb达到沉淀强化作用可以消除焊接接头中的应力裂纹。被加热到1200℃以上的热影响区过热区可能产生粗晶脆化,韧性明显降低,Q345钢经过600℃×1h退火处理,韧性大幅提高,热应变脆化倾向明显减小。;焊接材料:对焊条电弧焊焊条的选择:E5系列。埋弧焊:焊剂SJ501,焊丝

H08A/H08MnA.电渣焊:焊剂HJ431、HJ360焊丝H08MnMoA。CO2气体保护焊:H08系列和YJ5系列。预热温度:100~150℃。焊后热处理:电弧焊一般不进行或600~650℃回火。电渣焊900~930℃正火,600~650℃回火

二:Q345与Q390的焊接性有何差异Q345的焊接工艺是否适用于Q390的焊接,为什么答:Q345与Q390都属于热轧钢,化学成分基本相同,只是Q390的Mn含量高于Q345,从而使Q390的碳当量大于Q345,所以Q390的淬硬性和冷裂纹倾向大于Q345,其余的焊接性基本相同。Q345的焊接工艺不一定适用于Q390的焊接,因为Q390的碳当量较大,一级Q345的热输入较宽,有可能使Q390的热输入过大会引起接头区过热的加剧或热输入过小使冷裂纹倾向增大,过热区的脆化也变的严重。

三:低合金高强钢焊接时选择焊接材料的原则是什么焊后热处理对焊接材料有什么影响答:选择原则:考虑焊缝及热影响区组织状态对焊接接头强韧性的影响。由于一般不进行焊后热处理,要求焊缝金属在焊态下应接近母材的力学性能。中碳调质钢,根据焊缝受力条件,性能要求及焊后热处理情况进行选择焊接材料,对于焊后需要进行处理的构件,焊缝金属的化学成分应与基体金属相近。

5.分析低碳调质钢焊接时可能出现的问题简述低碳调质钢的焊接工艺要点,典型的低碳调质钢如(14MnMoNiB、HQ70、HQ80)的焊接热输入应控制在什么范围在什么情况下采用预热措施,为什么有最低预热温度要求,如何确定最高预热温度。

答:焊接时易发生脆化,焊接时由于热循环作用使热影响区强度和韧性下降。焊接工艺特点:焊后一般不需热处理,采用多道多层工艺,采用窄焊道而不用横向摆动的运条技术。。典型的低碳调质钢的焊接热输入应控制在Wc?%时不应提高冷速,Wc?%时可提高冷速(减小热输入)焊接热输入应控制在小于481KJ/cm当焊接热输入提高到最大允许值裂纹还不能避免时,就必须采用预热措施,当预热温度过高时不仅对防止冷裂纹没有必要,反而会使800~500℃的冷却速度低于出现脆性混合组织的临界冷却速度,使热影响区韧性下降,所以需要避免不必要的提高预热温度,包括屋间温度,因此有最低预热温度。通过实验后确定钢材的焊接热输入的最大允许值,然后根据最大热输入时冷裂纹倾向再来考虑,是否需要采取预热和预热温度大小,包括最高预热温度。

8同一牌号的中碳调质钢分别在调质状态和退火状态进行焊接时焊接工艺有什么差别为

什么中碳调质钢一般不在退火的状态下进行焊接

在调质状态下焊接:若为消除热影响区的淬硬区的淬硬组织和防止延迟裂纹产生,必须适当采用预热,层间温度控制,中间热处理,并焊后及时进行回火处理,若为减少热影响的软化,应采用热量集中,能量密度越大的方法越有利,而且焊接热输入越小越好。在退火状态下焊接:常用焊接方法均可,选择材料时,焊缝金属的调质处理规范应与母材的一致,主要合金也要与母材一致,在焊后调质的情况下,可采用很高的预热温度和层间温度以保证调质前不出现裂纹。因为中碳调质钢淬透性、淬硬性大,在退火状态下焊接处理不当易产生延迟裂纹,一般要进行复杂的焊接工艺,采取预热、后热、回火及焊后热处理等辅助工艺才能保证接头使用性能。

9. 低温钢用于-40度和常温下使用时在焊接工艺和材料上选择是否有所差别为什么

答:低温钢为了保证焊接接头的低温脆化及热裂纹产生要求材料含杂质元素少,选择合适的焊材控制焊缝成分和组织形成细小的针状铁素体和少量合金碳化物,可保证低温下有一定的AK要求。对其低温下的焊接工艺选择采用SMAW时用小的线能量焊接防止热影响区过热,产生WF 和粗大M,采用快速多道焊减少焊道过热。采用SAW时,可用振动电弧焊法防止生成柱状晶。

10、分析热轧钢和正火钢的强化方式和主强化元素又什么不同,二者的焊接性有何差别在制定焊接工艺时要注意什么问题?

答:热轧钢的强化方式有:(1)固溶强化,主要强化元素:Mn,Si。(2)细晶强化,主要强化元素:Nb,V。(3)沉淀强化,主要强化元素:Nb,V.;正火钢的强化方式焊接性:热轧钢含有少量的合金元素,碳当量较低冷裂纹倾向不大,正火钢含有合金元素较多,淬硬性有所增加,碳当量低冷裂纹倾向不大。热轧钢被加热到1200℃以上的热影响区可能产生粗晶脆化,韧性明显降低,而是、正火钢在该条件下粗晶区的V析出相基本固溶,抑制A长大及组织细化作用被削弱,粗晶区易出现粗大晶粒及上贝氏体、M-A等导致韧性下降和时效敏感性增大。制定焊接工艺时根据材料的结构、板厚、使用性能要求及生产条

件选择焊接方法。

11、低碳调质钢和中碳调质钢都属于调质钢,他们的焊接热影响区脆化机制是否相同为什么低碳钢在调质状态下焊接可以保证焊接质量,而中碳调质钢一般要求焊后热处理

答:低碳调质钢:在循环作用下,t8/5继续增加时,低碳钢调质钢发生脆化,原因是奥氏体粗化和上贝氏体与M-A组元的形成。中碳调质钢:由于含碳高合金元素也多,有相当大淬硬倾向,马氏体转变温度低,无自回火过程,因而在焊接热影响区易产生大量M组织大致脆化。低碳调质钢一般才用中、低热量对母材的作用而中碳钢打热量输入焊接在焊后进行及时的热处理能获得最佳性能焊接接头.

12、珠光体耐热钢的焊接性特点与低碳调质钢有什么不同珠光体耐热钢选用焊接材料的原则与强度用钢有什么不同why

答:珠光体耐热钢和低碳调质钢都存在冷裂纹,热影响区硬化脆化以及热处理或高温长期使用中的再热裂纹,但是低碳调质钢中对于高镍低锰类型的刚有一定的热裂纹倾向,而珠光体耐热钢当材料选择不当时才可能常产生热裂纹。珠光体耐热钢在选择材料上不仅有一定的强度还要考虑接头在高温下使用的原则,特别还要注意焊接材料的干燥性,因为珠光体耐热钢是在高温下使用有一定的强度要求。

第四章不锈钢及耐热钢的焊接

不锈钢:指在大气环境下及有侵蚀性化学介质中使用的钢。

耐热钢:包括抗氧化钢和热强钢。抗氧化钢指在高温下具有抗氧化性能的钢,对高温强度要求不高。热强钢:指在高温下即具有抗氧化能力,又要具有高温强度。

热强性:指在高温下长时工作时对断裂的抗力(持久强度),或在高温下长时工作时抗塑性变形的能力(蠕变抗力)。

※部分概念:

1.铬当量:在不锈钢成分与组织间关系的图中各形成铁素体的元素,按其作用的程度折算成Cr元素(以Cr的作用系数为1)的总和,即称为Cr当量。

2.镍当量:不锈钢成分与组织间关系的图中各形成奥氏体的元素按其作用的程度,折算成Ni元素(以Ni的作用系数为1)的总和,即称为Ni当量。

3. 4750 C脆化: 高铬铁素体不锈钢在400~540度范围内长期加热会出现这种脆性,由于其最敏感的温度在475度附近,故称475度脆性,此时钢的强度、硬度增加,而塑性、韧性明显下降。

4.凝固模式:凝固模式首先指以何种初生相(γ或δ)开始结晶进行凝固过程,其次是指以何种相完成凝固过程。四种凝固模式:以δ相完成凝固过程,凝固模式以F表示;初生相为δ,然后依次发生包晶反应和共晶反应,凝固模式以FA表示;初生相为γ,然后依次发生包晶反应和共晶反应,凝固模式以AF表示;初生相为γ,直到凝固结束不再发生变化,用A表示凝固模式。

5.应力腐蚀裂纹:在应力和腐蚀介质共同作用下,在低于材料屈服点和微弱的腐蚀介质中发生的开裂形式

6. σ相脆化: σ相是一种脆硬而无磁性的金属间化合物相,具有变成分和复杂的晶体结构。25-20钢焊缝在800~875℃加热时,γ向σ转变非常激烈。在稳定的奥氏体钢焊缝中,可提高奥氏体化元素镍和氮,克服σ脆化。

7、晶间腐蚀:在晶粒边界附近发生的有选择性的腐蚀现象。

8、贫铬机理:过饱和固溶的碳向晶粒边界扩散。与边界附近的铬形成铬的碳化物CR23C16或(Fe、Cr) C6并在晶界析出,由于碳比铬扩散的快的多,铬来不及从晶内补充到晶界附近,以至于邻近晶界的晶粒周边层Cr的质量分数低于12%,即所谓“贫铬”现象

奥氏体钢产生热裂纹的原因

1、奥氏体钢的导热系数小和线胀系数大,在焊接局部加热和冷却条件下,接头在冷却过程中可形成较大的拉应力。

3、奥氏体钢及焊缝的合金组成复杂,不仅S、P、Sn、Sb之类会形成易溶液膜,一些合金元素因溶解度有限(如Si、Nb),也可能形成易溶共晶。

选择焊接材料注意问题:

1、应坚持“适用性原则”。

2、根据所选各焊接材料的具体成分来确定是否适用。

3、考虑具体应用的焊接方法和工艺参数可能造成的熔合比大小。

4、根据技术条件规定的全面焊接性要求来确定合金化程度

5、不仅要重视焊缝金属合金系统,而且要注意具体合金成分在该合金系统中的作用;不仅考虑使用性能的要求,要考虑防止焊接缺陷的工艺焊接性要求。焊接工艺要点:(134页)

1、合理选择焊接方法

2、控制焊接参数

3、接头设计合理性应给予足够的重视

4、尽可能控制焊接工艺的稳定以保证焊缝金属成分稳定

5、控制焊缝成形

6、防止工件表面污染

马氏体不锈钢焊前热处理和焊后热处理的特点:

答:采用同质焊缝焊接马氏体不锈钢时,为防止接头形成冷裂纹,易采取预热措施。预热温度的选择与材料的厚度,填充金属的种类,焊接方法和接头的拘束度有关,其中与碳含量关系最大。马氏体不锈钢预热温度不宜过高,否者使奥氏体晶粒粗大,并且随冷却温度降低,还会形成粗大铁素体加晶界碳化物组织,使焊接接头塑性和强度均有所下降。焊后热处理的目的是降低焊缝和热影响区的硬度,改善其塑性和韧性,同时减少焊接残余应力。焊后热处理必须严格限制焊件的温度,焊件焊后不可随意从焊接温度直接升温进行回火热处理。3. 18-8型不锈钢焊接接头区域在那些部位可能产生晶间腐蚀,是由于什么原因造成如何防止

答:18-8型焊接接头有三个部位能出现腐蚀现象:{1}焊缝区晶间腐蚀产生原因根据贫铬理论,碳与晶界附近的Cr形成Cr23C6,并在在晶界析出,导致γ晶粒外层的含Cr量降低,形成贫Cr层,使得电极电位下降,当在腐蚀介质作用下,贫Cr层成为阴极,遭受电化学腐蚀;{2}热影响区敏化区晶间腐蚀是由于敏化区在高温时易析出铬的碳化物,形成贫Cr层,造成晶间腐蚀;{3}融合区晶间腐蚀{刀状腐蚀}。只发生在焊Nb或Ti的18-8型钢的融合区,其实质也是与M23C6沉淀而形成贫Cr有关,高温过热和中温敏化连过程依次作用是其产生

的的必要条件。防止方法:{1}控制焊缝金属化学成分,降低C%,加入稳定化元素Ti、Nb;{2}控制焊缝的组织形态,形成双向组织{γ+15%δ};{3}控制敏化温度范围的停留时间;{4}焊后热处理:固溶处理,稳定化处理,消除应力处理。

5. 奥氏体钢焊接时为什么常用“超合金化”焊接材料

答:为提高奥氏体钢的耐点蚀性能,采用较母材更高Cr、Mo含量的“超合金化”焊接材料。提高Ni含量,晶轴中Cr、Mo的负偏析显着减少,更有利于提高耐点蚀性能。

6. 铁素体不锈钢焊接中容易出现什么问题焊条电弧焊和气体保护焊时如何选择焊接材料

在焊接工艺上有什么特点

答:易出现问题:{1}焊接接头的晶间腐蚀;{2}焊接接头的脆化①高温脆性②σ相脆化③475℃脆化。 SMAW要求耐蚀性:选用同质的铁素体焊条和焊丝;要求抗氧化和要求提高焊缝塑性:选用A焊条和焊丝。 CO2气保焊选用专用焊丝H08Cr20Ni15VNAl。焊接工艺特点:{1}采用小的q/v,焊后快冷——控制晶粒长大;{2}采用预热措施,T℃<=300℃——接头保持一定ak;{3}焊后热处理,严格控制工艺——消除贫Cr区;{4}最大限度降低母材和焊缝杂质——防止475℃脆性产生;{5}根据使用性能要求不同,采用不同焊材和工艺方法。

9. 双相不锈钢的成分和性能特点,与一般A不锈钢相比双相不锈钢的焊接性有何不同在焊接工艺上有什么特点

答:双相不锈钢是在固溶体中F和A相各占一半,一般较少相的含量至少也要达到30%的不锈钢。这类钢综合了A不锈钢和F不锈钢的优点,具有良好的韧性、强度及优良的耐氧化物应力腐蚀性能。与一般A不锈钢相比:{1}其凝固模式以F模式进行;{2}焊接接头具有优良的耐蚀性,耐氯化物SCC性能,耐晶间腐蚀性能,但抗H2S的SCC性能较差;{3}焊接接头的脆化是由于Cr的氮化物析出导致;{4}双相钢在一般情况下很少有冷裂纹,也不会产生热裂纹。焊接工艺特点:{1}焊接材料应根据“适用性原则”,不同类型的双向钢所用焊材不能任意互换,可采取“适量”超合金化焊接材料;{2}控制焊接工艺参数,避免产生过热现象,可适当缓冷,以获得理想的δ/γ相比例;{3}A不锈钢的焊接注意点同样适合双相钢的焊接。

10、不锈钢焊接时,为什么要控制焊缝中的含碳量如何控制焊缝中的含碳量答:焊缝中的含碳量易形成脆硬的淬火组织,降低焊缝的韧性,提高冷裂纹敏感性。碳容易和晶界附近的Cr结合形成Cr的碳化物Cr23C6,并在晶界析出,造成“贫Cr”现象,从而造成晶间腐蚀。选择含碳量低的焊条和母材,在焊条中加入Ti,Zr,Nb,V等强碳化物形成元素来降低和控制含氟中的含碳量。

11、简述奥氏体不锈钢产生热裂纹的原因在母材和焊缝合金成分一定的条件下,焊接时应采取何种措施防止热裂纹

答:产生原因:{1}奥氏体钢的热导率小,线膨胀系数大,在焊接局部加热和冷却条件下,接头在冷却过程中产生较大的拉应力;{2}奥氏体钢易于联生结晶形成方向性强的柱状晶的焊缝组织,有利于杂质偏析,而促使形成晶间液膜,显然易于联生结晶形成方向性强的柱状晶的焊缝组织,有利于杂质偏析,而促使形成晶间液膜,显然易于促使产生凝固裂纹;{3}奥氏体钢及焊缝的合金组成较复杂,不仅S、P、Sn、Sb之类杂质可形成易溶液膜,一些合

金元素因溶解度有限{如Si、Nb},也易形成易溶共晶。防止方法:{1}严格控制有害杂质元素{S、P—可形成易溶液膜};{2}形成双向组织,以FA模式凝固,无热裂倾向;{3}适当调整合金成分:Ni<15%,适当提高铁素体化元素含量,使焊缝δ%提高,从而提高抗裂性;Ni>15%时,加入Mn、W、V、N和微量Zr、Ta、Re{<%}达到细化焊缝、净化晶界作用,以提高抗裂性;{4}选择合适的焊接工艺。

12、何为“脆化现象”铁素体不锈钢焊接时有哪些脆化现象,各发生在什么温度区域如何避免答:“脆化现象”就是材料硬度高,但塑性和韧性差。现象:{1}高温脆性:在900~1000℃急冷至室温,焊接接HAZ的塑性和韧性下降。可重新加热到750~850℃,便可恢复其塑性。{2}σ相脆化:在570~820℃之间加热,可析出σ相。σ相析出与焊缝金属中的化学成分、组织、加热温度、保温时间以及预先冷变形有关。加入Mn使σ相所需Cr的含量降低,Ni 能使形成σ相所需温度提高。{3}475℃脆化:在400~500℃长期加热后可出现475℃脆性适当降低含Cr量,有利于减轻脆化,若出现475℃脆化通过焊后热处理来消除。

13、马氏体不锈钢焊接中容易出现什么问题,在焊接材料的选用和工艺上有什么特点制定焊接工艺时应采取哪些措施

答:易出现冷裂纹、粗晶脆化。焊接材料的选用:{1}对简单的Cr13型,要保证性能,要求S、P、Si,C含量较低,使淬硬性下降,更要保证焊接接头的耐蚀性。{2}对Cr12为基加多元元素型,希望焊缝成分接近母材,形成均一的细小M组织。{3}对于超低C复相M钢,采用同质焊材,焊后经超微细复相化处理,可使焊缝的强韧化约等于母材水平。工艺特点:{1}预热温度高{局部或整体}T℃=150-260℃;{2}采用小的q/v:防止近缝区出现粗大α和κ析出;{3}选用低H焊条:焊缝成分与母材同质,高碳M可选用A焊条焊

第五章有色金属的焊接

冷作硬化:钢材在常温或再结晶温度以下的加工,能显着提高强度和硬度降低塑性和韧性。焊接时最容易出现的焊接性问题及基本原因,防止的针对性措施:主要问题是:焊缝中气孔,焊接热裂纹,焊接接头与母材的等强性。(1)气孔。最常见的缺陷。氢是铝及其合金产生气孔的主要原因,氢的来源有弧柱气氛中的水分,焊接材料及母材中的水分。

针对性措施:减少氢的来源;控制工艺措施。(2)热裂纹:铝及其合金的线膨胀系数大,在拘束条件下焊接易产生较大的焊接应力。针对性措施:合金系统的影响;焊丝成分影响;焊接工艺的影响。

2为什么Al-Mg合金及Al—Li合金焊接时易形成气孔铝及铝合金焊接时产生气孔的原因是什么,如何防止气孔为什么纯铝焊接易出现分散小气孔而Al—Mg合金焊接时易出现焊接大气孔

答:1)氢是铝合金及铝焊接时产生气孔的主要原因。

2)氢的来源非常广泛,弧柱气氛中的水分,焊接材料以及母材所吸附的水分,焊丝及母材表面氧化膜的吸附水,保护气体的氢和水分等都是氢的来源。

3)氢在铝及合金中的溶解度在凝点时可从100g突降至100g,相差20倍,这是产生气孔的重要原因之一。

4)铝的导热性很强,熔合区的冷速很大,不利于气泡的浮出,更易促使形成气孔防止措施:

1)减少氢的来源,焊前处理十分重要,焊丝及母材表面的氧化膜应彻底清除。2)控制焊接参数,采用小热输入减少熔池存在时间,控制氢溶入和析出时间3)改变弧柱气氛中的性质原因:1)纯铝对气氛中水分最为敏感,而al-mg合金不太敏感,因此纯铝产生气孔的倾向要大2)氧化膜不致密,吸水强的铝合金al-mg比氧化膜致密的纯铝具有更大的气孔倾向,因此纯铝的气孔分数小,而al-mg合金出现集中大气孔3)Al-mg合金比纯铝更易形成疏松而吸水强的厚氧化膜,而氧化膜中水分因受热而分解出氢,并在氧化膜上萌出气泡,由于气泡是附着在残留氧化膜上,不易脱离浮出,且因气泡是在熔化早期形成有条件长大,所以常造成集中大的气孔。因此al-mg合金更易形成集中的大气孔。

3、硬铝及超硬铝焊接时易产生什么样的裂缝为什么如何防止裂纹

答:裂纹倾向大,铝及硬铝产生焊接热裂纹原因:1)易熔共晶的存在,是铝合金焊缝产生裂纹的重要原因 2)线膨胀系数大,在拘束条件下焊接时易产生较大的焊接应力也是产生裂纹的原因之一?防止措施:1)加合金元素cu,mn,si,mg,zn使主要合金元素含量Me%>Xm,产生自愈合作用2)生产中采用含5%的Si,Al合金焊丝解决抗裂问题,具有很好的愈合作用3)加入Ti,zr,v,b微量元素作为变质剂,细化晶粒,改善塑性韧性,并提高抗裂性4)热能集中焊接方法可防止形成方向性强的粗大柱状晶,改善抗裂性?5)采用小电流焊接,降低焊接速度均可改善抗裂性问题

4、铜及铜合金的物理化学性能有何特点,焊接性如何不同的焊接方法对铜及铜合金焊接接头有什么影响

答:1)铜及铜合金的物理化学性能:优良的导电导热性能;冷热加工性能好,无磁性;具有高的强度,抗氧化性及抗淡水,盐水,氨碱溶液和有机化学物质腐蚀的性能2)焊接性:?铜及合金在焊接中难熔合,易变形,而且产生很大的焊接应力;铜及合金与杂质形成多种低熔点共晶,焊接时出现热裂纹铜及合金焊接中易产生扩散气孔(H)反应气孔(冶金反应)及氮气孔(空气中的氮)焊接接头的性能变化:纯铜焊接时,焊缝与焊接接头的抗拉强度可与母材接近,但塑性比母材有些降低3)焊接方法对铜及合金的接头性能影响:焊条电弧焊,使焊接接头焊缝中氢氧百分比增加,zn蒸发严重容易形成气孔?埋弧焊时,对中厚板焊接可获得优质焊接接头氩弧焊工艺,TIG焊由于电弧能量集中易使焊接接头产生难熔合及变形MIG焊可获得好的焊接接头等离子弧焊可使接头不易变形,焊接接头质量达到母材

5.分析采用埋弧焊和氩弧焊焊接中等厚度纯铜板的工艺特点,各有什么优缺点

答:1)埋弧焊?板厚δ<20mm工件在不预热及开坡口条件下获得优质接头,使焊接工艺大为简化,特别适合中厚板长焊缝的焊接2)氩弧焊 TIG具有电弧能量集中,保护效果好,热影响区窄,操作灵活的优点,特别适合中板及薄小件的焊接和补焊

MIG下熔化效率高,熔深大,焊速快

第六章铸铁焊接

拘束度:衡量焊接接头刚性大小的一个定量指标。拘束度有拉伸和弯曲两类:拉伸拘束度是焊接接头根部间隙产生单位长度弹性位移时,焊缝每单位长度上受力的大小;弯曲拘束度是焊接接头产生单位弹性弯曲角变形时,焊缝每单位长度上所受弯矩的大小。

对于机构复杂或厚大灰铸铁件上的缺陷焊补,焊接方向和顺序的合理安排非常重要,应本着拘束度大的部位向拘束度小的部位焊接的原则

为避免陶瓷与金属接头出现裂纹,除添加中间层或合理选用钎料外,可采取以下工艺措施:(1)合理选择被焊陶瓷与金属,在不影响焊接接头使用性能的条件下,尽可能使两者的线膨胀系数相差最小。

(2)应尽可能地减少焊接部位及其附近温度梯度,控制加热和冷却温度;降低冷却速度,有利于应力松弛而使应力减少。

(3)采取缺口、突起和端部变薄等措施合理设计陶瓷与金属的接头结构。

珠光体-奥氏体异种钢焊接时,过渡区出现脆化是什么原因如何防止

答:奥氏体和珠光体异种钢在焊接过程中,特别是接头处于热处理及高温运行中,熔合区附近存在碳的扩散迁移,在熔合区靠近珠光体钢一侧产生脱碳层,而相邻的靠近奥氏体焊缝一侧产生增碳层。由于增碳层而硬化使接头区塑性降低。(1)采用过渡层(2)采用中间过渡段。(3)采用Ni含量高的填充材料。

金属材料的焊接性能汇总

金属材料的焊接性能 (2014.2.27) 摘要:对各种常用金属材料的焊接性能进行研究,通过参考各类焊接丛书及焊接前辈多年的经验总结,对常用金属材料的焊接工艺可行性起指导作用。 关键词:碳当量;焊接性;焊接工艺参数;焊接接头 1 前言 随着中国特种设备制造业的不断发展,我们在制造产品时所用到的金属材料种类也在不断增加,相应地所必须掌握的各种金属材料的焊接性能也在不断研究和更新中,为了实际产品制造的焊接质量,熟悉金属材料的焊接性能,以制定正确的焊接工艺参数,从而获得优良的焊接接头起到至关重要的指导作用。 2 金属材料的焊接性能 2.1 金属材料焊接性的定义及其影响因素 2.1.1 金属材料焊接性的定义 金属材料的焊接性是指金属材料在采用一定的焊接工艺包括焊接方法、焊接材料、焊接规范及焊接结构形式等条件下,获得优良焊接接头的能力。一种金属,如果能用较多普通又简便的焊接工艺获得优良的焊接接头,则认为这种金属具有良好的焊接性能金属材料焊接性一般分为工艺焊接性和使用焊接性两个方面。 工艺焊接性是指在一定焊接工艺条件下,获得优良,无缺陷焊接接头的能力。它不是金属固有的性质,而是根据某种焊接方法和所采用的具体工艺措施来进行的评定。所以金属材料的工艺焊接性与焊接过程密切相关。 使用焊接性是指焊接接头或整个结构满足产品技术条件规定的使用性能的程度。使用性能取决于焊接结构的工作条件和设计上提出的技术要求。通常包括力学性能、抗低温韧性、抗脆断性能、高温蠕变、疲劳性能、持久强度、耐蚀性能和耐磨性能等。例如我们常用的S30403,S31603不锈钢就具有优良的耐蚀性能,16MnDR,09MnNiDR低温钢也有具备良好的抗低温韧性性能。

金属材料焊接性知识要点(最新整理)

金属材料焊接性知识要点 1. 金属焊接性:指同质材料或异质材料在制造工艺条件下,能够形成完整接头并满足预期使用要求的能力。包括(工艺焊接性和使用焊接性)。 2. 工艺焊接性:金属或材料在一定的焊接工艺条件下,能否获得优质致密无缺陷和具有一定使用性能的焊接接头能力。 3. 使用焊接性:指焊接接头和整体焊接结构满足各种性能的程度,包括常规的力学性能。 4. 影响金属焊接性的因素:1、材料本因素2、设计因素3、工艺因素4、服役环境 5. 评定焊接性的原则:(1)评定焊接接头中产生工艺缺陷的倾向,为制定合理的焊接工艺提供依据;(2)评定焊接接头能否满足结构使用性能的要求。 6. 实验方法应满足的原则:1可比性 2针对性 3再现性 4经济性 7. 常用焊接性试验方法: A:斜Y坡口焊接裂纹试验法: 此法主要用于评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性。 B:插销试验 C:压板对接焊接裂纹试验法 D:可调拘束裂纹试验法 一问答:1、“小铁研”实验的目的是什么,适用于什么场合?了解其主要实验步骤,分析影响实验结果稳定性的因素有哪些? 答:1、目的是用于评定用于评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性。评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性时,影响结果稳定因素焊接接头拘束度预热温度角变形和未焊透。(一般认为低合金钢“小铁研实验”表面裂纹率小于20%时。用于一般焊接结构是安全的) 2、影响工艺焊接性的主要因素有哪些? 答:影响因素:(1)材料因素包括母材本身和使用的焊接材料,如焊条电弧焊的焊条、埋弧焊时的焊丝和焊剂、气体保护焊时的焊丝和保护气体等。 (2)设计因素焊接接头的结构设计会影响应力状态,从而对焊接性产生影响。 (3)工艺因素对于同一种母材,采用不同的焊接方法和工艺措施,所表现出来的焊接性有很大的差异。 (4)服役环境焊接结构的服役环境多种多样,如工作温度高低、工作介质种类、载荷性质等都属于使用条件。 3、举例说明有时工艺焊接性好的金属材料使用焊接性不一定好。 答:金属材料使用焊接性能是指焊接接头或整体焊接结构满足技术条件所规定的各种使用性能主要包括常规的力学性能或特定工作条件下的使用性能,如低温韧性、断裂韧性、高温蠕变强度、持久强度、疲劳性能以及耐蚀性、耐磨性等。而工艺焊接性是指金属或材料在一定的焊接工艺条件下,能否获得优质致密、无缺陷和具有一定使用性能的焊接接头的能力。比如低碳钢焊接性好,但其强度、硬度却没有高碳钢好。 4、为什么可以用热影响区最高硬度来评价钢铁材料的焊接冷裂纹敏感性?焊接工艺条件对热影响区最高硬度有什么影响? 答:因为(1).冷裂纹主要产生在热影响区; (2)其直接评定的是冷裂纹产生三要素中最重要的,接头淬硬组织,所以可以近似用来评价冷裂纹。 一般来说,焊接接头包括热影响区,它的硬度值相对于母材硬度值越高,证明焊接接头的

各种材料的焊接性能

金属材料的焊接性能 (1)焊接性能良好的钢材主要有: 低碳钢(含碳量<0.25);低合金钢(合金元素含量1~3、含碳量<0.20);不锈钢(合金元素含量>3、含碳量<0.18)。 (2)焊接性能一般的钢材主要有: 中碳钢(合金元素含量<1、含碳量0.25~0.35);低合金钢(合金元素含量<3、含碳量<0.30);不锈钢(合金元素含量13~25、含碳量£0.18) (3)焊接性能较差的钢材主要有: 中碳钢(合金元素含量<1、含碳量0.35~0.45);低合金钢(合金元素含量1~3、含碳量0.30~0.40);不锈钢(合金元素含量13、含碳量0.20)。 (4)焊接性能不好的钢材主要有: 中、高碳钢(合金元素含量<1、含碳量>0.45);低合金钢(合金元素含量1~3、含碳量>0.40);不锈钢(合金元素含量13、含碳量0.30~0.40)。 焊条和焊丝选择的基本要点如下: 同类钢材焊接时选择焊条主要考虑以下几类因素: 考虑工件的物理、机械性能和化学成分;考虑工件的工作条件和使用性能; 考虑工件几何形状的复杂程度、刚度大小、焊接坡口的制备情况和焊接部位所处的位置等;考虑焊接设备情况;考虑改善焊接工艺和环保;考虑成本。 异种钢材和复合钢板选择焊条主要考虑以下几类焊接情况: 一般碳钢和低合金钢间的焊接;低合金钢和奥氏体不锈钢之间的焊接;不锈钢复合钢板的焊接。 焊条和焊丝的选择参数查阅机械设计手册中焊条和焊丝等章节和焊条分类及型号(GB 980-76)、焊条的性能和用途(GB 980~984-76)等有关国家标准。 ###15CrMoR的换热器的热处理工艺 ***当板厚超过筒体内径的3%时,卷板后壳体须整体热处理。 *** 15CrMoR焊接性能良好。手工焊用E5515-B2(热307)焊条,焊前预热至200-250℃(小口径薄壁管可不预热),焊后650-700℃回火处理。自动焊丝用H13CrMoA和焊剂250等。 ###压力容器用钢的基本要求 压力容器用钢的基本要求:较高的强度,良好的塑性、韧性、制造性能和与相容性。 改善钢材性能的途径:化学成分的设计,组织结构的改变,零件表面改性。 本节对压力容器用钢的基本要求作进一步分析。 一、化学成分 钢材化学成分对其性能和热处理有较大的影响。 1、碳:碳含量增加时,钢的强度增大,可焊性下降,焊接时易在热影响区出现裂纹。 因此压力容器用钢的含碳量一般不应大于0.25%。2、钒、钛、铌等:在钢中加入钒、钛、铌等元素,可提高钢的强度和韧性。

材料焊接性

《材料焊接性》(专科)学案 第一章绪论 二、本章习题 1. 根据本章所述内容,举例说明低合金钢焊接在工程结构中的重要作用。 2.先进材料的发展和应用在工程中越来越受到人们的重视,简述先进材料(如陶瓷、金属间化合物和复合材料等)和金属材料相比,在工程结构中的应用有什么不同? 第2章材料焊接性及其试验方法 1. 了解焊接性的基本概念。什么是工艺焊接性?影响工艺焊接性的主要因素有哪些? 焊接性,是指金属材料在采用一定的焊接工艺包括焊接方法、焊接材料、焊接规范及焊接结构形式等条件下,获得优良焊接接头的难易程度。 工艺焊接性是指在一定焊接工艺条件下,获得优质、无缺陷的焊接接头的能力。 影响因素:材料因素、工艺因素、结构因素、使用条件。 2. 什么是热焊接性和冶金焊接性,各涉及到焊接中的什么问题? 冶金焊接性指在熔焊高温下的熔池金属与气象熔渣等相互之间繁盛化学冶金反映所引起的焊接变化

3. 举例说明有时工艺焊接性好的金属材料使用焊接性不一定好。 工艺焊接性是指影响焊接操作的焊接性能,如电弧的稳定性、焊缝的成形性、脱渣性、飞溅大小及发尘量等。而使用焊接性则是指焊件需满足的使用要求,如接头的力学性能、物理性能及化学性能要求。 有时,工艺焊接性好的材料如果焊接材料选择不当,其使用性能就不一定好:例如不锈钢焊接,若使用普通结构钢焊条焊接,其工艺焊接性很好,即焊接过程很顺利,但是,焊缝不耐腐蚀,就不能满足不锈钢焊件的使用要求,因此焊接接头是不合格的。 金属材料使用性能主要指力学性能,即金属材料在外力作用下表现出来的各种特性,如弹性、塑性、韧性、强度、硬度等。 比如低碳钢焊接性好,但其强度、硬度却没有高碳钢好| 第3章低合金结构钢的焊接 1. 分析热轧钢和正火钢的强化方式及主强化元素有什么不同。二者的焊接性有何差异,在制定焊接工艺时应注意什么问题。 热轧钢的强化方式有:(1)固溶强化,主要强化元素:Mn,Si。(2)细晶强化,主要强化元素:Nb,V。(3)沉淀强化,主要强化元素:Nb,V.;正火钢的强化方式:(1)固溶强化,主要强化元素:强的合金元素(2)细晶强化,主要强化元素:V,Nb,Ti,Mo(3)沉淀强化,主要强化元素:Nb,V,Ti,Mo.;焊接性:热轧钢含有少量的合金元素,碳当量较低冷裂纹倾向不大,正火钢含有合金元素较多,淬硬性有所增加,碳当量低冷裂纹倾向不大。热轧钢被加热到1200℃以上的热影响区可能产生粗晶脆化,韧性明显降低,而是、正火钢在该条件粗晶区的析出相基本固溶,抑制A长大及组织细化作用被削弱,粗晶区易出现粗大晶粒及上贝、M-A等导致韧性下降和时敏感性增大。制定焊接工艺时根据材料的结构、板厚、使用性能要求及生产条件选择焊接 2. 分析16Mn的焊接性特点,给出相应的焊接材料及焊接工艺要求。

金属材料焊接性知识要点精选版

金属材料焊接性知识要 点 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

金属材料焊接性知识要点 1.金属焊接性:指同质材料或异质材料在制造工艺条件下,能够形成完整接头并满足预期使用要求的能力。包括(工艺焊接性和使用焊接性)。 2.工艺焊接性:金属或材料在一定的焊接工艺条件下,能否获得优质致密无缺陷和具有一定使用性能的焊接接头能力。 3.使用焊接性:指焊接接头和整体焊接结构满足各种性能的程度,包括常规的力学性能。 4.影响金属焊接性的因素:1、材料本因素2、设计因素3、工艺因素4、服役环境 5.评定焊接性的原则:(1)评定焊接接头中产生工艺缺陷的倾向,为制定合理的焊接工艺提供依据;(2)评定焊接接头能否满足结构使用性能的要求。 6.实验方法应满足的原则:1可比性2针对性3再现性4经济性 7.常用焊接性试验方法: A:斜Y坡口焊接裂纹试验法:此法主要用于评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性。B:插销试验C:压板对接焊接裂纹试验法D:可调拘束裂纹试验法 一问答:1、“小铁研”实验的目的是什么,适用于什么场合了解其主要实验步骤,分析 影响实验结果稳定性的因素有哪些 答:1、目的是用于评定用于评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性。评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性时,影响结果稳定因素焊接接头拘束度预热温度角变形和未焊透。(一般认为低合金钢“小铁研实验”表面裂纹率小于20%时。用于一般焊接结构是安全的) 2、影响工艺焊接性的主要因素有哪些? 答:影响因素:(1)材料因素包括母材本身和使用的焊接材料,如焊条电弧焊的焊条、埋弧焊时的焊丝和焊剂、气体保护焊时的焊丝和保护气体等。 (2)设计因素焊接接头的结构设计会影响应力状态,从而对焊接性产生影响。 (3)工艺因素对于同一种母材,采用不同的焊接方法和工艺措施,所表现出来的焊接性有很大的差异。 (4)服役环境焊接结构的服役环境多种多样,如工作温度高低、工作介质种类、载荷性质等都属于使用条件。 3、举例说明有时工艺焊接性好的金属材料使用焊接性不一定好。 答:金属材料使用焊接性能是指焊接接头或整体焊接结构满足技术条件所规定的各种使用性能主要包括常规的力学性能或特定工作条件下的使用性能,如低温韧性、断裂韧性、高温蠕变强度、持久强度、疲劳性能以及耐蚀性、耐磨性等。而工艺焊接性是指金属或材料在一定的焊接工艺条件下,能否获得优质致密、无缺陷和具有一定使用性能的焊接接头的能力。 比如低碳钢焊接性好,但其强度、硬度却没有高碳钢好。

常用金属材料的焊接(不锈钢)

常用金属材料的焊接(不锈钢) 24 试述耐候钢及耐海水腐蚀用钢的焊接工艺。 铜、磷能显著地降低钢的腐蚀速度,这是耐候钢及耐海水腐蚀用钢的主要合金元素,常用耐候钢及耐海水腐蚀用钢有:16CuCr、12MnCuCr、15MnCuCr、09Mn2Cu、16MnCu、09MnCuPTi、08MnPRE、10MnPNbRE钢等。 铜、磷耐蚀钢对焊接热循环不敏感,焊接热影响区的最高硬度不超过350HV。虽然钢中含有Cu、P等元素,但其含量均不高,通常铜的质量分数控制在0.2%~0.4%,不会促使产生热裂纹。含磷钢中碳、磷的质量分数都在0.25%以下,因而钢的冷脆倾向也不大,所以焊接性良好,焊接工艺与强度级别较低(σs为343~392MPa)的普通热轧钢相同。 焊接耐候及耐海水腐蚀用钢的焊条,见表17。埋弧焊时,采用H08MnA、H10Mn2焊丝配合HJ431焊剂。 表17 焊接耐候及耐海水腐蚀用钢的焊条 牌号型号主要用途 J422CrCu E4303 焊接12CrMoCu J502CuP 焊接10MnPNbRE、08MnP、09MnCuPTi J502NiCu E5003-G 焊接耐候铁道车辆09MnCuPTi J502WCr J502CrNiCu E5003-G 焊接耐候近海工程结构 J506WCu E5016-G 焊接耐候用钢09MnCuPTi J506NiCu E5016-G 焊接耐候用钢 J507NiCu E5015-G 焊接耐候用钢 J507CrNi E5015-G 焊接耐海水腐蚀用钢的海洋重要结构 25 什么是不锈钢的晶闸腐蚀? 不锈钢在腐蚀介质作用下,在晶粒之间产生的一种腐蚀现象称为晶闸腐蚀。产生晶闸腐蚀的不锈钢,当受到应力作用时,即会沿晶界断裂、强度几乎完全消失,这是不锈钢的一种最危险的破坏形式。晶闸腐蚀可以分别产生在焊接接头的热影响区、焊缝或熔合线上,在熔合线上产生的晶间腐蚀又称刀状腐蚀,见图2。

金属材料焊接及热处理工艺

金属材料焊接及热处理工艺 总则 1)本工艺适用于汽机范围内管道、容器、承重构架及结构部件的焊接及热处理工作。 2)本工艺适用于低碳钢,普通低合金钢,耐热钢、不锈钢、铜及铜合金、铝及铝合金、铸铁等材料的手工电弧焊,手工钨氩弧焊和O2 C 2H2气焊。 3)有关安全方面,应遵守安全防火等规程的有关规定。 4)焊缝检查和焊工考核及质量验收应遵照有关射线超声检验等规定及焊工考试的规则执行。5)对焊工及热处理工的要求,见电力建设施工及验收技术规范(火力发电厂焊接篇)。 16.2 焊接工艺 16.2.1焊接材料 16.2.1.1焊条、电丝的选择,具体按工程一览表选择 1)对同种类钢,机械性能及化学性能,化学成分与母材相近,焊条的合金元素的含量应略高于母材,Ar弧焊焊则要求与母材相同,化学类有钢要求抗蚀性同母材相同。 2)对焊接质量要求高,裂纹倾向大的材料和结构,应选用低氢型焊条。 3)对于异种钢,两非“A”体钢同类组织异种钢应选择靠近低合金侧或选其中间合金含量的焊条和焊丝;两非“A”体一同组织异种钢应选择能获得综合性能好的组织的焊条,焊丝,两材料其中之一为“A”体不锈钢时应选用高Ni不透钢焊条,对各异种钢结构,可参考附表16-1选择。4)对低碳钢,普通碳素结构钢,选用相应强度等级的结构焊丝,焊条。 5)焊条的直径选择,必须是在保证操作工艺性良好,成型美观,保证焊接质量的前提下尽可能选择较大直径的焊条,对于承压管道的多层焊,底层采用?2.5mm焊条,第2-3层选用?3.2mm 焊条,以后各层选用?4.0mm焊条,对应力大,裂纹倾向大的高合金钢,高碳钢,应选用较小的焊条直径。 16.2.1.2钨极的选择:目前市场上有纯钨极,钍钨极和铈钨极三种,纯钨极及钍钨极已趋于淘汰不再被采用。最好选用铈钨极。其直径据所用的电流进行选择,各种规格的钨极所适应的电流范围如表16.1.

(完整版)各种材料点焊方法和工艺标准

第一章点焊方法和工艺 一、点焊方法: 点焊通常分为双面点焊和单面点焊两大类。双面点焊时,电极由工件的两侧向焊接处馈电。典型的双面点焊方式如图1所示。图中1a是最常用的方式。这时,工件的两侧均有电极压痕。图中1b表示用大接触面积的导电板做下电极,这样可以消除或减轻下面工作的压痕,常用于装饰性面板的点焊。图1c为,同时焊接两个或多个焊点的双面点焊,使用一个变压器而将各电极并联。这时,所有电流通路的阻抗必须基本相等,而且每一焊接部位的表面状态,材料厚度、电极压力都必须相同,才能保证通过各个焊点的电流基本一致。图中1d为采用多个变压器的双面多点点焊,这样可以避免1c的不足。 单面点焊时,电极由工件的同一侧向焊接处馈电。典型的单面点焊方式如图2所示。图中2a为单面单点点焊,不形成焊点的电极采用大直径和大接触面以减小电流密度。图中2b为无分流的单面双点点焊,此时焊接电流全部流经焊接区。图中2c 为有分流的单面双点点焊,流经上面工件的电流不经过焊接区,形成分流。为了给焊接电流提供低电阻的通路,在工件下面垫有铜垫板。图中2d为当两焊点的间距l很大,例如在进行骨架构件和复板的焊接时,为了避免不适当的加热引起复板翘曲和减小两电极间电阻,采用了特殊的铜桥A与电极同时压紧在工件上。 图1不同形式的双面点焊

图2 不同形式的单面点焊 采用铜芯棒的点焊是单面点焊的特殊形一个点,也可焊两个点。这种形式特别适于点焊结构空间狭小,电极难于或根本不能接近的工件。图3a中的芯棒实际是一块几毫米厚的铜板。图3b、c是同类工件的两种结构,结构b不如结构c,因为前者通过工件2的分流,不经过两工件的接触面,会减少焊接区的产热,因而需要增大焊接电流,这样就会增加工件2与两电极间接触面的产热,并且可能使工件烧穿。当芯棒断面较大时,为了节约铜料和制作方便,可以在夹布胶木或硬木制成的芯棒上包覆铜板或嵌入铜棒(图3d、e)。 由于芯棒与工件的接触面远大于电极与工件的接触面,熔核将偏向与电极接触的工件一侧。如果两工件的厚度不同,将厚件置于芯棒接触的一侧,则可减轻熔核偏移程度。

金属材料焊接知识

金属材料焊接知识 第一节金属材料焊接性的基本概念 一、焊接性的定义金属的焊接性是指材料对焊接加工的适应性,主要指在一定的焊接工艺条件下,获得优质焊接接头的难易程度,它包括两个方面的内容。 (1)接合性能:既在一定的焊接工艺条件下,一定的金属形成焊接缺陷的敏感性。 (2)使用性能:既在一定的焊接工艺条件下,一定金属的焊接接头对使用要求的适应性。 金属焊接性的内容是多方面的,对于不同材料、不同工作条件下的焊件,焊接性的内容不同。因此焊接性只是相对的概念。 二、影响焊接性的因素 金属材料焊接性的好坏主要决定于材料化学成分,而且与结构的复杂程度、钢度、焊接方法、采用的焊接材料、焊接工艺条件及结构的使用条件有密切关系。 1.结构因素 焊接接头的结构设计会影响应力状态,从而对焊接性产生影响,焊接时应尽量使焊接接头处于钢度较小的状态,使之能够自由收缩,这样有利于防止焊接裂纹。 2.材料因素材料因素包括母材本身和使用的焊接材料,如焊条、焊丝、焊剂、保护气体等。它们在焊接时都参与熔池或半熔化区内的冶金过程,直接影响焊接质量。 母材或焊接材料选用不当时,会造成焊接金属化学成分不合格,力学性能和其他使用性能降低:这会出现气孔、裂纹等缺陷。也就是使结合性能变差。 3.工艺因素 对于同一母材,当采用不同的焊接工艺方法和工艺措施时,所表现的焊接性也不同。焊接方法对焊接的影响,首先表现在焊接热源能量密度大小、温度高低以及热输入的多少。 工艺措施对防止焊接接头缺陷,提高使用性能也有重要的作用。如焊前预热、焊后缓冷和去氢处理等,他们对防止热影响区淬硬变脆、降低焊接应力、避免氢致冷裂纹是比较有效的措施,另外,如合理安排焊接顺序,则能减小应力变形。 4.使用条件 焊接结构的使用条件是多种多样的,有在高温、低温下工作,在腐蚀介质中 工作及在静载或动载工作下工作等。在高温工作,可能产生蠕变,在低温工作或有冲

金属材料的可焊性

金属材料的可焊性 -技术 金属材料的可焊性 要了解金属材料的可焊性,必须知道什么是焊接。焊接是利用两个物体原子间产生的结合作用连接成一体,连接后不能再拆卸的连接方法。早在一千多年前,我们的祖先就已采用焊接技术。最早的焊接是把两块熟铁(钢)加热到红热状态后再用锻打的方法连接在一起的锻焊。软钎焊是用火烙铁加热低熔点铅锡合金的连接方法。近代焊接技术,是从1885年俄国人别那尔道斯发明碳弧焊开始,直到20世纪30年代,在生产上还只是采用气焊和手工电弧焊。由于焊接具有节省金属,生产率高,产品质量好和大大改善劳动条件等优点,所以焊接得到了迅速发展。40年代初出现了优质焊条,使焊接技术得到了一次飞跃。随后电阻焊和埋弧焊的应用,使焊接过程实现了机械化和自动化。50~60年代,不断出现电渣焊、各种气体保护焊、超声波焊、等离子弧焊、电子束焊和激光焊接等方法,使焊接技术达到了一个新的水平。80年代还进行太空焊接试验。我们相信,随着现代工业和科学技术的不断发展,焊接也必定有新的发展。 A 金属材料的可焊性概念 金属材料的可焊性实质上就是金属材料的焊接性,可焊性是指金属在采用一定的焊接方法、焊接材料、工艺参数及结构型式条件下,实现优质焊接接头的难易程度。 金属材料的可焊性不是一成不变的,同一种金属材料,采用不同的焊接方法和焊接材料,其可焊性可能有很大差别。如铸铁用普通焊条不容易保证质量,但用镍基焊条则质量较好。随着焊接技术的发展,过去某些很难焊接的金属材料,现在可以用一定的方法进行焊接。例如钛的化学活泼性极强,要焊接极其困难,认为钛的可焊性很不好,但氩弧焊的出现,使钛及其合金的焊接结构已在工业中广泛采用。由于开发新能源,等离子焊、电子束焊、激光焊等新的焊接方法相继出现,使高熔点的金属(钨、钼、钽、铌和锆等)及其合金的焊接成为可能。 金属材料的可焊性是一项极其重要的工艺性能,可以按不同标准或不同角度来衡量其可焊性。通常把金属材料在焊接时形成裂纹的倾向及焊接接头区脆化的倾向作为评价金属材料可焊性的主要指标。

常用金属材料

常用金属材料 一﹑黑色金属类 1﹑冷轧板分类﹕一般用(SPCC) 冲压用(SPCD) 加工状态D麻面轧辊经磨床加工后喷丸处理 B光亮表面轧辊经磨床精加工 常用﹕SPCC-SD SPCD-SD SPCE-SD SPCC-SB (金光板﹐表面光亮无针孔状﹐成型后可直接电镀) 2﹑热浸镀锌板又名亚板(SGCC,SGCD,SGCE) 基体为铁板﹐浸入熔融的锌液中镀锌而成)

二﹑有色金属类 1﹑铝 变形铝及变形铝合金的分类(按主要合金元素分类) 退火状态 O状态 H12 1/4硬﹐完全退火后冷加工硬化﹐变形量为18% H14 1/2硬﹐完全退火后冷变形约为35% H16 3/4硬﹐完全退火后冷变形约为55% H18 硬性﹐完全退火后冷变形约为75% H19 超硬性 常用“O”--------------拉伸用 “H14”-------------一般用 2﹑铜 铜合金按其化学成分可分为黄铜﹐青铜﹐白铜三大类

3﹑电解镀锌板又名电解板(SECC﹑SECD﹑SECE)基体为铁板﹐表面经电解镀锌而成 镀层厚度为1um﹐相应镀层重量为7.1g/m2。 4﹑镀铝铁板 基体为铁板﹐浸入熔融的铝液中镀铝而成﹐呈灰色﹐手感好﹐具有良好的耐热性﹐耐腐性﹐热反射性。 目前亚洲地区仅日本﹐韩国有生产此钢种。 表面处理状态﹕O涂油 C 铬酸盐 X 不处理 镀层重量常用﹕40~~150g/m2﹐TKC常用80~120g/m2(双面) 5﹑镀铝锌铁板 基体为铁板﹐表面以经热镀铝﹑锌而成﹐外观呈亮色小块状花纹﹐有更佳可观性。以55%铝﹐43.5%锌及1.5%硅组成(重量比)(容积比80%铝﹐19%锌﹐1%硅) 6﹑不锈钢(SUS) 铬可防止钢表面产生锈皮﹐一般所称的不锈钢是指含铬量在12%以上但低于30%。

金属材料焊接试题

金属材料焊接试题 一、填空题 1.金属材料焊接性的好坏,主要取决于材料的(),且与结构的复杂程度、()和焊接方法,采用的焊接材料、焊接工艺条件及结构的()也有密切的关系。 2.判断焊接性最简单的间接法是法()。 3.()焊接裂纹试验,又称小铁研法,主要用于碳素钢和低合金钢焊接接头的冷裂纹抗裂性能试验。 4.焊接性的评价主要包括两方面内容:一是评定焊接接头(),为制定合理的焊接工,提供依据;二是评定焊接接头()。 5.焊后为改善焊接接头的组织和性能或消除残余应力而进行的热处理,称()。6.碳当量只考虑对焊接性的影响,没有考虑()、()、()、()、()和构件使用要求等因素的影响。 7.金属的焊接性包括()和()两方面的内容。 8.低合金钢的主要特点是()、()和良好,()及其他性能较好。 9.含碳量为()一的碳素钢称为中碳钢。中碳钢与低碳钢相比较,含碳量较高,()较高,焊接性较()差。 10.高碳钢导热性比低碳钢差,致使焊接区和未加热部分之间产生显着的(),因此在焊接中,引起很大的(),熔池急剧冷却,产生裂纹的倾向较大。 11.低合金结构钢焊接过程中一个重要的特点是热影响区有较大的淬硬倾向,其主要的影响因素是()和()。 12.低合金结构钢焊接时,易出现()、()、()等问题。13.Q345钢在低温下或在刚度和厚度均较大的结构上进行小工艺参数、小焊道的焊接时,有可能出现()或()。 14.Q390钢属于()MPa级的低合金结构钢,当钢板厚度大于()mm 或在0℃以下施焊时,则应预热至()℃,焊后采用()℃的消除应力热处理。 15.我国的低合金结构钢可分为四类,即()、()、()和()。 16.低碳钢焊接时,焊接方法或焊接材料选择不当,焊接热影响区会出现()组织,降低热影响区的()。 17.按空冷后室温组织的不同,不锈钢可分为()、()、()、()和()五大类,其中()应用最广泛。 18.在施焊中,若焊接工艺选择不当,奥氏体不锈钢会产生()和()等问题。 19.奥氏体不锈钢最危险的一种破坏形式是(),它既可产生在焊缝或热影响区,又会产生在熔合线上,如产生在熔合线上又称为()。 20.不锈钢具有抗腐蚀能力的必要条件是含铬量为()组织。 21.为避免晶间腐蚀,奥氏体不锈钢中加入的稳定剂元素有()和()。22.对奥氏体不锈钢焊接接头进行固溶处理的加热温度为(),使碳重新溶入奥氏体中,然后迅速冷却,从而稳定()。 23.奥氏体不锈钢较易产生热裂纹的原因是()、()、()。

金属材料的焊接性

第三节 金属材料的焊接性 1. 焊接性的概念 —定焊接技术条件下,获得优质焊接接头的难易程度,即金属材料对焊接加工的适应性称为金属材料的焊接性。 2.焊接性的评价 1) 碳当量法 碳当量是把钢中的合金元素(包括碳)的含量,按其作用换算成碳的相对含量。国际焊接学会推荐的碳当量(CE)公式为: %)++++++=10015 )Cu ()Ni (5)V ()Mo ()Cr (6)Mn ()C ([CE ?ωωωωωωω 式中,ω(C)、ω(Mn)等-碳、锰等相应成分的质量分数(%)。 当CE<0.4%时,钢材的塑性良好,淬硬倾向不明显,焊接性良好。在一般的焊接技术条件下,焊接接头不会产生裂纹,但对厚大件或在低温下焊接,应考虑预热;当CE 在0.4~0.6%时,钢材的塑性下降,淬硬倾向逐渐增加,焊接性较差。焊前工件需适当预热,焊后注意缓冷,才能防止裂纹;当CE>0.6%时,钢材的塑性变差。淬硬倾向和冷裂倾向大,焊接性更差。工件必须预热到较高的温度,要采取减少焊接应力和防止开裂的技术措施,焊后还要进行适当的热处理。 2)冷裂纹敏感系数法 冷裂纹敏感系数的其计算式为: %++++++=100]600 60]H [)B (510) V (15) Mo (60) Ni (20) Cu ()Mn ()Cr (30) Si ()C ([?++++h P W ωωωωωωωωω 式中P W -冷裂纹敏感系数;h -板厚;[H]-100g 焊缝金属扩散氢的含量(mL)。 冷裂纹敏感系数越大,则产生冷裂纹的可能性越大,焊接性越差。 3.低碳钢的焊接 低碳钢的CE 小于0.4%,塑性好,一般没有淬硬倾向,对焊接热过程不敏感,焊接性良好。 4.中、高碳钢的焊接 中碳钢的CE 一般为0.4%~0.6%,随着CE 的增加,焊接性能逐渐变差。高碳钢的CE 一般大于0.6%,焊接性能更差,这类钢的焊接—般只用于修补工作。为了保证中、高碳钢焊件焊后不产生裂纹,并具有良好的力学性能,通常采取以下技术措施: 1)焊前预热、焊后缓冷 焊前预热和焊后缓冷的主要目的是减小焊接前后的温差,降低冷却速度,减少焊接应力,从而防止焊接裂纹的产生。预热温度取决于焊件的含碳量、焊件的厚度、焊条类型和焊接规范。

常用金属(镀锌板、铝合金等)的焊接

常用金属(镀锌板、铝合金等)的焊接 Tags: 铝合金, 镀锌板, 金属, 焊接 一、电阻焊前的工件清理 无论是点焊、缝焊或凸焊,在焊前必须进行工件表面清理,以保证接头质量稳定。 清理方法分机械清理和化学清理两种。常用的机械清理方法有喷砂、喷丸、抛光以及用纱布或钢丝刷等。 不同的金属和合金,需采用不同的清理方法。简介如下: 铝及其合金对表面清理的要求十分严格,由于铝对氧的化学亲合力极强,刚清理过的表面上会很快被氧化,形成氧化铝薄膜。因此清理后的表面在焊前允许保持的时间是严格限制的。 铝合金的氧化膜主要用以化学方法去除,在碱溶液中去油和冲洗后,将工件放进正磷酸溶液中腐蚀。为了减慢新膜的成长速度和填充新膜孔隙,在腐蚀的同时进行纯化处理。最常用的纯化剂是重铬酸钾和重铬酸纳(见表1)。纯化处理后便不会在除氧化膜的同时,造成工件表面的过分腐蚀。 腐蚀后进行冲洗,然后在硝酸溶液中进行亮化处理,以后再次进行冲洗。冲洗后在温度达75℃的干燥室中干燥,活用热空气吹干。这样清理后的工件,可以在焊前保持72h。 铝合金也可用机械方法清理。如用0-00号纱布,或用电动或风动的钢丝刷等。但为防止损伤工件表面、钢丝直径不得超过0.2mm,钢丝长度不得短于40mm,刷子压紧于工件的力不得超过15-20N,而且清理后须在不晚于2-3h内进行焊接。 为了确保焊接质量的稳定性,目前国内各工厂多在化学清理后,在焊前再用钢丝刷清理工件搭接的内表面。 铝合金清理后必须测量放有两铝合金工件的两电极间总阻值R。方法是使用类似于点焊机的专用装置,上面的一各电极对电极夹绝缘,在电极间压紧两个试件,这样测出的R值可以最客观地反映出表面清理的质量。对于LY12、LC4、LF6铝合金R不得超过120微欧姆,刚清理后的R一般为40-50微欧,对于导电性更好的LF21、LF2铝合金以及烧结铝类的材料,R不得超过28-40微欧。 镁合金一般使用化学清理,经腐蚀后再在铬酐溶液中纯化。这样处理后会在表面形成薄而致密的氧化膜,它具有稳定的电气性能,可以保持10昼夜或更长时间,性能仍几乎不变。镁合金也可以用钢丝刷清理。 铜合金可以通过在硝酸及盐酸中处理,然后进行中和并清除焊接处残留物。 不锈钢、高温合金电阻焊时,保持工件表面的高度清洁十分重要,因为油、尘土、油漆的存在,能增加硫脆化的可能,从而使接头产生缺陷。清理方法可用激光、喷丸、钢丝刷或化学腐蚀。对于特别重要的工件,有时用电解抛光,但这种方法复杂而且生产率低。 钛合金的氧化皮,可在盐酸、硝酸及磷酸钠的混合溶液中进行深度腐蚀加以去除。也可以用钢丝刷或喷丸处理。 低碳钢和低合金钢在大气中的抗腐蚀能力较低。因之,这些金属在运输、存放和加工过程中常常用抗蚀油保护。如果涂油表面未被车间的赃物或其它不良导电材料所污染,在电极的压力下,油膜很容易被挤开,不会影响接头质量。 钢的供货状态有:热轧,不酸洗;热轧,酸洗并涂油;冷轧。未酸洗的热轧钢焊接时,必须用喷砂、喷丸,或者用化学腐蚀的方法清除氧化皮,可在硫酸及盐酸溶液中,或者在以磷酸为主但含有硫脲的溶液中进行腐蚀,后一种成份可有效地同时进行涂油和腐蚀。 有镀层的钢板,除了少数例外,一般不用特殊清理就可以进行焊接,镀铝钢板则需要用钢丝刷或化学腐蚀清理。带有磷酸盐涂层的钢板,其表面电阻会高到在地电极压力下,焊接电流无法通过的程度。只有采用较高的压力才能进行焊接。 二、镀锌钢板的点焊

常用金属材料特性

45—优质碳素结构钢{最常用中碳调质钢} 主要特性最常用中碳调质钢,综合力学性能良好,淬透性低,水淬时易生裂纹。小型件宜采用调质处理,大型件宜采用正火处理。 应用举例 主要用于制造强度高的运动件,如透平机叶轮、压缩机活塞。轴、齿轮、齿条、蜗杆等。(焊接件注意焊前预热,焊后消除应力退火)。 Q235A(A3钢){最常用中碳素结构钢} 主要特性具有高的塑性、韧性和焊接性能、冷却性能,以及一定的强度,好的冷弯性能。 应用举例广泛用于一般要求的零件和焊接结构。如受力不大的拉杆、连杆、销、轴、螺钉、螺母、套圈、支架、机座、建筑结构。 40Cr{合金结构钢} 主要特性经调质处理后,具有良好的综合力学性能、低温冲击韧度及低的缺口敏感性,淬透性良好,油冷时可得到较高的疲劳强度,水冷时复杂形状的零件易产生裂纹,冷弯塑性中等,回火或调质后切

削加工性好,但焊接性不好,易产生裂纹,焊接前应预热100~150℃,一般在调质状态下室使用,还可以进行碳氮共参和高频表面淬火处理。 应用举例调质处理后用于制造中速,中载的零件,如机床齿轮、轴、蜗杆、花键轴、顶针套等。调质并高频表面淬火后用于制造表面高硬度、耐磨的零件,如齿轮、轴、主轴、曲轴、心轴、套筒、销子、连杆、螺钉螺母、进气阀等。经淬火及中温回火后用于制造重载、中速冲击的零件,如油泵转子、滑块、齿轮、主轴、套环等。经淬火及低温回火后用于制造重载、低冲击、耐磨的零件,如蜗杆、主轴、轴、套环等,碳氮共渗处即后制造尺寸较大、低温冲击韧度较高的传动零件,如轴、齿轮 等。 HT150{灰铸铁} 应用举例 齿轮箱体,机床床身,箱体,液压缸,泵体,阀体,飞轮,气缸盖,带轮,轴承盖等。 35{各种标准件、紧固件的常用材料} 主要特性强度适当,塑性较好,冷塑性高,焊接性尚可。

常用金属的点焊

常用金属的点焊 一、电阻焊前的工件清理 无论是点焊、缝焊或凸焊,在焊前必须进行工件表面清理,以保证接头质量稳定。 清理方法分机械清理和化学清理两种。常用的机械清理方法有喷砂、喷丸、抛光以及用纱布或钢丝刷等。 不同的金属和合金,需采用不同的清理方法。简介如下: 铝及其合金对表面清理的要求十分严格,由于铝对氧的化学亲合力极强,刚清理过的表面上会很快被氧化,形成氧化铝薄膜。因此清理后的表面在焊前允许保持的时间是严格限制的。 铝合金的氧化膜主要用以化学方法去除,在碱溶液中去油和冲洗后,将工件放进正磷酸溶液中腐蚀。为了减慢新膜的成长速度和填充新膜孔隙,在腐蚀的同时进行纯化处理。最常用的纯化剂是重铬酸钾和重铬酸纳(见表1)。纯化处理后便不会在除氧化膜的同时,造成工件表面的过分腐蚀。 腐蚀后进行冲洗,然后在硝酸溶液中进行亮化处理,以后再次进行冲洗。冲洗后在温度达75℃的干燥室中干燥,活用热空气吹干。这样清理后的工件,可以在焊前保持72h。 铝合金也可用机械方法清理。如用0-00号纱布,或用电动或风动的钢丝刷等。但为防止损伤工件表面、钢丝直径不得超过0.2mm,钢丝长度不得短于40mm,刷子压紧于工件的力不得超过15-20N,而且清理后须在不晚于2-3h内进行焊接。 为了确保焊接质量的稳定性,目前国内各工厂多在化学清理后,在焊前再用钢丝刷清理工件搭接的内表面。 铝合金清理后必须测量放有两铝合金工件的两电极间总阻值R。方法是使用类似于点焊机的专用装置,上面的一个电极对电极夹绝缘,在电极间压紧两个试件,这样测出的R值可以最客观地反映出表面清理的质量。对于LY12、LC4、LF6铝合金R不得超过120微欧姆,刚清理后的R一般为40-50微欧,对于导电性更好的LF21、LF2铝合金以及烧结铝类的材料,R不得超过28-40微欧。

金属材料焊接工艺习题

1. 锅炉压力容器是生产和生活中广泛使用的()的承压设备。 A. 固定式 B. 提供电力 C. 换热和贮运 D. 有爆炸危险 2. 工作载荷、温度和介质是锅炉压力容器的()。 A. 安装质量 B. 制造质量 C. 工作条件 D. 结构特点 3. 凡承受流体介质的()设备称为压力容器。 A. 耐热 B. 耐磨 C. 耐腐蚀 D. 密封 4. 锅炉铭牌上标出的压力是锅炉()。 A. 设计工作压力 B. 最高工作压力 C. 平均工作压力 D. 最低工作压力 5. 锅炉铭牌上标出的温度是锅炉输出介质的()。 A. 设计工作温度 B. 最高工作温度 C. 平均工作温度 D. 最低工作温度 6. 设计压力为≤P<的压力容器属于()容器。 A. 低压 B. 中压 C. 高压 D. 超高压 7. 设计压力为≤P<10MPa的压力容器属于()容器。 A. 低压 B. 中压 C. 高压 D. 超高压 8. 设计压力为10MPa≤P<100MPa的压力容器属于()容器。 A. 低压 B. 中压 C. 高压 D. 超高压 9. 设计压力为P≥100MPa的压力容器属于()容器。 A. 低压 B. 中压 C. 高压 D. 超高压 10. 低温容器是指容器的工作温度等于或低于()的容器。 A. -10℃℃ C. -30℃ D. -40℃ 11. 高温容器是指容器的操作温度高于()的容器。 A. -20℃ B. 30℃ C. 100℃ D.室温 12.()容器受力均匀,在相同壁厚条件下,承载能力最高。 A. 圆筒形 B. 锥形 C. 球形 D.方形 13. 在压力容器中,筒体与封头等重要部件的连接均采用()接头。 A. 对接 B. 角接 C. 搭接 D. T形 14. 在生产中,最常用的开坡口加工方法是()

金属材料焊接中的缺陷分析及对策分析

金属材料焊接中的缺陷分析及对策分析 发表时间:2018-06-01T10:49:17.110Z 来源:《基层建设》2018年第9期作者:张仙芝孙全德[导读] 摘要:金属材料焊接的过程中可以应用各种不同的焊接工艺,而焊接工艺的不同其技术要点也存在着一定的差异,为了促进金属材料焊接质量以及材料实用效率的有效提高,必须对其焊接过程中的缺陷予以充分的重视,并采取积极有效的措施,才能有效的避免材料焊接过程中缺陷的出现,促进我国金属焊接工艺水平的提高。 新疆维吾尔自治区特种设备检验研究院新疆乌鲁木齐市 830000 摘要:金属材料焊接的过程中可以应用各种不同的焊接工艺,而焊接工艺的不同其技术要点也存在着一定的差异,为了促进金属材料焊接质量以及材料实用效率的有效提高,必须对其焊接过程中的缺陷予以充分的重视,并采取积极有效的措施,才能有效的避免材料焊接过程中缺陷的出现,促进我国金属焊接工艺水平的提高。 关键词:金属材料;焊接;缺陷 1金属材料焊接成型主要缺陷分析 1.1裂纹缺陷 在金属材料焊接成型处理中,焊接裂纹的出现是最为常见的一个方面,同样也是对于后续金属产品应用影响极大的一个问题表现。这种焊接裂纹在具体处理中主要表现为热裂纹和冷裂纹两种基本类型。热裂纹的出现主要就是指在金属焊接过程中,其由液态结晶转化为固态的过程中,因为一些不当操作,或者是外界环境的不良威胁,最终形成的一些裂纹缺陷,在焊接操作完成后会直接表现,比如所用金属材料的质量不佳,含有过多的杂质,或者是相应焊接周围环境的湿度不合理,都会严重干扰其整体焊接效果,出现热裂纹。冷裂纹则主要是指相应金属材料在焊接完成后的冷却过程中出现了较为明显的裂纹现象,其除了在焊后直接表现出来之外,还会在焊接完成后的几天,甚至是更长时间后出现,具备更为突出的不可控特点,该类裂纹的出现主要就是因为焊缝的处理不当造成的,相应焊缝区域出现了淬硬组织,并且产生了较为明显的约束应力,形成了裂纹表现。 1.2焊缝折断缺陷 对于金属材料的焊接处理而言,相应焊接质量不佳还容易表现为焊缝区域的折断问题,其焊缝区域因为整体性不佳,进而也就很可能会导致其容易在受力状况下出现折断或者是突变问题,最终导致其金属产品的应用价值受损。结合这种焊缝折断缺陷而言,其主要原因就是具体焊接操作的落实不规范,存在着明显的未焊透或者是未融合问题,最终也就很可能会导致其焊接区域的整体规范性受损。当然,这种未焊透或者是未融合问题的出现更是受到了多个方面的威胁和干扰,比如对于焊接操作中的角度选择,其存在大小不适宜问题的话,就极有可能会影响到焊接的彻底性,而焊条选择不合理,或者是相应焊接技术手段的处理不规范,焊缝位置的清洁工作处理不当,都极有可能会产生未焊透问题。 1.3夹渣缺陷 在金属材料焊接成型操作中,其出现夹渣问题的危害性同样也是比较突出的,这种夹渣方面的影响主要就是在焊缝区域内出现了熔渣的混入,如此也就必然会对于焊缝的强度以及整体性效果产生了威胁。这种夹渣问题产生的影响因素也是比较多的,比如相应焊缝区域的切割不合理,导致其遗留较多的残渣,相应焊条的选择不合理,和具体焊接需求存在明显冲突,或者是相关焊接操作所用电流过小,都极有可能会带来较为明显的夹渣问题,最终也就很可能会形成明显焊接质量缺陷。 1.4气孔缺陷 对于金属材料焊接成型操作,其在处理中出现气孔问题的危害性同样也是比较突出的,这种气孔缺陷主要就是指在焊接区域的内部,或者是表面、接头位置,存在着较为明显的气孔,如此也就必然会对于整个焊接质量效果产生明显威胁。结合这种气孔缺陷的产生,其主要就是在相应焊接区域的处理中没有做好清洁工作,导致其相关焊接区域出现了明显的油污或者是水分,进而也就很可能在焊接操作中形成大量气体,并且被滞留在焊缝周围,导致其焊接整体质量效果出现问题。 1.5咬边缺陷 在金属材料焊接成型处理中,其存在的咬边缺陷同样也是比较常见的一个基本类型,这种咬边缺陷主要就是指在焊接区域存在着明显的凹陷边缘,进而也就必然会导致焊缝的强度受损,还影响到焊接的美观性效果。结合这种咬边缺陷的产生,其主要就是在焊接操作过程中没有规范运用焊接解决,导致其相应焊接操作所使用的电流过大,或者是焊接的速度过快,进而导致具体焊缝区域的处理质量不佳,形成了明显的凹陷问题。 1.6焊瘤缺陷 金属材料焊接成型处理中的焊瘤缺陷同样也是比较常见的一个方面,这种焊瘤缺陷主要就是指相应焊接操作的相关区域内存在着明显的金属瘤,影响到焊缝的美观性和强度效果。这种焊瘤缺陷主要就是在金属呈液态趋势下的慢慢下坠不合理而造成的,其一般和焊接操作过程中所用的电流控制不当有关,相应焊接电流过大,或者是焊接弧长过大,都会导致其焊瘤缺陷问题的出现。 2金属焊接技术缺陷的解决措施 2.1气孔的解决措施 烘干材料的过程中,要保证操作严格执行规范要求,妥善保管焊接材料和设备。焊接之前,彻底清除坡口边缘的杂质,合理控制焊接电流以及焊接速度、电弧的长度。 2.2夹渣和咬边的解决措施 合理选择坡口尺寸,彻底清理倒角,严格控制焊接速度和电流大小,保证摆动适度。在进行多层焊接的过程中,仔细检查槽边缘的融化,对焊渣进行彻底的清理。将全部的焊渣彻底清除,以实现精密焊接。另外,合理选择焊接电流以及操作方法,合理控制焊条的角度以及电弧长度,实时监控并调整工艺参数,保证焊接速度的合理性,焊道的平整性。 2.3弧坑的解决措施 在焊接过程中,要实时改变焊接方向,焊丝的长度以及开槽的侧面尺寸的制定要将焊丝的直径作为衡量基准,开槽的形状应该和木材相一致,尽可能提高中的焊接电流量,提高焊渣的融化速度,在对该面层的焊接过程中,需要及时调整单焊道为多焊道,降低金属焊接过程中的负荷,保证焊接金属的稳定性和安全性。

相关主题
文本预览
相关文档 最新文档