当前位置:文档之家› 直流输电换流原理(整流部分)

直流输电换流原理(整流部分)

直流输电基础

直流输电换流原理

(整流部分)

主要内容

?单桥换流器

?整流器

?无相控:电压、电流、功率

?有相控:电压、电流、功率

?逆变器

?双桥换流器

?谐波

2

典型双极直流系统接线图

3

三相桥式换流器

4

4

?三相交-直换流器桥接线

共阴极组

共阳极组

桥臂

三相桥式换流器(续)

5

三相桥式换流器的优点

?桥阀承受的电压峰值较低?换流变压器容量较小?换流变压器接线较简单?阀的伏安容量较小?直流电压纹波较小

阀的利用率高

变压器的利用率高

三相桥式换流器(续)

6

单桥整流器

换相电感

直流平波电感交流电源

交流侧电流

直流侧电流

阀电流

直流侧电压(滤波前)

直流侧电压(滤波后)

三相桥式换流器(续)

三相桥式换流器中重要的量

?交流侧相电压:v a、v b、v c ?阀电压:v1 ~ v6

?v d=v m-v n:直流侧电压?V d:换流器直流输出电压?阀电流:i1 ~ i6

?交流侧电流:i a、i b、i c 桥交流端对“O”点电位

“m”、“n”点之间的电位差V1 ~ V6阳极-阴极之间电压

v

d

的平均值

7

8

电网侧电势量分析(续)

9

e ca 过零点

e ab 过零点

e bc 过零点

e ca 过零点

e ab 过零点

e bc 过零点

计时起点

?交流侧电源线电势过零点

单桥整流器触发时间范围

10

触发V 1前导通

1 a c

v v v =-180?

10

a c v v v >>

无相控整流器

理想的假定条件

?三相交流电源对称、正弦、频率恒定

?交流电网阻抗对称,忽略换流变压器激磁导纳?大电感平波电抗器,换流器直流侧电流为纯直流?阀的特性是理想的

?桥阀等相位间隔依次轮流触发

11

无相控整流器(续)

无相控整流器阀臂的导通顺序及电流电压波形

12

无相控整流器(续)

13

?整流器的直流电压

v m

v n

v d =v m v n

脉动六次

00= 1.35d A V

有相控整流器( )--延迟触发角α15

v m

v n

v d =v m -v n

触发脉冲

e ca 过零点

360?,脉动六次

0r L =

6

6

0=

2cos d 2sin

cos 2cos 6

32 cos

1.35cos cos 3

d d A E E E A V E E V π

α

π

απ

θθαα

αααπ

π

+-+======?16

?延迟触发的影响:平均直流电压减少倍?α可由0度变成180度,可由变为cos αd V 0d V 0

d V -

整流器的空载直流电压

17

α ≤30°

α > 30°

整流器的直流电压(α变化)

阀电势

直流电压

18

19

阀电流交流侧电流

整流器的阀电流和交流侧电流

倍流同步整流在DCDC变换器中工作原理分析

倍流同步整流在DC/DC变换器中工作原理分析 在低压大电流变换器中倍流同步整流拓扑结构已经被广泛采用。就其工作原理进行了详细的分析说明,并给出了相应的实验和实验结果。 关键词:倍流整流;同步整流;直流/直流变换器;拓扑 0 引言 随着微处理器和数字信号处理器的不断发展,对芯片的供电电源的要求越来越高了。不论是功率密度、效率和动态响应等方面都有了新要求,特别是要求输出电压越来越低,电流却越来越大。输出电压会从过去的3.3V降低到1.1~1.8 V之间,甚至更低[1]。从电源的角度来看,微处理器和数字信号处理器等都是电源的负载,而且它们都是动态的负载,这就意味着负载电流会在瞬间变化很大,从过去的13A/μs到将来的30A/μs~50A/μs[2]。这就要求有能够输出电压低、电流大、动态响应好的变换器拓扑。而对称半桥加倍流同步整流结构的DC/DC变 换器是最能够满足上面的要求的[3]。 本文对这种拓扑结构的变换器的工作原理作出了详细的分析说明,实验结果 证明了它的合理性。 1 主电路拓扑结构 主电路拓扑如图1中所示。由图1可以看出,输入级的拓扑为半桥电路,而输出级是倍流整流加同步整流结构。由于要求电路输出低压大电流,则倍流同步 整流结构是最合适的,这是因为: 图1 主电路拓扑 1)变压器副边只需一个绕组,与中间抽头结构相比较,它的副边绕组数只有中间抽头结构的一半,所以损耗在副边的功率相对较小; 2)输出有两个滤波电感,两个滤波电感上的电流相加后得到输出负载电流,而这两个电感上的电流纹波有相互抵消的作用,所以,最终得到了很小的输出电 流纹波;

3)流过每个滤波电感的平均电流只有输出电流的一半,与中间抽头结构相比较,在输出滤波电感上的损耗明显减小了; 4)较少的大电流连接线(high current inter-connection),在倍流整流拓扑中,它的副边大电流连接线只有2路,而在中间抽头的拓扑中有3路; 5)动态响应很好。 它唯一的缺点就是需要两个输出滤波电感,在体积上相对要大些。但是,有一种叫集成磁(integrated magnetic)的方法,可以将它的两个输出滤波电感和变压器都集成到同一个磁芯内,这样可以大大地减小变换器的体积。 2 电路基本工作原理 电路在一个周期内可分为4个不同的工作模式,如图2所示,理想的波形图 如图3所示。 (a) 模式1[t0-t1] (b) 模式2[t1-t2]

变压器基本工作原理

第1章 变压器的基本知识和结构 1.1变压器的基本原理和分类 一、变压器的基本工作原理 变压器是利用电磁感应定律把一种电压等级的交流电能转换成同频率的另一种电压等级的交流电能。 变压器工作原理图 当原边绕组接到交流电源时,绕组中便有交流电流流过,并在铁心中产生与外加电压频率相同的磁通,这个交变磁通同时交链着原边绕组和副边绕组。原、副绕组的感应分别表示为 dt d N e Φ-=1 1 dt d N e Φ-=2 2 则 k N N e e u u ==≈2 12121 变比k :表示原、副绕组的匝数比,也等于原边一相绕组的感应电势与副边一相绕组的感应电势之比。 改变变压器的变比,就能改变输出电压。但应注意,变压器不能改变电能的频率。 二、电力变压器的分类 变压器的种类很多,可按其用途、相数、结构、调压方式、冷却方式等不同来进行分类。 按用途分类:升压变压器、降压变压器; 按相数分类:单相变压器和三相变压器;

按线圈数分类:双绕组变压器、三绕组变压器和自耦变压器; 按铁心结构分类:心式变压器和壳式变压器; 按调压方式分类:无载(无励磁)调压变压器、有载调压变压器; 按冷却介质和冷却方式分类:油浸式变压器和干式变压器等; 按容量大小分类:小型变压器、中型变压器、大型变压器和特大型变压器。 三相油浸式电力变压器的外形,见图1,铁心和绕组是变压器的主要部件,称为器身见图2,器身放在油箱内部。 1.2电力变压器的结构 一、铁心 1.铁心的材料 采用高磁导率的铁磁材料—0.35~0.5mm厚的硅钢片叠成。 为了提高磁路的导磁性能,减小铁心中的磁滞、涡流损耗。变压器用的硅钢片其含硅量比较高。硅钢片的两面均涂以绝缘漆,这样可使叠装在一起的硅钢片相互之间绝缘。

高压直流输电原理与运行简答题

高压直流输电复习解答 1.列举直流输电的优点与适用场合: 优点: 1)输送相同功率时,线路的造价低 2)线路有功损耗小 3)适合海下输电 4)不受系统稳定极限的限制 5)直流联网对电网间的干扰小 6)直流输电的接入不会增加原有电力系统的短路电流容量 7)输送功率的大小和方向可以快速控制和调节,运行可靠 2.两端直流输电的运行接线方式. 主要分为单极线路方式、双极线路方式两大类,具体如下: 单极线路方式: 1)单极一线式:用一根空导线或者电缆,以大地或者海水作为返回线路组成的 直流输电系统 2)单极两线式:导线数不少于两根,所有导线同极性。 双极线路方式: 1)双极线路中性点两端接地方式 2)双极中性点单端接地方式 3)双极中性线方式 4)“背靠背”换流方式 3.延迟角为什么不能太大也不能太小? 整流工况下,a太小,欲导通的阀在有触发脉冲时承受的正向压降太小可能导致导通失败或者延时,a太小则会使功率因素太低。 逆变工况下,当直流电流一定,随着a的增加,换流器所需的无功功率将小。因此,从经济角度来说,提高换流器运行触发角会使得交流侧功率因素增大,因此输送相同直流功率时,所需的无功功率将减小。但a的增大,会导致换相角的增大,从而使熄弧角较小。为保证换流器的安全运行,a不能太大。 4.换相失败的原理是怎样的?换相失败的解决方法有哪些? 换相失败的原理: 当两个桥臂之间换相结束后,刚退出导通的阀在反向电压作用的一段时间内,如果未能恢复阻断能力,或者在反向电压期间换相过程一直未能进行完毕,这两种情况在阀电压变为正向时被换相的阀都将向原来预定退出导通的阀倒换相,称为换相失败。 解决方法: 1)利用无功补偿维持换相电压稳定 2)采用较大的平波电抗器 3)系统规划时选择短路电抗较小的换流变

倍流同步整流在高压48VVRM中的应用

参考文献王硕[基于三电平ZVS半桥倍流电压调节模块(VRM)的研究] 燕山大学2010 硕士论文 倍流同步整流在高压48VVRM中的应用 设计中原边通常选用的拓扑主要有半桥、全桥、正激和推挽电路;副边拓扑方式有桥式整流、半波整流、全波整流及倍流整流四种。一副边整流电路拓扑的选择 由于VRM输出为低压大电流,因此副边整流电路的选用尤为重要,不但要求磁性器件制作简单,更需要关注的是各部分的损耗,如变压器副边绕组损耗、整流管损耗等。在常用的四种副边拓扑结构中,全桥整流电路由于所用整流管数量是其它拓扑的两倍,在大电流输出的VRM中就会产生更多的开关管的损耗,在设计中显然不宜采用,因此不再对其进行分析比较。主要对另外三种电路的导通损耗、磁性器件及驱动方式进行了比较,总结见下表所示。

半波整流 中心抽头全波 整流 倍流整流 占空比D= o n s t T D<0.5 0

《高压直流输电原理与运行》复习提纲及答案

《高压直流输电原理与运行》复习提纲 第1章 (1)高压直流输电的概念和分类 概念:高压直流输电由将交流电变换为直流电的整流器、高压直流输电线路以及将直流电变换为交流电的逆变器三部分组成。 高压直流输电是交流-直流-交流形式的电力电子换流电路。 常规高压直流输电:半控型的晶闸管,采取电网换相。 VSC高压直流输电:全控型电力电子器件,采用器件换相。 分类:长距离直流输电(两端直流输电),背靠背(BTB)直流输电方式,交、直流并联输电方式,交、直流叠加输电方式,三级直流输电方式。 (2)直流系统的构成 1.直流单级输电:大地或海水回流方式,导体回流方式。 2.直流双极输电:中性点两端接地方式,中性点单端接地方式,中性线方式。 3.直流多回线输电:线路并联多回输电方式,换流器并联的多回线输电方式。 4.多端直流输电:并联多端直流输电方式,串联多端直流输电方式。 (3)高压直流输电的特点 优点:经济性:高压直流输电的合理性和适用性体现在远距离、大容量输电中。 互连性:可实现电网的非同步互连,可实现不同频率交流电网的互连。 控制性:具有潮流快速可控的特点 缺点: ①直流输电换流站的设备多、结构复杂、造价高、损耗大、运行费用高、可靠性也较差。 ②换流器工作时会产生大量的谐波,处理不当会对电网运行造成影响,必须通过设置大量、成组的滤波器消除这些谐波。 ③电网换相方式的常规直流输电在传送有功功率的同时,会吸收大量无功功率,可达有功功率的50%~60%,需要大量的无功功率补偿装置及相应的控制策略。 ④直流输电的接地极和直流断路器问题都存在一些没有很好解决的技术难点。 (4)目前已投运20个直流输电工程(详见p14) 2010年,我国已建成世界上第一条±800KV的最高直流电压等级的特高压直流输电工程。 五直:天-广工程(±500,2000年),三-广工程(2004年),贵-广I回工程(2004年),贵-广II回工程(2008年),云广特高压工程(±800KV) (5)轻型直流输电 特点: 1.电压源换流器为无源逆变,对受端系统没有要求,故可用于向小容量系统或不含旋转电机的负荷供电。 2.电压源换流器产生的谐波大为削弱,对无功功率的需要也大大减少,同时只需要在交流母线上安装一组高通滤波器即可满足谐波标准要求;无须安装直流

桥式整流器原理电路

桥式整流器原理电路 桥式整流电路(如图5-5所示)是使用最多的一种整流电路。这种电路,只要增加两只二极管口连接成"桥"式结构,便具有全波整流电路的优点,而同时在一定程度上克服了它的缺点。 图5-5(a)为桥式整流电路图(b)为其简化画法 桥式整流电路的工作原理如下:e2为正半周时,对D1、D3和方向电压,Dl,D3导通;对D2、D4加反向电压,D2、D4截止。电路中构成e2、Dl、Rfz、D3通电回路,在Rfz,上形成上正下负的半波整洗电压,e2为负半周时,对D2、D4加正向电压,D2、D4导通;对D1、D3加反向电压,D1、D3截止。电路中构成e2、D2Rfz、D4通电回路,同样在Rfz 上形成上正下负的另外半波的整流电压。以上两种工作状态分别如图5-6(a)和(b)所示。

图5-6 桥式整流电路的工作原理示意图 如此重复下去,结果在Rfz,上便得到全波整流电压。其波形图和全波整流波形图是一样的。从图5-6中还不难看出,桥式电路中每只二极管承受的反向电压等于变压器次级电压的最大值,比全波整流电路小一半。 桥式整流电路的整流效率和直流输出与全波整流电路相同,变压器的利用率最高。现在常用的全桥整流,不用单独的四只二极管而用一只全桥,其中包括四只二极管,但是要标清符号,有交流符号的两端接变压器输出,+、-两端接入整流电路。 需要特别指出的是,二极管作为整流元件,要根据不同的整流方式和负载大小加以选择。如选择不当,则或者不能安全工作,甚至烧了管子;或者大材小用,造成浪费。表5-1所列参数可供选择二极管时参考。 另外,在高电压或大电流的情况下,如果手头没有承受高电压或整定大电滤的整流元件,可以把二极管串联或并联起来使用。 图5-7示出了二极管并联的情况:两只二极管并联、每只分担电路总电流的一半口三只二极管并联,每只分担电路总电流的三分之一。总之,有几只二极管并联,流经每只二极管的电流就等于总电流的几分之一。但是,在实际并联运用时,由于各二极管特性不完全一致,不能均分所通过的电流,会使有的管子困负担过重而烧毁。因此需在每只二极管上串联一只阻

48V50A开关电源整流模块主电路设计

48V/50A开关电源整流模块主电路设计 高频开关电源系统具有体积小,重量轻,高效节能,输出纹波小,输出杂音电压小和动态响应性能好等很多优点,现已开始逐步地取代整流式电源而成为现代通讯设备的新型基础电源系统。随着电子技术,电力电子技术,自动控制技术和计算机控制技术的发展,高频开关电源系统的性能也越来越好。通信用开关电源系统作为开关式稳压电源的一种形式,它的设计内容和设计方法都具有自己的特殊性。 要设计一套通信用开关电源系统,首先要明白对它的全面要求,然后再设计系统的各个部分。高频开关电源主回路和控制回路所用的电路形式,元器件,控制方式都发展很快。它们的设计具有特殊的内容和方法。 1设计要求和具体电路设计 通信基础开关电源系统的关键部分是开关电源整流模块。整流模块的规格很多,结合在工 作中遇到的实际情况,提出该模块设计的硬指标如下: 1) 电网允许的电压波动范围 单相交流输入,有效值波动范围:220 V±20%,即176~264 V;频率:45~65 Hz。 2) 直流输出电压,电流 输出电压:标称-48V,调节范围:浮充,43~56?5V;均充,45~58V。 输出电流:额定值:50A。 3) 保护和告警性能 ①当输入电压低到170 VAC或高到270 VAC,或散热器温度高到75 ℃时,自动关机。 ②当模块直流输出电压高到60 V,或输出电流高到58~60 A时,自动关机。 ③当输出电流高到53~55 A时,自动限流,负载继续加大时,调低输出电压。

4) 效率和功率因数 模块的效率不低于88%,功率因数不低于0.99。 5) 其他指标 模块的其他性能指标都要满足“YD/T731”和“入网检验实施细则”等行业标准。 由于模块的输出功率不大,可采用如下的基本方案来设计主电路: 1) 单相交流输入,采用高频有源功率因数校正技术,以提高功率因数; 2) 采用双正激变换电路拓扑形式,工作可靠性高; 3) 主开关管采用 V MOSFET,逆变开关频率取为50 kHz; 4) 采用复合隔离的逆变压器,一只变压器双端工作; 5) 采用倍流整流电路,便于绕制变压器。 依照上述方案,即可设计出主电路的基本形式如图1。 图1 48V/50A整流模块DC/DC主电路基本形式 以下即可按照模块设计的要求来确定主电路中各元器件的基本参数。 1) 输出整流管的选择 输出整流二极管的工作波形如图2所示。

直流输电原理题库

《直流输电原理》题库 一、填空题 1.直流输电工程的系统可分为两端(或端对端)直流输电系统和多端直流输电系统两大类。 2.两端直流输电系统的构成主要有整流站、逆变站和直流输电线路三部分。 3.两端直流输电系统可分为单极系统、双极系统和背靠背直流输电系统三种类型。 4.单极系统的接线方式有单极大地回线方式和单极金属回线方式两种。 5.双极系统的接线方式可分为双极两端中性点接地接线方式、双极一端中性点接地接线方 式和双极金属中线接线方式三种类型。 6.背靠背直流系统是输电线路长度为零的两端直流输电系统。 7.直流输电不存在交流输电的稳定性问题,有利于远距离大容量送电。 8.目前工程上所采用的基本换流单元有6脉动换流单元和12脉动换流单元两种。 9.12脉动换流器由两个交流侧电压相位差30°的6脉动换流器所组成。 10.6脉动换流器在交流侧和直流侧分别产生6K±1次和6K次特征谐波。12脉动换流器在 交流侧和直流侧分别产生12K±1次和12K次特征谐波。 11.为了得到换流变压器阀侧绕组的电压相位差30°,其阀侧绕组的接线方式必须一个为 星形接线,另一个为三角形接线。 12.中国第一项直流输电工程是舟山直流输电工程。 13.整流器α角可能的工作范围是0<α<90°,α角的最小值为5°。 14.α<90°时,直流输出电压为正值,换流器工作在整流工况; α=90°时, 直流输出电为 零,称为零功率工况; α>90°时,直流输出电压为负值,换流器则工作在逆变工况。15.直流输电控制系统的六个等级是:换流阀控制级、单独控制级、换流器控制级、极控制 级、双极控制级和系统控制级。 16.换流器触发相位控制有等触发角控制和等相位间隔控制两种控制方式。 17.直流输电的换流器是采用一个或多个三相桥式换流电路(也称6脉动换流器)串联构 成。其中,6脉动换流器的直流电压,在一个工频周期内有6段正弦波电压,每段60°。

单相变压器的基本工作原理和结构

变压器是一种静止电器,它通过线圈间的电磁感应,将一种电压等级的交流电能转换成同频率的另一种电压等级的交流电能. 3.1 变压器的基本工作原理和结构 3.2 单相变压器的空载运行 3.3 单相变压器的负载运行 3.4 变压器的参数测定 3.5 变压器的运行特性 隐形专家改编于2009-05

3.1 变压器的基本工作原理和结构 3.1.1 基本工作原理和分类 一、基本工作原理 变压器的主要部件是铁心和套在铁心上的两个绕组。两绕组只有磁耦合没电联系。在一 次绕组中加上交变电压,产生交链一、二次绕 组的交变磁通,在两绕组中分别感应电动势。 1 u 1 e 2 e 2u 1i 2 i Φ 1 U 2 U 1 u 2u L Z 1 2 12d Φe =-N dt d Φe =-N dt 只要(1)磁通有 变化量;(2)一、二次绕组的匝数不同,就能达到改变压的 目的。

二、分类 按用途分:电力变压器和电子变压器。 按绕组数目分:单绕组(自耦)变压器、双绕组变压器、三绕组变压器和多绕组变压器。 按相数分:单相变压器、三相变压器和多相变压器。 按铁心结构分:心式变压器、壳式变压器、环形变压器。 按工作频率分:低频(工频)与高频变压器

3.1.2基本结构 一、铁心 变压器的主磁路,为了提高导磁性能和减少铁损,用厚为 0.35-0.5mm、表面涂有绝缘漆的硅钢片叠成或卷绕而成。 二、绕组 变压器的电路,一般用绝缘铜线或铝线绕制而成。 三、胶心 胶心也可称骨架,用塑料压制而成,用来固定线圈。 四、固定夹 固定夹也可称牛夹,用铁板冲压而成,用来将变 压器固定在底板上。

高压直流输电的优势

高压直流输电的优势和应用及其展望京江学院J电气0802 3081127059 陈鑫郁 简单的讲,直流输电是先将交流电通过换流器变成直流电,然后通过直流输电线路送出。在受电端再把直流电变成交流电,进入受端交流电网。直流输电系统由换流(逆变)站、接地极、接地极线路和直流送电线路构成。直流输电具有传输功率大,线路造价低,控制性能好等特点,是目前世界发达国家作为解决高电压、大容量、长距离送电和异步联网的重要手段。直流输电( HVDC)的发展历史到现在已有百余年了,在输电技术发展初期曾发挥作用,但到了20 世纪初,由于直流电机串接运行复杂,而高电压大容量直流电机存在换向困难等技术问题,使直流输电在技术和经济上都不能与交流输电相竞争,因此进展缓慢。20 世纪50 年代后,电力需求日益增长,远距离大容量输电线路不断增加,电网扩大,交流输电受到同步运行稳定性的限制,在一定条件下的技术经济比较结果表明,采用直流输电较为合理,且比交流电有较好的经济效益和优越的运行特性,因而直流电重新被人们所重视。 1 高压直流输电 高压直流输电基本原理 高压直流输电的定义:发电厂发出的交流电,经整流器变换成直流电输送至受电端,再用逆变器将直流电变换成交流电送到受端交流电网。直流输电的一次设备主要由换流站(整流站和逆变站)、直流线路、交流侧和直流侧的电力滤波器、无功补偿装置、换流变压器、直流电抗器以及保护、控制装置等构成。 高压直流输电的技术特点 (1)高压直流输电输送容量更大、送电距离更远。 (2)直流输送功率的大小和方向可以实现快速控制和调节。 (3)直流输电接入系统是不会增加原有电力系统的短路电流容量的,也并不受系统稳定极限的限制。 (4)直流输电是可以充分利用线路的走廊资源,线路的走廊宽度大致为交流输电线路的一半,并且送电容量相比前者更大。 (5)直流输电工程运行时,无论任一极发生故障时,另一极均能继续运行,并可以发挥过负荷能力,保持输送功率不变或最大限度的减少输送功率的损失。 (6)直流系统本身具有调制功能,可根据系统的要求做出快速响应,对机电振荡产生阻尼,阻尼能够产生低频振荡,从而提高了电力系统暂态稳定水平。 (7)能够通过换流站内配置的无功功率自动控制装置对系统交流电压进行自动调节。 (8)对于大电网而言,能够实现大电网之间通过直流输电互联供电的方式,同时2个电网之间也不会因为这种方式产生互相干扰和影响,并在必要时可以迅速进行功率交换。 2 高压交流输电 交流输电的基本原理 发电厂发出的电能以交流形式输送的方式送至受电端。交流电可以方便灵活地根据需要通过变压器升压和降压,使配送电能变得极为便利。 交流输电的特点 (1)高压交流输电在输电的过程中可以有中转点,可以组成强大的电力网络,根据电源点分布、负荷点的布点、传输电力和进行电力交换等实际需要而构成国家高压、特高压主体电网网架。因此高压交流电网的最大优势是:输送电能的能力比较强大、覆盖的范围很广、电网线损小、输电路径明显减少,能很灵活地适应电力市场运营的要求。 (2)采用高压交流输电能够实现如同网络般的功能,我们知道高压交流同步电网中线路两端的功角差是可以控制在20°及以下的。因此,交流同步电网的安全稳定性越高,同步

倍流整流电路

基于DSP的移相全桥倍流整流电路的研究 2009-8-25 来源:本站阅读数: 2 次文字选择: 摘要:本文分析了倍流整流的工作原理,并将DSP应用于此电路中,采用数字控制来取代传统的模拟控制方法,取得较好的效果。 叙词:倍流、DSP Abstract:The operation theory is analyzed is the paper. A new kind of DSP is applied in the circuit. Its control arithmetic is implemented completely by DSP instead of the traditional analog control strategy, which achieves favorable effect. Keyword:Current Doubler、DSP 一、引言 在中大功率场合下,由于开关管电压应力低、易于实现软开关等优点,移相全桥电路得到比较广泛的应用。其副边的整流电路形式主要有:全桥、全波、倍流等方式。全桥方式应用于输出电压较高的场合。对于输出电压不高的场合,全波电路由于其元件少,结构简单等优点得到广泛应用。但它也存在一些问题,诸如占空比丢失、整流二极管的反向恢复引起的电压尖峰以及两桥臂实现ZVS(零电压开关)的差异。倍流整流方式则可以克服上述缺点。本文详细分析了倍流电路的工作原理,并将数字控制应用于此电路中,从而克服了模拟控制的一些缺点,取得了较好的控制效果。 二、电路分析 电路及其主要工作波形图1所示:

图1 (a) 图1(b) 可以看到其一个周期分为12个工作模态,由于下半周期的六个工作模态和上半周期类似,所以,只分析上半周期的工作情况。为便于分析,首先做如下假设: (1)各开关管为理想开关管; (2)输出滤波电感Lf1=Lf2; (3)输出电容Coss1=Coss2=Clead、Coss3=Coss4=Clag; (4)电容Cb上的电压Vcb<

高压直流输电原理与运行-第一章

高压直流输电原理与运行 第一章绪论 1.1 高压直流输电的构成 1.高压直流输电由整流站,直流输电线路和逆变站三部分构成。 常规高压直流输电,由半控型晶闸管器件构成,采用电网换相; 轻型高压直流输电,由全控型电力电子构成,采用器件换相。 2.针对电网换相方式有:(1)长距离直流输电(单方向、双方向直流送电);(2)BTB直流 输电;(3)交、直流并列输电;(4)交、直流叠加输电;(5)三极直流输电。 3.直流系统的构成 针对电网换相方式有: (1)直流单极输电 1)大地或海水回流方式:可降低输电线路造价;但材料要求较高,对地下铺设设备、通信等有影响; 2)导体回流方式:可分段投资和建设; (2)直流双极输电 1)中性点两端接地方式:优点,当一极故障退出,另一极仍可以大地或海水为回流方式,输送50%的电力;缺点,正常运行时,变压器参数、触发控制的角度等不完全对称,会在中性线有一定的电流流通,对中性点接地变压器,地下铺设设备和通信等有影响。2)中性点单端接地方式:优点,大大减小单极故障时的接地电流的电磁干扰;缺点,单极故障时直流系统必须停运,降低了可靠性和可利用率。

3)中性线方式:中性线设计容量小,正常运行时,流过中性线的不平衡电流小,降低电磁干扰。 3.直流多回线输电 1)线路并联多回输电方式:可提高输电容量、输电的可靠性和了可利用率。 2)换流器并联方式的多回线输电:实现相互备用,提高直流输电的可靠性和可利用率。4.多段直流输电 1)并联直流输电方式:要实现功率反转必须通过断路器的投切来改变换流站与直流线路的连接方式。 2)串联多端直流输电方式:各换流器与交流系统的功率通过对电压的调整进行。 1.2 高压直流输电的特点及应用场合 1.直流输电的特点 1)经济性:流输电架空线路只需正负两极导线、杆塔结构简单、线路造价低、损耗小;直流电缆线路输送容量大、造价低、损耗小、不易老化、寿命长,且输送距离不受限制; ?通常规定,当直流输电线路和换流站的造价与交流输电线路和交流变电所的造价相等时的输电距离为等价距离。 2)互联性:直流输电不存在交流输电的稳定问题,有利于远距离大容量送电;采用直流输电实现电力系统之间的非同步联网; 3)控制性:直流输电输送的有功功率和换流器消耗的无功功率均可由控制系统进行控制,

整流器工作原理

整流器工作原理 桥式整流器原理电路 桥式整流电路(如图5-5所示)是使用最多的一种整流电路。这种电路,只要增加两只二极管口连接成"桥"式结构,便具有全波整流电路的优点,而同时在一定 程度上克服了它的缺点。 图5-5(a)为桥式整流电路图(b)为其简化画法 式整流电路的工作原理如下:e2为正半周时,对D1、D3和方向电压,Dl,D3导通;对D2、D4加反向电压,D2、D4截止。电路中构成e2、Dl、Rfz、D3通电回路,在Rfz,上形成上正下负的半波整洗电压,e2为负半周时,对D2、D4加正向电压,D2、D4导通;对D1、D3加反向电压,D1、D3截止。电路中构成e2、D2Rfz、D4通电回路,同样在Rfz上形成上正下负的另外半波的整流电压。以上两种工作状态分别如图5-6(a)和(b)所示。

图5-6 桥式整流电路的工作原理示意图 如此重复下去,结果在Rfz,上便得到全波整流电压。其波形图和全波整流波形图是一样的。从图5-6中还不难看出,桥式电路中每只二极管承受的反向电压等于变压器次级电压的最大值,比全波整流电路小一半。 桥式整流电路的整流效率和直流输出与全波整流电路相同,变压器的利用率最高。现在常用的全桥整流,不用单独的四只二极管而用一只全桥,其中包括四只二极管,但是要标清符号,有交流符号的两端接变压器输出,+、-两端接入整流电路。 需要特别指出的是,二极管作为整流元件,要根据不同的整流方式和负载大小加以选择。如选择不当,则或者不能安全工作,甚至烧了管子;或者大材小用,造成浪费。表5-1所列参数可供选择二极管时参考。 另外,在高电压或大电流的情况下,如果手头没有承受高电压或整定大电滤的整流元件,可以把二极管串联或并联起来使用。

l 全波整流和倍流整流

l 全波整流和倍流整流 传统上,通信电源变压器副边整流电路大多采用图1(a)所示带中心抽头的全波整流电路,该电路拓扑结构简单.器件总数少,二极管通态损耗小,但是变压器副边绕组的利用率较低。随着开关电源技术的迅速发展,通信电源要求更大的输出电流和更小的输出电压纹波。对低压大电流输出的变压器而言,中心抽头不仅给变压器的没计和制造带来很大困难,而且外部引线的安装和焊接也很难处理。 常用的倍流整流电路拓扑如图l(b)所示,与传统的变压器副边带中心抽头的全波整流电路相比,倍流整流电路有以下优点:减小了变压器副边绕组的电流有效值;变压器利用率较高,无需中心抽头,结构简单;输出电感纹波电流抵消可以减小输 2 工作原理 倍流整流电路可以被看成是由传统的全桥整流电路演变而来。如图2所示,将图2(a)中全桥整流电路中的两个下方二极管用两个电感取代,即可获得图2(b),经过整理后即可得到如图2(c)所示的倍流整流电路。

实际上倍流整流电路也可以由全波整流电路通过拓扑变换得来。在图3(a)中,输出电感与输出电容和负载电阻串联,而串联连接的兀件可以互换位置,因此将输出电感换到输出负母线,可得图3(b);将变压器的副边绕组看成电压源,而把输出电感看成电流源,可得图3(c);由虚线框内三端口网络的Y/△变换,可得图3(d);再将电流源恢复成输出电感,将电压源恢复成变压器的副边绕组,可得图3(e)所示的倍流整流电路。

倍流整流电路的原理图如图4所示,对中、大功率的通信电源而言,移相全桥电路是较为常见的电路拓扑形式,在原边电路处于续流状态时,变压器的原边绕组和副边绕组都被短路。因此倍流整流电路在稳态运行时,每个开关周期有4种工作模式。为便于分析作如F假设:高频变压器原副边匝比为n=N1/N2,忽略高频变压器原副边漏感,所有器件均为理想器件。可得关键波形如图5所示。 与全波整流电路相比,倍流整流器的高频变压器的副边绕组仅需一个单一绕组,不用中心抽头;与全桥整流电路相比,倍流整流电路使用的二极管数量少一半。因此,倍流整流电路结合了全波整流电路和全桥整流电路两者的优点。当然,倍流整流电路要多使用一个输出滤波电感,结构略显复杂。但此电感的工作频率及输送电流均为全波整流电路所用电感的一半,

高压直流输电课后习题答案

《高压直流输电技术》思考题及答案 一.高压直流输电发展三个阶段的特点? 答:1 1954年以前——试验阶段; 参数低;采用低参数汞弧阀;发展速度慢。 2 1954年~1972年——发展阶段; 技术提高很大;直流输电具有多方面的目的(如水下传输;系统互联;远距离、大容量传输)。 3 1972年~现在——大力发展阶段; 采用可控硅阀;几乎全是超高压;单回线路的输电能力比前一阶段有了很大的增加;发展速度快。 二.高压直流输电的基本原理是什么? 答:直流输电线路的基本原理图见图1.3所示。从交流系统I向系统X输电能时, 换流站CS1把送端系统送来的三相交流电流换成直流电流,通过直流输电线路把直流电流(功率)输送到换流站CS2,再由CS2把直流电流变换成三相交流电流 三.高压直流输电如何分类? 答:分两大类: 1 单极线路方式; A.单极线路方式; 采用一根导线或电缆线,以大地或海水作为返回线路组成的直流输电系统。 B.单极两线制线路方式; 将返回线路用一根导线代替的单极线路方式。 2 双极线路方式; A. 双极两线中性点两端接地方式; B. 双极两线中性点单端接地方式; C. 双极中性点线方式; D. “背靠背”(back- to- back)换流方式。 四.高压直流输电的优缺点有哪些? 答:优点:1 输送相同功率时,线路造价低; 2 线路有功损耗小; 3 适宜海下输电; 4 没有系统的稳定问题; 5 能限制系统的短路电流; 6 调节速度快,运行可靠 缺点:1 换流站的设备较昂贵; 2 换流装置要消耗大量的无功; 3 换流装置是一个谐波源,在运行中要产生谐波,影响系统运行,所以需在直 流系统的交流侧和直流侧分别装设交流滤波器和直流滤波器,从而使直流输 电的投资增大;

各类整流电路图及工作原理

桥式整流电路图及工作原理介绍 桥式整流电路如图1所示,图(a)、(b)、(c)是桥式整流电路的三种不同画法。由电源变压器、四只整流二极管D1~4 和负载电阻RL组成。四只整流二极管接成电桥形式,故称桥式整流。 图1 桥式整流电路图 桥式整流电路的工作原理 如图2所示。

在u2的正半周,D1、D3导通,D2、D4截止,电流由TR次级上端经D1→ RL →D3回到TR 次级下端,在负载RL上得到一半波整流电压。 在u2的负半周,D1、D3截止,D2、D4导通,电流由Tr次级的下端经D2→ RL →D4 回到Tr次级上端,在负载RL 上得到另一半波整流电压。 这样就在负载RL上得到一个与全波整流相同的电压波形,其电流的计算与全波整流相同,即 UL = 0.9U2 IL = 0.9U2/RL 流过每个二极管的平均电流为 ID = IL/2 = 0.45 U2/RL 每个二极管所承受的最高反向电压为 什么叫硅桥,什么叫桥堆 目前,小功率桥式整流电路的四只整流二极管,被接成桥路后封装成一个整流器件,称"硅桥"或"桥堆",使用方便,整流电路也常简化为图Z图1(c)的形式。桥式整流电路克服了全波整流电路要求变压器次级有中心抽头和二极管承受反压大的缺点,但多用了两只二极管。在半导体器件发展快,成本较低的今天,此缺点并不突出,因而桥式整流电路在实际中应用较为广泛。 二极管整流电路原理与分析 半波整流 二极管半波整流电路实际上利用了二极管的单向导电特性。

当输入电压处于交流电压的正半周时,二极管导通,输出电压v o=v i-v d。当输入电压处于交 流电压的负半周时,二极管截止,输出电压v o=0。半波整流电路输入和输出电压的波形如图所 示。 二极管半波整流电路 对于使用直流电源的电动机等功率型的电气设备,半波整流输出的脉动电压就足够了。但对于电子电路,这种电压则不能直接作为半导体器件的电源,还必须经过平滑(滤波)处理。平滑处理电路实际上就是在半波整流的输出端接一个电容,在交流电压正半周时,交流电源在通过二极管向负载提供电源的同时对电容充电,在交流电压负半周时,电容通过负载电阻放电。 电容输出的二极管半波整流电路仿真演示 通过上述分析可以得到半波整流电路的基本特点如下: (1)半波整流输出的是一个直流脉动电压。 (2)半波整流电路的交流利用率为50%。 (3)电容输出半波整流电路中,二极管承担最大反向电压为2倍交流峰值电压(电容输出 时电压叠加)。 (3)实际电路中,半波整流电路二极管和电容的选择必须满足负载对电流的要求。

变压器基本工作原理

第1章 变压器的基本知识和结构 1.1变压器的基本原理和分类 一、变压器的基本工作原理 变压器是利用电磁感应定律把一种电压等级的交流电能转换成同频率的另一种电压等级的交流电能。 变压器工作原理图 当原边绕组接到交流电源时,绕组中便有交流电流流过,并在铁心中产生与外加电压频率相同的磁通,这个交变磁通同时交链着原边绕组和副边绕组。原、副绕组的感应分别表示为 则 k N N e e u u ==≈2 12121 变比k :表示原、副绕组的匝数比,也等于原边一相绕组的感应电势与副边一相绕组的感应电势之比。 改变变压器的变比,就能改变输出电压。但应注意,变压器不能改变电能的频率。 二、电力变压器的分类 变压器的种类很多,可按其用途、相数、结构、调压方式、冷却方式等不同来进行分类。 按用途分类:升压变压器、降压变压器; 按相数分类:单相变压器和三相变压器; 按线圈数分类:双绕组变压器、三绕组变压器和自耦变压器; 按铁心结构分类:心式变压器和壳式变压器; 按调压方式分类:无载(无励磁)调压变压器、有载调压变压器; 按冷却介质和冷却方式分类:油浸式变压器和干式变压器等; 按容量大小分类:小型变压器、中型变压器、大型变压器和特大型变压器。 三相油浸式电力变压器的外形,见图1,铁心和绕组是变压器的主要部件,称为器身见图2,器身放在油箱内部。

1.2电力变压器的结构 一、铁心 1.铁心的材料 采用高磁导率的铁磁材料—0.35~0.5mm厚的硅钢片叠成。 为了提高磁路的导磁性能,减小铁心中的磁滞、涡流损耗。变压器用的硅钢片其含硅量比较高。硅钢片的两面均涂以绝缘漆,这样可使叠装在一起的硅钢片相互之间绝缘。 2.铁心形式 铁心是变压器的主磁路,电力变压器的铁心主要采用心式结构 。 二、绕组 1.绕组的材料 铜或铝导线包绕绝缘纸以后绕制而成。 2.形式

桥式整流电路的工作原理

桥式整流电路的工作原理 电子系统的正常运行离不开稳定的电源,除了在某些特定场合下采用太阳能电池或化学电池作电源外,多数电路的直流电是由电网的交流电转换来的。这种直流电源的组成以及各处的电压波形如图所示。直流电源的组成 图中各组成部分的功能如下838电子: ⑴电源变压器:将电网交流电压(220V或380V)变换成符合需要的交流电压,此交流电压经过整流后可获得电子设备所需的直流电压。因为大多数电子电路使用的电压都不高,这个变压器是降压变压器新艺图库。 ⑵整流电路:利用具有单向导电性能的整流元件,把方向和大小都变化的50Hz交流电变换为方向不变但大小仍有脉动的直流电。 ⑶滤波电路:利用储能元件电容器C两端的电压(或通过电感器L的电流)不能突变的性质,把电容C(或电感L)与整流电路的负载RL并联(或串联),就可以将整流电路输出中的交流成分大部分加以滤除,从而得到比较平滑的直流电。在小功率整流电路中,经常使用的是电容滤波。 ⑷稳压电路:当电网电压或负载电流发生变化时,滤波电路输出的直流电压的幅值也将随之变化,因此,稳压电路的作用是使整流滤波后的直流电压基本上不随交流电网电压和负载的变化而变化。 利用二极管的单向导电性组成整流电路,可将交流电压变为单向脉动电压。本章为便于分析整流电路,把整流二极管当作理想元件,即认为它的正向导通电阻为零,而反向电阻为无穷大。但在实际应用中,应考虑到二极管有内阻,整流后所得波形,其输出幅度会减少0.6~1V,当整流电路输入电压大时,这部分压降可以忽略。但输入电压小时,例如输入为3V,则输出只有2V 多,需要考虑二极管正向压降的影响。 在小功率直流电源中,常见的几种整流电路有单相半波、全波、桥式和三相整流电路等。 整流(和滤波)电路中既有交流量,又有直流量。对这些量经常采用不同的表述方法:输入(交流)——用有效值或最大值;输出(直流)——用平均值;二极管正向电流——用平均值;二极管反向电压——用最大值。838电子 单相全波桥式整流器电路的工作原理 由图可看出,电路中采用四个二极管,互相接成桥式结构。利用二极管的电流导向作用,在交流输入电压U2的正半周内,二极管D1、D3导通,D2、D4截止,在负载R L上得到上正下负的输出电压;在负半周内,正好相反,D1、D3截止,D2、D4导通,流过负载R L的电流方向与正半周一致。因此,利用变压器的一个副边绕组和四个二极管,使得在交流电源的正、负半周内,整流电路的负载上都有方向不变的脉动直流电压和电流。桥式整流的名称只是说明电路连接方法是桥式的接法,桥式整流二极管:大家常用的一般是由4只单个二极管封装在一起的元件,取名桥式整流二极管,整流桥或全桥二极管。

桥式整流电路及工作原理详解

桥式整流电路图及工作原理介绍之我见 桥式整流电路图及工作原理介绍之我见
桥式整流电路如图 1 所示,图(a)(b)(c)是桥式整流电路的三种不同 、 、 画法。由电源变压器、四只整流二极管 D1~4 和负载电阻 RL 组成。四只整流二 极管接成电桥形式,故称桥式整流。
图 1 桥式整流电路图 桥式整流电路的工作原理 如图 2 所示。

在 u2 的正半周,D1、D3 导通,D2、D4 截止,电流由 TR 次级上端经 D1→ RL →D3 回到 TR 次级下端,在负载 RL 上得到一半波整流电压 在 u2 的负半周,D1、D3 截止,D2、D4 导通,电流由 Tr 次级的下端经 D2→ RL →D4 回到 Tr 次级上端,在负载 RL 上得到另一半波整流电压。 这样就在负载 RL 上得到一个与全波整流相同的电压波形,其电流的计算与全波 整流相同,即 UL = 0.9U2 IL = 0.9U2/RL 流过每个二极管的平均电流为 ID = IL/2 = 0.45 U2/RL 每个二极管所承受的最高反向电压为 什么叫硅桥,什么叫桥堆 目前,小功率桥式整流电路的四只整流二极管,被接成桥路后封装成一个整流器 件,称"硅桥"或"桥堆",使用方便,整流电路也常简化为图 Z 图 1(c)的形式。 桥式整流电路克服了全波整流电路要求变压器次级有中心抽头和二极管承受反 压大的缺点,但多用了两只二极管。在半导体器件发展快,成本较低的今天,此 缺点并不突出,因而桥式整流电路在实际中应用较为广泛。

二极管整流电路原理与分析
半波整流 二极管半波整流电路实际上利用了二极管的单向导电特性。 当输入电压处于交流电压的正半周时,二极管导通,输出电压 vo=vi-vd。当输入电压处于交 流电压的负半周时,二极管截止,输出电压 vo=0。半波整流电路输入和输出电压的波形如图所 示。
二极管半波整流电路 对于使用直流电源的电动机等功率型的电气设备, 半波整流输出的脉动电压就足够了。 但对于电 子电路,这种电压则不能直接作为半导体器件的电源,还必须经过平滑(滤波)处理。平滑处理 电路实际上就是在半波整流的输出端接一个电容, 在交流电压正半周时, 交流电源在通过二极管 向负载提供电源的同时对电容充电,在交流电压负半周时,电容通过负载电阻放电。

整流器工作原理

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 整流器工作原理 桥式整流器原理电路 桥式整流电路(如图5-5所示)是使用最多的一种整流电路。这种电路,只要增加两只二极管口连接成"桥"式结构,便具有全波整流电路的优点,而同时在一定程度上克服了它的缺点。 图5-5(a)为桥式整流电路图(b)为其简化画法 式整流电路的工作原理如下:e2为正半周时,对D1、D3和方向电压,Dl,D3导通;对D2、D4加反向电压,D2、D4截止。电路中构成e2、Dl、Rfz、D3通电回路,在Rfz,上形成上正下负的半波整洗电压,e2为负半周时,对D2、D4加正向电压,D2、D4导通;对D1、D3加反向电压,D1、D3截止。电路中构成e2、D2Rfz、D4通电回路,同样在Rfz上形成上正下负的另外

半波的整流电压。以上两种工作状态分别如图5-6(a)和(b)所示。 图5-6 桥式整流电路的工作原理示意图 如此重复下去,结果在Rfz,上便得到全波整流电压。其波形图和全波整流波形图是一样的。从图5-6中还不难看出,桥式电路中每只二极管承受的反向电压等于变压器次级电压的最大值,比全波整流电路小一半。 桥式整流电路的整流效率和直流输出与全波整流电路相同,变压器的利用率最高。现在常用的全桥整流,不用单独的四只二极管而用一只全桥,其中包括四只二极管,但是要标清符号,有交流符号的两端接变压器输出,+、-两端接入整流电路。 需要特别指出的是,二极管作为整流元件,要根据不同的整流方式和负载大小加以选择。如选择不当,则或者不能安全工作,甚至烧了管子;或者大材小用,造成浪费。表5-1所列参数可供选择二极管时参考。 另外,在高电压或大电流的情况下,如果手头没有承受高电压或整定大电滤的整流元件,可以把二极管串联或并联起来使用。

相关主题
文本预览
相关文档 最新文档