当前位置:文档之家› 单纯形法在线性规划中的实际应用

单纯形法在线性规划中的实际应用

单纯形法在线性规划中的实际应用
单纯形法在线性规划中的实际应用

单纯形法在线性规划中的实际应用

摘要:线性规划是以数学模型为基础,研究如何在一定条件下实现目标最优化,而单纯形法是求解线性规划问题的主要方法,有效提升了数学规划的应用。本文介绍了线性规划的基本理论及单纯形法的基本理论和具体算法,然后将两者结合进行实际的应用。最终以的公交排班表和蛋糕店的加工计划为例通过模型的建立与求解制定了更加合理的公交排班时刻表和各时段的司机分配数量;解决在激烈竞争市场中如何利用有限的资源、人力、时间进行统筹安排,提高效率,降低成本使总的经济效益达到最佳。

关键词 : 线性规划;单纯形法;最优性;Lingo

Abstract:Linear programming is based on the mathematical model to study how to achieve th e goal optimization under certain conditions, and the simplex method is the main method to solve t he linear programming problem, which effectively improves the application of mathematical progra mming. This paper introduces the basic theory of linear programming and the basic theory and spec ific algorithm of simplex method, and then combines the two into practical application. Finally, the bus schedule and the processing plan of the cake shop in Chongqing second Teachers ' College (Na nshan Campus) are used as examples to establish a more reasonable bus scheduling timetable and t he number of drivers assigned to each period. To solve the problem of how to make use of the limit ed resources, manpower and time in the competitive market to improve the efficiency Reduce costs to achieve the best overall economic benefits.

Key words: Linear programming; Simplex method; Optimality; Lingo

目录

摘要 ........................................................................................................................... I Abstract .............................................................................................................................. I 目录 ......................................................................................................................... II 1 绪论 . (2)

1.1文献综述 (2)

1.2研究的背景 (2)

1.3研究的意义 (3)

2 线性规划与单纯形法 (3)

2.1线性规划 (3)

2.1.1 线性规划的模型问题 (3)

2.1.2 线性规划解的定义 (4)

2.2单纯形法 (4)

2.2.1 单纯形法基本原理[4] (4)

2.2.2 单纯形法计算步骤[4] (4)

2.2.3 单纯形法的进一步讨论 (6)

3 应用案例 (8)

3.1校车排班计划 (8)

3.2蛋糕店加工计划 (14)

1 绪论

1.1 文献综述

美国数学家G.B.Dantzing 1947年提出求解线性规划的单纯形法,为这门学科奠定了基础。通常,求解线性规划模型时常用基本单纯形方法、大M法、两阶段法等,所以在文献[4][5]具体介绍了求解线性规划的单纯形法的具体计算方法与步骤。由于越来越多的领域借助于线性规划来做出最优决策,完善线性规划理论及其有效解法已成为重要研究课题。单纯形法作为求解线性规划问题较实用而有效的算法已在实际应用中得到广泛应用。本文在文献[4]到文献[8]作了关于单纯形算法的讨论,优化设计与实现,分析了单纯形算法的主要特点。

最后本文列举了一些单纯形法在实际问题应用例子来说明单纯形法是处理线性规划模型的一种重要方法。当然利用单纯形法原料的软件的求解大大缩短线性规划问题解决的时间,为更好地解决实际问题带来无穷益处。

1.2 研究的背景

近年来,随着社会的飞速发展同时也带来了生产规模的扩大和经济事务的日益繁杂,线性规划也得到了不断的发展和完善,应用领域不断拓宽,从技术问题的最优化设计,到工业、商业、农业、交通运输业、经济计划及管理等领域都发生着作用,已成为现代科学管理的重要基础理论。例如,在生产管理和经济活动中如何合理调用有限的人力、物力、财力等资源,以便得到最佳的经济效益;材料利用问题,即如何下料使用材最少;配料问题,即在原料供应量的限制下如何收获最大利润;劳动力分配问题,即如何用最少的劳动力来满足工作的需要等。对于这些问题,都可以建立相应的线性规划模型。

目前图解法和单纯形法是求解线性规划问题的两种常见方法。但随着实际的发展需要我们遇到的线性规划的规模越来越大数据也越来越繁杂。所以在求解线性规划问题过程中图解法的实际操作性便大大降低,因此单纯形法一直是求解多

(完整版)简单的线性规划问题(附答案)

简单的线性规划问题 [ 学习目标 ] 1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念 .2. 了解线性规划问题的图解法,并能应用它解决一些简单的实际问题. 知识点一线性规划中的基本概念 知识点二线性规划问题 1.目标函数的最值 线性目标函数 z=ax+by (b≠0)对应的斜截式直线方程是 y=-a x+z,在 y 轴上的 截距是z, b b b 当 z 变化时,方程表示一组互相平行的直线. 当 b>0,截距最大时, z 取得最大值,截距最小时, z 取得最小值; 当 b<0,截距最大时, z 取得最小值,截距最小时, z 取得最大值. 2.解决简单线性规划问题的一般步骤在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即, (1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域.(2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点 (或边界 )便是最优解. (3)求:解方程组求最优解,进而求出目标函数的最大值或最小值. (4)答:写出答案.

知识点三简单线性规划问题的实际应用 1.线性规划的实际问题的类型 (1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大; (2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小.常见问题有: ①物资调动问题例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小? ②产品安排问题例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A、B、C 三种 材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,才能使每月获得的总利润最大? ③下料问题例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小?2.解答线性规划实际应用题的步骤 (1)模型建立:正确理解题意,将一般文字语言转化为数学语言,进而建立数学模型,这需要在学习有关例题解答时,仔细体会范例给出的模型建立方法. (2)模型求解:画出可行域,并结合所建立的目标函数的特点,选定可行域中的特殊点作为最优解. (3)模型应用:将求解出来的结论反馈到具体的实例中,设计出最佳的方案. 题型一求线性目标函数的最值 y≤2, 例 1 已知变量 x,y 满足约束条件 x+y≥1,则 z=3x+y 的最大值为 ( ) x-y≤1, A . 12 B .11 C .3 D .- 1 答案 B 解析首先画出可行域,建立在可行域的基础上,分析最值点,然后通过解方程组得最值点 的坐标,代入即可.如图中的阴影部分,即为约束条件对应的可行域,当直线y=-3x+z 经 y=2,x= 3,

单纯形法步骤例题详解

单纯形法演算 j c 2 1 B C X B b 1x 2x 3x 4x 5x 0 3x 15 0 5 1 0 0 无穷 0 4x 24 6 2 0 1 0 4 0 5x 5 1 1 0 0 1 5 j j z c -(检验数) 2 1 首先列出表格,先确定正检验数最大值所在列为主列,然后用b 除以主列上对应的同行数字。除出来所得值最小的那一行为主行,根据主行和主列可以确定主元(交点)。接着把主元化为1并把X4换成X1. ??? ??? ?≥=++=++=+++++=0,,524261550002max 5152 14213 25 4321x x x x x x x x x x x x x x x z ??????? ≥≤+≤+≤+=0 ,5 24261552max 21212122 1x x x x x x x x x z

j c 2 1 B C X B b 1x 2x 3x 4x 5x 0 3x 15 0 5 1 0 0 2 1x 4 1 2/6 0 1/6 0 0 5x 5 1 1 0 0 1 j j z c - 2 1 这时进行初等行列变换,把主列换单位向量,主元为1。也就是X5所在行减去X1所在行。并且重新计算检验数。 j c 2 1 B C X B b 1x 2x 3x 4x 5x 0 3x 15 0 5 1 0 0 2 1x 4 1 2/6 0 1/6 0 0 5x 5-4 1-1=0 1-2/6 =4/6 0-1/6=-1/6 1 j j z c - 2-2*1-0*0-0*1=0 1-0*5-2*2/6-0*4/6=1/3 0-0*0-2*1/6-0*-1/6=-1/3 再次确定主元。为4/6。然后把X5换成X2。并且把主元化成1。

线性规划的实际应用

线性规划的实际应用 摘 要:线性规划是一门研究如何使用最少的人力、物力和财力去最优地完成科学研究、工业设计、经济管理中实际问题的专门学科.主要在以下两类问题中得到应用:一是在人力、物力、财务等资源一定的条件下,如何使用它们来完成最多的任务;二是给一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务. 关键词:研究性学习;线性规划,教学改革 随着当前基础教育的改革的深入,研究性学习成为当前基础教育的一个热点,引起了教育界和社会的广泛关注,也成为当前培养学生能力的一个崭新的课题。我们本着教学过程始于课内,终于课外的原则对线性规划的实际应用进行研究。主要是把实际问题抽象为数学模型,使其在约束条件下,找到最佳方案。也就是说求线性目标函数在线性约束条件下的最大值和最小值问题。 一. 线性规划问题 在实际社会活动中遇到这样的问题:一类是当一项任务确定后,如何统筹 安排,尽量做到最少的资源消耗去完成;另一类是在已有的一定数量的资源条件下,如何安排使用它们,才能使得完成的任务最多。 例如1-1:某工厂需要使用浓度为的硫酸10,而市场上只有浓度为,0080kg 00600 070和的硫酸出售,每千克价格分别为8元,10元,16元,问应购买各种浓度的硫酸各多0090少?才能满足生产需求,且所花费用最小? 设取浓度为,,的硫酸分别为千克,总费用为,则 006000700090321,,x x x Z s.t ?? ?=++=++8 9.07.06.010 321321x x x x x x ) 3,2,1,0(16108321=≥++=j x x x x Z j 例如1-2:某工厂生产甲,乙两种产品,已知生产甲产品需要种原料不超过3千克,但 A 每千克甲产品需要种原料为2千克;生产乙产品需要种原料不超过4.5千克,但每千克C B 乙产品需要种原料为3千克。每千克甲产品的利润为3元,每千克乙产品的利润为4元, C 工厂生产甲,乙两种产品的计划中要求所耗的种原料不超过15千克,甲,乙两种产品各应C 生产多少,能使的总利润最大? 设生产甲,乙两种产品分别为千克,利润总额为元,则 21,x x Z s.t ???????≥≤+≤≤0 ,15325.43212121x x x x x x 2143x x Z +=二. 线性规划问题的模型 1.概念 对于求取一组变量使之既满足线性约束条件,又使具有线 ),,3,2,1(n j x j ???=性目标函数取得最值的一类最优问题称为线性规划问题。

简单的线性规划 习题含答案

线性规划教案 1.若x、y满足约束条件 2 2 2 x y x y ≤ ? ? ≤ ? ?+≥ ? ,则z=x+2y的取值范围是() A、[2,6] B、[2,5] C、[3,6] D、(3,5] 解:如图,作出可行域,作直线l:x+2y=0,将l向右上方平移,过点A(2,0)时,有最小值2,过点B(2,2)时,有最大值6,故选 A 2.不等式组 260 30 2 x y x y y +-≥ ? ? +-≤ ? ?≤ ? 表示的平面区域的面积为 () A、4 B、1 C、5 D、无穷大解:如图,作出可行域,△ABC的面 积即为所求,由梯形OMBC的面积减去梯形OMAC的面积即可,选 B 3.满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有() A、9个 B、10个 C、13个 D、14个 解:|x|+|y|≤2等价于 2(0,0) 2(0,0) 2(0,0) 2(0,0) x y x y x y x y x y x y x y x y +≤≥≥ ? ?-≤≥ ? ? -+≤≥ ? ?--≤ ? 作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选 D 四、求线性目标函数中参数的取值范围 4.已知x、y满足以下约束条件 5 50 3 x y x y x +≥ ? ? -+≤ ? ?≤ ? ,使 z=x+ay(a>0)取得最小值的最优解有无数个,则a的值 为() A、-3 B、3 C、-1 D、1 解:如图,作出可行域,作直线l:x+ay=0,要使目标函 数z=x+ay(a>0)取得最小值的最优解有无数个,则将 l向右上方平移后与直线x+y=5重合,故a=1,选 D 5.某木器厂生产圆桌和衣柜两种产品,现有两种木料,第一种有72m3,第二种有56m3,假设生产每种产品都需要用两种木料,生产一只圆桌和一个衣柜分别所需木料如下表所示.每生产一只圆桌可获利6元,生产

线性规划的实际应用举例

线性规划的实际应用举例 即两为了便于同学们掌握线性规划的一般理论和方法,本文拟就简单的线性规划( 的实际应用举例加以说明。个变量的线性规划) 1 物资调运中的线性规划问题 万个40万个和30万个,由于抗洪抢险的需要,现需调运1 A,B两仓库各有编织袋50例/元万个、180/万个到乙地。已知从A仓库调运到甲、乙两地的运费分别为120元到甲地,20元/万个。问如何调运,能150/万个、万个;从B仓库调运到甲、乙两地的运费分别为100元? ?总运费的最小值是多少使总运费最小仓库调Bz元。那么需从x万个到甲地,y万个到乙地,总运费记为解:设从A仓库调运40-x万个到甲 地,调运运万个到乙地。20-y 从而有 。z=120x+180y+100(40-x)+150·(20-y)=20x+30y+7000 1)(图,即可行域。作出以上不等式组所表示的平面区域 z'=z-7000=20x+30y. 令 :20x+30y=0,作直线l 且与原点距离最小,0),,l的位置时,直线经过可行域上的点M(30l把直线向右上方平移至l y=0时,即x=30,亦取得最小值,取得最小值,从而z=z'+7000=20x+30y+7000z'=20x+30y 元)。30+30×z=20× 0+7000=7600(min 万个到乙地,可使总万个到甲地,20B30万个到甲地,从仓库调运10A答:从仓库调运元。运费最小,且总运费的最小值为7600 2 产品安排中的线性规划问题 吨,麦麸0.4吨需耗玉米某饲料厂生产甲、乙两种品牌的饲料,已知生产甲种饲料2例1O.4

吨,其余添加剂0.2. 吨甲种1吨,其余添加剂0.2吨。每吨;生产乙种饲料1吨需耗玉米0.5吨,麦麸0.3元。可供饲料厂生产的玉米供应500元,每1吨乙种饲料的利润是饲料的利润是400吨。问甲、乙300吨,麦麸供应量不超过500吨,添加剂供应量不超过量不超过600 ? ?最大利润是多少两种饲料应各生产多少吨(取整数),能使利润总额达到最大 1。分析:将已知数据列成下表 2表1例表 元,那么吨、y吨,利润总额为z解:设生产甲、乙两种饲料分别为x z=400x+500y。 即可行域。(图2)作出以上不等式组所表示的平面区域 平行,所以线段l4x+5y=6000与。并把400x+500y=0l向右上方平移,由于l:作直线l:1。,N(0,1200)M(250MN上所有坐标都是整数的点(整点)都是最优解。易求得,1000) ,y=1000时,1000)取整点M(250,,即x=250 。元1000=600000()=60(万元)=400×z250+500×max 吨,能使利润总额达到最大。最大利润为1000可安排生产甲种饲料250吨,乙种饲料答:万元。60 使我们认识到最优解的个数还例2课本题中出现的线性规划问题大都有唯一的最优解。注:有其他可能,这里不再深入探究。

简单的线性规划练习-附答案详解

简单的线性规划练习 附答案详解 一、选择题 1.在平面直角坐标系中,若点(-2,t )在直线x -2y +4=0的上方,则t 的取值范围是( ) A .(-∞,1) B .(1,+∞) C .(-1,+∞) D .(0,1) 2.若2m +2n <4,则点(m ,n )必在( ) A .直线x +y -2=0的左下方 B .直线x +y -2=0的右上方 C .直线x +2y -2=0的右上方 D .直线x +2y -2=0的左下方 3.不等式组???? ? x ≥0x +3y ≥4 3x +y ≤4 所表示的平面区域的面积等于( ) A.32 B.23 C.43 D.3 4 4.不等式组???? ? x +y ≥22x -y ≤4 x -y ≥0所围成的平面区域的面积为( )A .3 2 B .6 2 C .6 D .3 5.设变量x ,y 满足约束条件???? ? y ≤x x +y ≥2 y ≥3x -6,则目标函数z =2x +y 的最小值为( )A .2 B .3 C .5 D .7 6.已知A (2,4),B (-1,2),C (1,0),点P (x ,y )在△ABC 内部及边界运动,则z =x -y 的最大值及最小值分别是( ) A .-1,-3 B .1,-3 C .3,-1 D .3,1 7.在直角坐标系xOy 中,已知△AOB 的三边所在直线的方程分别为x =0,y =0,2x +3y =30,则△AOB 内部和边上整点(即坐标均为整数的点)的总数为( )A .95 B .91

C .88 D .75 8.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨,B 原料2吨;生产每吨乙产品要用A 原料1吨,B 原料3吨,销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A 原料不超过13吨,B 原料不超过18吨.那么该企业可获得最大利润是( )A .12万元 B .20万元 C .25万元 D .27万元 9.已知实数x ,y 满足???? ? x -y +6≥0x +y ≥0 x ≤3,若z =ax +y 的最大值为3a +9,最小值为3a -3,则实数a 的取值范围为( ) A .a ≥1 B .a ≤-1 C .-1≤a ≤1 D .a ≥1或a ≤-1 10.已知变量x ,y 满足约束条件???? ? x +4y -13≥02y -x +1≥0 x +y -4≤0,且有无穷多个点(x ,y )使目标函数 z =x +my 取得最小值,则m =( ) A .-2 B .-1 C .1 D .4 11.当点M (x ,y )在如图所示的三角形ABC 区域内(含边界)运动时,目标函数z =kx +y 取得最大值的一个最优解为(1,2),则实数k 的取值范围是( ) A .(-∞,-1]∪[1,+∞) B .[-1,1] C .(-∞,-1)∪(1,+∞) D .(-1,1) 12.已知x 、y 满足不等式组???? ? y ≥x x +y ≤2 x ≥a ,且z =2x +y 的最大值是最小值的3倍,则a =( )

线性规划模型在生活中的实际应用

线性规划模型在生活中的实际应用 一、线性规划的基本概念 线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域.决策变量、约束条件、目标函数是线性规划的三要素. 二、线性规划模型在实际问题中的应用 (1)线性规划在企业管理中的应用范围 线性规划在企业管理中的应用广泛,主要有以下八种形式: 1.产品生产计划:合理利用人力、物力、财力等,是获利最大. 2.劳动力安排:用最少的劳动力来满足工作的需要. 3.运输问题:如何制定运输方案,使总运费最少. 4.合理利用线材问题:如何下料,使用料最少. 5.配料问题:在原料供应的限制下如何获得最大利润. 6.投资问题:从投资项目中选取方案,是投资回报最大. 7.库存问题:在市场需求和生产实际之间,如何控制库存量从而获得更高利益. 8.最有经济计划问题:在投资和生产计划中如何是风险最小 . (2)如何实现线性规划在企业管理中的应用 在线性规划应用前要建立经济与金融体系的评价标准及企业的计量体系,摸清企业的资

源.首先通过建网、建库、查询、数据采集、文件转换等,把整个系统的各有关部分的特征进行量化,建立数学模型,即把组成系统的有关因素与系统目标的关系,用数学关系和逻辑关系描述出来,然后白较好的数学模型编制成计算机语言,输入数据,进行计算,不同参数获取的不同结果与实际进行分析对比,进行定量,定性分析,最终作出决策.

16991-运筹学-习题答案选01_线性规划和单纯形法

运筹学教程(胡运权主编,清华第4版)部分习题答案(第一章)1.1 (1)无穷多解:α (6/5, 1/5) + (1- α) (3/2, 0),α∈ [0,1]。 (2)无可行解; (3)x* = (10,6),z* = 16; (4)最优解无界。 1.2 (1)max z’ = 3x1 - 4x2 + 2x3 - 5x’4 + 5x’’4 s.t. –4x1 + x2 – 2x3 + x’4– x’’4 = 2 x1 + x2 – x3 + 2x’4– 2x’’4 + x5 = 14 –2x1 + 3x2 + x3 – x’4+ x’’4– x6 = 2 x1, x2, x3, x’4, x’’4, x5, x6 ≥ 0 (2)max z’ = 2x’1 + 2x2 – 3x’3 + 3x’’3 s.t. x’1 + x2 + x’3 – x’’3 = 4 2x’1 + x2 – x’3 + x’’3 + x4 = 6 x’1, x2, x’3, x’’3, x4, ≥ 0 1.3 (1)基解:(0, 16/3, -7/6, 0, 0, 0); (0, 10, 0, -7, 0, 0); (0, 3, 0, 0, 7/2, 0),是基可行解,z = 3,是最优解; (7/4, -4, 0, 0, 0, 21/4); (0, 16/3, -7/6, 0, 0, 0); (0, 0, -5/2, 8, 0, 0); (1, 0, -1/2, 0, 0, 3); (0, 0, 0, 3, 5, 0),是基可行解,z = 0; (5/4, 0, 0, -2, 0, 15/4); (3/4, 0, 0, 0, 2, 9/4),是基可行解,z = 9/4; (0, 0, 3/2, 0, 8, 0),是基可行解,z = 3,是最优解。 (2)基解:(-4, 11/2, 0, 0); (2/5, 0, 11/5, 0),是基可行解,z = 43/5; (-1/3, 0, 0, 11/6); (0, 1/2, 2, 0),是基可行解,z = 5,是最优解;

简单的线性规划问题附答案

简单的线性规划问题 [学习目标] 1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念.2.了解线性规划问题的图解法,并能应用它解决一些简单的实际问题. 知识点一 线性规划中的基本概念 1.目标函数的最值 线性目标函数z =ax +by (b ≠0)对应的斜截式直线方程是y =-a b x +z b ,在y 轴上的截距是z b , 当z 变化时,方程表示一组互相平行的直线. 当b >0,截距最大时,z 取得最大值,截距最小时,z 取得最小值; 当b <0,截距最大时,z 取得最小值,截距最小时,z 取得最大值. 2.解决简单线性规划问题的一般步骤 在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即, (1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,

可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域. (2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点(或边界)便是最优解. (3)求:解方程组求最优解,进而求出目标函数的最大值或最小值. (4)答:写出答案. 知识点三简单线性规划问题的实际应用 1.线性规划的实际问题的类型 (1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大; (2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小. 常见问题有: ①物资调动问题 例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小? ②产品安排问题 例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A、B、C三种材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,才能使每月获得的总利润最大? ③下料问题 例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小? 2.解答线性规划实际应用题的步骤 (1)模型建立:正确理解题意,将一般文字语言转化为数学语言,进而建立数学模型,这需要在学习有关例题解答时,仔细体会范例给出的模型建立方法. (2)模型求解:画出可行域,并结合所建立的目标函数的特点,选定可行域中的特殊点作为最优解.

单纯形法典型例题

科学出版社《运筹学》教材 第一章引言 第二章线性规划,姜林 第三章对偶规划,姜林 第四章运输问题,姜林 第五章整数规划,姜林 第六章非线性规划,姜林 第七章动态规划,姜林 第八章多目标规划,姜林 第九章图与网络分析,熊贵武 第十章排队论,熊贵武 第十一章库存论,王勇 第十二章完全信息博弈,王勇 第十三章不完全信息博弈,王勇 第十四章决策论与影响图 第十五章运筹学模型的计算机求解 成年人每天需要从食物中摄取的营养以及四种食品所含营养和价格见下表。问 如何选择食品才能在满足营养的前提下使购买食品的费用最小? 食品名称热量(kcal) 蛋白质(g) 钙(mg)价格(元)猪肉1000 50 400 14 鸡蛋800 60 200 6

大米900 20 300 3 白菜200 10 500 2 营养需求量 2000 55 800 解:设需猪肉、鸡蛋、大米和白菜各需 x1,x2,x3,x4斤。则热量的需求量为: 2000 20090080010004 3 2 1 x x x x 蛋白质 某工厂要做100套钢架,每套有长 3.5米、2.8米和2根2.4米的圆钢组成(如右图)已知原 料长12.3米,问应如何下料使需用的原材料最省。 解:假设从每根 12.3米的原材料上截取 3.5米、2.8米和2根2.4 米,则每根原材料需浪费 1.2米,做100套需浪费材料 120米,现 采用套裁的方法。 方案一二三四五六3.5 2.8 2.4 0 0 5 0 4 0 1 2 1 1 3 0 2 0 2 2 1 1 合计剩余 12 0.3 11.2 1.1 11.5 0.8 11.9 0.4 11.8 0.5 12.2 0.1 现在假设每种方案各下料x i (i=1、2、3、4、5、6),则可列出方程: minZ=0.3x 1+1.1x 2+0.8x 3+0.4x 4+0.5x 5+0.1x 6 约束条件: x 3+x 4+2x 5+2x 6=100 4x 2+2x 3+3x 4+x 6=100 5x 1+x 3+2x 5+x 6=200 ,,,800 50030020040055 102060503000 2009008001000. .23614min 4 3214 3 2 1 4 32 14 32 14321x x x x x x x x x x x x x x x x t s x x x x z

线性规划的实际应用

密封线 线性规划的实际应用 摘要线性规划模型是科学与工程领域广泛应用的数学模型。本文应用线性规划模型,以 某水库输水管的选择为研究对象,以实现输水管的选择既能保证供水,又能使造价最低为 目标,根据水库的特点和实际运行情况,分析了其输水管选择过程中线性规划模型的建立 方法,并分别通过单纯形法和MATLAB软件进行求解。 关键词线性规划模型单纯形法 MATLAB 一、专著背景简介 《最优化方法》介绍最优化模型的理论与计算方法,其中理论包括对偶理论、非线性规划的最优性理论、非线性半定规划的最优性理论、非线性二阶锥优化的最优性理论;计算方法包括无约束优化的线搜索方法、线性规划的单纯形方法和内点方法、非线性规划的序列二次规划方法、非线性规划的增广Lagrange方法、非线性半定规划的增广Lagrange方法、非线性二阶锥优化的增广Lagrange方法以及整数规划的Lagrange松弛方法。《最优化方法》注重知识的准确性、系统性和算法论述的完整性,是学习最优化方法的一本入门书。 最优化方法(也称做运筹学方法)是近几十年形成的,它主要运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。最优化方法的主要研究对象是各种有组织系统的管理问题及其生产经营活动。最优化方法的目的在于针对所研究的系统,求得一个合理运用人力、物力和财力的最佳方案,发挥和提高系统的效能及效益,最终达到系统的最优目标。实践表明,随着科学技术的日益进步和生产经营的日益发展,最优化方法已成为现代管理科学的重要理论基础和不可缺少的方法,被人们广泛地应用到公共管理、经济管理、工程建设、国防等各个领域,发挥着越来越重要的作用。本章将介绍最优化方法的研究对象、特点,以及最优化方法模型的建立和模型的分析、求解、应用。主要是线性规划问题的模型、求解(线性规划问题的单纯形解法)及其应用-运输问题;以及动态规划的模型、求解、应用-资源分配问题。 二、专著的主要结构内容 《最优化方法》是一本着重实际应用又有一定理论深度的最优化方法教材,内容包括线

线性规划及单纯形法习题

第一章 线性规划及单纯形法习题 1.用图解法求解下列线性规划问题,并指出问题具有唯一最优解、无穷最优解还是无可行解。 (1)??? ??≥≥+≥++=0,42266432min 2121212 1x x x x x x x x z (2) ??? ??≥≥+≥++=0,12432 223max 2 121212 1x x x x x x x x (3) ?? ? ??≤≤≤≤≤++=8 3105120 106max 21212 1x x x x x x z (4) ??? ??≥≤+-≥-+=0,2322 265max 1 2212121x x x x x x x x z 2.将下列线性规划问题化成标准形式。 (1)????? ? ?≥≥-++-≤+-+-=-+-+-+-=无约束 43214321432143214321,0,,2321422 245243min x x x x x x x x x x x x x x x x x x x x z (2) ????? ? ?≥≤≥-++-≤-+-=++-+-=无约束 32143213213213 21,0,023*******min x x x x x x x x x x x x x x x x z 3.对下列线性规划问题找出所有基本解,指出哪些是基可行解,并确定最优解。 (1) ??? ?? ? ?=≥=-=+-+=+++++=)6,,1(0231024893631223min 61432143213 21Λj x x x x x x x x x x x x x x z j (2) ??? ??=≥=+++=+++++-=)4,,1(0102227 4322325min 432143214321Λj x x x x x x x x x x x x x z j 4.分别用图解发法和单纯形法求解下述问题,并对照单纯形表中的各基本可行解对应图解法中可行域的哪一顶点。

二元一次方程简单的线性规划要点

§3.3.1二元一次不等式(组)与 平面区域(1) 1.了解二元一次不等式的几何意义和什么是边界,会用二元一次不等式组表示平面区域; 2.经历从实际情境中抽象出二元一次不等式组的过程,提高数学建模的能力. 一、课前准备 复习1:一元二次不等式的定义_______________二元一次不等式定义________________________二元一次不等式组的定义_____________________ 复习2:解下列不等式: (1)210x -+>; (2)22320 41590 x x x x ?+-≥??-+>?? . 二、新课导学 ※ 学习探究 探究1:一元一次不等式(组)的解集可以表示为数轴上的区间,例如,30 40x x +>??-

并思考: 当点A 与点P 有相同的横坐标时,它们的纵坐标有什么关系?_______________ 根据此说说,直线x-y=6左上方的坐标与不等式6x y -<有什么关系?______________ 直线x-y=6右下方点的坐标呢? 在平面直角坐标系中,以二元一次不等式6x y -<的解为坐标的点都在直线x-y=6的_____;反过来,直线x-y=6左上方的点的坐标都满足不等式6x y -<. 因此,在平面直角坐标系中,不等式6x y -<表示直线x-y=6左上 方的平面区域;如图: 类似的:二元一次不等式x-y>6表示直线x-y=6右下方的区域;如图: 直线叫做这两个区域的边界 结论: 1. 二元一次不等式0Ax By c ++>在平面直角坐标系中表示直线0Ax By c ++=某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线) 2. 不等式中仅>或<不包括 ;但含“≤”“≥”包括 ; 同侧同号,异侧异号. ※ 典型例题 例1画出不等式44x y +<表示的平面区域. 分析:先画 ___________(用 线表示),再取 _______判断区域,即可画出. 归纳:画二元一次不等式表示的平面区域常采用“直线定界,特殊点定域”的方法.特殊地,当0C ≠时,常把原点作为此特殊点. 变式:画出不等式240x y -+-≤表示的平面区域. 例2用平面区域表示不等式组312 2y x x y <-+??

线性规划的实际应用

线性规划的实际应用 The Standardization Office was revised on the afternoon of December 13, 2020

线性规划的实际应用 摘要线性规划模型是科学与工程领域广泛应用的数学模型。本文应用线性规划模 型,以某水库输水管的选择为研究对象,以实现输水管的选择既能保证供水,又能使 造价最低为目标,根据水库的特点和实际运行情况,分析了其输水管选择过程中线性 规划模型的建立方法,并分别通过单纯形法和M A T L A B软件进行求解。 关键词线性规划模型单纯形法M A T L A B 一、专著背景简介 《最优化方法》介绍最优化模型的理论与计算方法,其中理论包括对偶理论、非线性规划的最优性理论、非线性半定规划的最优性理论、非线性二阶锥优化的最优性理论;计算方法包括无约束优化的线搜索方法、线性规划的单纯形方法和内点方法、非线性规划的序列二次规划方法、非线性规划的增广L ag ra ng e 方法、非线性半定规划的增广La gr an ge方法、非线性二阶锥优化的增广 La gr an ge方法以及整数规划的L ag ra n ge松弛方法。《最优化方法》注重知识的准确性、系统性和论述的完整性,是学习最优化方法的一本入门书。 最优化方法(也称做方法)是近几十年形成的,它主要运用研究各种系统的优化途径及方案,为决策者提供科学决策的依据。最优化方法的主要研究对象是各种有的管理问题及其生产经营活动。最优化方法的目的在于针对所研究的系统,求得一个合理运用人力、物力和财力的最佳方案,发挥和提高系统的效能及效益,最终达到系统的最优目标。实践表明,随着科学技术的日益进步和生产经营的日益发展,最优化方法已成为的重要理论基础和的方法,被人们广泛地应用到、、工程建设、国防等各个领域,发挥着越来越重要的作用。本章将介绍最优化方法的研究对象、特点,以及最优化方法模型的建立和模型的分析、求解、应用。主要是线性规划问题的模型、求解(线性规划问题的单纯形解法)及其应用-运输问题;以及动态规划的模型、求解、应用-资源分配问题。 二、专著的主要结构内容 《最优化方法》是一本着重实际应用又有一定理论深度的最优化方法教材,内容包括线性规划、运输问题、整数规划、目标规划、非线性规划(无约束最优化与约束最优化)、动态规划等最基本、应用最广又最有代表性的最优化方

线性规划的实际应用模型

目录 摘要 ---------------------------------------------------1 引言 ---------------------------------------------------2 一线性规划的概念 -------------------------------------3 二线性规划的实际应用 ----------------------------------4 ( (四)体育上的应用 1.合理安排比赛问题 -------------13 2.选拔选手问题 -----------------14 (五)旅行上的问题:旅行背包问题 ------------------------15 (六)航空上的问题:航空时间安排问题 --------------------16 (七)城市规划的应用:设施布点问题 ----------------------18 (八)日常生活上的应用 1.食用油的结构优化问题 ---------19 2.饮食问题 ---------------------21 (九)农业上的应用:农业种植问题 ------------------------23 三总结及参考文献 --------------------------------------25 线性规划的实际应用模型 王丽娜 (渤海大学数学系辽宁锦州 121000 中国)

摘要:本文从运筹学的角度分析线性规划的实际应用模型,随着人类社会的进步,科学 技术的发展,经济全球化进程的日益加快,线性规划在实际中的应用越来越广泛,主要应用 于经济与管理,军事,金融,体育,旅行,航空,城市规划,日常生活,农业九大方面,因此,线性 规划作为一门科学已被人们广泛接受,并已日益成为人类社会和经济生活中一种不可或缺的 工具。 关键词:运筹学线性规划分析模型 Zhe model in practical application of linear programming Wang lina (Department of Mathematics Bohai University Liaoning Jinzhou 121000 China) Abstract:This article analyse the practical application of linear programming from the sight of operational research,with the advancement of human society,the development of science and technology and the faster grogramming has wider application in the practical,has been applied to nine aspects,in econemy,management,military,finance,physical education,travelling,airline,city planning,daily life, agriculture.The examples will be given to show the application in the nine aspects given abo。 Key word:operational research ,linaear programming, analy ,model 引言 线性规划是运筹学的一个重要分支。也是研究较早的,发展较快 的,应用较广而比较成熟的一个分支。

简单的线性规划

简单的线性规划 一、本章节的地位及作用 1.“简单的线性规划”是在学生学习了直线方程的基础上,介绍直线方程的一个简单应用,这是《新大纲》中增加的一个新内容,反映了《新大纲》对数学知识应用的重视,体现了数学的工具性、应用性. 2.本节内容渗透了转化、归纳、数形结合数学思想,是向学生进行数学思想方法教学的好教材,也是培养学生观察、作图等能力的好教材. 3.本节内容与实际问题联系紧密,有利于培养学生学习数学的兴趣和“用数学”的意识以及解决实际问题的能力. 二、教学目标 1.知识目标:能把实际问题转化为简单的线性规划问题,并能给出解答. 2.能力目标:培养学生观察、联想以及作图的能力,渗透化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力. 3.情感目标:结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生勇于创新. 三、教学重点与难点 1.教学重点:建立线性规划模型 2.教学难点:如何把实际问题转化为简单的线性规划问题,并准确给出解答. 解决重点、难点的关键是根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法求得最优解.为突出重点,突破难点,本节教学应指导学生紧紧抓住化归、数形结合的数学思想方法将实际问题数学化、代数问题几何化. 四、教学方法与手段 1.教学方法 为了激发学生学习的主体意识,面向全体学生,使学生在获取知识的同时,各方面的能力得到进一步的培养.根据本节课的内容特点,本节课采用启发引导、讲练结合的教学方法,着重于培养学生分析、解决实际问题的能力以及良好的学习品质. 2.教学手段 新大纲明确指出:要积极创造条件,采用现代化的教学手段进行教学.根据本节知识本身的抽象性以及作图的复杂性,为突出重点、突破难点,增加教学容量,激发学生的学习兴趣,增强教学的条理性、形象性,本节课采用计算机辅助教学,以直观、生动地揭示二元一次不等式(组)所表示的平面区域以及图形的动态变化情况. 3.学生课前准备 坐标纸、三角板、铅笔和彩色水笔 五、教学过程设计 教学流程图

高二数学教案研究性课题与实习作业 :线性规划的实际应用_0364文档

2020 高二数学教案研究性课题与实习作业:线性规划的实际应用 _0364文档

EDUCATION WORD 高二数学教案研究性课题与实习作业:线性规划的实际应用_0364文档 前言语料:温馨提醒,教育,就是实现上述社会功能的最重要的一个独立出来的过程。其目的,就是把之前无数个人有价值的观察、体验、思考中的精华,以浓缩、系统化、易于理解记忆掌握的方式,传递给当下的无数个人,让个人从中获益,丰富自己的人生体验,也支撑整个社会的运作和发展。 本文内容如下:【下载该文档后使用Word打开】 教学目标(1)了解线性规化的意义以及线性约束条件、线性目标函数、线性规化问题、可行解、可行域以及最优解等基本概念;(2)了解线性规化问题的图解法;(3)培养学生搜集、分析和整理信息的能力,在活动中学会沟通与合作,培养探索研究的能力和所学知识解决实际问题的能力;(4)引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德. 教学建议 一、重点难点分析学以致用,培养学生“用数学”的意识是本节的重要目的。学习线性规划的有关知识其最终目的就是运用它们去解决一些生产、生活中问题,因而本节的教学教学教学重

点是:线性规划在实际生活中的应用。困难大多是如何把实际问题转化为数学问题(既数学建模),所以把一些生产、生活中的实际问题转化为线性规划问题,就是本节课的难点。突破这个难点的关键就在于尽快熟悉生活,了解实际情况,并与所学知识紧密结合起来。二、教法建议(l)建议可适当采用电脑多媒体和投影仪等先进手段来辅助,以增加课堂容量,增强直观性,进而提高课堂效率.(2)课堂上可以设计几个实际让学生分组研讨解答,一方面是复习线性规划问题的一般解法,为总结线性规划问题的数学模型和常见类型作铺垫;另一方面,也为接下来到外面分组调研积累经验,让学生在讨论、探究过程中初步学会沟通与合作,共同完成活动任务.(3)确定研究课题,建议各小组以三个常见问题为主,或者根据本小组实际自拟课题.(4)活动安排,建议要求各小组分式明确,团结协作,听从指挥,注意安全.学生研究活动的成果,可以用研究报告或论文的形式体现.一切以学生自己的自主探究活动为主,教师不能越俎代庖.(5)对学生在课余时间开展的研究性课题,建议作做好成果展示、评估和交流.展示不仅可以让全体学生来分享成果,享受成功的喜悦,而且还可以锻炼学生的组织表达能力,增强学生的自信心.通过评估,可以使同学清楚地看到自己的优点与不足.通过交流研讨,分享成果,进行思维碰撞,使认识和情感得到提升. 设计方案 教学目标 (1)了解线性规划的意义以及线性约束条件、线性目标函

简单的线性规划教学设计(二) 人教课标版(优秀教案)

《简单的线性规划》教学设计(二) 【教学目标】 巩固二元一次不等式和二元一次不等式组所表示的平面区域,能用此来求目标函数的最值. 【重点难点】 理解二元一次不等式表示平面区域是教学重点. 如何扰实际问题转化为线性规划问题,并给出解答是教学难点. 【教学步骤】 一、新课引入 我们知道,二元一次不等式和二元一次不等式组都表示平面区域,在这里开始,教学又翻开了新的一页,在今后的学习中,我们可以逐步看到它的运用. 线性规划 先讨论下面的问题 设2z x y =+,式中变量x 、y 满足下列条件 4335251x y x y x -≤-??+≤??≥? ① 求z 的最大值和最小值. 我们先画出不等式组①表示的平面区域,如图中 ABC ?内部且包括边界.点(0,0)不在这个三角形区域内,当0,0x y == 时,20z x y =+=,点(0,0)在直线0:20l x y +=上.作一组和0l 平等的直线:2,l x y t t R +=∈ 可知,当l 在0l 的右上方时,直线l 上的点(,)x y 满足20x y +>. 即0t >,而且l 往右平移时,t 随之增大,在经过不等式组①表示的三角形区域内的点且平行于l 的直线中,以经过点(5,2)A 的直线l ,所对应的t 最大,以经过点(1,1)B 的直线1l ,所对应的t 最小,所以 max 25212z =?+=min 2113z =?+= 在上述问题中,不等式组①是一组对变量x 、y 的约束条件,这组约束条件都是关于x 、y 的一次不等式,所以又称线性约束条件. 2x y +是欲达到最大值或最小值所涉及的变量x 、y 的解析式,叫做目标函数,由于2z x y =+又是x 、y 的解析式,所以又叫线性目标函数,上述问题就是求线性目标函数2z x y =+在 =0

相关主题
文本预览
相关文档 最新文档