当前位置:文档之家› 管内流体流动现象

管内流体流动现象

管内流体流动现象
管内流体流动现象

1.3 管内流体流动现象

本节重点:牛顿粘性定律、层流与湍流的比较。

难点: 边界层与层流内层。

1.3.1 流体的粘度 1. 牛顿粘性定律

流体的典型特征是具有流动性,但不同流体的流动性能不同,这主要是因为流体内部质点间作相对运动时存在不同的内摩擦力。这种表明流体流动时产生内摩擦力的特性称为粘性。粘性是流动性的反面,流体的粘性越大,其流动性越小。流体的粘性是流体产生流动阻力的根源。

如图1-16 所示,设有上、下两块面积很大且相距很近的平行平板,板间充满某种静止液体。若将下板固定,而对上板施加一个恒定的外力,上板就以恒定速度u 沿x 方向运动。若u 较小,则两板间的液体就会分成无数平行的薄层而运动,粘附在上板底面下的一薄层流体以速度u 随上板运动,其下各层液体的速度依次降低,紧贴在下板表面的一层液体,因粘附在静止的下板上, 其速度为零,两平板间流速呈线性变化。对任意相邻两层流体来说,上层速度较大,下层速度较小,前者对后者起带动作用,而后者对前者起拖曳作用,流体层之间的这种相互作用,产生内摩擦,而流体的粘性正是这种内摩擦的表现。

平行平板间的流体,流速分布为直线,而流体在圆管内流动时,速度分布呈抛物线形,如图1-17所示。

实验证明,对于一定的流体,内摩擦力F 与两流体层的速度差.

u d 成正比,与两层之间的垂直距离dy 成反比,与两层间的接触面积A 成正比,即

图1-17 实际流体在管内的速度分布

1-16 平板间液体速度变化

dy

u

d A

F .

μ= (1-26) 式中:F ——内摩擦力,N ;

dy

u

d .

——法向速度梯度,即在与流体流动方向相垂直的y 方向流体速度的变化率,1/s ; μ——比例系数,称为流体的粘度或动力粘度,Pa ·s 。

一般,单位面积上的内摩擦力称为剪应力,以τ表示,单位为Pa ,则式(1-26)变为

dy

u

d .

μ

τ= (1-26a ) 式(1-26)、(1-26a )称为牛顿粘性定律,表明流体层间的内摩擦力或剪应力与法向速度梯度成正比。

剪应力与速度梯度的关系符合牛顿粘性定律的流体,称为牛顿型流体,包括所有气体和大多数液体;不符合牛顿粘性定律的流体称为非牛顿型流体,如高分子溶液、胶体溶液及悬浮液等。本章讨论的均为牛顿型流体。

2.流体的粘度

粘度的物理意义 流体流动时在与流动方向垂直的方向上产生单位速度梯度所需的剪应力。粘度是反映流体粘性大小的物理量。

粘度也是流体的物性之一,其值由实验测定。液体的粘度,随温度的升高而降低,压力对其影响可忽略不计。气体的粘度,随温度的升高而增大,一般情况下也可忽略压力的影响,但在极高或极低的压力条件下需考虑其影响。

粘度的单位

在国际单位制下,其单位为

[][]

s Pa m

s m Pa

.?==

??

?

???=

dy u d τμ 在一些工程手册中,粘度的单位常常用物理单位制下的cP (厘泊)表示,它们的换算关系为

1cP =10-3 Pa ·s

运动粘度 流体的粘性还可用粘度μ与密度ρ的比值表示,称为运动粘度,以符号ν表

示,即

ρ

μ

ν=

(1-27) 其单位为m 2/s 。显然运动粘度也是流体的物理性质。

3.剪应力与动量通量

如图1-16所示,沿流体流动方向相邻的两流体层,由于速度不同,动量也就不同。高速流体层中一些分子在随机运动中进入低速流体层,与速度较慢的分子碰撞使其加速,动量增大,同时,低速流体层中一些分子也会进入高速流体层使其减速,动量减小。由于流体层之间的分子交换使动量从高速流体层向低速流体层传递。由此可见,分子动量传递是由于流体层之间速度不等,动量从速度大处向速度小处传递。

剪应力可写为以下形式

θ

θτAd mu d d du A m A ma A F )(====

式中,(mu )为动量,θ为时间,所以剪应力表示了单位时间、通过单位面积的动量,即动量通量,牛顿粘性定律也反映了动量通量的大小。

dy

u d dy u d dy u d .

..)()(ρνρρμμ

τ=== (1-26b ) 式中,V u m u .

.

=

ρ为单位体积流体的动量,称为动量浓度,dy

u m d .

)(为动量浓度梯度。由此可知,动量通量与动量浓度梯度成正比。 1.3.2 流体的流动型态

1. 两种流型——层流和湍流

图1-18 雷诺实验装置

图1-19 流体流动型态示意图

图1-18为雷诺实验装置示意图。水箱装有溢流装置,以维持水位恒定,箱中有一水平玻璃直管,其出口处有一阀门用以调节流量。水箱上方装有带颜色的小瓶,有色液体经细管注入玻璃管内。

从实验中观察到,当水的流速从小到大时,有色液体变化如图1-19所示。实验表明,流体在管道中流动存在两种截然不同的流型。

层流(或滞流) 如图1-19(a )所示,流体质点仅沿着与管轴平行的方向作直线运动,质点无径向脉动,质点之间互不混合;

湍流(或紊流) 如图1-19(c )所示,流体质点除了沿管轴方向向前流动外,还有径向脉动,各质点的速度在大小和方向上都随时变化,质点互相碰撞和混合。

2. 流型判据——雷诺准数

流体的流动类型可用雷诺数Re 判断。

μ

ρu

d =

Re (1-28)

Re 准数是一个无因次的数群。

大量的实验结果表明,流体在直管内流动时,

(1) 当Re ≤2000时,流动为层流,此区称为层流区; (2) 当Re ≥4000时,一般出现湍流,此区称为湍流区;

(3) 当2000< Re <4000 时,流动可能是层流,也可能是湍流,与外界干扰有关,该区称为不稳定的过渡区。

雷诺数的物理意义 Re 反映了流体流动中惯性力与粘性力的对比关系,标志流体流动的湍动程度。其值愈大,流体的湍动愈剧烈,内摩擦力也愈大。

1.3.3 流体在圆管内的速度分布

流体在圆管内的速度分布是指流体流动时管截面上质点的速度随半径的变化关系。无论是层流或是湍流,管壁处质点速度均为零,越靠近管中心流速越大,到管中心处速度为最大。但两种流型的速度分布却不相同。

1. 层流时的速度分布

实验和理论分析都已证明,层流时的速度分布为抛物线形状,如图1- 20所示。以下进行理论推导。

如图1-21所示,流体在圆形直管内作定态层流流动。在圆管内,以管轴为中心,取半径为r 、长度为l 的流体柱作为研究对象。

由压力差产生的推力 221)(r p p π-

流体层间内摩擦力 dr

u

d rl dr u d A

F .

.)

2(πμμ-=-= 流体在管内作定态流动,根据牛顿第二定律,在流动方向上所受合力必定为零。即有 dr

u

d rl r p p .

221)

2()(πμπ-=- 整理得

r p p dr u

d μ

2)(21.

--= 利用管壁处的边界条件,r =R 时,.

u =0,积分可得速度分布方程

)(4)(22

21.

r R l

p p u --=

μ (1-29)

管中心流速为最大,即r =0时,.

u =u max ,由式(1-29)得 2

21max 4)(R l

p p u μ-=

(1-30)

将式(1-30)代入式(1-29)中,得

???

?

??????? ??-=2max .

1R r u u (1-29a )

根据流量相等的原则,确定出管截面上的平均速度为

1-20 层流时的速度分布

图1-21 层流时管内速度分布的推导

max 22

1

u R V u S ==

π (1-31) 即流体在圆管内作层流流动时的平均速度为管中心最大速度的一半。

2. 湍流时的速度分布

湍流时流体质点的运动状况较层流要复杂得多,截面上某一固定点的流体质点在沿管轴向前运动的同时,还有径向上的运动,使速度的大小与方向都随时变化。湍流的基本特征是出现了径向脉动速度,使得动量传递较之层流大得多。此时剪应力不服从牛顿粘性定律表示,但可写成相仿的形式:

dy

u

d e .

)

(+=μτ (1-32) 式中e 称为湍流粘度,单位与μ相同。但二者本质上不同:粘度μ是流体的物性,反映了分子运动造成的动量传递;而湍流粘度e 不再是流体的物性,它反映的是质点的脉动所造成的动量传递,与流体的流动状况密切相关。

湍流时的速度分布目前尚不能利用理论推导获得,而是通过实验测定,结果如图1-22所示,其分布方程通常表示成以下形式:

n

R r u u ??

? ??

-=1max .

(1-33)

式中n 与Re 有关,取值如下:

101102.3Re 71,

102.3Re 101.161,

101.1Re 1046

6

5

54=

?>=?<

?<

当7

1

=

n 时,推导可得流体的平均速度约为管中心最大速度的0.82倍,即 max 82.0u u ≈ (1-33) 1.3.4 流体流动边界层 1. 边界层的形成

当一个流速均匀的流体与一个固体壁面相接触时,由于壁面对流体的阻碍,与壁面相接

1-22 湍流时的速度分布

触的流体速度降为零。由于流体的粘性作用,紧连着这层流体的另一流体层速度也有所下降。随着流体的向前流动,流速受影响的区域逐渐扩大,即在垂直于流体流动方向上产生了速度梯度。

流速降为主体流速的99%以内的区域称为边界层,边界层外缘于垂直壁面间的距离称为边界层厚度。

流体在平板上流动时的边界层如图1-23所示,由于边界层的形成,把沿壁面的流动分为两个区域:边界层区和主流区。

边界层区(边界层内):沿板面法向的速度梯度很大,需考虑粘度的影响,剪应力不可忽略。

主流区(边界层外):速度梯度很小,剪应力可以忽略,可视为理想流体。

边界层流型也分为层流边界层与湍流边界层。在平板的前段,边界层内的流型为层流,称为层流边界层。离平板前沿一段距离后,边界层内的流型转为湍流,称为湍流边界层。

流体在圆管内流动时的边界层如图1-24所示。流体进入圆管后在入口处形成边界层,随着流体向前流动,边界层厚度逐渐增加,直至一段距离(进口段)后,边界层在管中心汇合,占据整个管截面,其厚度不变,等于圆管的半径,管内各截面速度分布曲线形状也保持不变,此为完全发展了的流动。由此可知,对于管流来说,只在进口段内才有边界层内外之分。在

边界层汇合处,若边界层内流动是层流,则以后的管内流动为层流;若在汇合之前边界层内的流动已经发展成湍流,则以后的管内流动为湍流。

进口段长度: 层流:Re 05.00=d x 湍流:

50~400

=d

x

当管内流体处于湍流流动时,由于流体具有粘性和壁面的约束作用,紧靠壁面处仍有一薄层流体作层流流动,称其为层流内层(或层流底层),如图1-25所示。在层流内层与湍流主体之间还存在一过渡层,也即当流体在圆管内作湍流流动时,从壁面到管中心分为层流内层、过渡层和湍流主体三个区域。层流内层的厚度与流体的

湍动程度有关,流体的湍动程度越高,即Re 越大,层流内层越薄。在湍流主体中,径向的传递过程引速度的脉动而大大强化,而在层流内层中,径向的传递着能依靠分子运动,因此层流内层成为传递过程主要阻力。层流内层虽然很薄,但却对传热和传质过程都有较大的影响。

2. 边界层的分离

流体流过平板或在园管内流动时,流动边界层是紧贴在壁面上。如果流体流过曲面,如球体或圆柱体,则边界层的情况有显著不同,即存在流体边界层与固体表面的脱离,并在脱离处产生漩涡,流体质点碰撞加剧,造成大量的能量损失。

如下图所示:

A →C :流道截面积逐渐减小,流速逐渐增加,压力逐渐减小(顺压梯度); C → S :流道截面积逐渐增加,流速逐渐减小,压力逐渐增加(逆压梯度); S 点:物体表面的流体质点在逆压梯度和粘性剪应力的作用下,速度降为0。

图1-25 湍流流动

SS ’以下:边界层脱离固体壁面,而后倒流回来,形成涡流,出现边界层分离。

由此可知:

边界层分离的必要条件: 流体具有粘性;

流动过程中存在逆压梯度。 边界层分离的后果: 产生大量旋涡; 造成较大的能量损失。

A

S ’

流体在管内的流动阻力

2.2 流体在管内的流动阻力 本节重点:牛顿粘性定律、层流与湍流的比较。 难点: 边界层与层流内层。 2.2.1 牛顿粘性定律与流体的粘度 1. 流体的粘性 流体的典型特征是具有流动性,但不同流体的流动性能不同,这主要是因为流体内部质点间作相对运动时存在不同的内摩擦力。这种表明流体流动时产生内摩擦力的特性称为粘性。粘性是流动性的反面,流体的粘性越大,其流动性越小。流体的粘性是流体产生流动阻力的根源。 2. 牛顿粘性定律与流体的粘度 如图2-3所示,设有上、下两块面积很大且相距很近的平行平板,板间充满某种静止液体。若将下板固定,而对上板施加一个恒定的外力,上板就以恒定速度u 沿x 方向运动。若u 较小,则两板间的液体就会分成无数平行的薄层而运动,粘附在上板底面下的一薄层流体以速度u 随上板运动,其下各层液体的速度依次降低,紧贴在下板表面的一层液体,因粘附在静止的下板上, 其速度为零,两平板间流速呈线性变化。对任意相邻两层流体来说,上层速度较大,下层速度较小,前者对后者起带动作用,而后者对前者起拖曳作用,流体层之间的这种相互作用,产生内摩擦,而流体的粘性正是这种内摩擦的表现。 平行平板间的流体,流速分布为直线,而流体在圆管内流动时,速度分布呈抛物线形,如图2-4所示。 实验证明,对于一定的流体,内摩擦力F 与两流体层的速度差. u d 成正比,与两层之间的垂直距离dy 成反比,与两层间的接触面积A 成正比,即 图2-4 实际流体在管内的速度分布 图2-3 平板间液体速度变化

dy u d A F . μ= (2-16) 式中:F ——内摩擦力,N ; dy u d . ——法向速度梯度,即在与流体流动方向相垂直的y 方向流体速度的变化率,1/s ; μ——比例系数,称为流体的粘度或动力粘度,Pa ·s 。 一般,单位面积上的内摩擦力称为剪应力,以τ表示,单位为Pa ,则式(1-26)变为 dy u d . μ τ= (2-17) 式(2-16)、(2-17)称为牛顿粘性定律,表明流体层间的内摩擦力或剪应力与法向速度梯度成正比。 剪应力与速度梯度的关系符合牛顿粘性定律的流体,称为牛顿型流体,包括所有气体和大多数液体;不符合牛顿粘性定律的流体称为非牛顿型流体,如高分子溶液、胶体溶液及悬浮液等。本章讨论的均为牛顿型流体。 粘度的物理意义 流体流动时在与流动方向垂直的方向上产生单位速度梯度所需的剪应力。粘度是反映流体粘性大小的物理量。 粘度也是流体的物性之一,其值由实验测定。液体的粘度,随温度的升高而降低,压力对其影响可忽略不计。气体的粘度,随温度的升高而增大,一般情况下也可忽略压力的影响,但在极高或极低的压力条件下需考虑其影响。 粘度的单位 在国际单位制下,其单位为 [][] s Pa m s m Pa .?== ?? ? ???= dy u d τμ 在一些工程手册中,粘度的单位常常用物理单位制下的cP (厘泊)表示,它们的换算关系为 1cP =10-3 Pa ·s 2.2.2 流动型态 1. 流体的流动型态

第四节 流体在管内的流动阻力

第四节流体在管内的流动阻力实际上理想流体是不存在的。流体在流动过程中需要消耗能量来克服流动阻力,本节讨论流体流动阻力的产生、影响因素及其计算。 §1.4.1牛顿粘性定律与流体的粘度 1、牛顿粘性定律 设有间距很小的两平行板,两平板间充满液体 (如图)。下板固定,上板施加一平行于平板的切向 力F,使上板作平行于下板的等速直线运动。紧贴 上板的液体层以与上板相同的速度流动,而紧贴固 定板的液体层则静止不动。两层平板之间液体的流 速分布则是从上到下为由大到小的渐变。 此两板间的液体可看成为许多平行于平板的流体层,这种流动称为层流,而层与层之间存在着速度差,即各液层之间存在着相对运动。运动较快的液层对与之相邻的运动较慢的液层作用着一个拖动其向运动方向前进的力;而与此同时,运动较慢的液层对其上运动较快的液层也作用着一个大小相等方向相反的力,从而阻碍较快的液层的运动。这种运动着的流体内部相邻两流体层间的相互作用力称为流体的内摩擦力(粘滞力)。流体流动时产生内摩擦力的这种特性称为粘性。 在上图中,若某层流体的速度为u,在其垂直距离为dy处的邻近流体层的速度为u+du,则du/dy表示速度沿法线方向上的变化率,称为速度梯度。 实验证明,内摩擦力F与两流体层间的接触面积S成正比,与速度梯度du/dy成正比。即: F∝S·du/dy 亦即: F=μS·du/dy 剪应力τ:单位面积上的内摩擦力,即F/S, 单位N/㎡ 于是: τ=F/S=μ·du/dy——牛顿粘性定律 μ为比例系数,称为粘性系数或动力粘度,简称粘度 说明:

①牛顿粘性定律可表达为剪应力与法向速度梯度成正比, 与法向压力无关,流体的这一规律与固体表面的摩擦力 的变化规律截然不同。 ②牛顿粘性定律的使用条件:层流时的牛顿型流体。 ③根据此定律,粘性流体在管内的速度分布可以预示为:如图 紧贴壁面的流体受壁面固体分子力的作用而处于静止状态, 随着离壁距离的增加,流体的速度连续地增大,至管中心 处速度达到最大。而当μ=0,无粘性时(理想流体),管内 呈恒速分布,即速度不随位置,时间变化,各点均相同。 ④剪应力的单位: 因此,剪应力的大小也代表动量传递的速率(即单位时间、单位面积上传递的动量)。 传递方向:动量传递的方向与速率梯度的方向相反,即由高速度向低速度传递,以动量传递表示的牛顿粘性定律为: τ’:动量传递速率;“负号”表示两者方向相反 2、流体的粘度 (1)、粘度的物理意义: 从τ=μ·du/dy 可得μ=τ/(du/dy) 其物理意义为促使流体流动产生单位速度梯度的剪应力,粘度总是与速度梯度相联系,它只有在运动时才显现出来。分析静止流体规律时不用考虑粘度。(2)、粘度随压强、温度的变化 粘度是流体的物理性质之一,其值由实验测定。 一般地, 流体的粘度μ=f(p,T)

经典完美版流体流动概念

流体流动 一填空 (1)流体在圆形管道中作层流流动,如果只将流速增加一倍,则阻力损失为原来的 2 倍;如果只将管径增加一倍而流速不变,则阻力损失为原来的 1/4 倍。 (2)离心泵的特性曲线通常包括H-Q曲线、η-Q 和 N-Q 曲线,这些曲线表示在一定转速下,输送某种特定的液体时泵的性能。 (3) 处于同一水平面的液体,维持等压面的条件必须是静止的、连通着的、同一种连续的液体。流体在管内流动时,如要测取管截面上的流速分布,应选用皮托流量计测量。 (4) 如果流体为理想流体且无外加功的情况下,写出: 单位质量流体的机械能衡算式为?????????????????; 单位重量流体的机械能衡算式为?????????????????; 单位体积流体的机械能衡算式为?????????????????; (5) 有外加能量时以单位体积流体为基准的实际流体柏努利方程为z1ρg+(u12ρ/2)+p1+W s ρ= z2ρg+(u22ρ/2)+p2 +ρ∑h f ,各项单位为Pa(N/m2)。 )气体的粘度随温度升高而增加,水的粘度随温度升高而降低。 (7) 流体在变径管中作稳定流动,在管径缩小的地方其静压能减小。 (8) 流体流动的连续性方程是 u1Aρ1= u2Aρ2=······= u Aρ;适用于圆形直管的不可压缩流体流动的连续性方程为 u1d12 = u2d22 = ······= u d2。 (9) 当地大气压为745mmHg测得一容器内的绝对压强为350mmHg,则真空度为395mmHg 。测得另一容器内的表压强为1360 mmHg,则其绝对压强为2105mmHg。(10) 并联管路中各管段压强降相等;管子长、直径小的管段通过的流量小。 (11) 测流体流量时,随流量增加孔板流量计两侧压差值将增加,若改用转子流量计,随流量增加转子两侧压差值将不变。 (12) 离心泵的轴封装置主要有两种:填料密封和机械密封。 (13) 离心通风机的全风压是指静风压与动风压之和,其单位为Pa 。 (14) 若被输送的流体粘度增高,则离心泵的压头降低,流量减小,效率降低,轴功率增加。降尘室的生产能力只与沉降面积和颗粒沉降速度有关,而与高度无关。 (15) 分离因素的定义式为u t2/gR 。 (16) 0. 5m,气体的切向进口速度为20m/s,则该分离器的分离因数为800/9.8。 (17) 板框过滤机的洗涤速率为最终过滤速率的 1/4 。 (18) 在滞流区,颗粒的沉降速度与颗粒直径的 2 次方成正比,在湍流区颗粒的沉降速度与颗粒直径的 0.5 次方成正比。 二选择 1 流体在管内流动时,如要测取管截面上的流速分布,应选用??A???流量计测量。 A 皮托管 B 孔板流量计 C 文丘里流量计 D 转子流量计 2 离心泵开动以前必须充满液体是为了防止发生???A???。 A 气缚现象 B汽蚀现象 C 汽化现象 D 气浮现象 3 离心泵的调节阀开大时, B A 吸入管路阻力损失不变 B 泵出口的压力减小 C 泵入口的真空度减小 D 泵工作点的扬程升高 4 水由敞口恒液位的高位槽通过一管道流向压力恒定的反应器,当管道上的阀门开度减小后,管道总阻力损失 C 。 A 增大 B 减小 C 不变 D 不能判断 5 流体流动时的摩擦阻力损失h f所损失的是机械能中的 C 项。 A 动能 B 位能 C 静压能 D 总机械能 6 在完全湍流时(阻力平方区),粗糙管的摩擦系数λ数值 C

流体流动与输送设备(习题及答案)

第一章 流体流动与输送设备 1. 燃烧重油所得的燃烧气,经分析知其中含%,%,N 276%,H 2O8%(体积%),试求此混合气体在温度500℃、压力时的密度。 解:混合气体平均摩尔质量 mol kg M y M i i m /1086.281808.02876.032075.044085.03-?=?+?+?+?=∑=∴ 混合密度 3 3 3/455.0)500273(31.81086.28103.101m kg RT pM m m =+????==-ρ 2.已知20℃下水和乙醇的密度分别为998.2 kg/m 3和789kg/m 3,试计算50%(质量%)乙醇水溶液的密度。又知其实测值为935 kg/m 3,计算相对误差。 解:乙醇水溶液的混合密度 7895 .02.9985.01 22 11+ = + = ρρρa a m 3 /36.881m kg m =∴ρ 相对误差: % 74.5%10093536.8811%100=???? ??-=?-实实m m m ρρρ 3.在大气压力为的地区,某真空蒸馏塔塔顶的真空表读数为85kPa 。若在大气压力为90 kPa 的地区,仍使该塔塔顶在相同的绝压下操作,则此时真空表的读数应为多少 解:' '真真绝 p p p p p a a -=-= ∴kPa p p p p a a 7.73)853.101(90)(''=--=--=真真 4.如附图所示,密闭容器中存有密度为900 kg/m 3的液体。容器上方的压力表读数为42kPa ,又在液面下装一压力表,表中心线在测压口以上0.55m ,其读数为58 kPa 。试计算液面到下方测压口的距离。 解:液面下测压口处压力 gh p z g p p ρρ+=?+=10 m h g p p g p gh p z 36.255.081.990010)4258(3 0101=+??-=+-=-+=?∴ρρρ 5. 如附图所示,敞口容器内盛有不互溶的油和水,油层和水层的厚度分别为700mm 和600mm 。在容器底部开孔与玻璃管相连。已知油与水的密度分别为800 kg/m 3和1000 kg/m 3。 (1)计算玻璃管内水柱的高度; (2)判断A 与B 、C 与D 点的压力是否相等。 解:(1)容器底部压力 gh p gh gh p p a a 水水油ρρρ+=++=21 m h h h h h 16.16.07.01000800 2121=+?=+=+=∴水油水水油ρρρρρ 题4 附图 D h 1 h 2 A C 题5 附图

第1章流体流动和输送

第一章流体流动和输送 1-1 烟道气的组成约为N275%,CO215%,O25%,H2O5%(体积百分数)。试计算常压下400℃时该混合气体的密度。 解:M m=∑M i y i=0.75×28+0.15×44+0.05×32+0.05×18=30.1 ρm=pM m/RT=101.3×103×30.1/(8.314×103×673)=0.545kg/m3 1-2 已知成都和拉萨两地的平均大气压强分别为0.095MPa和0.062MPa。现有一果汁浓缩锅需保持锅内绝对压强为8.0kPa。问这一设备若置于成都和拉萨两地,表上读数分别应为多少? 解:成都p R=95-8=87kPa(真空度) 拉萨p R=62-8=54kPa(真空度) 1-3 用如附图所示的U型管压差计测定吸附器内气体在A点处的压强以及通过吸附剂层的压强降。在某气速下测得R1为400mmHg,R2为90mmHg,R3为40mmH2O,试求上述值。 解:p B=R3ρH2O g+R2ρHg g=0.04×1000×9.81+0.09×13600×9.81=12399.8Pa(表)p A=p B+R1ρHg g=12399.8+0.4×13600×9.81=65766.2Pa(表) ?p=p A-p B=65766.2-12399.8=53366.4Pa 1-4 如附图所示,倾斜微压差计由直径为D的贮液器和直径为d的倾斜管组成。若被测流体密度为ρ0,空气密度为ρ,试导出用R1表示的压强差计算式。如倾角α为30o时,若要忽略贮液器内的液面高度h的变化,而测量误差又不得超过1%时,试确定D/d比值至少应为多少?

化工原理第1章流体流动习题与答案

一、单选题 1.单位体积流体所具有的()称为流体的密度。 A A 质量; B 粘度; C 位能; D 动能。 2.单位体积流体所具有的质量称为流体的()。 A A 密度; B 粘度; C 位能; D 动能。 3.层流与湍流的本质区别是()。 D A 湍流流速>层流流速; B 流道截面大的为湍流,截面小的为层流; C 层流的雷诺数<湍流的雷诺数; D 层流无径向脉动,而湍流有径向脉动。4.气体是()的流体。 B A 可移动; B 可压缩; C 可流动; D 可测量。 5.在静止的流体,单位面积上所受的压力称为流体的()。 C A 绝对压力; B 表压力; C 静压力; D 真空度。 6.以绝对零压作起点计算的压力,称为()。 A A 绝对压力; B 表压力; C 静压力; D 真空度。 7.当被测流体的()大于外界大气压力时,所用的测压仪表称为压力表。 D A 真空度; B 表压力; C 相对压力; D 绝对压力。 8.当被测流体的绝对压力()外界大气压力时,所用的测压仪表称为压力表。 A A 大于; B 小于; C 等于; D 近似于。 9.()上的读数表示被测流体的绝对压力比大气压力高出的数值,称为表压力。 A A 压力表; B 真空表; C 高度表; D 速度表。

10.被测流体的()小于外界大气压力时,所用测压仪表称为真空表。 D A 大气压; B 表压力; C 相对压力; D 绝对压力。 11. 流体在园管流动时,管中心流速最大,若为湍流时,平均流速与管中心的 最大流速的关系为()。 B A. Um=1/2Umax; B. Um=0.8Umax; C. Um=3/2Umax。 12. 从流体静力学基本方程了解到U型管压力计测量其压强差是( )。 A A. 与指示液密度、液面高度有关,与U形管粗细无关; B. 与指示液密度、液面高度无关,与U形管粗细有关; C. 与指示液密度、液面高度无关,与U形管粗细无关。 13.层流底层越薄( )。 C A. 近壁面速度梯度越小; B. 流动阻力越小; C. 流动阻力越大; D. 流体湍动程度越小。 14.双液体U形差压计要求指示液的密度差( ) C A. 大; B. 中等; C. 小; D. 越大越好。 15.转子流量计的主要特点是( )。 C A. 恒截面、恒压差; B. 变截面、变压差; C. 恒流速、恒压差; D. 变流速、恒压差。 16.层流与湍流的本质区别是:( )。 D A. 湍流流速>层流流速; B. 流道截面大的为湍流,截面小的为层流; C. 层流的雷诺数<湍流的雷诺数; D. 层流无径向脉动,而湍流有径向脉动。 17.圆直管流动流体,湍流时雷诺准数是()。 B A. Re ≤ 2000; B. Re ≥ 4000; C. Re = 2000~4000。 18.某离心泵入口处真空表的读数为 200mmHg ,当地大气压为101kPa, 则泵入

流体流动与输送

流体流动 一、流体流动复习题 1.流体密度的影响因素是什么?如何影响?气体的密度如何计算? 2.熟练掌握各种压强单位之间的换算,绝压、表压与真空度之间的关系。 3.掌握定态流动的概念以及定态流动时的物料衡算。不可压缩流体流速与管径之间的关系。4.与流体流动有关的能量形式有哪些?熟练掌握分析流动系统各截面上能量形式的方法。 熟悉流体机械能之间的相互转换关系。 5.柏努利方程的适用条件是什么?熟练掌握柏努利方程式的应用。 6.应用柏努利方程解决实际问题时要注意哪些事项? 7.液体、气体的粘度随压强、温度的变化关系是什么?熟悉粘度的单位换算;熟悉牛顿型流体和非牛顿型流体的概念。 8.流体的流动类型有哪两种?如何判断?在流体流量一定的条件下,雷诺数与管径是何关系? 10.当量直径的确定方法以及水力半径的意义。 11.流体在圆形管中流动时的流速分布情况以及平均流速与管中心最大流速的比值为多少?12.什么叫层流内层?如何减薄层流内层的厚度? 13.层流流动时流动阻力与管径和流速之间是何种关系?完全湍流时又是什么关系?15.流体在管内作层流和湍流流动时,摩擦系数与相对粗糙度是否有关?若有关,是何关系?16.掌握流体在圆形管内作层流流动时的摩擦系数的计算。掌握管路总阻力的计算。17.计算流通截面发生变化的局部阻力时,所用的流速应是大管还是小管内的流速。18.当孔板流量计和文氏管流量计上压差计读数相同时,若两流量计的孔径相同,哪个流量计的流量大? 19.离心泵启动前为什么要首先灌泵?什么是气缚现象? 20.离心泵的后盖板上常开有一些小孔,它的作用是什么?叶轮的作用是什么?泵壳的作用是什么?它为什么做成流道面积逐渐扩大的蜗壳形? 21.离心泵有哪些特性?扬程的意义是什么? 22.离心泵启动时,泵的出口阀为什么要处于关闭状态? 23.离心泵铭牌上标出的性能指的是什么状态下的参数?选用离心泵和离心泵操作时效率应控制在什么范围? 24.写出清水泵、油泵、耐腐蚀泵的型号符号,选择泵的步骤是什么? 25.往复泵的性能与离心泵有哪些区别?写出正位移泵的开停、泵步骤。 26.何谓风量、风压?风压与气体的密度是什么关系? 二、题型示例 (一)填充题 1.1atm= mmH2O= kPa。 2.1kgf/cm2= mH2O= MPa

四川大学化工原理PPT课件 1第一章 流体流动的基本概念与流体中的传递现象资料

第一章 流体与流体中的传递现象

特征 流体 (Fluid) 与流体流动 (Flow) 的基本概念 在航空、航天、航海,石油、化工、能源、环境、材料、医学和生命科学等领域,尤其是化工、石油、制药、生物、食品、轻工、材料等许多生产领域以及环境保护和市政工程等,涉及的对象多为流体。 “流程工业” 在流动之中对流体进行化学或物理加工 加工流体的机器与设备 过程装备

物质的三种常规聚集状态:固体、液体和气体 物质外在宏观性质由物质内部微观结构和分子间力所决定物质的三种形态 分子的随机热运动和相互碰撞给分子以动能使之趋于飞散 分子间相互作用力的约束以势能的作用使之趋于团聚 两种力的竞争结果决定了物质的外在宏观性质。而这两种力的大小与分子间距有很大关系。

约为1×10-8 cm (分子尺度的量级),分子间相互作用势能出现一个极值称为“势阱”,即分子的结合能,其值远远大于分子平均动能。分子力占主导地位,分子呈固定排列分子热运动仅呈现为平衡位置附近的振荡。有一定形状且不易变形。 分子间距 液体:分子热运动动能与分子间相互作用势能的竞 争势均力敌。分子间距比固体稍大1/3左右。不可压缩、易流动。 气体:分子间距约为3.3×10-7cm (为分子尺度的10 倍)。分子平均动能远远大于分子间相互作用势能,分子近似作自由的无规则运动。有易流动、可压缩的宏观性质。 超临界流体、等离子体 流体 固体

连续介质假定(Continuum hypotheses) V m V V ??=?→?lim 0ρ?V 0:流体质点或微团。尺度远小于液体所在空间的特征尺度, 而又远大于分子平均自由程 连续介质假定:流体微团连续布满整个流体空间,从而流体的物理性质和运动参数成为空间连续函数 流体是由离散的分子构成的,对其物理性质和运动参数的表征是基于大量分子统计平均的宏观物理量 平均质量 注:该假定对绝大多数流体都适用。但是当流动体系的特征 尺度与分子平均自由程相当时,例如高真空稀薄气体的流动,连续介质假定受到限制。

流体的流动现象

流体的流动现象 化工生产中的许多过程都与流体的流动现象密切相关,流动现象是极为复杂的问题,涉及面广。 1—3—1 牛顿粘性定律与流体的粘度 一、牛顿粘性定律 前已述及,流体具有流动性,即没有固定形状,在外力作用下其内部产生相对运动。另—方面,在运动的状态下,流体还有一种抗拒内在的向前运动的特性,称为粘性。粘性是流动性的反面。 以水在管内流动为例,管内任一截面上各点的速度并不相同,中心处的速度最大,愈靠近管壁速度愈小,在管壁处水的质点附于管壁上,其速度为零。其它流体在管内流动时也有类似的规律。所以,流体在圆管内流动时,实际上是被分割成无数极薄的圆筒层,一层套着一层,各层以不同的速度向前运动,如图1—11所示。由于各层速度不同,层与层之间发生了相对运动。速度快的流体层对相邻的速度较慢的流体层产生了一个推动其向前进方向的力;同时,速度慢的流体层对速度快的流体层也作用一个大小相等、方向相反的力,从而阻碍较快流体层向前运动。这种运动着的流体内部相邻两流体层间的相互作用力,称为流体的内摩擦力。它是流体粘性的表现,又称为粘滞力或粘性摩擦力。流体流动时的内摩擦,是流动阻力产生的依据,流体流动时必须克服内摩擦力而作功,从而流体的一部分机械能转变为热而损失掉。 流体流动时的内摩擦力大小与哪些因素有关?可通过下面情况加以说明。 图1—11 流体在圆管内分层流动示意图 图1—12 平板间液体速度变化图 如图1—12所示,设有上下两块平行放置且面积很大而相距很近的平板,板间充满了某种液体。若将下板固定,对上板施加一个恒定的外力,上板就以恒定的速度u沿x方向运动。此时,两板间的液体就会分成无数平行的薄层而运动,粘附在上板底面的一薄层液体也以速度u随上板运动,其下各层液体的速度依次降低,粘附在下板表面的液层速度为零。

(完整版)化工原理流体流动题库

第一章《流体力学》练习题 一、单选题 1.单位体积流体所具有的()称为流体的密度。 A 质量; B 粘度; C 位能; D 动能。 A 2.单位体积流体所具有的质量称为流体的()。 A 密度; B 粘度; C 位能; D 动能。 A 3.层流与湍流的本质区别是()。

A 湍流流速>层流流速; B 流道截面大的为湍流,截面小的为层流; C 层流的雷诺数<湍流的雷诺数; D 层流无径向脉动,而湍流有径向脉动。 D 4.气体是()的流体。 A 可移动; B 可压缩; C 可流动; D 可测量。 B 5.在静止的流体内,单位面积上所受的压力称为流体的()。 A 绝对压力; B 表压力; C 静压力; D 真空度。

C 6.以绝对零压作起点计算的压力,称为()。 A 绝对压力; B 表压力; C 静压力; D 真空度。 A 7.当被测流体的()大于外界大气压力时,所用的测压仪表称为压力表。 A 真空度; B 表压力; C 相对压力; D 绝对压力。 D 8.当被测流体的绝对压力()外界大气压力时,所用的测压仪表称为压力表。 A 大于; B 小于; C 等于; D 近似于。

A 9.()上的读数表示被测流体的绝对压力比大气压力高出的数值,称为表压力。 A 压力表; B 真空表; C 高度表; D 速度表。 A 10.被测流体的()小于外界大气压力时,所用测压仪表称为真空表。 A 大气压; B 表压力; C 相对压力; D 绝对压力。 D 11. 流体在园管内流动时,管中心流速最大,若

为湍流时,平均流速与管中心的最大流速的关系为()。 A. Um=1/2Umax; B. Um=0.8Umax; C. Um=3/2Umax。 B 12. 从流体静力学基本方程了解到U型管压力计测量其压强差是( )。 A. 与指示液密度、液面高度有关,与U形管粗细无关; B. 与指示液密度、液面高度无关,与U形管粗细有关; C. 与指示液密度、液面高度无关,与U形管粗细无关。 A

化工原理第一章(流体的流动现象)2008

第三节管内流体流动现象 一、牛顿粘性定律与流体的粘性 二、流体流动类型与雷诺数 三、流体在圆管内的速度分布 四、边界层的概念第一章流体流动

一、牛顿粘性定律与流体的粘度 1、牛顿粘性定律 (1)什么是粘性 流体的典型特征是具有流动性,但不同流体的流动性能不同,这主要是因为流体内部质点间作相对运动时存在不同的内摩擦力。 【定义】表明流体流动时产生内摩擦力的特性称为粘性。

(2)内摩擦力(粘性力)的表现 【现象】当拖动上面的平板时,原来平板之间静止不动的流体出现了速度梯度。

(3)什么是内摩擦力? 对任意相邻两层流体来说,上层对下层起带动作用,而下层对上层起拖曳作用,流体层之间的这种相互作用力,称之为内摩擦力。 【说明】内摩擦力是一种切向力(剪力),与作用 面平行。

(4)粘度力的本质——流体内部的分子动量传递 ①沿流体流动方向相邻的两流体层,由于速度不同,动量也就不同。 ②高速流体层中一些分子在随机运动中进入低速流体层,与速度较慢的分子碰撞使其加速,动量增大; ③低速流体层中一些分子也会进入高速流体层使其减速,动量减小。 【结论】分子动量传递是由于流体层之间产生粘性力(内摩擦力)的原因。

实验证明,对于一定的流体,内摩擦力F 与两流体层的速度差du 成正比,与两层间的接触面积A 成正比,与两层之间的垂直距离dy 成反比,即: dy du A F μ=式中:F ——内摩擦力,N ; du /dy ——法向速度梯度,即在与流体流动方向相垂直的y 方向流体速度的变化率,1/s ; μ——比例系数,称为流体的粘度或动力粘度,Pa ·s 。(5)牛顿粘性定律

流体流动与输送机械习题及答案

流体流动与输送机械习题及答案 1. 某烟道气的组成为CO 2 13%,N 2 76%,H 2O 11%(体积%),试求此混合气体在温度500℃、压力101.3kPa 时的密度。 解:混合气体平均摩尔质量 kg/mol 1098.2810)1811.02876.04413.0(33--?=??+?+?=∑=i i m M y M ∴ 混合密度 33 3kg/m 457.0) 500273(31.81098.28103.101=+????== -RT pM ρm m 2.已知20℃时苯和甲苯的密度分别为879 kg/m 3 和867 kg/m 3 ,试计算含苯40%及甲苯60%(质量%)的混合液密度。 解: 867 6 .08794.01 2 2 1 1 += + = ρρρa a m 混合液密度 3 kg/m 8.871=m ρ 3.某地区大气压力为101.3kPa ,一操作中的吸收塔塔内表压为130kPa 。若在大气压力为75 kPa 的高原地区操作该吸收塔,且保持塔内绝压相同,则此时表压应为多少? 解: ' '表表绝+p p p p p a a =+= ∴kPa 3.15675)1303.101)(' '=-==+( -+真表a a p p p p 4.如附图所示,密闭容器中存有密度为900 kg/m 3 的液体。容器上方的压力表读数为42kPa ,又在液面下装一压力表,表中心线在测压口以上0.55m ,其读数为58 kPa 。试计算液面到下方测压口的距离。 解:液面下测压口处压力 gh p z g p p ρρ+=?+=10 m 36.255.081 .990010)4258(3 0101=+??-=+ρ-=ρ-ρ+=?∴h g p p g p gh p z 题4 附图

1--流体流动与输送设备

第一章流体流动与输送设备(47) 流体流动 填空题 1.气体具有较大的压缩性和热膨胀性,其密度随()和()的变化而变化。 2.工厂车间管廊及设备的管线常用导线连接起来,其目的是()。 3.石油化学工业中,常用的法兰标准有()标准和()标准。 4.对于长距离输送高温介质的管线,其热补偿最好选用()。 5.孔板流量计是利用流体流经孔板时,在孔板前后产生()来测流量的。 6.以()作起点计算的压强叫绝对压强。 7.在一定温度和压力下,单位体积内所具有的物质的()称为该物质在此 温度和压力下的密度。 8.物质以扩散的方式从一相转到另一相的过程为()。 9.指出下列符号代表的阀门型号?G:()Z:()A:()。 10.石油化工生产具有的三大特点是()、()、()。 11.装置引入蒸气时要防止()。 12.单位时间内流过管道()的流体量称为流量。 13.任一截面衡量物体()的物理量称为温度。 14.单位质量的纯物质在没有()和()时,温度每改变1 ℃所需要的热 量称为比热。 15.绝对压力等于()与()之和。 16.疏水阀的安装高度不应高于()。 17.孔板流量计是利用流体流经孔板时,在孔板前后产生()来测量的。 18.弹簧式压力表是利用弹性元件在被测介质的压力作用下产生()的原理 而工作的。 19.当Re为已知时,流体在圆形管内呈层流时的摩擦系数λ等于(),在管 内呈湍流时的摩擦系数λ与()有关。 20.液体的黏度随温度升高而(),气体的黏度随温度升高而()。 21.某流体在圆形直管中作滞流流动时,其速度分布是()型曲线,其管中心 最大流速为平均流速的()倍,摩擦系数λ与Re的关系为()。 22.牛顿型流体与非牛顿型流体的主要区别是()。 23.孔板流量计的主要缺点是()大。 24.流体静力学基本方程式为()。 25.单位体积流体所具有的()称为流体的密度。 26.在国际单位制中,黏度的单位是(),在物理单位中为(),二者的换算关 系为()。 27.当地大气压为750 mmHg时, 测得某体系的表压为100 mmHg,则该体系 的绝对压强为()Pa, 真空度为()Pa。 28.某液体的比重为0879 g/L, 其密度为(),比容为()。 29.圆管中有常温下的水流动, 管内径d=100 mm, 测得其中的质量流量为 7 kg/s, 其体积流量为(),平均流速为()。 30.当20 ℃的甘油(ρ=1 261 kg/m3, μ=1 499厘泊)在内径为100 mm的管 内流动时, 若流速为10 m/s, 其雷诺准数Re为(),摩擦阻力系数λ为()。 31.某长方形截面的通风管道, 其截面尺寸为30×20 mm,则当量直径de为 ()。

最新第二章 流体流动与输送 习题word版本

第二章流体流动与输送习题 1.燃烧重油所得的燃烧气,经分析测知其中含8.5%CO2,7.5%O2,76%N2,8%H2O(体积%)。试求温度为500℃、压强为101.33×103Pa时,该混合气体的密度。 2.在大气压为101.33×103Pa的地区,某真空蒸馏塔塔顶真空表读数为9.84×104Pa。若在大气压为8.73×104Pa的地区使塔内绝对压强维持相同的数值,则真空表读数应为多少? 3.敞口容器底部有一层深0.52m的水,其上部为深3.46m的油。求器底的压强,以Pa 表示。此压强是绝对压强还是表压强?水的密度为1000kg/m3,油的密度为916 kg/m3。 4.为测量腐蚀性液体贮槽内的存液量,采用图1-7所示的装置。控制调节阀使压缩空气缓慢地鼓泡通过观察瓶进入贮槽。今测得U型压差计读数R=130mmHg,通气管距贮槽底部h=20cm,贮槽直径为2m,液体密度为980 kg/m3。试求贮槽内液体的储存量为多少吨? 5.一敞口贮槽内盛20℃的苯,苯的密度为880 kg/m3。液面距槽底9m,槽底侧面有一直径为500mm的人孔,其中心距槽底600mm,人孔覆以孔盖,试求: (1)人孔盖共受多少静止力,以N表示; (2)槽底面所受的压强是多少? 6.为了放大所测气体压差的读数,采用如图所示的斜管式压差计,一臂垂直,一臂与水平成20°角。若U形管内装密度为804 kg/m3的95%乙醇溶液,求读数R为29mm时的 压强差。 7.用双液体U型压差计测定两点间空气的压差,测得R=320mm。由于两侧的小室不够大,致使小室内两液面产生4mm的位差。试求实际的压差为多少Pa。若计算时忽略两小室内的液面的位差,会产生多少的误差?两液体密度值见图。 8.为了排除煤气管中的少量积水,用如图所示的水封设备,水由煤气管路上的垂直支管排出,已知煤气压强为1×105Pa(绝对压强)。问水封管插入液面下的深度h应为若干?当

第一章流体流动§2流体在管内的流动

第一章 流体流动 §2流体在管内的流动 一、流量和流速 (一)流量 1、体积流量Vs 单位时间内流体流经管路任一截面的流体体积称为体积流量,用符号Vs 表示,m 3/s 2、质量流量 单位时间内流体流经导管任一截面的质量称为质量流量,用符号Ws 表示,kg/s 质量流量 =流体密度×体积流量,即: W s =ρV s (二)流速 1、平均流速 流速是指在单位时间内流体质点在流动方向上流过的距离,以u 表示,单位为m/s. 流速和流量的关系为 A Vs u 导管横面积体积流量 W S =ρV s =ρAu 2、质量流速 单位时间内流体流经管路单位截面的质量称为质量流量,用G 表示,

单位为 kg/m 2?s G= W s /A=ρAu/A=ρu 3、管路直径的估算 u Vs d π4= 流量一般由生产任务确定,而合理的流速则由经济衡算决定。参看P404附录19。 二、稳定流动与不稳定流动 流体在管路中流动时,在任意一点的流速、压力等有关物理量都 不随时间而改变,这种流动称为稳定流动。 若流动的流体中任意一点的物理参数有部分或全部随时间而变化,这种流动称为不稳定流动。 在化工厂中一般都是稳定流动。 三、流体流动的物料衡算――连续性方程 如图1-12所示的定态流动系统,流体连续地从1-1′截面进入,2-2′截面流出,且充满全部管道。以1-1′、2-2′截面以及管壁内为衡算范围,在管路中流体没有增加和漏失的情况下, 根据物料衡算,单位时间进入截面1-1′的流体质量与单位时间流出截

面2-2′的流体质量必然相等,即: W s1=W s2 (1-32) W s =ρAu =ρ1A 1u 1=ρ2A 2u 2=常数 (1-34) 若流体不可压缩,则有 A 1u 1=A 2u 2=常数 (1-35) 上式说明不可压缩性流体流经各截面时的体积流量也不变,流速u 与管截面积成反比,截面积越小,流速越大;反之,截面积越大,流速越小。 对于圆形管道,上式可变形为 2 121 2 2 1???? ??==d d A A u u (1-36) 上式说明不可压缩流体在圆形管道中,任意截面的流速与管内径的平方成反比 例 如附图所示,管路由一段φ89×4mm 的管1、一段φ108×4mm 的管2和两段φ57×3.5mm 的分支管3a 及3b 连接而成。若水以9×10 -3 m/s 的体积流量流动,且在两段分支管内的流量相等,试求水在各 段管内的速度。 解: 管1的内径为 mm 8142891=?-=d 则水在管1中的流速为

作业一传热与流体流动的数值方法

流动与传热的数值方法作业(一) 姓名:徐世杰 学号:120351 题目1: 用Galerkin 方法求以下方程在内部节点的离散化方程。 1 1 22[]0i i x x d T T dx dx +-+=? 取线性插值函数, 1111 ()()()()i i i i i i T x l x T l x T l x T -+-+=++,其中节点间距x ?是均匀的。 111111()[,]()()()(,]()0i i i i i i i i i i i x x x x x x x x x l x x x x x x ---+++?? -∈? ? -????-?? =∈? ?-????? ? ?? ??其它 题目2:考虑 220 001 1 d T T dx dT x dx x T +=? ==???==? ① 用控制容积有限差分方法做出内部节点和边界节点的离散化方程; ② 写出代数方程组的迭代求解程序; ③ 研究空间步长x ?对数值精度和收敛性的影响。

题目一 解:Galerkin 方法就是将对应某个点上的插值函数作为权函数。Galerkin 方法是有限元方法。 可知有: 1 1 22[]*()0i i x i x d T T l x dx dx +-+=? , i=2,….,n -1 按照习惯,上述积分写成: 1 1 11 222222[]*()[]*()[]*()i i i i i i x x x i i i x x x d T d T d T T l x dx T l x dx T l x dx dx dx dx ++--+=+++??? 可以推得: 1 1 11 222112221 1 []*()[]*[]*i i i i i i x x x i i i i i i i x x x x x x x d T d T d T T l x dx T dx T dx dx dx x x dx x x ++---+-+--+=+++--??? 由弱解变换可以得 1 11 111 1 1 1 1 22()[]*()[()]()()i i i i i i i i i i x x x i i i x x x x x i i x x dl x d T d dT dT l x dx l x dx dx dx dx dx dx dx dl x dT dT l x dx dx dx dx +++---++--=-=-???? 可以得 1 1 11 22()[]*()[()]0i i i i x x i i i x x dl x d T dT T l x dx Tl x dx dx dx dx ++--+=-+=?? ,i=2,…,n -1 上式继续推导有: 1 1 1111 2 211()[]*()[()]*()[2]()i i i i i i x x i i i i x x x i i i i x dl x d T dT T l x dx Tl x l x dx dx dx dx T T T Tl x dx x ++--+-+-+=-+-+=+???? 其中,

流体流动–––基本概念与基本原理

流体流动–––基本概念与基本原理 一、流体静力学基本方程式 )(2112z z g p p -+=ρ 或 gh p p ρ+=0 注意:1、应用条件:静止的连通着的同一种连续的流体。 2、压强的表示方法:绝压—大气压=表压 表压常由压强表来测量; 大气压—绝压=真空度 真空度常由真空表来测量。 3、压强单位的换算: 1atm=760mmHg=10.33mH 2O=101.33kPa=1.033kgf/cm 2=1.033at 4、应用:水平管路上两点间压强差与U 型管压差计读数R 的关系: gR p p A )(21ρρ-=- 处于同一水平面的液体,维持等压面的条件必须时静止、连续和同一种液体。 二、定态流动系统的连续性方程式––––物料衡算式 常数常数=====≠ρρρρuA A u A u w s A ΛΛ222111, 常数常数======uA A u A u V s A ΛΛ2211, ρ 21221221///, d d A A u u A ===圆形管中流动 常数ρ 三、定态流动的柏努利方程式––––能量衡算式 1kg 流体:f h u P gZ We u P gZ ∑+++=++ + 2 222211 1ρρ [J/kg] 讨论点:1、流体的流动满足连续性假设。 2、理想流体,无外功输入时,机械能守恒式: 3、可压缩流体,当Δp/p 1<20%,仍可用上式,且ρ=ρm 。 4、注意运用柏努利方程式解题时的一般步骤,截面与基准面选取的原则。 5、流体密度ρ的计算: 理想气体ρ=PM/RT 混合气体 vn n v v m x x x ρρρρ+++=Λ2211 混合液体 n wn w m w m x x x ρρρρ+ ++ = Λ2 2 1 1 上式中:vi x ––––体积分率;wi x ––––质量分率。 6、gz ,u 2/2,p/ρ三项表示流体本身具有的能量,即位能、动能和静压能。∑h f 为流经系统的能量损失。W e 为流体在两截面间所获得的有效功,是决定流体输送设备重要参数。输送设备有效功率N e =W e ·ωs ,轴功率N=N e /η(W ) 7、1N 流体 f e H g u g p Z H +?+?+ ?=22 ρ [m] (压头) 2 22 2 22211 1u P gZ u P gZ + +=++ρρ

化工原理流体流动

化工原理绪论、流体流动、流体输送机械 一、填空题 1.一个生产工艺是由若干个__________ 和___________构成的。 2.各单元操作的操作原理及设备计算都是以__________、___________、___________、和___________四个概念为依据的。 3.常见的单位制有____________、_____________和_______________。 4.由于在计量各个物理量时采用了不同的__________,因而产生了不同的单位制。 5.一个过程在一定条件下能否进行,以及进行到什么程度,只有通过__________来判断。 6.单位时间过程的变化率称为___________。 二问答题 7.什么是单元操作?主要包括哪些基本操作? 8.提高过程速率的途径是什么? 9.第一章流体流动 一填空题 1.单位体积流体的质量称为________,它与________互为倒数。 2.流体垂直作用于单位面积上的力,称为____________。 3.单位时间流经管道任一截面的流体量称为________,其表示方法有________和________两种。 4.当管中流体形成稳定流动时,管中必定充满流体,即流体必定是_________的。 5.产生流体阻力的根本原因是________;而___________是产生流体阻力的第二位原因。另外,管壁粗糙度和管子的长度、直径均对流体阻力_______________。 6.流体在管道中的流动状态可分为______ 和__________两种类型,二者在部质点运动方式上的区别是_____________________________________。 7.判断液体处于同一水平面上的各点压强是否相等的依据是_________、___________、________________。 8.流体若由低压头处流向高压头处时,所加入外加功的作用是______________________________。 9.在测量流体的流量时,随流量的增加孔板流量计两侧的压差将_______,若改用转子流量计,随流量增加转子两侧压差值________。 一、选择题 10.液体的密度随温度的升高而_________。

相关主题
文本预览
相关文档 最新文档