当前位置:文档之家› JPEG图像格式详解

JPEG图像格式详解

JPEG图像格式详解
JPEG图像格式详解

JPEG图像格式详解

JPEG压缩简介

-------------

1.色彩模型

JPEG的图片使用的是YCrCb颜色模型,而不是计算机上最常用的RGB.关于色彩模型,这里不多阐述.只是说明,YCrCb模型更适合图形压缩.因为人眼对图片上的亮度Y的变化远比色度C的变化敏感.我们完全可以每个点保存一个8bit的亮度值,每2x2个点保存一个Cr Cb值,而图象在肉眼中的感觉不会起太大的变化.所以,原来用RGB模型,4个点需要4x3=12字节.而现在仅需要4+2=6字节;平均每个点占12bit.当然JPEG格式里允许每个点的C值都记录下来;不过MPEG里都是按12bit一个点来存放的,我们简写为YUV12.

[R G B]->[Y Cb Cr]转换

-------------------------

(R,G,B都是8bit unsigned)

|Y||0.2990.5870.114||R||0|

|Cb|=|-0.1687-0.33130.5|*|G|+|128|

|Cr||0.5-0.4187-0.0813||B||128|

Y=0.299*R+0.587*G+0.114*B(亮度)

Cb=-0.1687*R-0.3313*G+0.5*B+128

Cr=0.5*R-0.4187*G-0.0813*B+128

[Y,Cb,Cr]->[R,G,B]转换

-------------------------

R=Y+ 1.402*(Cr-128)

G=Y-0.34414*(Cb-128)-0.71414*(Cr-128)

B=Y+ 1.772*(Cb-128)

一般,C值(包括Cb Cr)应该是一个有符号的数字,但这里被处理过了,方法是加上了128.JPEG里的数据都是无符号8bit的.

2.DCT(离散余弦变换)

JPEG里,要对数据压缩,先要做一次DCT变换.DCT变换的原理,涉及到数学知识,这里我们不必深究.反正和傅立叶变换(学过高数的都知道)是差不多了.经过

个点为一个单位处理的.所以如果原始图片的长宽不是8的倍数,都需要先补成8

的倍数,好一块块的处理.另外,记得刚才我说的Cr Cb都是2x2记录一次吗?所

以大多数情况,是要补成16x16的整数块.按从左到右,从上到下的次序排列(和我

们写字的次序一样).JPEG里是对Y Cr Cb分别做DCT变换的.这里进行DCT变换

的Y,Cr,Cb值的范围都是-128~127.(Y被减去128)

JPEG编码时使用的是Forward DCT(FDCT)解码时使用的Inverse DCT(IDCT)

下面给出公式:

FDCT:

772*x+12*y+1

F(u,v)=alpha(u)*alpha(v)*sum sum f(x,y)*cos(-------*u*PI)*cos(------*v*PI)

x=0y=01616

u,v=0,1,...,7

{1/sqrt(8)(u==0)

alpha(u)={

{1/2(u!=0)

IDCT:

772*x+12*y+1

f(x,y)=sum sum alpha(u)*alpha(v)*F(u,v)*cos(-------*u*PI)*cos(------*v*PI) u=0v=01616

x,y=0,1 (7)

这个步骤很花时间,另外有种AA&N优化算法,大家可以去inet自己找一下.

在Intel主页上可以找到AA&N IDCT的MMX优化代码.(Intel主页上的代码,

输入数据为12.4的定点数,输入矩阵需要转置90度)

3.重排列DCT结果

DCT将一个8x8的数组变换成另一个8x8的数组.但是内存里所有数据都是线

形存放的,如果我们一行行的存放这64个数字,每行的结尾的点和下行开始的点就

没有什么关系,所以JPEG规定按如下次序整理64个数字.

0,1,5,6,14,15,27,28,

2,4,7,13,16,26,29,42,

3,8,12,17,25,30,41,43,

9,11,18,24,31,40,44,53,

10,19,23,32,39,45,52,54,

20,22,33,38,46,51,55,60,

35,36,48,49,57,58,62,63

这样数列里的相邻点在图片上也是相邻的了.

4.量化

对于前面得到的64个空间频率振幅值,我们将对它们作幅度分层量化操作.方法就是分别除以量化表里对应值并四舍五入.

for(i=0;i<=63;i++)

vector[i]=(int)(vector[i]/quantization_table[i]+0.5)

下面有张JPEG标准量化表.(按上面同样的弯曲次序排列)

1611101624405161

1212141926586055

1413162440576956

1417222951878062

182237566810910377

243555648110411392

49647887103121120101

7292959811210010399

这张表依据心理视觉阀制作,对8bit的亮度和色度的图象的处理效果不错.

当然我们可以使用任意的量化表.量化表是定义在jpeg的DQT标记后.一般

为Y值定义一个,为C值定义一个.

量化表是控制JPEG压缩比的关键.这个步骤除掉了一些高频量,损失了很高

细节.但事实上人眼对高空间频率远没有低频敏感.所以处理后的视觉损失很小.

另一个重要原因是所有的图片的点与点之间会有一个色彩过渡的过程.大量的图象

信息被包含在低空间频率中.经过量化处理后,在高空间频率段,将出现大量连续

的零.

注意,量化后的数据有可能超过2byte有符号整数的处理范围.

5.0RLE编码

现在我们矢量中有许多连续的0.我们可以使用RLE来压缩掉这些0.这里我们将跳过第一个矢量(后面将解释为什么)因为它的编码比较特别.假设有一组矢量(64个的后63个)是

57,45,0,0,0,0,23,0,-30,-16,0,0,1,0,0,0,0,0,0,0,..,0

经过RLE压缩后就是

(0,57);(0,45);(4,23);(1,-30);(0,-16);(2,1);EOB

EOB是一个结束标记,表示后面都是0了.实际上,我们用(0,0)表示EOB

但是,如果这组数字不以0结束,那么就不需要EOB.

另外需要注意的是,由于后面huffman编码的要求,每组数字前一个表示0的数量的必须是4bit,就是说,只能是0~15,所以,如果有这么一组数字:

我们实际这样编码:

(0,57);(15,0)(2,3);(4,2);(15,0)(15,0)(1,895),(0,0)

注意(15,0)表示了16个连续的0.

6.huffman编码

为了提高储存效率,JPEG里并不直接保存数值,而是将数值按位数分成16组:

数值组实际保存值

00-

-1,110,1

-3,-2,2,3200,01,10,11

-7,-6,-5,-4,4,5,6,73000,001,010,011,100,101,110,111 -15,..,-8,8,..,1540000,..,0111,1000,..,1111

-31,..,-16,16,..,31500000,..,01111,10000,..,11111

-63,..,-32,32,..,636.

-127,..,-64,64,..,1277.

-255,..,-128,128,..,2558.

-511,..,-256,256,..,5119.

-1023,..,-512,512,..,102310.

-2047,..,-1024,1024,..,204711.

-4095,..,-2048,2048,..,409512.

-8191,..,-4096,4096,..,819113.

-16383,..,-8192,8192,..,1638314.

-32767,..,-16384,16384,..,3276715.

还是来看前面的例子:

(0,57);(0,45);(4,23);(1,-30);(0,-8);(2,1);(0,0)

只处理每对数右边的那个:

57是第6组的,实际保存值为111001,所以被编码为(6,111001)

45,同样的操作,编码为(6,101101)

23->(5,10111)

-30->(5,00001)

-8->(4,0111)

1->(1,1)

前面的那串数字就变成了:

(0,6),111001;(0,6),101101;(4,5),10111;(1,5),00001;(0,4),0111;

(2,1),1;(0,0)

括号里的数值正好合成一个字节.后面被编码的数字表示范围是-32767..32767.

合成的字节里,高4位是前续0的个数,低4位描述了后面数字的位数.

继续刚才的例子,如果06的huffman编码为111000(06对应111000为查表所得.

对应成1~16bits的不定长数值.出现频率高的数字小于8bits,频率低的大于8bits,从而使整个的数据长度降低,关于huffman压缩算法,请查阅相关资料)

69=(4,5)---1111111110011001(注:69=4*16+5=0x45)

21=(1,5)---11111110110

4=(0,4)---1011

33=(2,1)---11011

0=EOB=(0,0)---1010

那么最后对于前面的例子表示的63个系数(记得我们将第一个跳过了吗?)按位流

写入JPG文件中就是这样的: 1110001110011110001011011111111110011001101111111111011000001 101101111101111010

7.DC的编码

-----------

记得刚才我们跳过了每组64个数据的第一个吧,DC就是指的这个数字(后面63

个简称AC)代入前面的FDCT公式可以得到

c(0,0)77

DC=F(0,0)=---------*sum sum f(x,y)*cos0*cos0其中c(0,0)=1/2

4x=0y=0

177

=---*sum sum f(x,y)

8x=0y=0

即一块图象样本的平均值.就是说,它包含了原始8x8图象块里的很多能量.(通常

会得到一个很大的数值)

JPEG的作者指出连续块的DC率之间有很紧密的联系,因此他们决定对8x8块的

DC值的差别进行编码.(Y,Cb,Cr分别有自己的DC)

Diff=DC(i)-DC(i-1)

所以这一块的DC(i)就是:DC(i)=DC(i-1)+Diff

JPG从0开始对DC编码,所以DC(0)=0.然后再将当前Diff值加在上一个值上得

到当前值.

下面再来看看上面那个例子:(记住我们保存的DC是和上一块DC的差值Diff)

例如上面例子中,Diff是-511,就编码成

如果9的Huffman编码是1111110(在JPG文件中,一般有两个Huffman表,一个是DC用,一个是AC用)那么在JPG文件中,DC的2进制表示为

1111110000000000

它将放在63个AC的前面,上面上个例子的最终BIT流如下:

1111110000000000111000111001111000101101111111111001100110111 1111111011000001101101111101111010

解码过程简述

-------------

8.一个数据单元Y的解码(其余类同)

--------------------------------

在整个图片解码的开始,你需要先初始化DC值为0.

1)先解码DC:

a)取得一个Huffman码(使用Huffman DC表)

b)Huffman解码,看看后面的数据位数N

c)取得N位,计算Diff值

d)DC+=Diff

e)写入DC值:"vector[0]=DC"

2)解码63个AC:

-------循环处理每个AC直到EOB或者处理到64个AC

a)取得一个Huffman码(使用Huffman AC表)

b)Huffman解码,得到(前面0数量,组号)

[记住:如果是(0,0)就是EOB了]

c)取得N位(组号)计算AC

d)写入相应数量的0

e)接下来写入AC

-----------------

下一步的解码

------------

上一步我们得到了64个矢量.下面我们还需要做一些解码工作:

2)重排列64个矢量到8x8的块中

3)对8x8的块作IDCT

对8x8块的(Y,Cb,Cr)重复上面的操作[Huffman解码,步骤1),2),3)]

4)将所有的8bit数加上128

5)转换YCbCr到RGB

9.JPG文件(Byte级)里怎样组织图片信息

-----------------------------------

注意JPEG/JFIF文件格式使用Motorola格式,而不是Intel格式,就是说,如果是一个字的话,高字节在前,低字节在后.

JPG文件是由一个个段(segments)构成的.每个段长度<=65535.每个段从一个标记字开始.标记字都是0xff打头的,以非0字节和0xFF结束.例如'FFDA',

'FFC4','FFC0'.每个标记有它特定意义,这是由第2字节指明的.例如,SOS(Start Of Scan='FFDA')指明了你应该开始解码.另一个标记DQT(Define Quantization Table=0xFFDB)就是说它后面有64字节的quantization表

在处理JPG文件时,如果你碰到一个0xFF,而它后面的字节不是0,并且这个字节没有意义.那么你遇到的0xFF字节必须被忽略.(一些JPG里,常用用0xFF做某些填充用途)如果你在做huffman编码时碰巧产生了一个0xFF,那么就用0xFF

0x00代替.就是说在jpeg图形解码时碰到FF00就把它当作FF处理.

另外在huffman编码区域结束时,碰到几个bit没有用的时候,应该用1去填充.然后后面跟FF.

下面是几个重要的标记

--------------------

SOI=Start Of Image='FFD8'

这个标记只在文件开始出现一次

EOI=End Of Image='FFD9'

JPG文件都以FFD9结束

RSTi=FFDi(i=0..7)[RST0=FFD0,RST7=FFD7]

=复位标记

通常穿插在数据流里,我想是担心JPG解码出问题吧(应该配合DRI使用).RST将Huffman的解码数据流复位.DC也重新从0开始计

(SOS---RST0---RST1--RST2--...

...--RST6---RST7--RST0--...)

10.标记

-------

下面是必须处理的标记

SOF0=Start Of Frame0=FFC0

SOS=Start Of Scan=FFDA

APP0=it's the marker used to identify a JPG file which uses the JFIF specification=FFE0

COM=Comment=FFFE

DNL=Define Number of Lines=FFDC

DRI=Define Restart Interval=FFDD

DQT=Define Quantization Table=FFDB

DHT=Define Huffman Table=FFC4

11.JPG文件中Haffman表的储存

-----------------------------

JPEG里定义了一张表来描述Haffman树.定义在DHT标记后面.注意:Haffman

代码的长度限制在16bit内.

一般一个JPG文件里会有2类Haffman表:一个用于DC一个用于AC(实际有4个表,亮度的DC,AC两个,色度的DC,AC两个)

这张表是这样保存的:

1)16字节:

第i字节表示了i位长的Huffman代码的个数(i=1到16)

2)这表的长度(字节数)=这16个数字之和

现在你可以想象这张表怎么存放的吧?对应字节就是对应Haffman代码等价数字.我不多解释,这需要你先了解Haffman算法.这里只举一个例子:

Haffman表的表头是0,2,3,1,1,1,0,1,0,0,0,0,0,0,0,0

就是说长度为1的代码没有

长度为2的代码为00

01

长度为3的代码是100

101

110

长度为4的代码是1110

长度为5的代码是11110

长度为6的代码是111110

长度为7的代码没有(如果有一个的话应该是1111110)

长度为8的代码是11111100

.....

如果表下面的数据是

4557291723253428

就是说

45=00

57=01

29=100

17=101

23=110

等等...

如果你懂Haffman编码,这些不难理解

12.采样系数

-----------

下面讲解的都是真彩JPG的解码,灰度JPG的解码很简单,因为图形中只有亮度信息.而彩色图形由(Y,Cr,Cb)构成,前面提到过,Y通常是每点采样一次,而Cr, Cb一般是2x2点采样一次,当然也有的JPG是逐点采样,或者每两点采样(横向两点,纵向一点)采样系数均被定义成对比最高采样系数的相对值.

一般情况(即:Y逐点采样,Cr Cb每2x2点一次)下:Y有最高的采样率,横向采样系数HY=2纵向采样系数VY=2;Cb的横向采样系数HCb=1,纵向采样系数VCb=1;同样HCr=1,VCr=1

在Jpeg里,8x8个原始数据,经过RLE,Huffman编码后的一串数据流称为一个Data Unit(DU)JPG里按DU为单位的编码次序如下:

1)for(counter_y=1;counter_y<=VY;counter_y++)

for(counter_x=1;counter_x<=HY;counter_x++)

{对Y的Data Unit编码}

2)for(counter_y=1;counter_y<=VCb;counter_y++)

for(counter_x=1;counter_x<=HCb;counter_x++)

{对Cb的Data Unit编码}

3)for(counter_y=1;counter_y<=VCr;counter_y++)

for(counter_x=1;counter_x<=HCr;counter_x++)

{对Cr的Data Unit编码}

按我上面的例子:(HY=2,VY=2;HCb=VCb=1,HCr,VCr=1)就是这样一个次序YDU,YDU,YDU,YDU,CbDU,CrDU

这些就描述了一块16x16的图形.16x16=(Hmax*8x Vmax*8)这里Hmax=HY=2

一个(Hmax*8,Vmax*8)的块被称作MCU(Minimun Coded Unix)前面例子中一个MCU=YDU,YDU,YDU,YDU,CbDU,CrDU

如果HY=1,VY=1

HCb=1,VCb=1

HCr=1,VCr=1

这样(Hmax=1,Vmax=1),MCU只有8x8大,MCU=YDU,CbDU,CrDU

对于灰度JPG,MCU只有一个DU(MCU=YDU)

JPG文件里,图象的每个组成部分的采样系数定义在SOF0(FFC0)标记后

13.简单说一下JPG文件的解码

-------------------------

解码程序先从JPG文件中读出采样系数,这样就知道了MCU的大小,算出整个图象有几个MCU.解码程序再循环逐个对MCU解码,一直到检查到EOI标记.对于每个MCU,按正规的次序解出每个DU,然后组合,转换成(R,G,B)就OK了

附:JPEG文件格式

~~~~~~~~~~~~~~~~

-文件头(2bytes):$ff,$d8(SOI)(JPEG文件标识)

-任意数量的段,见后面

-文件结束(2bytes):$ff,$d9(EOI)

段的格式:

~~~~~~~~~

-header(4bytes):

$ff段标识

n段的类型(1byte)

sh,sl该段长度,包括这两个字节,但是不包括前面的$ff和n.

注意:长度不是intel次序,而是Motorola的,高字节在前,低字节在后!

-该段的内容,最多65533字节

注意:

-有一些无参数的段(下面那些前面注明星号的)

这些段没有长度描述(而且没有内容),只有$ff和类型字节.

-段之间无论有多少$ff都是合法的,必须被忽略掉.

段的类型:

*TEM=$01可以忽略掉

SOF0=$c0帧开始(baseline JPEG),细节附后

SOF1=$c1dito

SOF2=$c2通常不支持

SOF3=$c3通常不支持

SOF5=$c5通常不支持

SOF6=$c6通常不支持

SOF7=$c7通常不支持

SOF9=$c9arithmetic编码(Huffman的一种扩展算法),通常不支持SOF10=$ca通常不支持

SOF11=$cb通常不支持

SOF13=$cd通常不支持

SOF14=$ce通常不支持

SOF14=$ce通常不支持

SOF15=$cf通常不支持

DHT=$c4定义Huffman Table,细节附后

JPG=$c8未定义/保留(引起解码错误)

DAC=$cc定义Arithmetic Table,通常不支持

*RST0=$d0RSTn用于resync,通常被忽略

*RST1=$d1

*RST2=$d2

*RST3=$d3

*RST4=$d4

*RST5=$d5

*RST6=$d6

*RST7=$d7

SOI=$d8图片开始

EOI=$d9图片结束

SOS=$da扫描行开始,细节附后

DQT=$db定义Quantization Table,细节附后

DNL=$dc通常不支持,忽略

DRI=$dd定义重新开始间隔,细节附后

DHP=$de忽略(跳过)

EXP=$df忽略(跳过)

APP15=$ef忽略

JPG0=$f0忽略(跳过)

JPG13=$fd忽略(跳过)

COM=$fe注释,细节附后

其它的段类型都保留必须跳过

SOF0:Start Of Frame0:

~~~~~~~~~~~~~~~~~~~~~~~

-$ff,$c0(SOF0)

-长度(高字节,低字节),8+components*3

-数据精度(1byte)每个样本位数,通常是8(大多数软件不支持12和16) -图片高度(高字节,低字节),如果不支持DNL就必须>0

-图片宽度(高字节,低字节),如果不支持DNL就必须>0

-components数量(1byte),灰度图是1,YCbCr/YIQ彩色图是3,CMYK彩色图是4

-每个component:3bytes

-component id(1=Y,2=Cb,3=Cr,4=I,5=Q)

-采样系数(bit0-3vert.,4-7hor.)

-quantization table号

DRI:Define Restart Interval:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-$ff,$dd(DRI)

-长度(高字节,低字节),必须是4

-MCU块的单元中的重新开始间隔(高字节,低字节),

意思是说,每n个MCU块就有一个RSTn标记.

第一个标记是RST0,然后是RST1等,RST7后再从RST0重复

DQT:Define Quantization Table:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-$ff,$db(DQT)

-长度(高字节,低字节)

-QT信息(1byte):

bit0..3:QT号(0..3,否则错误)

bit 4..7:QT精度,0=8bit,否则16bit

-n字节的QT,n=64*(精度+1)

备注:

-当精度=1(16bit),每个字都是高位在前低位在后

DAC:Define Arithmetic Table:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

法律原因,现在的软件不支持arithmetic编码.

不能生产使用arithmetic编码的JPEG文件

DHT:Define Huffman Table:

~~~~~~~~~~~~~~~~~~~~~~~~~~

-$ff,$c4(DHT)

-长度(高字节,低字节)

-HT信息(1byte):

bit0..3:HT号(0..3,否则错误)

bit4:HT类型,0=DC table,1=AC table

bit 5..7:必须是0

-16bytes:长度是 1..16代码的符号数.这16个数的和应该<=256 -n bytes:一个包含了按递增次序代码长度排列的符号表

(n=代码总数)

备注:

-一个单独的DHT段可以包含多个HT,每个都有自己的信息字节

COM:注释:

~~~~~~~~~~

-$ff,$fe(COM)

-注释长度(高字节,低字节)=L+2

-注释为长度为L的字符流

SOS:Start Of Scan:

~~~~~~~~~~~~~~~~~~~

-$ff,$da(SOS)

-长度(高字节,低字节),必须是6+2*(扫描行内组件的数量)

-扫描行内组件的数量(1byte),必须>=1,<=4(否则是错的)通常是3 -每个组件:2bytes

-component id(1=Y,2=Cb,3=Cr,4=I,5=Q),见SOF0

-使用的Huffman表:

-bit0..3:AC table(0..3)

-bit 4..7:DC table(0..3)

-忽略3bytes(???)

备注:

-图片数据(一个个扫描行)紧接着SOS段.

BMP图像格式详解

BMP格式图像文件详析 首先请注意所有的数值在存储上都是按“高位放高位、低位放低位的原则”,如12345678h放在存储器中就是7856 3412)。下图是导出来的开机动画的第一张图加上文件头后的16进制数据,以此为例进行分析。T408中的图像有点怪,图像是在电脑上看是垂直翻转的。在分析中为了简化叙述,以一个字(两个字节为单位,如424D就是一个字)为序号单位进行,“h”表示是16进制数。 424D 4690 0000 0000 0000 4600 0000 2800 0000 8000 0000 9000 0000 0100*1000 0300 0000 0090 0000 A00F 0000 A00F 0000 0000 0000 0000 0000*00F8 0000 E007 0000 1F00 0000 0000 0000*02F1 84F1 04F1 84F1 84F1 06F2 84F1 06F2 04F2 86F2 06F2 86F2 86F2 ...... BMP文件可分为四个部分:位图文件头、位图信息头、彩色板、图像数据阵列,在上图中已用*分隔。 一、图像文件头 1)1:图像文件头。424Dh=’BM’,表示是Windows支持的BMP 格式。

2)2-3:整个文件大小。4690 0000,为00009046h=36934。 3)4-5:保留,必须设置为0。 4)6-7:从文件开始到位图数据之间的偏移量。4600 0000,为00000046h=70,上面的文件头就是35字=70字节。 5)8-9:位图图信息头长度。 6)10-11:位图宽度,以像素为单位。8000 0000,为00000080h=128。 7)12-13:位图高度,以像素为单位。9000 0000,为00000090h=144。 8)14:位图的位面数,该值总是1。0100,为0001h=1。 二、位图信息头 9)15:每个像素的位数。有1(单色),4(16色),8(256色),16(64K色,高彩色),24(16M色,真彩色),32(4096M色,增强

常用图片文件格式

总的来说,有两种截然不同的图像格式类型:即有损压缩和无损压缩。 1.有损压缩 有损压缩可以减少图像在内存和磁盘中占用的空间,在屏幕上观看图像时,不会发现它对图像的外观产生太大的不利影响。因为人的眼睛对光线比较敏感,光线对景物的作用比颜色的作用更为重要,这就是有损压缩技术的基本依据。 有损压缩的特点是保持颜色的逐渐变化,删除图像中颜色的突然变化。生物学中的大量实验证明,人类大脑会利用与附近最接近的颜色来填补所丢失的颜色。例如,对于蓝色天空背景上的一朵白云,有损压缩的方法就是删除图像中景物边缘的某些颜色部分。当在·屏幕上看这幅图时,大脑会利用在景物上看到的颜色填补所丢失的颜色部分。利用有损压缩技术,某些数据被有意地删除了,而被取消的数据也不再恢复。 无可否认,利用有损压缩技术可以大大地压缩文件的数据,但是会影响图像质量。如果使用了有损压缩的图像仅在屏幕上显示,可能对图像质量影响不太大,至少对于人类眼睛的识别程度来说区别不大。可是,如果要把一幅经过有损压缩技术处理的图像用高分辨率打印机打印出来,那么图像质量就会有明显的受损痕迹。 2.无损压缩 无损压缩的基本原理是相同的颜色信息只需保存一次。压缩图像的软件首先会确定图像中哪些区域是相同的,哪些是不同的。包括了重复数据的图像(如蓝天) 就可以被压缩,只有蓝天的起始点和终结点需要被记录下来。但是蓝色可能还会有不同的深浅,天空有时也可能被树木、山峰或其他的对象掩盖,这些就需要另外记录。从本质上看,无损压缩的方法可以删除一些重复数据,大大减少要在磁盘上保存的图像尺寸。但是,无损压缩的方法并不能减少图像的内存占用量,这是因为,当从磁盘上读取图像时,软件又会把丢失的像素用适当的颜色信息填充进来。如果要减少图像占用内存的容量,就必须使用有损压缩方法。 无损压缩方法的优点是能够比较好地保存图像的质量,但是相对来说这种方法的压缩率比较低。但是,如果需要把图像用高分辨率的打印机打印出来,最好还是使用无损压缩几乎所有的图像文件都采用各自简化的格式名作为文件扩展名。从扩展名就可知道这幅图像是按什么格式存储的,应该用什么样的软件去读/写等等。 一、BMP图像文件格式 BMP是一种与硬件设备无关的图像文件格式,使用非常广。它采用位映射存储格式,除了图像深度可选以外,不采用其他任何压缩,因此,BblP文件所占用的空间很大。BMP文件的图像深度可选lbit、4bit、8bit及24bit。BMP文件存储数据时,图像的扫描方式是按从左到右、从下到上的顺序。 由于BMP文件格式是Windows环境中交换与图有关的数据的一种标准,因此在Windows 环境中运行的图形图像软件都支持BMP图像格式。

多媒体常见五种图像格式详解

多媒体常见五种图像格式详解 【摘要】:自此互联网以及PC的飞速发展,我们的日常生活已经高度的信息化了,多媒体应用技术也不断地深入到我们的生活中。图像、视频这些最直观的信息无时无刻的充斥着我们的眼球。这时我们需要在繁多的图像种类中辨别以及选择我们所要用到的图像种类来准确完整地传达信息。本文通过对多媒体常见的五种图像格式的详细介绍从而可以深刻的了解图像的格式特点及其应用。 【关键词】:多媒体互联网常见图像格式 一.引言 现在的互联网和多媒体技术的高速发展,多媒体的图形图像以其蕴含的信息量优美直观地显现于人们的视网膜中,给人们以绚丽丰富的视觉效果。但是多媒体图像又因其种类繁多而不能被人们所一一了解,甚至是最常见的图像格式也只是对其格式名略有耳闻。那么,本文将对多媒体常见的图像格式做一番简述,介绍它们的特性和不同点以及其实用性。 二.五种图像格式详解 1、BMP图像 BMP图像,即通常所说的位图(Bitmap),是最早应用于Windows操作系统,也是Windows操作系统中的标准图像文件格式,在Windows环境中运行的图形图像软件都支持BMP图像格式。因而这种格式的图像是最常见最简单的,像我们常用的桌面壁纸一般都是BMP格式图像。 BMP图像文件的文件结构一般认为包括了三部分:表头、调色板和图像像素数据,再细分的话,表头部分有分文件头和位图信息头。表头长度为54个字节,内容包括了BMP文件的类型、文件的大小、位图文件的保留字、位图数据距文件头的偏移量以及位图的尺寸等信息。调色板中有若干个表项相对应地定义一种颜色,从而说明位图中的颜色。只有全彩色BMP图像文件内没有调色板数据,其余不超过256种颜色的图像文件都必须设定调色板信息(电视节目制作中的图形图像格式)。图像像素数据每一个点代表一个像素值,它有着比较独特的记录方式:位图中的像素值是以在扫描行内从左到右、扫描行之间从下到上这样的顺序记录的。 BMP图像文件有下列3个特点:

四种图像格式有什么不同

JPEG/BMP/TIF/PNG四种图像格式有什么不同? 一、BMP格式BMP是英文Bitmap(位图)的简写,它是Windows操作系统中的标准图像文件格式,能够被多种Windows应用程序所支持。随着Windows操作系统的流行与丰富的Windows应用程序的开发,BMP位图格式理所当然地被广泛应用。这种格式的特点是包含的图像信息较丰富,几乎不进行压缩,但由此导致了它与生俱生来的缺点--占用磁盘空间过大。所以,目前BMP在单机上比较流行。 二、GIF格式GIF是英文Graphics Interchange Format(图形交换格式)的缩写。顾名思义,这种格式是用来交换图片的。事实上也是如此,上世纪80年代,美国一家著名的在线信息服务机构CompuServe针对当时网络传输带宽的限制,开发出了这种GIF图像格式。GIF格式的特点是压缩比高,磁盘空间占用较少,所以这种图像格式迅速得到了广泛的应用。最初的GIF只是简单地用来存储单幅静止图像(称为GIF87a),后来随着技术发展,可以同时存储若干幅静止图象进而形成连续的动画,使之成为当时支持2D动画为数不多的格式之一(称为GIF89a),而在GIF89a图像中可指定透明区域,使图像具有非同一般的显示效果,这更使GIF风光十足。目前Internet上大量采用的彩色动画文件多为这种格式的文件,也称为GIF89a格式文件。此外,考虑到网络传输中的实际情况,GIF图像格式还增加了渐显方式,也就是说,在图像传输过程中,用户可以先看到图像的大致轮廓,然后随着传输过程的继续而逐步看清图像中的细节部分,从而适应了用户的"从朦胧到清楚"的观赏心理。目前Internet上大量采用的彩色动画文件多为这种格式的文件。但GIF有个小小的缺点,即不能存储超过256色的图像。尽管如此,这种格式仍在网络上大行其道应用,这和GIF图像文件短小、下载速度快、可用许多具有同样大小的图像文件组成动画等优势是分不开的。三、JPEG格式JPEG也是常见的一种图像格式,它由联合照片专家组(Joint Photographic Experts Group)开发并以命名为"ISO 10918-1",JPEG仅仅是一种俗称而已。JPEG文件的扩展名为.jpg或.jpeg,其压缩技术十分先进,它用有损压缩方式去除冗余的图像和彩色数据,获取得极高的压缩率的同时能展现十分丰富生动的图像,换句话说,就是可以用最少的磁盘空间得到较好的图像质量。同时JPEG还是一种很灵活的格式,具有调节图像质量的功能,允许你用不同的压缩比例对这种文件压缩,比如我们最高可以把1.37MB 的BMP位图文件压缩至20.3KB。当然我们完全可以在图像质量和文件尺寸之间找到平衡点。由于JPEG 优异的品质和杰出的表现,它的应用也非常广泛,特别是在网络和光盘读物上,肯定都能找到它的影子。目前各类浏览器均支持JPEG这种图像格式,因为JPEG格式的文件尺寸较小,下载速度快,使得Web页有可能以较短的下载时间提供大量美观的图像,JPEG同时也就顺理成章地成为网络上最受欢迎的图像格式。 四、JPEG2000格式JPEG 2000同样是由JPEG 组织负责制定的,它有一个正式名称叫做"ISO 15444",与JPEG相比,它具备更高压缩率以及更多新功能的新一代静态影像压缩技术。JPEG2000 作为JPEG的升级版,其压缩率比JPEG高约30%左右。与JPEG不同的是,JPEG2000 同时支持有损和无损压缩,而JPEG 只能支持有损压缩。无损压缩对保存一些重要图片是十分有用的。JPEG2000的一个极其重要的特征在于它能实现渐进传输,这一点与GIF的"渐显"有异曲同工之妙,即先传输图像的轮廓,然后逐步传输数据,不断提高图像质量,让图象由朦胧到清晰显示,而不必是像现在的JPEG 一样,由上到下慢慢显示。此外,JPEG2000还支持所谓的"感兴趣区域"特性,你可以任意指定影像上你感兴趣区域的压缩质量,还可以选择指定的部份先解压缩。JPEG 2000 和JPEG 相比优势明显,且向下兼容,因此取代传统的JPEG格式指日可待。JPEG2000可应用于传统的JPEG市场,如扫描仪、数码相机等,亦可应用于新兴领域,如网路传输、无线通讯等等。 五、TIFF格式TIFF(Tag Image File Format)是Mac中广泛使用的图像格式,它由Aldus和微软联合开发,最初是出于跨平台存储扫描图像的需要而设计的。它的特点是图像格式复杂、存贮信息多。正因为它存储的图像细微层次的信息非常多,图像的质量也得以提高,故而非常有利于原稿的复制。该格式有压缩和非压缩二种形式,其中压缩可采用LZW无损压缩方案存储。不过,由于TIFF格式结构较为复杂,兼容性较差,因此有时你的软件可能不能正确识别TIFF文件(现在绝大部分软件都已解决了这个问题)。目前在Mac和PC机上移植TIFF文件也十分便捷,因而TIFF现在也是微机上使用最广泛的图像文件格式之一。

JPEG图像格式详解

JPEG图像格式详解 JPEG压缩简介 ------------- 1.色彩模型 JPEG的图片使用的是YCrCb颜色模型,而不是计算机上最常用的RGB.关于色彩模型,这里不多阐述.只是说明,YCrCb模型更适合图形压缩.因为人眼对图片上的亮度Y的变化远比色度C的变化敏感.我们完全可以每个点保存一个8bit的亮度值,每2x2个点保存一个Cr Cb值,而图象在肉眼中的感觉不会起太大的变化.所以,原来用RGB模型,4个点需要4x3=12字节.而现在仅需要4+2=6字节;平均每个点占12bit.当然JPEG格式里允许每个点的C值都记录下来;不过MPEG里都是按12bit一个点来存放的,我们简写为YUV12. [R G B]->[Y Cb Cr]转换 ------------------------- (R,G,B都是8bit unsigned) |Y||0.2990.5870.114||R||0| |Cb|=|-0.1687-0.33130.5|*|G|+|128| |Cr||0.5-0.4187-0.0813||B||128| Y=0.299*R+0.587*G+0.114*B(亮度) Cb=-0.1687*R-0.3313*G+0.5*B+128 Cr=0.5*R-0.4187*G-0.0813*B+128 [Y,Cb,Cr]->[R,G,B]转换 ------------------------- R=Y+ 1.402*(Cr-128) G=Y-0.34414*(Cb-128)-0.71414*(Cr-128) B=Y+ 1.772*(Cb-128) 一般,C值(包括Cb Cr)应该是一个有符号的数字,但这里被处理过了,方法是加上了128.JPEG里的数据都是无符号8bit的. 2.DCT(离散余弦变换) JPEG里,要对数据压缩,先要做一次DCT变换.DCT变换的原理,涉及到数学知识,这里我们不必深究.反正和傅立叶变换(学过高数的都知道)是差不多了.经过

常见医学图像格式

附录C 图像格式 译者:Synge 发表时间:2012-05-03浏览量:1604评论数:0挑错数:0 翻译:xiaoqiao 在fMRI的早期,由于大多数据都用不同研究脉冲序列采集,然后离线大量重建,而且各研究中心文件格式各不相同、大多数的分析软件也都是各研究单位内部编写运用。如果这些数据不同其他中心交流,数据的格式不影响他们的使用。因此图像格式就像巴别塔似的多式多样。随着fMRI领域的不断发展,几种标准的文件格式逐渐得到了应用,数据分析软件包的使用促进了这些文件格式在不同研究中心和实验室的广泛运用,直到近期仍有多种形式的文件格式存在。这种境况在过去的10年里随着公认的NIfTI格式的发展和广泛认可而优化。该附录就fMRI资料存储的常见问题以及重要的文件格式做一概述, 3.1 数据存储 正如第2章所述,MRI数据的存储常采用二进制数据格式,如8位或16位。因此,磁盘上数据文件的大小就是数据图像的大小和维度,如保存维度128 ×128×96的16位图像需要25,165,824位(3 兆字节)。为了保存图像的更多信息,我们希望保存原始数据,即元数据。元数据包含了图像的各种信息,如图像维度及数据类型等。这点很重要,因为可以获得二进制数据所不知道的信息,例如,图像是128 ×128×96维度的16位图像采集还是128 ×128×192维度的8位图像采集。在这里我们主要讨论不同的图像格式保存不同的数量及种类的元数据。

MRI的结构图像通常保存为三维的资料格式。fMRI数据是一系列的图像采集,可以保存为三维格式,也可以保存为四维文件格式(第4维为时间)。通常,我们尽可能保存为四维数据格式,这样可以减少文件数量,但是有些数据分析软件包不能处理四维数据。 3.2 文件格式 神经影像的发展中出现了很多不同图像格式,常见的格式见表1.在这里我们就DICOM、Analyze和NIfTI最重要的三种格式做一讨论。 表1. 常见医学图像格式 Analyze .img/.hdr Analyze软件, 梅奥临床医学中心 DICOM 无ACR/NEMA协会 NIfTI .nii或.img/.hdr NIH影像学信息工具倡议 MINC .mnc 蒙特利尔神经学研究所(MNI,扩展名NetCDF) 3.2.1 DICOM格式 现今大多MRI仪器采集后的重建数据为DICOM格式。该数据格式源于美国放射学协会(ACR)和国际电子产品制造商协会(NEMA)。DICOM不仅仅是图像的存储格式,而且是不同成像系统的不同形式数据之间转换的模式,MRI图像只是其中一种特殊形式。目前使用的DICOM遵照1993年协议,且目前主要的MRI仪器供应商都支持该格式。 通常,DICOM把每一层图像都作为一个独立的文件,这些文件用数字命名从而反映相对应的图像层数(在不同的系统有一定差异)。文件中包含文件头信息,且必须要特定的软

JPEG图像格式详解

JPEG图像格式详解 JPEG 压缩简介 ------------- 1. 色彩模型 JPEG 的图片使用的是 YCrCb 颜色模型, 而不是计算机上最常用的 RGB. 关于色彩模型, 这里不多阐述. 只是说明, YCrCb 模型更适合图形压缩. 因为人眼对图片上的亮度 Y 的变化远比色度 C 的变化敏感. 我们完全可以每个点保存一个 8bit 的亮度值, 每 2x2 个点保存一个 Cr Cb 值, 而图象在肉眼中的感觉不会起太大的变化. 所以, 原来用 RGB 模型, 4 个点需要 4x3=12 字节. 而现在仅需要 4+2=6 字节; 平均每个点占 12bit. 当然 JPEG 格式里允许每个点的 C 值都记录下来; 不过 MPEG 里都是按 12bit 一个点来存放的, 我们简写为 YUV12. [R G B] -> [Y Cb Cr] 转换 ------------------------- (R,G,B 都是 8bit unsigned) | Y | | 0.299 0.587 0.114 | | R | | 0 | | Cb | = |- 0.1687 - 0.3313 0.5 | * | G | + |128| | Cr | | 0.5 - 0.4187 - 0.0813| | B | |128| Y = 0.299*R + 0.587*G + 0.114*B (亮度) Cb = - 0.1687*R - 0.3313*G + 0.5 *B + 128 Cr = 0.5 *R - 0.4187*G - 0.0813*B + 128 [Y,Cb,Cr] -> [R,G,B] 转换 ------------------------- R = Y + 1.402 *(Cr-128) G = Y - 0.34414*(Cb-128) - 0.71414*(Cr-128) B = Y + 1.772 *(Cb-128) 一般, C 值 (包括 Cb Cr) 应该是一个有符号的数字, 但这里被处理过了, 方法是加上了 128. JPEG 里的数据都是无符号 8bit 的. 2. DCT (离散余弦变换) JPEG 里, 要对数据压缩, 先要做一次 DCT 变换. DCT 变换的原理, 涉及到数学知识, 这里我们不必深究. 反正和傅立叶变换(学过高数的都知道) 是差不多了. 经过这个变换, 就把图片里点和点间的规律呈现出来了, 更方便压缩.JPEG 里是对每 8x8

各类图像格式及特点介绍

、 扩展名,用于和地位图()格式,文件几乎不压缩,由于无法压缩,因此缺点是文件容量太大,使用于壁纸等方面.个人收集整理勿做商业用途 特点:占用磁盘空间较大,它地颜色存储格式有位、位、位及位.开发环境下地软件时,格式是最不容易出问题地格式,并且与环境下地图像处理软件都支持该格式,因此,该格式是当今应用比较广泛地一种格式.但缺点是该格式文件比较大,所以只能应用在单机上,不受网络欢迎.个人收集整理勿做商业用途 全名,扩展名,是有损高压缩地图像压缩格式.在存储时能够将人眼无法分辨地资料删除,以节省存储空间,但这些被删除地资料无法在解压时还原,所以文件并不适合放大观看,输出成印刷品时品质也会受到影响,这种类型地压缩格式,称为[失真()压缩]或[破坏性压缩]个人收集整理勿做商业用途 特点:压缩率高,占用空间小,适合网络传输或上载.最高支持真色彩.可包含信息.地有标准、精细和特精细等种,分辨率下占用空间分别 个人收集整理勿做商业用途 与 全名,扩展名; 全名,扩展名; 是无损无压缩地图像格式.他们格式都包含两个部份,第一部份是屏幕显示地低解析度影像,方便影像处理时地预览和定位,而另一部份包含各分色地单独资料.常被用于彩色图像地扫描,它是以地全彩模式存储.而文件是以地形式存储,文件中包含四种颜色地单独资料,可以直接输出四色网片.个人收集整理勿做商业用途 特点:可压缩或无压缩,通常压缩比最高到:.支持最高真色彩,同时支持、等多种色彩模式.占用空间大,适用于印刷、冲印输出.可包含信息.地格式,分辨率下占用空间最大,达到.个人收集整理勿做商业用途 全名,扩展名,是一种失真有损地压缩个人收集整理勿做商业用途 格式,在压缩过程中能保证图像地像素资料,但丢失图像地色彩 公司开放使用权限,所以广受应用. 特点:只能存储色,但它地格式,能存储成背景透明化地形式,并且可以将数张图存成一个文件,形成动画效果.适用于各种主机平台,各种软件皆有支持,普遍用于网络传输.占用空间极小.无该格式.个人收集整理勿做商业用途 扩展名公司开发地图像处理软件中自建地标准文件格式就是格式,在该软件所支持地各种格式中,其存取速度比其它格式快很多,功能也很强大.由于软件越来越广泛地应用,所以这个格式也逐步流行起来.格式是地专用格式,里面可以存放图层、通道、遮罩等多种设计草稿.以便于下次打开文件可以修改上一次地设计个人收集整理勿做商业用途 扩展名,是一种无损压缩格式.数据是没有经过相机处理地原文件,因此它地大小要比格式略小.所以,当上传到电脑之后,要用图像软件地界面直接导入成格式才能处理.个人收集整理勿做商业用途 特点:能保持最完整地细节,可支持地专用调节工具,可调曝光范围~档,可增加地相对宽容度,是一个高档比较流行地专业图像格式,可转成无损地格式,或压缩成格式.地,由于优化了压缩方式,分辨率下占用空间只有地一半,.推荐使用.个人收集整理勿做商业用途

图像格式详细解析

YUV格式详解 1.什么是RGB? RGB是红绿蓝三原色的意思,R=Red、G=Green、B=Blue。 2.什么是YUV/YCbCr/YPbPr? 亮度信号经常被称作Y,色度信号是由两个互相独立的信号组成。视颜色系统和格式不同,两种色度信号经常被称作U和V或Pb和Pr或Cb和Cr。这些都是由不同的编码格式所产生的,但是实际上,他们的概念基本相同。在DVD中,色度信号被存储成Cb和Cr (C代表颜色,b代表蓝色,r代表红色)。 3.什么是4:4:4、4:2:2、4:2:0? 在最近十年中,视频工程师发现人眼对色度的敏感程度要低于对亮度的敏感程度。在生理学中,有一条规律,那就是人类视网膜上的视网膜杆细胞要多于视网膜锥细胞,说得通俗一些,视网膜杆细胞的作用就是识别亮度,而视网膜锥细胞的作用就是识别色度。所以,你的眼睛对于亮和暗的分辨要比对颜色的分辨精细一些。正是因为这个,在我们的视频存储中,没有必要存储全部颜色信号。既然眼睛看不见,那为什么要浪费存储空间(或者说是金钱)来存储它们呢? 像Beta或VHS之类的消费用录像带就得益于将录像带上的更多带宽留给黑—白信号(被称作“亮度”),将稍少的带宽留给彩色信号(被称作“色度”)。 在MPEG2(也就是DVD使用的压缩格式)当中,Y、Cb、Cr信号是分开储存的(这就是为什么分量视频传输需要三条电缆)。其中Y信号是黑白信号,是以全分辨率存储的。但是,由于人眼对于彩色信息的敏感度较低,色度信号并不是用全分辨率存储的。 色度信号分辨率最高的格式是4:4:4,也就是说,每4点Y采样,就有相对应的4点Cb和4点Cr。换句话说,在这种格式中,色度信号的分辨率和亮度信号的分辨率是相同的。这种格式主要应用在视频处理设备内部,避免画面质量在处理过程中降低。当图像被存储到Master Tape,比如D1或者D5,的时候,颜色信号通常被削减为4:2:2。

图形文件格式大全

图形文件格式大全 一、BMP格式 BMP是英文Bitmap(位图)的简写,它是Windows操作系统中的标准图像文件格式,能够被多种Windows应用程序所支持。随着Windows操作系统的流行与丰富的Windows 应用程序的开发,BMP位图格式理所当然地被广泛应用。这种格式的特点是包含的图像信息较丰富,几乎不进行压缩,但由此导致了它与生俱生来的缺点--占用磁盘空间过 大。所以,目前BMP在单机上比较流行。 二、GIF格式 GIF是英文Graphics Interchange Format(图形交换格式)的缩写。顾名思义,这种格式是用来交换图片的。事实上也是如此,上****80年代,美国一家著名的在线信 息服务机构CompuServe针对当时网络传输带宽的限制,开发出了这种GIF图像格式。 GIF格式的特点是压缩比高,磁盘空间占用较少,所以这种图像格式迅速得到了广泛的应用。最初的GIF只是简单地用来存储单幅静止图像(称为GIF87a),后来随着 技术发展,可以同时存储若干幅静止图象进而形成连续的动画,使之成为当时支持2D动画为数不多的格式之一(称为GIF89a),而在GIF89a图像中可指定透明区域,使图像 具有非同一般的显示效果,这更使GIF风光十足。目前Internet上大量采用的彩色动画文件多为这种格式的文件,也称为GIF89a格式文件。 此外,考虑到网络传输中的实际情况,GIF图像格式还增加了渐显方式,也就是说,在图像传输过程中,用户可以先看到图像的大致轮廓,然后随着传输过程的继续而 逐步看清图像中的细节部分,从而适应了用户的"从朦胧到清楚"的观赏心理。目前Internet 上大量采用的彩色动画文件多为这种格式的文件。 但GIF有个小小的缺点,即不能存储超过256色的图像。尽管如此,这种格式仍在网络上大行其道应用,这和GIF图像文件短小、下载速度快、可用许多具有同样大小的 图像文件组成动画等优势是分不开的。 三、JPEG格式 JPEG也是常见的一种图像格式,它由联合照片专家组(Joint Photographic Experts Group)开发并以命名为"ISO 10918-1",JPEG仅仅是一种俗称而已。JPEG文件的 扩展名为.jpg或.jpeg,其压缩技术十分先进,它用有损压缩方式去除冗余的图像和彩色数据,获取得极高的压缩率的同时能展现十分丰富生动的图像,换句话说,就是可 以用最少的磁盘空间得到较好的图像质量。 同时JPEG还是一种很灵活的格式,具有调节图像质量的功能,允许你用不同的压缩比例对这种文件压缩,比如我们最高可以把1.37MB的BMP位图文件压缩至20.3KB。当 然我们完全可以在图像质量和文件尺寸之间找到平衡点。 由于JPEG优异的品质和杰出的表现,它的应用也非常广泛,特别是在网络和光盘读物上,肯定都能找到它的影子。目前各类浏览器均支持JPEG这种图像格式,因为JPEG 格式的文件尺寸较小,下载速度快,使得Web页有可能以较短的下载时间提供大量美观的图像,JPEG同时也就顺理成章地成为网络上最受欢迎的图像格式。 四、JPEG2000格式 JPEG 2000同样是由JPEG ****负责制定的,它有一个正式名称叫做"ISO 15444",与JPEG 相比,它具备更高压缩率以及更多新功能的新一代静态影像压缩技术。 JPEG2000 作为JPEG的升级版,其压缩率比JPEG高约30%左右。与JPEG不同的是,JPEG2000 同时支持有损和无损压缩,而JPEG 只能支持有损压缩。无损压缩对保存一

医学图像格式分析与转换

医学图像格式分析与转换 本文分为三个部分——医学图像及其组成、医学图像格式和医学图像的格式转换。本文希望通过对深度学习的相关知识的介绍,最终达到医学图像分析的目的。 医学图像及其组成 由Michele Larobina和Loredana Murino发表的论文,对本文即将展开的讨论来说是一个很好的信息参考。Michele Larobina和Loredana Murino二人是意大利“生物架构和生物成像协会”(IBB)的成员。IBB是意大利“国家研究委员会”的组成部分,同时也是意大利最大的公共研究机构。我们的另一个参考信息资源是一篇题为《Working with the DICOM and NIfTI data standards in R》的论文。 ?什么是医学图像? 医学图像是反映解剖区域内部结构或内部功能的图像,它是由一组图像元素——像素(2D)或立体像素(3D)——组成的。医学图像是由采样或重建产生的离散性图像表征,它能将数值映射到不同的空间位置上。像素的数量是用来描述某一成像设备下的医学成像的,同时也是描述解剖及其功能细节的一种表达方式。像素所表达的具体数值是由成像设备、成像协议、影像重建以及后期加工所决定的。 ?医学图像的组成

医学图像组成医学图像有四个关键成分——像素深度、光度表示、元数据和像素数据。这些成分与图像大小和图像分辨率有关。 图像深度(又称比特深度或颜色深度)是用来编码每个像素信息的比特数。比如说,一个8比特的光栅可以有256个从0到255数值不等的图像深度。 “光度表示”解释了像素数据如何以正确的图像格式(单色或彩色图片)显示。为了说明像素数值中是否存在色彩信息,我们将引入“每像素采样数”的概念。单色图像只有一个“每像素采样”,而且图像中没有色彩信息。图像是依靠由黑到白的灰阶来显示的,灰阶的数目很明显取决于用来储存样本的比特数。在这里,灰阶数与像素深度是一致的。医疗放射图像,比如CT 图像和磁共振(MR)图像,是一个灰阶的“光度表示”。而核医学图像,比如正电子发射断层图像(PET)和单光子发射断层图像(SPECT),通常都是以彩色映射或调色板来显示的。 “元数据”是用于描述图形象的信息。它可能看起来会比较奇怪,但是在任何一个文件格式中,除了像素数据之外,图像还有一些其他的相关信息。这样的图像信息被称为“元数据”,它通常以“数据头”的格式被储存在文件的开头,涵盖了图像矩阵维度、空间分辨率、像素深度和光度表示等信息。

BMP图像格式分析

BMP图像格式分析 BMP图像文件格式是微软公司为其Windows环境设置的标准图像格式,而且 Windows系统软件中还同时内含了一系列支持BMP图像处理的API函数,随着Windows 在世界范围内的不断普及,BMP文件格式无疑也已经成为PC机上的流行图像文件格式。它的主要特点可以概括为:文件结构与PCX文件格式类似,每个文件只能存放一幅图像;图像数据是否采用压缩方式存放,取决于文件的大小与格式,即压缩处理成为图像文件的一个选项,用户可以根据需要进行选择。其中,非压缩格式是BMP图像文件所采用的一种通用格式。但是,如果用户确定将BMP文件格式压缩处理,则Windows设计了两种压缩方式:如果图像为16色模式,则采用RLE4压缩方式,若图像为256色模式,则采用RLE8压缩方式。同时,BMP 图像文件格式可以存储单色、16色、256色以及真彩色四种图像数据,,其数据的排列顺序与一般文件不同,它以图像的左下角为起点存储图像,而不是以图像的左上角为起点;而且BMP图像文件格式中还存在另外一个与众不同的特点,即其调色板数据所采用的数据结构中,红、绿、蓝三种基色数据的排列顺序也恰好与其它图像文件格式相反。总之,BMP图像文件格式拥有许多适合于Windows环境的新特色,而且随着Windows版本的不断更新,微软公司也在不断改进其BMP 图像文件格式,例如:当前BMP图像文件版本中允许采用32位颜色表,而且针对32位Windows 的产生,相应的API 函数也在不断地报陈出新,这些无疑都同时促成了BMP文件格式的不断风靡。但由于BMP文件格式只适合于Windows上的应用软件,而对于DOS环境中的各种应用软件则无法提供相应的支持手段,因此这无疑是阻碍BMP文件格式的流通程度超过PCX文件格式的一个重要因素。 Windows中定义了两种位图文件类型,即一般位图文件格式与设备无关位图文件格式。其中,由于设备无关位图(DIB)文件格式具有更强的灵活性与完整的图像数据、压缩方式等定义。BMP图像文件的结构可以分为如下三个部分:文件头、调色板数据以及图像数据。其中文件头的长度为固定值54个字节;调色板数据对所有不超过256色的图像模式都需要进行设置,即使是单色图像模式也不例外,但是对于真彩色图像模式,其对应的BMP文件结构中却不存在相应调色板数据的设置信息;图像数据既可以采用一定的压缩算法进行处理,也可以不必对图像数据进行压缩处理,这不仅与图像文件的大小相关,而且也与对应的图像处理软件是否支持经过压缩处理的BMP图像文件相关。以下将分别介绍BMP图像文件结构中的这三个重要组成部分。特别值得注意的是:BMP 图像文件结构设计得相当简单,这无疑有利于图像文件的处理速度,但是同时也使得 BMP图像文件格式具有一定的局限性,即一个BMP图像文件只能存储一幅图像。 BMP图像文件的文件头定义 Windows中将BMP图像文件的文件头分成两个数据结构,其中一个数据结构中包含BMP文件的类型、大小和打印格式等信息,称为BITMAPFILEHEADERl另外一个数据结构中则包含BMP文件的尺寸定义等信息,称为BITMAPINFOHEADERl 如果图像文件还需要调色板数据,则将其存放在文件头信息之后。 BITMAPFIlEHEADER数据结构在Windows.h中的定义为: typedef struCttagBITMAPFIlEHEADER { WORD bftype; DWORD bfsiZe: WORD bfReservedl; WORD bgReserved2: DWORD bfoffBits: }BITMAPFILEHEADER; 其中,bfrype在图像文件存储空间中的数据地址为0,数据类型为unsignedchar,内容为固定值“BM”,用于标志文件格式,表示该图像文件为BMP文件。 bfsize的数据地址为2,类型为unsignedlong,它以字节为单位,定义位图文件的大小。 bfReservedl与bfReserved2的数据地址分别为6和8,数据类型则都为unsignedint,二者都是BMP文件的保留字,没有任何意义,其值必须为0. bfoffBits的数据地址为10,数据类型为unsignedlong,它以字节为单位,指示图像数据在文件内的起始地址,即图像数

BMP图片格式详解

BMP图像格式详解 一.简介 BMP(Bitmap-File)图形文件是Windows采用的图形文件格式,在Windows环境下运行的所有图象处理软件都支持BMP图象文件格式。Windows系统内部各图像绘制操作都是以BMP为基础的。Windows 3.0以前的BMP图文件格式与显示设备有关,因此把这种BMP图象文件格式称为设备相关位图DDB(device-dependent bitmap)文件格式。Windows 3.0以后的BMP图象文件与显示设备无关,因此把这种BMP图象文件格式称为设备无关位图DIB(device-independent bitmap)格式(注:Windows 3.0以后,在系统中仍然存在DDB位图,象BitBlt()这种函数就是基于DDB位图的,只不过如果你想将图像以BMP格式保存到磁盘文件中时,微软极力推荐你以DIB格式保存),目的是为了让Windows能够在任何类型的显示设备上显示所存储的图象。BMP位图文件默认的文件扩展名是BMP或者bmp(有时它也会以.DIB或.RLE作扩展名)。 二.BMP格式结构 BMP文件的数据按照从文件头开始的先后顺序分为四个部分: ◆位图文件头(bmp file header):提供文件的格式、大小等信息 ◆位图信息头(bitmap information):提供图像数据的尺寸、位平面数、压缩方式、颜色索 引等信息 ◆调色板(color palette):可选,如使用索引来表示图像,调色板就是索引与其对应的颜色 的映射表 ◆位图数据(bitmap data):图像数据区 BMP图片文件数据表如下:

三.BMP文件头 BMP文件头结构体定义如下: typedef struct tagBITMAPFILEHEADER { UINT16 bfType; //2Bytes,必须为"BM",即0x424D 才是Windows位 图文件 DWORD bfSize; //4Bytes,整个BMP文件的大小 UINT16 bfReserved1; //2Bytes,保留,为0 UINT16 bfReserved2; //2Bytes,保留,为0 DWORD bfOffBits; //4Bytes,文件起始位置到图像像素数据的字节偏移量} BITMAPFILEHEADER; BMP文件头数据表如下:

《数字图像处理》习题参考答案与解析

《数字图像处理》习题参考答案 第1 章概述 1.1 连续图像和数字图像如何相互转换?答:数字图像将图像看成是许多大小相同、 形状一致的像素组成。这样,数字图像可以 用二维矩阵表示。将自然界的图像通过光学系统成像并由电子器件或系统转化为模拟图像(连续图像)信号,再由模拟/数字转化器(ADC)得到原始的数字图像信号。图像的数字化包括离散和量化两个主要步骤。在空间将连续坐标过程称为离散化,而进一步将图像的幅度值(可能是灰度或色彩)整数化的过程称为量化。 1.2 采用数字图像处理有何优点?答:数字图像处理与光学等 模拟方式相比具有以下鲜明的特点: 1.具有数字信号处理技术共有的特点。(1)处理精度高。(2)重现性能好。(3)灵活性高。 2.数字图像处理后的图像是供人观察和评价的,也可能作为机器视觉的预处理结果。 3.数字图像处理技术适用面宽。 4.数字图像处理技术综合性强。 1.3 数字图像处理主要包括哪些研究内容?答:图像处理的任务是将客观世界的景象进 行获取并转化为数字图像、进行增强、变换、 编码、恢复、重建、编码和压缩、分割等处理,它将一幅图像转化为另一幅具有新的意义的图像。 1.4 讨论数字图像处理系统的组成。列举你熟悉的图像处理系统并分析它们的组成和功能。 答:如图1.8,数字图像处理系统是应用计算机或专用数字设备对图像信息进行处理的信息系统。图像处理系统包括图像处理硬件和图像处理软件。图像处理硬件主要由图像输入设备、图像运算处理设备(微计算机)、图像存储器、图像输出设备等组成。软件系统包括操作系统、控制软件及应用软件等。 图1.8 数字图像处理系统结构 图 1

1.5 常见的数字图像处理开发工具有哪些?各有什么特点? 答.目前图像处理系统开发的主流工具为 Visual C++(面向对象可视化集成工具) 和 MATLAB 的图像处理工具箱(Image Processing Tool box)。两种开发工具各有所长且有 相互间的软件接口。 Microsoft 公司的 VC++是一种具有高度综合性能的面向对象可视化集成工具,用它开 发出来的 Win 32 程序有着运行速度快、可移植能力强等优点。VC++所提供的 Microsoft 基础类库 MFC 对大部分与用户设计有关的 Win 32 应用程序接口 API 进行了封装,提高 了代码的可重用性,大大缩短了应用程序开发周期,降低了开发成本。由于图像格式多且 复杂,为了减轻程序员将主要精力放在特定问题的图像处理算法上,VC++ 6.0 提供的动 态链接库 ImageLoad.dll 支持BMP、JPG、TIF 等常用6 种格式的读写功能。 MATLAB 的图像处理工具箱MATLAB 是由MathWorks 公司推出的用于数值计算的有力工具,是一种第四代计算机语言,它具有相当强大的矩阵运算和操作功能,力求使人们摆脱繁 杂的程序代码。MATLAB 图像处理工具箱提供了丰富的图像处理函数,灵活运用这些函数可 以完成大部分图像处理工作,从而大大节省编写低层算法代码的时间,避免程序设计中的重 复劳动。MATLAB 图像处理工具箱涵盖了在工程实践中经常遇到的图像处理手段和算法,如 图形句柄、图像的表示、图像变换、二维滤波器、图像增强、四叉树分解域边缘检测、二值 图像处理、小波分析、分形几何、图形用户界面等。但是,MATLAB 也存在不足之处限制了 其在图像处理软件中实际应用。首先,强大的功能只能在安装有MA TLAB 系统的机器上使用 图像处理工具箱中的函数或自编的 m 文件来实现。其次,MATLAB 使用行解释方式执行代码,执行速度很慢。第三,MATLAB 擅长矩阵运算,但对于循环处理和图形界面的处理不及C++ 等语言。为此,通应用程序接口API 和编译器与其他高级语言(如C、 C++、Java 等)混 合编程将会发挥各种程序设计语言之长协同完成图像处理任务。API 支持 MA TLAB 与外部数 据与程序的交互。编译器产生独立于MATLAB 环境的程序,从而使其他语言的应用程序使用MATLAB。 1.6 常见的数字图像应用软件有哪些?各有什么特点?答:图像应用软件是可直接供 用户使用的商品化软件。用户从使用功能出发,只要了解 软件的操作方法就可以完成图像处理的任务。对大部分用户来说,商品化的图像应用软件无 需用户进行编程,操作方便,功能齐全,已经能满足一般需求,因而得到广泛应用。常用图 像处理应用软件有以下几种: 1.PHOTOSHOP:当今世界上一流的图像设计与制作工具,其优越性能令其产品望尘莫及。PHOTOSHOP 已成为出版界中图像处理的专业标准。高版本的 PHOTOSHOP 支持多达 20 多种图像格式和 TWAIN 接口,接受一般扫描仪、数码相机等图像输入设备采集的图像。PHOTOSHOP 支持多图层的工作方式,只是 PHOTOSHOP 的最大特色。使用图层功能可以很 方便地编辑和修改图像,使平面设计充满创意。利用 PHOTOSHOP 还可以方便地对图像进 行各种平面处理、绘制简单的几何图形、对文字进行艺术加工、进行图像格式和颜色模式 的转换、改变图像的尺寸和分辨率、制作网页图像等。 2.CorelDRAW:一种基于矢量绘图、功能强大的图形图像制作与设计软件。位图式图像是 由象素组成的,与其相对,矢量式图像以几何、色彩参数描述图像,其内容以线条和色块为主。可见,采用不同的技术手段可以满足用户的设计要求。位图式图像善于表现连续、丰富 色调的自然景物,数据量较大;而矢量式图像强于表现线条、色块的图案,数据量较小。 合理的利用两种不同类型的图像表现方式,往往会收到意想不到的艺术效果。CorelDraw是

(完整版)数字图像处理复习题(选择题及相应答案)解析

第一章 1.1.1可以用f(x,y)来表示:(ABD) A、一幅2-D数字图像 B、一个在3-D空间中的客观景物的投影; C 2-D空间XY中的一个坐标的点的位置; D、在坐标点(X,Y)的某种性质F的数值。 提示:注意3个符号各自的意义 1.1.2、一幅数字图像是:(B) A、一个观测系统; B、一个有许多像素排列而成的实体; C、一个2-D数组中的元素 D、一个3-D空间的场景。 提示:考虑图像和数字图像的定义 1.2.2、已知如图1.2.2中的2个像素P和Q,下面说法正确的是:(C) A、2个像素P和Q直接的De距离比他们之间的D4距离和D8距离都短: B、2个像素p和q之间的D4距离为5; C、2个像素p和q之间的D8距离为5; D、2个像素p和q之间的De距离为5。 1.4.2、半调输出技术可以:(B) A、改善图像的空间分辨率; B、改善图像的幅度分辨率; C、利用抖动技术实现; D、消除虚假轮廓现象。 提示:半调输出技术牺牲空间分辨率以提高幅度分辨率 1.4.3、抖动技术可以(D) A、改善图像的空间分辨率; B、改善图像的幅度分辨率; C、利用半输出技术实现; D、消除虚假轮廓现象。 提示:抖动技术通过加入随即噪声,增加了图像的幅度输出值的个数 1.5.1、一幅256*256的图像,若灰度级数为16,则存储它所需的比特数是:(A) A、256K B、512K C、1M C、2M 提示:表达图像所需的比特数是图像的长乘宽再乘灰度级数对应的比特数。1.5.2、图像中虚假轮廓的出现就其本质而言是由于:(A)(平滑区域内灰度应缓慢变化,但当图像的灰度级数不够多时会产生阶跃) A、图像的灰度级数不够多造成的; B、图像的空间分辨率不够高造成; C、图像的灰度级数过多造成的 D、图像的空间分辨率过高造成。 提示:图像中的虚假轮廓最易在平滑区域内产生。 1.5.3、数字图像木刻画效果的出现是由于下列原因所产生的:(A) A、图像的幅度分辨率过小; B、图像的幅度分辨率过大; C、图像的空间分辨率过小; D、图像的空间分辨率过大;

相关主题
文本预览
相关文档 最新文档