当前位置:文档之家› 当石墨烯遇上气体传感器 简直绝配

当石墨烯遇上气体传感器 简直绝配

当石墨烯遇上气体传感器 简直绝配

当石墨烯遇上气体传感器简直绝配

气体传感器,可用于检测可燃,易燃和有毒气体的设备,和/或氧的消耗.这种类型的装置也被广泛用于工业或灭火。各种材料如无机半导体,共轭聚合物和碳纳米材料已探索到制造气体传感器中。

在这其中,基于石墨烯的气体传感器最近引起了强烈的关注。作为气体传感器的传感材料,石墨烯的优异性能具有种独特而有吸引力。

首先,石墨烯具有大的理论比表面积(2630 M2G≤1)。单层石墨烯片的所有原子可以被认为是表面原子和它们能吸附气体的分子,提供每单位体积的最大感测区域。其次,石墨烯片之间的相互作用和吸附可能因微弱的范德华力,以强大的共价键。所有这些相互作用的扰动将石墨烯的电子系统,该系统可以容易地MONI-tored通过方便的电子方法。第三,石墨烯的电荷载流子有静止质量为零靠近其狄拉克点和石墨烯在室温下表现出显着的高载流子迁移率,使得石墨烯比银导电并具有在室温下的物质中是最低的电阻率。

另外,石墨烯具有固有的低的电噪声,由于其高品质的晶格连同其二维结构,使得它能够屏蔽比一维对应更多的电荷波动。其结果是,少量的额外的电子可引起石墨的电导率有明显的变化。一个非常小的变化所引起的气体吸附的石墨烯片的电阻甚至下降到了分子水平是可检测的。而且,石墨烯片,也可用于制造四点式设备,以有效地消除接触电阻的影响。化学转化的石墨烯还可以在大规模的成本相对较低合成。实际上,石墨烯材料已广泛用于检测有毒和爆炸性气体。

石墨烯的结构

如图所示,石墨烯是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料。

石墨烯的特性

石墨烯吸附目标气体后其电导率发生变化,通过确定电导率变化及目标表气体浓度间的变化关系,就可以通过测量石墨烯的电导率变化从而测得目标气体的浓度。它属于一种电阻

石墨烯基气体传感器的原理及应用

石墨烯基气体传感器的原理及应用 石墨烯中原子之间以sp2键连接在一起,室温下的电子传输有0.3um,是很高的电子迁移率,再加上每个原子因为平铺二维结构都显露在表面,作为气体传感器的气敏材料时,吸附气体分子会引起电子迁移率的变化,根据电阻既电信号的改变,可以测出气体浓度。由此可看出石墨烯材料在气体传感器中的应用可广泛发展。 石墨烯在气体传感器中主要应用于电阻型,这都得益于其高电导率、表面丰富容易修饰的功能集团等优异性能。电阻型气体传感器原型如图5,简单制作流程为:选取适合的绝缘陶瓷作为衬底,在陶瓷表面或附着或生长出石墨烯或者石墨烯-复合材料,接着将引出的电极接到检测电路中即可。 图5 电阻型气体传感器原型示意图【26】 制备石墨烯的方法中,剥离、CVD生长及氧化还原制出的石墨烯材料广泛应用于气体传感器,以下将主要介绍以石墨烯为基底单纯做气体传感器元件的相关原理及过程。 表2 石墨烯及气体传感器对不同气体的测量【26】

2.1 剥离石墨烯气体传感器 机械剥离及化学剥离所得的石墨烯产量较低,少于其他半导体复合材料。此类石墨烯价带为零或接近于零,故其电导率会随表面吸附的少量分子发生明显的变化,其敏感度也相对于宽带隙半导体更高。在最开始的时候,都是用此类方式得到制作气敏传感器的石墨烯材料。此类方式所得的石墨烯还能对不同气体分子产生响应【27,28】,如图6所示。加工石墨烯时,往往先将石墨烯片附着或放置于惰性衬底,然后通过金属热蒸发、电子束蒸发或刻蚀等物理方法在其两端制作电极。 机械剥离法:在HOPG表面运用氧等离子束刻蚀出宽20微米至2毫米、深5微米的槽面,压制于附有光致抗蚀剂的硅或二氧化硅基底。经过焙烧,用透明胶带反复剥离出多余石墨片。而剩在硅晶片上的石墨薄片浸泡于丙酮中,超声清洗,得到厚度小于10纳米片层。最终在原子力显微镜下挑选出厚度仅为几个单原子层厚度的石墨烯片层。这种方法虽可得到微米尺寸的石墨烯片,但由于其产量低,不适合大面积生产及应用。但随后,此方法得到研究并升级,成为制备石墨烯重要方法之一。Novoselov等人【4】用这种方法验证了单层石墨烯可独立存在。MEYER将机械剥离得到的含有单层石墨烯的硅晶片置于刻蚀过的金属架上,用酸腐蚀,成功制备了金属支架支撑的悬空单层石墨烯。他们经研究发现单层石墨烯是平面上有一定高度的褶皱。Schleberger等人【29】将常用二氧化硅基底换为其他绝缘晶体基底(SrTiO3/TiO3/AlO3和CaF2等)制备出厚度远远小于二氧化硅基底制得的石墨烯。该方法还有助于进一步研究石墨烯与基底的相互作用。

基于石墨烯量子点的传感器在分析检测中的应用

基于石墨烯量子点的传感器在分析检测中的应用 姓名李丽娟学号 S131110042 摘要:石墨烯量子点优良的物理化学性质及石墨烯量子点边缘的羧基或者氨基基团使其易与多种有机的,聚合的,无机的或者生物种类相互作用。本文主要介绍了石墨烯量子点的制备方法以及基于(类)石墨烯量子点、(类)石墨烯材料的荧光传感器在分析检测中的应用,并详细介绍了分析检测的原理,以期为石墨烯量子点在分析检测中的应用提供相关参考与依据。 关键词:石墨烯量子点荧光检测 1 引言 最近,石墨烯获得了广泛的关注由于其独特的电子光学机械以及热学性质。大量基于石墨烯的生物传感器被开发来检测核酸,蛋白质,毒素和生物分子。石墨烯片层的形态包括它们的大小,形状以及厚度都可以有效的决定它们的性质。例如,石墨烯片层侧面尺寸小于100nm时被称为石墨烯量子点(GQDs),其许多新的化学和物理性质都是由于量子尺寸效应和边缘效应而引起的。GQDs毒性小,稳定性高,溶解性好,光致发旋光性质稳定,生物兼容性较好,使得它们在光电伏打器械,生物传感及成像上有很大的应用前景。本文着重介绍了石墨烯量子点的制备方法以及近年来基于石墨烯量子点与分析物发生作用的不同原理,如荧光共振能量转移,化学共振能量转移及石墨烯量子点表面性质的变化等来检测分析物质,并做出了展望。 2 石墨烯量子点的制备 Fei Liu等[1]成功地用化学剥离石墨纳米颗粒的方法合成了高度均匀的GQDs和GOQDs(氧化石墨烯量子点),如图1所示。该方法获得了高产率的直径在4nm 之内的单层和圆形的GQDs和GOQDs。GOQDs的表面富含各种含氧官能团,GQDs有纯粹的sp2碳晶体结构没有含氧的缺陷,因此提供了一种理想的平台来深入研究纳米尺寸的石墨烯的光致发光的起源。通过描述GQDs和GOQDs的发旋光性质,说明了GOQDs的绿色光致发光来自于含氧官能团的缺陷状态,而GQDs的蓝色发光是由高结晶结构中的内禀态所主导的。此外,GQDs中的蓝色发射显示了一个快速的复合寿命相比于GOQDs中的绿色发射的复合寿命。相比

前沿讲座石墨烯研究进展

石墨烯 世界2010年最大的科学笑话? 是“石墨薄片”获2010世界诺贝尔物理学奖? 获奖理由是说:获奖科学家用小学生使用的铅笔,在纸上涂抹下铅笔芯中的石墨粉,再用胶粘纸,进行反复粘贴,石墨粉变薄,而能创造出天下奇迹。也就是石墨粉越薄,强度越大,强得能超过钢铁100倍?越薄越能耐高温?越薄越有超导电性?而没有任何事实根据支持,竟然获奖。 “石墨薄片”获奖,被推荐和评选为2010世界最大笑的理由是:因为在宇宙间,在世界上找不到,永远也找不到,物质越薄,强度越大,越能耐高温,电阻越小的物质和事实存在,诺贝尔奖又是世界上的大事。而宇宙间有数不尽的大自然机器早已作了上百亿年的试验,证据事实数据堆山塞海。人类也进行了数不尽的物质材料验证实验,事实证据也无处不在。无不说明在地球上,人世间绝对没有,物质越薄强度越大……的物质和事实存在。难道宇宙和人类早已进行了千年,万年……. 的辛苦实验,还不如用铅笔在纸上毫无事实根据的胡乱画圈?而世界顶级的科学家们,则对大自然的事实视而不见,就此胡乱的相信和评选.....,还有我们更多无知的吹捧,难道不是天下的大笑话?如果您不相信可以去自作小学生的实验,去看一看变相批评瑞典皇家科学院,2010年物理学评审委员会的建议文章,就会更明白。当

然还有在自由的环境下,用“石墨诺贝尔笑话奖”这个题目就能看到成千上万的科学精英们,对此问题是怎么说的?又是怎么样去看?

科学家将石墨烯聚光能力提高20倍 据美国物理学家组织网8月30日报道,英国科学家表示,他们对石墨烯的最新研究表明,让石墨烯与金属纳米结构结合可将石墨烯的聚光能力提高20倍,改进后的石墨烯设备有望在未来的高速光子通讯中用作光敏器,让速度为现在几十倍的超高速互联网成为现实。相关研究发表于《自然—通讯》杂志上。 2010年,英国曼彻斯特大学的安德烈·盖姆和康斯坦丁·诺沃谢洛夫因在石墨烯研究领域的突出贡献而荣膺诺贝尔奖。现在,他们和剑桥大学科学家做出了这项最新发现,为提高互联网和其他通讯设施的速度铺平了道路。 此前科学家们就发现,将两根紧密排列的金属丝放在石墨烯上方,用光照射于其上会产生电力,这个简单的设备其实是一个基本的太阳能电池。更重要的是,因为石墨烯内的电子拥有高流动性和高速度等独特属性,石墨烯设备处理数据的速度可能是目前最快的互联网光缆的几十倍甚至几百倍。 然而,迄今为止,这些极富应用潜力的设备在实用过程中一直遭遇聚光效率低下这一瓶颈,石墨烯只能吸收照射于其上的3%的光线来产生电力,其余光线全成了“漏网之鱼”。

石墨烯传感器研究进展

石墨烯传感器的研究进展 摘要 本文论述了石墨烯电化学和生物传感器的研究进展,包括石墨烯的直接电化学基础、石墨烯对生物小分子的电催化活性、石墨烯酶传感器、基于石墨烯薄膜 和石墨烯纳米带的实用气体传感器(可检测O 2、CO和NO 2 )、石墨烯DNA传 感器和石墨烯医药传感器(可用于检测扑热息痛)。 2004年,英国曼彻斯特大学AndreK.Geim等以石墨为原料,通过微机械力剥离法得到一系列叫作二维原子晶体的新材料———“石墨烯(Graphene)”。 石墨烯是碳纳米材料家族的新成员,具有二维层状纳米结构,室温下相当稳定。由于在石墨烯中碳原子呈sp2杂化,贡献剩余一个p轨道上的电子形成了大π键,π电子可以自由移动,使石墨烯具有优良的导电性、新型的量子霍尔效应以及独特的超导性能。石墨烯对一些酶呈现出优异的电子迁移能力,并且对一些小分子(如H2O2、NADH)具有良好的催化性能,使其适合做基于酶的生物传感器,即葡萄糖传感器和乙醇生物传感器。在电化学中应用的石墨烯大部分都是由还原石墨烯氧化物得到的,也称为功能化石墨烯片或者化学还原石墨烯氧化物,这种物质通常有较多的结构缺陷和官能团,在电化学应用上具有优势。 碳是电化学分析和电催化领域应用最广的材料。例如,碳纳米管在生物传感器、生物燃料电池和质子交换膜(PEM)燃料电池方面有着良好的性能。基于石墨烯的电极在电催化活性和宏观尺度的导电性上比碳纳米管更有优势。因此,在电化学领域,石墨烯就有了大展身手的机会。石墨烯在电化学传感器上的应用有以下优点:①体积小,表面积大;②灵敏度高;③响应时间快;④电子传递快; ⑤易于固定蛋白质并保持其活性;⑥减少表面污染的影响。 1石墨烯的电化学基础 为了更好地了解碳材料在电化学领域的应用,有必要研究决定碳电极的几种重要参数的基本电化学行为,即电化学位窗口、电子迁移速率、氧化还原电位等。 ZhouMing等报道称石墨烯在0.1mol/LPBS(pH为7.0)中具有大约2.5V的电化学电位窗口,这与石墨、玻碳、甚至掺杂硼的金刚石电极相似,但是,从交流阻抗谱来看,石墨烯对电荷迁移的阻力比石墨和玻碳电极对电荷迁移的阻力小。 Tang等通过氧化还原电对的循环伏安法研究了石墨烯的电子迁移行为,如具有良好氧化还原峰的3-/4-和3+/2+。在循环伏安法中所有阴阳两极的峰值电流都与扫描速率的平方根呈线性关系,表明石墨烯电极的氧化还原过程主要是由扩散控制的。在CVs(循环伏安法)中,石墨烯中一个电子迁移的氧化还原电对的峰值电位差(ΔEp)非常低,很接近于59mV的理想值,比玻碳电极的小很多;另外,3-/4-的峰值电位差为61.5~73mV

当石墨烯遇上气体传感器 简直绝配

当石墨烯遇上气体传感器简直绝配 气体传感器,可用于检测可燃,易燃和有毒气体的设备,和/或氧的消耗.这种类型的装置也被广泛用于工业或灭火。各种材料如无机半导体,共轭聚合物和碳纳米材料已探索到制造气体传感器中。 在这其中,基于石墨烯的气体传感器最近引起了强烈的关注。作为气体传感器的传感材料,石墨烯的优异性能具有种独特而有吸引力。 首先,石墨烯具有大的理论比表面积(2630 M2G≤1)。单层石墨烯片的所有原子可以被认为是表面原子和它们能吸附气体的分子,提供每单位体积的最大感测区域。其次,石墨烯片之间的相互作用和吸附可能因微弱的范德华力,以强大的共价键。所有这些相互作用的扰动将石墨烯的电子系统,该系统可以容易地MONI-tored通过方便的电子方法。第三,石墨烯的电荷载流子有静止质量为零靠近其狄拉克点和石墨烯在室温下表现出显着的高载流子迁移率,使得石墨烯比银导电并具有在室温下的物质中是最低的电阻率。 另外,石墨烯具有固有的低的电噪声,由于其高品质的晶格连同其二维结构,使得它能够屏蔽比一维对应更多的电荷波动。其结果是,少量的额外的电子可引起石墨的电导率有明显的变化。一个非常小的变化所引起的气体吸附的石墨烯片的电阻甚至下降到了分子水平是可检测的。而且,石墨烯片,也可用于制造四点式设备,以有效地消除接触电阻的影响。化学转化的石墨烯还可以在大规模的成本相对较低合成。实际上,石墨烯材料已广泛用于检测有毒和爆炸性气体。 石墨烯的结构 如图所示,石墨烯是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料。 石墨烯的特性 石墨烯吸附目标气体后其电导率发生变化,通过确定电导率变化及目标表气体浓度间的变化关系,就可以通过测量石墨烯的电导率变化从而测得目标气体的浓度。它属于一种电阻

石墨烯材料的研究进展论文

石墨烯材料的研究进展 摘要:石墨烯是近年被发现和合成的一种新型二维碳质纳米材料。由于其独特的结构 和新奇的物化性能,在改善复合材料的热性能、力学性能和电性能等方面具有很大的潜力,已成为纳米复合材料研究的热点。综述了石墨烯纳米复合材料的制备与应用研究进展,并对石墨烯纳米复合材料的发展前景进行了展望。 关键词:石墨烯;纳米复合材料;制备;应用 1,材料的基本情况 石墨烯是碳原子紧密堆积成单层二维蜂窝状晶格结构的碳质材料,是构成其它碳同素异形体的基本单元。石墨烯的理论研究已有60多年的历史,一直被认为是假设性的结构,无法单独稳定存在。2004年,英国曼彻斯特大学物理学家安德烈·海姆和康斯坦丁·诺沃肖洛夫用胶带反复剥离高定向热解石墨的方法,得到了稳定存在的石墨烯。石墨烯的出现颠覆了传统理论,使碳的晶体结构形成了从零维的富勒烯、一维的碳纳米管、二维的石墨烯到三维的金刚石和石墨的完整体系。 石墨烯的结构非常稳定。石墨烯内部的碳原子之间的连接很柔韧,当施加外力于石墨烯时,碳原子面会弯曲变形,使得碳原子不必重新排列来适应外力,从而保持结构稳定。这种稳定的晶格结构使石墨烯具有优秀的导热性。石墨烯是构成石墨,木炭,碳纳米管和富勒烯碳同素异形体的基本单元。完美的石墨烯是二维的,它只包括六边形(等角六边形); 如果有五边形和七边形存在,则会构成石墨烯的缺陷。12个五角形石墨烯会共同形成富勒烯。石墨烯卷成圆桶形可以用为碳纳米管 石墨烯的出现在科学界激起了巨大的波澜,人们发现,石墨烯具有非同寻常的导电性能、超出钢铁数十倍的强度和极好的透光性,它的出现有望在现代电子科技领域引发一轮革命。 石墨烯目前是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高于碳纳米管和金刚石,石墨烯是迄今为止世界上强度最大的材料,据测算如果用石墨烯制成厚度相当于普通食品塑料包装袋厚度的薄膜(厚度约100 纳米),那么它将能承受大约两吨重物品的压力,而不至于断裂,石墨烯是世界上导电性最好的材料。 常温下其电子迁移率比纳米碳管或硅晶体高,而电阻率比铜或银更低,为目前世上电阻率最小的材料。因为它的电阻率极低,电子迁移的速度极快,因此被期待可用来发展出更薄、导电速度更快的新一代电子元件或晶体管。由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板、甚至是太阳能电池。石墨烯另一个特性,是能够在常温下观察到量子霍尔效应。 2,最热的应用合成 石墨烯的应用范围广阔。根据石墨烯超薄,强度超大的特性,石墨烯可被广泛应用于各领域. 根据其优异的导电性,使它在微电子领域也具有巨大的应用潜力。石墨烯有可能会成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机,碳元素更高的电子迁移率可以使未来的计算机获得更高的速度。最小最快石墨烯晶体管。2011年4月7日IBM向媒体展示了其最快的石墨烯晶体管,该产品每秒能执行1550亿个循环操作,比之前的试验用晶体管快50%。 石墨烯材料还是一种优良的改性剂,在新能源领域如超级电容器、锂离子电池方面,由

基于石墨烯的光学生物传感器的研究进展_高原

DOI :10.3724/SP.J.1096.2013.20747基于石墨烯的光学生物传感器的研究进展 高原 1李艳2苏星光*2(电子科学与工程学院集成光电子国家重点实验室1,吉林大学化学学院2,长春130012)摘要近年来,随着石墨烯研究热潮的兴起,将石墨烯用于生物及化学检测的工作也日益增多。本文着重介绍了基于石墨烯及氧化石墨烯(GO )的光学生物传感器,特别是基于石墨烯的荧光共振能量转移(FRET ) 传感器以及比色法传感器的设计思想和传感特性。 关键词石墨烯;氧化石墨烯;生物传感器;荧光共振能量转移;评述 2012-07-17收稿;2012-09-30接受 本文系国家自然科学基金(Nos.2127506, 21075050)资助项目*E-mail :suxg@jlu.edu.cn 1引言 石墨烯是一种由纯碳原子的六元环平面结构构成的二维材料 [1],是零维的富勒烯、一维的碳纳米管(CNTs )以及三维石墨结构的构筑基元[2]。它具有非常大的理论比表面积、很高的杨氏模量[3]、超高的光学透过率、优良的导热性[4]和导电性,并能够通过电子转移实现荧光猝灭。目前,人们已将基于石 墨烯的材料广泛应用于诸多领域,如吸附剂 [5]、催化剂[6]、药物载体[7]等。石墨烯具有的奇特性质,使 得其能够满足高灵敏性传感器设计的需求,并已用于构建光学[8]、电化学[9]及场效应传感器[10,11]、细胞标记[12]及实时监测[13]等。本文介绍了基于石墨烯材料的光学生物传感器的研究进展,重点评述了基于石墨烯基的荧光共振能量转移(FRET )以及比色法传感器。 2基于石墨烯的荧光共振能量转移传感器 荧光共振能量转移(FRET )是能量由供体荧光团经无辐射途径转移给受体荧光团,并引起供体荧 光猝灭和受体荧光增强的光学现象, 是测量活体及体外纳米尺度距离及变化的有效手段。近年来,人们致力于开发基于石墨烯材料的FRET 传感器, 将其用于生物及化学检测。FRET 传感器主要由3部分构成:供体、受体(猝灭剂)及供受体之间的桥联媒介。在基于石墨烯的FRET 传感器中,石墨烯及其衍生物既可以作为供体,又可作为受体。一方面,石墨烯由于其结构特点,能够同时猝灭发射波长或结构不同的多种荧光团的荧光,是一种通用的猝灭剂;另一方面,石墨烯及其衍生物经过一定的化学处理,可以产生荧光信号,可作为荧光供体。基于石墨烯的FRET 生物传感器依托于一些生物分子构建的桥联基, 用于调节供体荧光团和受体之间的距离,从而引起荧光的变化。其中,DNA 、蛋白质、多肽等生物分子均 可以作为桥联基。 2.1以石墨烯作为猝灭剂 在报道的基于石墨烯材料的FRET 传感器中,以石墨烯材料作为猝灭剂的居多。氧化石墨烯(GO )是石墨烯的一种重要衍生物,是化学还原法制备石墨烯的前驱体,在石墨烯片层结构的边缘和表面带有 多种含氧基团, 如羧基、羟基、环氧基等。正是由于这些含氧基团的存在,使其较石墨烯具有更好的水溶性,可以应用于生物体系中。石墨烯及GO 由于其大面积的共轭结构,可以作为能量受体猝灭多种有机染料及量子点的荧光,是一种广适性的荧光猝灭剂。与传统的猝灭剂相比,石墨烯材料具有更高的猝灭 效率,使FRET 传感器具有背景低、信噪比高、可多重检测的显著特点 [14 16]。2.1.1基于DNA 联接研究表明,石墨烯能区分多种DNA 分子结构,包括ssDNA ,dsDNA 以及茎环 结构等[17,18]。石墨烯及GO 由于其结构特点,对带有裸露的环状结构的化合物具有强烈的吸附能力。第41卷 2013年2月分析化学(FENXI HUAXUE )特约来稿Chinese Journal of Analytical Chemistry 第2期174 180

【CN109930133A】一种用于气敏传感的石墨烯氧化锆复合材料的制备方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910219144.9 (22)申请日 2019.03.21 (71)申请人 西南大学 地址 400715 重庆市北碚区天生路2号 (72)发明人 韩英佳 张啟明 彭小燕  (74)专利代理机构 重庆缙云专利代理事务所 (特殊普通合伙) 50237 代理人 王翔 (51)Int.Cl. C23C 16/511(2006.01) C23C 16/513(2006.01) C23C 16/517(2006.01) C23C 16/26(2006.01) C23C 16/40(2006.01) (54)发明名称 一种用于气敏传感的石墨烯氧化锆复合材 料的制备方法 (57)摘要 本发明的目的是提供一种用于气敏传感的 石墨烯氧化锆复合材料的制备方法,通过把氧化 锆颗粒放置在等离子体反应的区域,且无需控制 加热温度;把甲烷或其他有机化合物引入到反应 体系中,在氢等离子作用下适当增加碳的含量, 从而在氧化锆颗粒上快速制备石墨烯阵列的目 的,此种方法可直接利用在氧化锆颗粒基底上制 备石墨烯,从而得到大比表面积的石墨烯包覆的 氧化锆复合材料,该结构大大提高了石墨烯的表 面载流子浓度。为实现碳包覆氧化锆复合材料制 备提供了一个简洁的方法。权利要求书1页 说明书4页 附图1页CN 109930133 A 2019.06.25 C N 109930133 A

权 利 要 求 书1/1页CN 109930133 A 1.一种用于气敏传感的石墨烯氧化锆复合材料的制备方法,其特征在于,包括以下步骤: 1〕将氧化锆颗粒和泡沫镍一起放置于所述微波等离子体化学气相沉积装置中; 2〕将真空度控制在150-200毫巴; 3〕通入工作气体载入碳源至等离子发生区域; 4〕开启微波等离子体化学气相沉积装置的电源,无需控制加热温度; 5〕反应完成,获得氧化锆石墨烯复合材料。 2.根据权利要求1所述的一种用于气敏传感的石墨烯氧化锆复合材料的制备方法,其特征在于:步骤1〕中,氧化锆颗粒为50-200纳米。 3.根据权利要求1所述的一种用于气敏传感的石墨烯氧化锆复合材料的制备方法,其特征在于:步骤3〕中,所述工作气体选自氢气或氩气中的一种或多种。 4.根据权利要求3所述的一种用于气敏传感的石墨烯氧化锆复合材料的制备方法,其特征在于:步骤3〕中,所述碳源为甲烷及含有SP3或SP2碳原子的有机化合物。 5.根据权利要求1或3所述的一种用于气敏传感的石墨烯氧化锆复合材料的制备方法,其特征在于:步骤3〕中,所述碳源选自甲烷、甲醇、乙醇或甲酸甲酯中的一种或多种。 6.根据权利要求1或5所述的一种用于气敏传感的石墨烯氧化锆复合材料的制备方法,其特征在于:步骤3〕中,微波等离子反应设备(6)包括微波源(5)、置于微波源(5)内的保护管(7)、进气管路(10)和出气管路(3); 所述进气管路(10)与保护管(7)的进气端(8)连接,所述出气管路(3)与保护管(7)的出气端连接(4),所述进气管路(10)和出气管路(3)上分别设置有控制阀I(9)和控制阀II(2),所述进气管路(10)或出气管路(3)上设置有气压计; 所述的氧化锆颗粒置于保护管(7)中; 抽真空前,关闭控制阀I(9)和控制阀II(2); 抽真空后,打开控制阀I(9)和控制阀II(2);工作气体进入进气管路(10)中,从出气管路(3)排出尾气(1)。 7.根据权利要求5或6所述的一种用于气敏传感的石墨烯氧化锆复合材料的制备方法,其特征在于:反应管的直径为20mm~50mm。 8.根据权利要求1或5所述的一种用于气敏传感的石墨烯氧化锆复合材料的制备方法,其特征在于:微波功率为500w~1kW。 9.根据权利要求1或5所述的一种用于气敏传感的石墨烯氧化锆复合材料的制备方法,其特征在于:工作气体的流速为100~200sccm;碳源气体的流速为10~100sccm。 10.根据权利要求1所述的一种用于气敏传感的石墨烯氧化锆复合材料的制备方法,其特征在于:氧化锆颗粒基底上石墨烯沉积生长时间为0.1~1小时。 2

石墨烯柔性压力传感器

石墨烯柔性压力传感器 传感技术被认为是21世纪科学技术发展的重要组成部分,传感技术、计算机技术和通信技术被称为现代信息产业的三大支柱,广泛应用于电子、航天航空、国防、科研等领域。 石墨烯因其优异的电学和力学性能成为科研的热点,近年来由于石墨烯在柔性基底材料和导电材料方面的进展和突破,使石墨烯柔性压力传感器拥有更多更优异的性能,如传感器质量更轻、使用更方便、灵敏度更高、稳定性更好等。 一、石墨烯柔性压力传感器原理 石墨烯柔性压力传感器是用石墨烯作为柔性基底材料。基底材料对于传感器而言是作为支架而存在的,同时因石墨烯优异的物理特性、晶格结构,使石墨烯基底材料具有高电子迁移率和很好的拉伸性。 石墨烯薄膜是柔性传感器的核心,生长参数的设置会影响石墨烯的质量以及层数,所以必须严格的控制石墨烯的生长参数。相较于单层的石墨烯而言,少层石墨烯的稳定更好,能够提高传感器的检测范围。因此制备少层石墨烯薄膜作为柔性传感器的敏感层。

石墨烯复合材料的压力传感器 二、柔性压力传感器的分类 柔性压力传感器一般是用柔性基底材料和敏感材料制备,敏感材料作为柔性压力传感器的核心部分,必须具有很好的导电性、柔性以及机械强度。随着材料科学和力学研究的进步,传感器的敏感材料从最初的硅到现在以碳纳米管、石墨烯、氧化石墨烯为主的纳米材料,因纳米材料具备很好的柔性、很高的的机械强度、良好的导电性等特性成为最炙手可热的柔性传感器敏感材料,因此石墨烯成为21世纪研究最广泛的纳米材料。 1、电阻式柔性压力传感器 电阻式柔性压力传感器是将感知的压力值大小转化为电阻值或者电压值输出的器件。按照电阻式压力传感器的工作机理可以分为两类:应变式和压阻式。应变式压力传感器受力产生形变,引起电阻值发生变化。 压阻式压力传感器的工作机理:传感器受到压力后敏感元件发生形变导致传感器的电阻也发生改变,再通

综述石墨烯传感器

石墨烯传感器 I介绍 石墨烯是一种二维结构的纳米材料,每个碳原子以杂化的方式形成六边形结构。这是一种稳定的材料,有良好的机械拉伸性与电子属性。基于石墨烯的纳米结构在传感器领域有极前景。这是由于每个原子与感应环境相接触,且石墨烯的电学属性可以通过这种接触而改变。石墨烯有着独特的物理属性,从而使得在很多传感领域有应用。如光传感器,电磁传感器,应力与质量传感器以及化学与电化学传感器。 最初,高质量单晶石墨烯是通过机械剥离技术获取。该技术仍旧在实验室精度的实验中提供最好质量的单晶石墨烯。通过这种方法,在独立形式下样品的迁移率可达,尽管在表面捕获的迁移率在 。 II石墨烯制备方法 A机械剥离法 机械剥离法即为用物理的方法破坏石墨层与层之间的结构,从而得到石墨稀。物理意义上的石墨晶体,其实是由大量的石墨层通过德瓦尔斯力连接在一起,层与层之间的作用力巨大。从外界施加物理作用力破坏石墨层之间的作用力。这种方法首先高粘性胶从大块石墨样品上剥离出薄层,然后进一步剥离以减小薄层的厚度,直到可以被表面俘获。如今使用这种方法可以获得毫米级别厚度的薄层。图1是300nm表面获取的单层石墨烯薄层。

图1.在300nm表面机械剥离出的单层石墨烯层通过拉曼光谱中单层石墨烯的特征峰可以快速判定获得的薄层中所石墨烯的层数。图2.是单层石墨烯、双层石墨烯以及数层石墨烯薄层的拉曼特征谱线。由图可以看出单层石墨烯的2D峰很尖锐,辐值较大,而G峰较低。通过2D峰 和G峰的强度比可以判断出层数。还可以通过每个石墨烯层的量子化光吸收。

图2.基板上单层、双层与数层石墨烯的拉曼光谱图 B 化学剥离法 化学剥离法最简单的方式就是使用合适的溶剂例如N-甲基-吡咯烷酮。在液体中使用声波降解法使得溶剂进入石墨层中,从而生成单层,多层的石墨烯,所得的单层石墨烯比例约为1wt%~12wt%。 还有有一些其他的剥墨的尝试,使用了不同的溶剂,取得了一些成功。如层控制剥离法。使用互卤化物嵌入物,随后溶解于表面活化剂中,可以生产出优秀的双层、三层石墨烯,有独特的属性。然后可以使用密度梯度新发获取单层石墨烯,单层的比例可达80%。 还可以使用GO的亲水性进行层剥离,产生悬浊液,然后使用水合肼减少石墨烯上的GO。此步骤后得到的石墨烯不够纯净。 目前研究的方向在于如何控制石墨烯层数与减少其上的缺陷。 C化学气相沉积法(CVD)

基于氧化石墨烯构筑葡萄糖生物传感器的研究_图文.

李钊基于氧化石墨烯构筑葡萄糖生物传感器的研究图 12 GOx/RGO/GCE 不同扫速图 13 GOx/RGO/GCE 不同 pH 值图 10 是氧化石墨烯修饰在电极上之后,经过电化学还原的循环伏安曲线。图 11 a、b 和 c 曲线分别为裸玻碳电极、电还原氧化石墨烯修饰玻碳电极和葡萄糖氧化酶在修饰电极上的循环伏安曲线。图 12 是在0.01—1.0V/S 的扫速下酶修饰电极的循环伏安曲线。图 13 是在不同 pH 值下,酶修饰电极的循环伏安曲线。 5 葡萄糖生物传感器的应用葡萄糖广泛存在于自然之中,在人类的身体中,周围的动物体内,各种食物里等等,可以得知我们对此非常依赖,所以对葡萄糖的有效控制也是必须的。关于葡萄糖的检测有很多种方法,例如,光谱中的紫外光谱和红外光谱,色谱中的液相色谱和色谱质谱联用等等。光谱和色谱对葡萄糖有良好地检测精度,但是这些检测设备的占地面积大和价格昂贵,也只能为大型医院和检测机构而采用。然而家庭和个体需要一种快速,方便的检测设备,这样就使得小型化和便携化传感器的应用得到了发展。如何使传感器能够接近于色谱的精确和高灵敏分析,在葡萄糖传感器方面,酶修饰电极构建传感器开始进入人们的研究范畴。酶具有比任何无机、有机和络合催化剂高出很多倍的催化性能,而且酶的无毒性大大去除了直接检测人体的风险性,利用葡萄糖氧化酶对葡萄糖的良好催化,从而可以达到葡萄糖检测的准确性,高效性,快速化和无害化[8]。新型葡萄糖生物传感器是纳米材料氧化石墨烯修饰电极而设计的传感器,在利用纳米材料的优异性能下,去实现第三代直接电子转移葡萄糖生物传感器。直接电子转移葡萄糖生物传感器的应用会将葡萄糖检测的水平提升到另一个高度,将会扩大葡萄传感器在葡萄糖检测中应用范围。这种传感器不仅可以满足于家庭和个体的需要,而且可以应 9 李钊基于氧化石墨烯构筑葡萄糖生物传感器的研究用于医院和检测机构的快速检测治疗。第三代葡萄糖传感器的成功研制和应用可以证明氧化石墨烯能够帮助葡萄糖氧化酶在电极间进行直接的电化学反应和电子转移,在电化学传感和分析方面能够起到引导和激励的作用。在以后的电化学传感和分析领域,氧化石墨烯的作用和影响将逐步扩大。 6 结论与展望石墨烯有极高的比表面积和优良的电导性,石墨烯的衍生物氧化石墨烯在溶液中能很好地分散,并且含氧官能团能够很好地共价和非共价地连接功能分子,电化学还原氧化石墨烯即保存了氧化石墨

石墨烯传感器的进展综述

石墨烯传感器的进展综述 石墨烯是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体,具有很多奇异的电子及机械性能。随着石墨烯材料的发展,传感器的发展也如虎添翼。很多优异传感器的诞生也使生活生产变得更加智能可控。基于石墨烯材料论述了石墨烯气体传感器,压力传感器和生物传感器的研究进展。 标签:石墨烯;传感器;气体;压力;生物 1 概述 石墨烯(Graphene)是一种由碳原子以sp2杂化轨道组成六角形蜂巢晶格的二维材料,且只有一个碳原子厚度。由于其独特的物理化学性质(高表面积、良好的导电性、机械强度高、易于功能化等),石墨烯在传感器上的应用受到越来越多的关注。本文有选择地论述了石墨烯气体传感器,压力传感器和生物传感器的研究进展。 2 石墨烯基传感器 传感器是一种检测装置,能够将被测量的信息按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。传感器存在于我们生活中的各个方面,它的发展将会为人们的生活带来更大的便利。石墨烯材料的應用为实现传感器的灵敏化、智能化、便捷化奠定了基础。 2.1 石墨烯气体传感器 石墨烯具有蜂巢晶体结构,具有巨大的表面积,对周围的环境非常敏感。据报道,CO2、NH3和NO2等可吸附在纯石墨烯上,使石墨烯纳米传感器的电子运输性能发生重大变化。孙宇峰等人[1]通过对Hummer方法的改进,制备了片状多层氧化石墨烯。在不同浓度的NH3下进行敏感特性测试,实验结果表明氧化石墨烯对NH3具有良好的响应,在(1.5-3.5)×10-4范围内呈线性关系。侯书勇等人[2]通过臭氧处理制备了一种简单、高效、可重复使用的单层石墨烯基NO2气体传感器,并研究了纯的和经过臭氧处理的NO2气体传感器的响应特性和恢复特性。经臭氧处理后的石墨烯基气体传感器对NO2响应度明显高于未经臭氧处理的石墨烯基气体传感器。桂阳海等人[3]为了改善WO3基材料的气敏性能,通过水热法制备出石墨烯添加量为0.5%、0.8%、1.0%、1.5%(质量分数)的石墨烯/WO3纳米片复合材料,并研究其对H2S的气敏性能。结果表明,复合石墨烯对WO3的结构和形貌产生了较大的影响,石墨烯复合使材料对H2S的灵敏度提高,工作温度降低,且响应-恢复时间短。郭晶等人[4]以中空管状氧化锡(SnO2)和石墨烯(RGO)为材料通过静电纺丝和水热技术成功地合成了多孔结构的氧化锡与石墨烯的复合物(RGO/SnO2)。测试了复合材料对NO2的传感性能,结果表明复合材料的传感性能优于SnO2,并发现改变前驱液中SnO2和GO的质

基于石墨烯的复合纳米材料在生物传感器中的应用

基于石墨烯的复合纳米材料在生物传感器中的应用 摘要:石墨烯作为新型材料在化学、材料等科学领域得到了极大的关注。因其优良的导电性和生物相容性,被广泛的运用到生物传感器的研究中。由于纳米级的石墨烯在水溶液中极易聚沉,所以在使用石墨烯时就需要对其修饰。对石墨烯的修饰包括共价键修饰、非共价键修饰和金属颗粒及金属离子修饰。添加各种修饰过后的石墨烯能增加的灵敏度和降低传感器的检测线。 关键词:石墨烯修饰生物传感器 1、引言 最近,石墨已成为一个迅速崛起的明星在材料科学领域。它的问世引起了全世界的研究热潮。自2004年英国曼彻斯特大学Geim团队首次从石墨中剥离出石墨烯以来,人们便对这种具有独特物化性质的纳米材料寄予厚望。此后关于石墨烯的研究不断出现重要进展,并在材料、化学、微电子、量子物理及生物等众多领域表现出许多令人振奋的性能和潜在的应用前景,已成为当前研究热点之一。石墨烯不仅是已知材料中最薄的一种,还非常牢固坚硬;作为单质,它在室温下传递电子的速度比已知导体都快。石墨烯是一个二维(平面)晶体,组成单层碳原子排列在蜂巢网络与六元环,为二维碳结构。在概念上石墨烯可以看作是一无限延长二维芳香族大分子。 石墨烯在原子尺度上结构非常特殊。石墨烯中各碳原子之间的连接非常柔韧,当施加外部机械力时,碳原子面就弯曲变形,从而使碳原子不必重新排列来适应外力,也就保持了结构稳定。这种稳定的晶格结构使碳原子具有优秀的导电性。而且石墨烯中的电子在轨道中移动时,不会因晶格缺陷或引入外来原子而发生散射。由于原子间作用力十分强,在常温下,即使周围碳原子发生挤撞,石墨烯中的电子受到的干扰也非常小。[1,2] 因此, 石墨烯奇特的物理、化学性质, 也激起了物理、化学、材料等领域科学家极大的兴趣。这篇论文主要介绍了基于石墨烯的纳米材料在电化学生物传感器中的运用。 2、石墨烯的修饰 然而,正如其它的同素异形体的新发现如碳富勒烯和碳纳米管(CNTs),材料可用性和加工一直是限制着石墨烯的应用。对于石墨烯,最关键的挑战,在材料合成与加工的中克服石墨层之间强的π-π型层堆叠剥离能,这种高凝聚力范德

基于石墨烯的气体传感器

基于石墨烯的气体传感器 因为它们的原子厚度的二维共轭结构,高导电性和大的比表面积的石墨材料已广泛探索了气体传感器的制造。这篇专题文章总结了对用于此目的石墨烯材料的合成的最近的进展,并应用于制造气体传感器的技术。该组合物中,结构上的缺陷以及基于石墨烯的传感层和气体传感器的性能检测设备的配置形态的影响也将进行讨论。 1引言 气体传感器,可用于检测可燃,易燃和有毒气体的设备,和/或氧的消耗.这种类型的装置也被广泛用于工业或灭火。各种材料如光学flbers,无机半导体,共轭聚合物和碳纳米材料已探索到制造气体传感器中.在这其中,基于石墨烯的气体传感器最近引起了强烈的关注,主要是由于原子厚度的二维结构和石墨烯层.石墨烯的优异性能是一种独特而有吸引力的传感材料做为气体传感器。首先,石墨烯具有大的理论比表面积(2630 M2G≤1)。单层石墨烯片的所有原子可以被认为是表面原子和它们能吸附气体的分子,提供每单位体积的最大感测区域。其次,石墨烯片之间的相互作用和吸附可能因微弱的范德华力,以强大的共价键。所有这些相互作用的扰动将石墨烯的电子系统,该系统可以容易地MONI-tored通过方便的电子方法。第三,石墨烯的电荷载流子有静止质量为零靠近其狄拉克点和石墨烯在室温下表现出显着的高载流子迁移率(200000 cm2V?1秒≤1)与α1012厘米?2载流子密度,对应于10的电阻率?6U.2Actu盟友,石墨烯比银导电并具有在室温下的物质中是最低的电阻率迄今已知的. 另外,石墨烯具有固有的低的电噪声,由于其高品质的晶格连同其二维结构,使得它能够屏蔽比一维对应更多的电荷波动。其结果是,少量的额外的电子可引起石墨的电导率有明显的变化。的确,一个非常小的变化所引起的气体吸附的石墨烯片的电阻甚至下降到了分子水平是可检测的。而且,石墨烯片,也可用于制造四点式设备,以有效地消除接触电阻的影响。四,化学转化的石墨烯(CCG)的材料(如还原的石墨烯氧化物或RGO),可以在大规模的成本相对较低合成。 此外,RGO片都能够被处理或组装成超薄感测层通过各种例如铸造,喷墨打印,朗缪尔- 布洛杰特法和层- 层沉积湿法技术,从而简化了制造气体传感器的过程。RGO也可以通过与其它感测组件共混或用官能团化学键接枝到调节其电子结构和相互作用与气态分析官能化。实际上,石墨烯材料已广泛用于检测有毒和爆炸性气体。 在这篇专题文章基础上我们将系统地从几个方面,包括传感机制,气体传感器的制造,检测性能和未来前景的石墨烯材料,讨论气体传感器。 元文京在吉林大学化学系在2011年获得了理学士学位,获硕士学位,她目前在清华大学化学系石高全的研究小组任研究员,pH值D.候选人。她的研究兴趣主要集中在石墨烯为基础的传感器上。

石墨烯传感器在各大行业中的广泛应用

日前新加坡南洋理工大学的研究人员研制了一种新型传感器,该传感器由石墨烯作为材料,其可对可见光和红外线都高度敏感,据推算,这一新型传感器产品将比现有的传感器产品光敏度强千倍以上。 据介绍这种传感器对光线的敏感度之所以可以超过现在摄像机所使用的成像传感器千倍,得益于它所使用的创新式结构。它是由石墨烯制作而成的,石墨烯是一种拥有蜂窝状结构的超强碳化合物,它和橡胶一样柔韧,而且比硅更具传导性。石墨烯是一种单原子厚的石墨层,它已经获得了认同可以作为未来的建筑材料。 南洋理工大学电气与电子工程系发明了这种新型传感器,是业内首次使用纯石墨烯制造出一种用途广泛的高光敏度传感器。这一发明的成功可以证实,通过现有技术有可能仅使用石墨烯就制造出廉价而又柔韧的感光传感器。这一创新性的发明,不仅能够对成像企业的消费者,而且能够对卫星成像和通信企业产生巨大的影响。这种新型传感器的关键在于使用了“滞留光线”的纳米结构。纳米结构能够比传统的传感器更长时间的捕获产生光线的电子微粒。这就会导致产生一种更强的电信号,就像数码相机所拍摄的照片一样,它能够将这种电信号转变成图像。 现在大多数摄像机的传感器都使用一种互补金属氧化物半导体作为基座。相比这样的金属氧化物,石墨烯基座就要高效的多,能产生更加清晰和精美的照片。而且据南洋理工大学研发团队介绍,在设计这种新型传感器的时候,甚至考虑到了现在的制造业规范。一般而言,摄像机生产企业能够使用同样的过程来制造这种传感器,仅仅需要将基座材料转换成石墨烯即可。如果有企业采纳这一设计,那么就能够带来更廉价、更轻便而且电池寿命更长久的摄像设备。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.doczj.com/doc/408704232.html,/

石墨烯基气体传感器的应用前景及研究进展

石墨烯基气体传感器的应用前景及研究进展 石墨烯作为一种新兴材料,具有电阻率低,高机械强度,弹性好,透明度高,结构稳定,导热性好,电子传导速率最快等特点。以石墨烯为衬底制成的气体传感器在性能上优于很多其他传感器。本文主要介绍了几种石墨烯气体传感器:剥离石墨烯气体传感器、CVD生长石墨烯气体传感器、还原氧化石墨烯气体传感器等,除了描述了基本原理,材料类型外,还同时对石墨烯气体传感器的研究现状和进展进行评价,以及对其应用前景做出展望。 1.1 选题背景及意义 传感器作为收集、传送、检测和管理信息的功能器件,是信息产业链的源头,也是技术基础。其主要特点是能感应并检测到一种形态的信息,并转化成另一种形态的信息。随着信息时代的高速发展,传感器的研究进程蒸蒸日上,人们对于精度、灵敏度、使用便捷等需求越来越高,怎样提高生产效率和降低成本成为工业生产的重点研究目的,而对于科研方面,则更偏向于高灵敏度、高精确度等性能的研究。其中气体传感器与人们的生活息息相关,也在科研及工业生产中广泛应用。石墨烯作为新兴材料自发现以来就已应用在多个领域,在气体传感器中作为衬底也有着独到的优势。本课题将主要介绍几种现代常用的石墨烯基气体传感器,包括它们的基本原理、制备过程、应用领域、研究进展等。 1.2 国内外研究现状 现阶段石墨烯气体传感器的研究重点主要集中于怎样提高石墨烯材料的气敏性能,以及大批量生产的可行性。国内外研究人员通过各种方法均成功制备出了石墨烯,但质量良莠不齐,各有优势与缺点,有的精度高灵敏度高制备不方便,有的易制造但质量不高,还有的质量高面积大但使用受限。作为气体传感器的基体材料,有的可用于科学研究,有的可用于工业或环境检测。对于石墨烯基体与其他气体气敏材料相比,因其巨大比表面积和高电子迁移率,在灵敏度上有很大优势,但选择性差,只对少数气体保持较高灵敏度,这使得石墨烯基气体传感的应用受限制。在理论与实验相结合的研究方法下,探索如何提高石墨烯气体传感器灵敏度、气体选择性,实现室温环境下的商业化成为首要目标。

石墨烯简介

石墨烯的特性及应用 陶庭兴 (安徽大学物理与材料科学学院安徽合肥230039) 摘要:石墨烯是目前发现的唯一存在的二维自由态原子晶体,自2004年首次被发现以来,由于其特殊的单原子层结构及独特的物理、化学特性,迅速成为目前材料科学与凝聚态物理研究的一个热点。本文介绍了近年对于石墨烯的一些研究进展,包括石墨烯的结构特点及各方面的应用,最后对相关领域的发展前景也做了一定展望。 关键词:石墨烯;碳;迁移率;应用 The characteristics and application of graphene Tao Ting-xing School of Physics & Material Science, Anhui University, Hefei 230039, China Abstract Graphene is the free-standing two-dimensional atomic which was first found in 2004 and has been attracting much attention on the horizon of materians science and condensed-matter physics owing to its special single atomic layer structure and unique physical and chemical properties.In this paper,we introduce the research advances of grphene in recent years, including the structure characteristics and all aspects of the application and so on.In the end, the propects for development of graphene in related areas was also introduced. Keywords graphene ;carbon; migration rate;application; 碳材料是地球上最普遍也是最神奇的一种材料。首先我们知道碳是构成地球上生命体不可或缺的元素,所有的生物都含有大量的碳元素;其次,碳还可以构成许多性质奇特的材料,打个比方,它可以形成世界上最硬的金刚石,也可以形成最软的石墨,这在中学时代我们就已经知晓。然而,碳元素的秘密却远不止如此。 在纳米材料中,碳元素的表现同样令人们惊讶,除了已知的神奇碳纳米管(Carbon Nanotube)和富勒烯(Fullerene)外,还有本篇文章的主题——石墨烯。石墨烯(Graphene)的理论研究已有60多年的历史,它一直被认为是假设性的结构,无法单独稳定存在[1] 。但直到2004年,二维结构石墨烯的发现推翻了“热力学涨落不允许二维晶体在有限温度下自由存在”的认知,震撼了整个物理界,他的发现者——英国曼彻斯特大学的物理学家安德烈·海姆(Andre Geim)和康斯坦丁·诺沃肖洛夫(Konstantin Novoselov)成功地利用胶带剥离高定向石墨的方法[2] 获得真正能够独立存在的二维石墨烯晶。两人也因“在二维石墨烯材料的开创性实验”而共同获得2010 年诺贝尔物理学奖。实际上,石墨烯正是构成碳纳米管、富勒烯,以致石墨体材料等的基本单元,如图1所示:

相关主题
文本预览
相关文档 最新文档