当前位置:文档之家› 《材料物理性能》测试题汇总(doc 8页)

《材料物理性能》测试题汇总(doc 8页)

《材料物理性能》测试题汇总(doc 8页)
《材料物理性能》测试题汇总(doc 8页)

《材料物理性能》测试题

1、利用热膨胀曲线确定组织转变临界点通常采取的两种方法是: 、

2、列举三种你所知道的热分析方法: 、 、

3、磁各向异性一般包括 、 、 等。

4、热电效应包括 效应、 效应、 效应,半导体制冷利用的是 效应。

5、产生非线性光学现象的三个条件是 、 、 。

6、激光材料由 和 组成,前者的主要作用是为后者提供一个合适的晶格场。

7、压电功能材料一般利用压电材料的 功能、 功能、 功能、 功能或 功能。

8、拉伸时弹性比功的计算式为 ,从该式看,提高弹性比功的途径有二: 或 ,作为减振或储能元件,应具有 弹性比功。

9、粘着磨损的形貌特征是 ,磨粒磨损的形貌特征是 。

10、材料在恒变形的条件下,随着时间的延长,弹性应力逐渐 的现象称为应力松弛,材料抵抗应力松弛的能力称为 。

1、导温系数反映的是温度变化过程中材料各部分温度趋于一致的能力。 ( )

2、只有在高温且材料透明、半透明时,才有必要考虑光子热导的贡献。 ( )

3、原子磁距不为零的必要条件是存在未排满的电子层。 ( )

4、量子自由电子理论和能带理论均认为电子随能量的分布服从FD 分布。 ( )

5、由于晶格热振动的加剧,金属和半导体的电阻率均随温度的升高而增大。 ( )

6、直流电位差计法和四点探针法测量电阻率均可以消除接触电阻的影响。 ( )

7、 由于严格的对应关系,材料的发射光谱等于其吸收光谱。 ( )

8、 凡是铁电体一定同时具备压电效应和热释电效应。 ( )

9、 硬度数值的物理意义取决于所采用的硬度实验方法。 ( )

10、对于高温力学性能,所谓温度高低仅具有相对的意义。 ( )

1、关于材料热容的影响因素,下列说法中不正确的是 ( )

A 热容是一个与温度相关的物理量,因此需要用微分来精确定义。

B 实验证明,高温下化合物的热容可由柯普定律描述。

C 德拜热容模型已经能够精确描述材料热容随温度的变化。

D 材料热容与温度的精确关系一般由实验来确定。

2、 关于热膨胀,下列说法中不正确的是 ( )

A 各向同性材料的体膨胀系数是线膨胀系数的三倍。

B 各向异性材料的体膨胀系数等于三个晶轴方向热膨胀系数的加和。

C 热膨胀的微观机理是由于温度升高,点缺陷密度增高引起晶格膨胀。

D 由于本质相同,热膨胀与热容随温度变化的趋势相同。

3、下面列举的磁性中属于强磁性的是 ( )

A 顺磁性

B 亚铁磁性

C 反铁磁性

D 抗磁性

4、关于影响材料铁磁性的因素,下列说法中正确的是 ( )

A 温度升高使得M S 、

B R 、H

C 均降低。 B 温度升高使得M S 、B R 降低,H C 升高。

C 冷塑性变形使得C H μ和均升高。

D 冷塑性变形使得C H μ和均降低。

5、下面哪种效应不属于半导体敏感效应。 ( )

A 磁敏效应

B 热敏效应

C 巴克豪森效应

D 压敏效应

6、关于影响材料导电性的因素,下列说法中正确的是 ( )

A 由于晶格振动加剧散射增大,金属和半导体电阻率均随温度上升而升高。

B 冷塑性变形对金属电阻率的影响没有一定规律。

C “热塑性变形+退火态的电阻率”的电阻率高于“热塑性变形+淬火态”

D 一般情况下,固溶体的电阻率高于组元的电阻率。

7、下面哪种器件利用了压电材料的热释电功能 ( )

A 电控光闸

B 红外探测器

C 铁电显示器件

D 晶体振荡器

8、下关于铁磁性和铁电性,下面说法中不正确的是 ( )

A 都以存在畴结构为必要条件

B 都存在矫顽场

C 都以存在畴结构为充分条件

D 都存在居里点

9、下列硬度实验方法中不属于静载压入法的是 ( )

A 布氏硬度 B肖氏硬度 C 洛氏硬度 D显微硬度

10、关于高温蠕变性能,下列说法中不正确的是()

A 蠕变发生的机理与应力水平无关。 B粗化晶粒是提高钢持久强度的途径之一。

C 松弛稳定性可以评价材料的高温预紧能力。

D 蠕变的热激活能与材料的化学成分有关。

四、简答题(每题6分,共30分):

1、以杜隆-珀替定律为例,简要回答热容模型的推导步骤。

2、直接交换作用是如何解释自发磁化现象的?

3、什么是霍耳效应,简要回答其在电学性能中的应用。

4、如何理解反射系数和折射率的关系?

5、以BaTiO3晶体为例,简要说明热运动引起的自发极化。

铁磁性材料的技术磁化过程分为哪几个阶段,请用简图表示并用文字简单说明各阶段的含义,指出如何从该图求得自发磁化强度。

压电体:某些电介质施加机械力而引起它们内部正负电荷中心相对位移,产生极化,从而导致介质两端表面内出现符号相反的束缚电荷。在一定应力范围内,机械力与电荷呈线性可逆关系这类物质

导体:在外电场的作用下,大量共有化电子很易获得能量,集体定向流动形成电流的物体

半导体:能带结构的满带与空带之间也是禁带,但是禁带很窄,导电性能介于导体和半导体之间的物体

绝缘体:在外电场的作用下,共有化电子很难接受外电场的能量,难以导通电流的物体

热电效应:当材料存在电位差时会产生电流,存在温度差时会产生热流的这种现象

电光效应:铁电体的极化能随E而改变,因而晶体的折射率也将随E改变,这种由外电场引起晶体折射率的变化

一般吸收:在光学材料中,石英对所有可见光几乎都透明的,在紫外波段也有很好的透光性能,且吸收系数不变的这种现象

选择吸收: 对于波长范围为3.5—5.0μm的红外光却是不透明的,且吸收系数随波长剧烈变化的这种现象

发光效率:发光体把受激发时吸收的能量转换为光能的能力

受激辐射:当一个能量满足hv=E2-E1的光子趋近高能级E2的原子时,入射的光子诱导高能级原子发射一个和自己性质完全相同的光子的过程

因瓦效应:将与因瓦反常相关联的其它物理特性的反常行为

简答题

电介质导电的概念、详细类别、来源。

概念:并不是所有的电介质都是理想的绝缘体,在外电场作用下,介质中都会有一个很小的电流

类别:一类是源于晶体点阵中基本离子的运动,称为离子固有电导或本征电导,这种电导是热缺陷形成的,即是由离子自身随着热运动的加剧而离开晶格点阵形成。另一类是源于结合力较弱的杂质离子的运动造成的,称为杂质电导

来源(导电方式):电子与空穴(电子电导);移动额正负离子电导(离子电导)。对于离子电导,必须需要指出的是:在较低场强下,存在离子电导;在高场强下,呈现电子电导。

硬磁材料与软磁材料各自的特点与区别。

软磁材料:磁滞回线瘦长,μ高、 Ms高、 Hc小、 Mr低,如变压器铁芯,常用材料如工业纯铁、硅铁、铁镍合金、铁钴合金等。

硬磁(永磁)材料:磁滞回线短粗,μ低、 Hc与 Mr高,常用材料如铁氧体、铝镍、稀土钴、稀土镍合金等,80年代发展的Nd-Fe-B

系合金

Mr/Ms接近于1的矩形回线材料即矩磁材料是理想的磁记录材料。

请简要回答热电性的三个基本热电效应。

电滞回线的各个物理量的名称和物理意义。

极化强度P,外加电场E,饱和极化强度Ps,剩余极化强度Pr,矫顽电场强度Ec

磁滞回线的各个物理量的名称和物理意义。

Hs称为使磁化强度达到饱和时的磁场强度,饱和磁感应强度Bs,Ms称为饱和磁化强度,Mr称为剩余磁化强度,要使M 降至0,必须施加一反向磁场-Hc, Hc称为磁矫顽力,

请基于磁化率给物质磁性分类,并说明各类的物质磁化难以程度。

简要回答物质磁性的来源

任何物质由原子组成,原子又有带正电的原子核(核子)和带负电的电子构成。核子和电子本身都在做自旋运动,电子又沿一定轨道绕核子做循规运动。它们的这些运动形成闭合电流,从而产生磁矩。

材料磁性的本源是:材料内部电子的循规运动和自旋运动。

为什么自发磁化要分很多的磁畴。

交换能力图使整个晶体自发磁化至饱和,磁化方向沿着晶体易磁化方向,就使交换能和各向异性能都达到最小值。但必然在端面处产生磁极,形成退磁化场,增加了退磁场能,从而将破坏已形成的自发磁化,相互作用的结果使大磁畴分割为小磁畴,即减少退磁能是分畴的基本动力。分畴后退磁能虽减小,但增加了畴壁能,使得不能无限制分畴。当畴壁能与退磁能之和最小时,分畴停止。(局部的退磁场作用下,出现三角形畴(副畴,塞漏畴),与主磁畴路闭合,减少了退磁能,但增加各向异性能、磁弹性能)

正常情况下,为什么半导体材料的电阻随着温度的升高而降低。

μυσρ22/1e n m **==载流子密度

正常情况下,为什么金属的电导率随着温度的升高而降低。 金属材料随温度升高,离子热振动的振幅增大,电子就愈易受到散射,可认为μ与温度成正比,则ρ也与温度成正比。 影响金属导电性的因素有哪些。

为什么金属化合物的导电性要低于单一金属,请基于电离势能方面的差异进行简要说明。

(1)晶体点阵畸变;(2)杂质对理想晶体的破坏;(3)影响了能带结构,移动费米面及电子能态密度和有效电导电子数;(4)影响了弹性常数。过渡金属与贵金属两组元固溶时:电阻异常高,原因它们的价电子可以转移到过渡金属的尚未被填满的d-或f-壳层中,从而使有效电导的电子数目减少。原子键合的方式发生了变化,其中至少一部分由金属键变为共价键获离子键,使导电电子减少。

超导体为什么具有完全的抗磁性。

这是由于外磁场在试样表面感应产生一个感应电流,此电流由于所经路径电阻为0,故它所产生的附加磁场总是与外磁场大小相等,方向相反,因而使超导体内的合成磁场为零。由于此感应电流能将外磁场从超导体内挤出,故称抗磁感应电流,又因其能起着屏蔽磁场的作用,又称屏蔽电流。

简述本证硅的导电机理。

导电机理:在热、光等外界条件的影响下,满带上的价电子获得足够的能量,跃过禁带跃迁至空带而成为自由电子,同时在满带中留下电子空穴,自由电子和电子空穴在外加电场的作用下定向移动形成电流。

简述硅中掺杂硼的导电机理(要有示意图)

在本征半导体中,掺入3价元素的杂质(硼,铝,镓,铟),就可以使晶体中空穴浓度大

大增加。因为3价元素的原子只有3个价电子,当它顶替晶格中的一个4价元素原子,并与周围的4个

硅(或锗)原子组成4个共价键时,缺少一个价电子,形成一个空位。因为,3价元素形成的空位能级非

常靠近价带顶的能量,在价电子共有化运动中,相邻的原子上的价电子就很容易来填补这个空位(较

跃迁至禁带以上的空带容易的多),从而产生一个空穴。所以每一个三价杂质元素的原子都能接受一个

价电子,而在价

带中产生一个空穴。

简述硅中掺杂砷的导电机理(要有示意图)

本征半导体中掺入5价元素(磷,砷,锑)就可使晶体中的自由电子的浓度极大地增加。

因为5价元素的原子有5个价电子,当它顶替晶格中的一个4价元素的原子时,余下了1个价电子变

成多余的,此电子的能级非常靠近导带底,非常容易进入导带成为自由电子,因而导带中的自由电子较

本征半导体显著增多,导电性能大幅度提高。

简述介质损耗的几种形式及造成这几种损耗的原因。

介质损耗形式:

1)电导(或漏导)损耗 实际使用的电介质都不是理想的绝缘体,都或多或少地存在一些弱联系带电离子或空穴,在 E 作用下产生漏导电流,发热,产生损耗。

低场强下,存在离子电导(本征电导和杂质电导);高场强下,电子电导。

2)极化损耗 一方面:极化过程中离子要在E 作用下克服热运动消耗能量,引起损耗。

另一方面:松弛极化建立时间较长,极化跟不上外E 的变化(特别是交流频率较高时),所造成的电矩往往滞后于E ,即E 达最大时,极化引起的极化电荷未达最大,当E 开始减小时,极化仍继续增至最大值后才开始减小,当E 为0时,极化尚未完全消除,当外E 反向时,极板上遗留的部分电荷中和了电源对极板充电的部分电荷,并以热的形式散发,产生损耗。

3)电离损耗 又称游离损耗,是气体引起的,含气孔的固体电介质,外E 大于气体电离所需的E 时,气体发生电离吸收能量,造成损耗。 剩余极化的形成过程。

铁电畴在外电场作用下,总是要趋于与外电场方向一致,这称为电畴的“转向”。实际上电畴运动是通过在外电场作用下新畴的出现、发展以及畴壁的移动来实现的,而且由于转向时引起较大内应力,所以这种转向不稳定。当外加电场撤去后,则有小部分电畴偏离极化方向,恢复原位,而大部分电畴则停留在新转向的极化方向上,这叫剩余极化。

铁电畴转向过程,包括在畴壁附近的作用过程。

在外电场的推动下,电畴会随外电场方向出现转向运动。其运动过程分为新畴成核、发展和畴壁移动来实现。

180°畴:反向电场——(边沿,缺陷处即成核)新畴——尖劈状的新畴向前端发展(因180°畴前移速度快几个 数量级),180°畴不产生应力(因自发极化反平行),一般需耗较大电场能。

90°畴:对于90°畴的“转向”虽然也产生针状电畴,但是主要是通过90°畴的侧向运动来实现。但因晶轴的长缩方向不一致,而产生应力并引起近邻晶胞承受压力。

为什么铁电单晶剩余极化值比铁电陶瓷高。

实际的铁电体中,必然同时存在90°畴和180°畴,并且相互影响,相互牵制。尤其多晶陶瓷中杂质,缺陷,晶粒间界,空间电荷的存在将给电畴的转向带来电的或机械应力方面的影响,故铁电陶瓷在外电场作用下的定向移动率,通常比铁电单晶的定向率低的多 压电体产生压电效应的机制是什么,请简要画出压电效应的机理示意图。

因为机械作用(应力与应变)引起了晶体介质的极化,从而导致介质两端表面内出现符号相反的束缚电荷。 ???? ??-==kT E T K p n g i i 2exp 23

1

综合题

引起电介质击穿的形式及其对应物理机制。

击穿形式: 1)电击穿 是一电过程,仅有电子参与。过程:强电场作用下,少数能量高的“自由电子”,沿反电场方向运动,形成电流(漏电流),其运动过程中不断碰撞介质内的离子,并将其部分能量传递给离子。当外电压足够高时, “自由电子”速度超过某一临界值,就使被撞击的离子电离出一些新电子,即成为“次级电子”,原自由电子与次级电子又从电场中获得能量而加速,又撞击出三级电子,这样连锁反应,造成大量自由电子,形成“电子潮”,使贯串介质的电流迅速增大,导致介质击穿。

2)热击穿 绝缘材料在电场作用下出现各种消耗,部分电能转换为热能,外电压足够高时,产生的热量大于散发热量,温度升高,产生热量进一步增加,这样恶性循环,使材料不断升温,超过一定限度,介质被烧裂,熔融等,丧失绝缘能力,称介质的“热击穿”。

3)化学击穿 长期运行在高温、潮湿、高压或腐蚀性气体环境中的绝缘材料,内部发生电解、腐蚀、氧化、还原、气孔中气体电离等不可逆的化学过程,经一定时间,材料老化,丧失绝缘性能,导致击穿。如氧化物还原出金属离子。

超导现象的物理机制是什么。

超导现象产生的原因是超导体中的电子在超导态时,电子间存在着特殊的吸引力,而不是正常态时的静电斥力。这种吸引力使电子双双结成电子对。它是超导态电子与晶格点阵间相互作用产生的结果。使动量和自旋方向相反的两个电子el 、

电子对

请阐明P209页图4.19的物理特征。

、可见光中波长最短的是紫光,波长最长的是红光: 、所以,Eg<1.8eV 、Eg=1.8~3.1的非金属材料,是带色透明的,因为只有部分可见光通过激发价带电子向导带转移而被材料吸收。

铁磁性物质产生铁磁性的充分条件及自发磁化的物理机制。

铁磁性产生的充分条件:原子内部要有未填满的电子壳层(或说存在固有磁矩),且A 具有较大的正值(或说可发生自发磁化)。前者是指原子的本征磁矩,后者指的是要有一定的晶体点阵结构。机理:据键合理论,原子相互接近形成分子时,电子云要相互重叠,电子要相互交换位置。对过渡族金属,原子的3d 与4s 态能量接近,它们电子云重叠时引起了3d 、4S 态电子的交换。交换所产生的静电作用力称为交换力,交换力的作用迫使相邻原子的自旋磁矩产生有序的排列。因交换作用而产生的附加能量称为交换能:

金属—半导体接触时,请基于逸出功大小阐述接触电效应。 假定金属的逸出功φM 大于半导体的逸出功φ S ,当形成MS 结时,半导体中的电子会向金属中扩散,使金属表面带负电,半导体表面带正电,能带发生移动,形成新的费米能而达到平衡,不在有静电子的流动,形成了接触电位差,VMS = (φM - φ S)/e. 并在接触界面出现一个由半导体指向金属的内电场,阻碍载流子的继续扩散。也形成了耗尽层,能带向上弯曲,在金属与半导体两侧形成势垒高度稍有不同的肖特基势垒。这种MS 结具有整流作用。当φM < φ S 时,电子将有金属扩散流向半导体,在半导体一侧形成堆积层,这个是高导电区,成为反阻挡层(黑板图示)。能带向下弯曲,成为欧姆结。通常半导体器件采用金属电极时就需要良好的欧姆接触。 退磁的方法有哪些,同时请说明每一种方法退磁机制。

磁滞回线的起点不是饱和点,而在饱和点以下时,H 减小时,Mr 和Hc 减小,即磁滞回线变得短而窄,若施加的交变磁场幅值H 趋于0时,则回线将成为趋于坐标原点的螺线,直至交变磁场的H =0,铁磁体将完全退磁。

另外的方法:(1)加热法(2)敲击法(3)反向加磁场法

PN 结的发光机理是什么?

如果我们设法使一块完整的半导体一边是N 型,而另一边是P 型,则在接合处形成 P -N 结。未加电场时,由于电子和空穴的扩散作用,在P -N 结的交界面两侧形成空间电荷区,生产自建场,其电场方向自N 区指向P 区。引起漂移运动,当扩散运动和漂移运动达到热平衡时, P 区和N 区的费米能级必然达到同一水平。

这时,在P 区和N 区分别出现P 型简并区 和N 型简并区, P 区的价带顶充满了空穴,N 区的导带底充满了电子。在结区造成了能带的弯曲。 自建场的作用,形成了接触电位差VD 叫做P -N 结的势垒高度。P 区所有能级上的电子都有了附加位能,它等于势垒高度VD 乘以电子电荷e (VDe )

当给P -N 结加以正向电压V 时,如图(5-27)所示,原来的自建场将被削弱,势垒降低,破坏了原来的平衡,引起多数载流子流入对方,使得两边的少数载流子比平衡时增加了,这些增加的少数载流子称为“非平衡载流子”。这种现象叫做“载流子注入”。此时结区的统一费米能级不复存在,形成结区的两个费米能级EF+和EF-,称为准费米能级。它们分别描述空穴和电子的分布。在结区的一个很薄的作用区,形成了双简并能带结构。

如何控制

?

χcos A E C -∝

下图栅压G的极性和数值,使n沟道晶体管分别处于导通或者截止的状态,请详细说明控制的过程与原理。

在P型衬底的MOS系统中增加两个N型扩散区,分别称为源区(S表示)和漏区(D表示)。通过控制栅压G的极性和数值,可以使MOS 晶体管分别处于导通或截止的状态:源、漏之间的电流将受到栅压的调制,这就是MOS晶体管工作原理的基础,利用这一性质做成的MOS集成电路是大规模集成电路中最重要的类型之一。

画出基于光生伏特效应设计的太阳能电池吸收光能及产生电能的示意图,并阐明其运作过程。

请阐述铁电体产生自发极化的物理机理。

具有自发极化的晶体(极性)由于结构内正负电荷中心不相重合而存在固有电矩,当晶体温度变化时,发生热膨胀使晶体的自发极化的固有电矩发生改变,

PN结在正、反向电压施加作用下的导电过程(做出示意图辅助解释)

(1)外加正向电压的情况(PN结正向注入)(2)外加反向电压(PN结的反向抽取)

介质极化的五个基本形式、概念及基本特点。

1)电子式极化(电子位移极化):在E作用下,原子外围的电子云中心相对于原子核发生位移,形成感应电矩而使介质极化的现象。形成很快(10-14~10-16 s),是弹性可逆的,极化过程不消耗能量。在所有电介质中都存在,但只存在此种极化的电介质只有中性的气体、液体和少数非极性固体。

2)离子式极化(离子位移极化):离子晶体中,除离子中的电子产生位移极化外,正负离子也在E作用下发生相对位移而引起的极化。又分为: a.离子弹性位移极化:在离子键构成的晶体中,离子间约束力很强,离子位移有限,极化过程很快( 10-12~10-13s),不消耗能量,可逆。

3)偶极子极化(固有电矩的转向极化):有E时,偶极子有沿电场方向排列的趋势,而形成宏观电矩,形成的极化。所需时间较长(10-2~10-10s),不可逆,需消耗能量。

4)空间电荷极化:有些电介质中,存在可移动的离子,在E作用下,正负离子分离所形成的极化。所需时间最长(10-2s)。

阐述BaTiO3单晶在外电场作用下的极化反转过程。

1)、一般在外电场作用下(人工极化),180°畴转向比较充分;同时由于“转向”时结构畸变小,内应力小,因而这种转向比较稳定。2)、而90°畴的转向时不充分的,对BaTiO3陶瓷, 90°畴只有13%;而且,由于转向时引起较大内应力,所以这种转向不稳定。当外加电场撤去后,则有小部分90°畴电畴偏离极化方向,恢复原位。

3)、大部分(主要是180°畴)则会停留在新转向的极化方向上(剩余极化)。

金属Fe具有磁性的原因。

顺磁体:原子内部存在永久磁矩,无外磁场,材料无规则的热运动使得材料没有磁性,当外磁场作用,每个原子的磁矩比较规则取向,物质显示弱磁场,这样的磁体称顺磁体。

铁磁体:在较弱的磁场内,铁磁体也能够获得强的磁化强度,而且在外磁场移去,材料保留强的磁性。原因是强的内部交换作用,材料内部有强的内部交换场,原子的磁矩平行取向,在物质内部形成磁畴,这样的磁体称铁磁体。

金属热膨胀:物质的体积或长度随温度的升高而增大的现象。

内耗:对固体材料内在的能量损耗称为内耗。

磁致伸缩效应:铁磁体在磁场中被磁化时,其形状和尺寸都会发生变化的现象。

磁畴:指在未加磁场时铁磁体内部已经磁化到饱和状态的小区域。

软磁材料:软铁被磁化后,磁性容易消失,称为软磁材料。

亚铁磁体:磁体中存在大小不等反平行的自旋磁矩,磁矩大小部分抵消,因而磁体仍然可以自发磁化,类似于铁磁体。这种磁体称为亚铁磁体。

磁畴结构:磁畴的形状、尺寸、磁壁的类型与厚度的总称。

磁滞回线:当磁化磁场作周期的变化时,表示铁磁体中的磁感应强度与磁场强度关系的一条闭合曲线。

对于一根具体的导线而言,影响它的导电因素有哪些?

答:对于一根具体的导线而言,导电过程分两部分,包括最外电子脱离正离子实和之后的在晶格中运行,所以,影响导电性包括这两部分的影响因素。

(1) 从导电定律关系式中可以看出一个电子的电荷是固定的数值,n有效决定于金属的晶体结构及能带结构,而电子自由运行时间或电子平均自由程则决定于在外电场作用下,电子运动过程中所受到的散射。

(2) 电子在金属中所受到的散射可用散射系数μ来表述。μ的来源有两方面,一是温度引起离子振动造成的μT,二是各种缺陷及杂质引起晶格畸变造成的μn。

μ=μT+μn

相应地电阻为:ρ=ρT+ρn

(3) 由温度造成的晶格动畸变和由缺陷造成的晶格静畸变,两者都会引起金属电阻率增大。

什么是西贝克(Seeback)效应?它是哪种材料的基础?

答:西贝克效应是由于温差产生的热电现象,即温差电动势效应——广义地,在半导体材料中,温度和电动势可以互相产生。实际上是材料的热和电之间转化,可以指导人们在热电之间建立相互联系,是热电材料的基础。

简述导温系数(又称热扩散系数)α的物理意义及其量纲?

答:物理意义:表示温度变化的速率。

量纲:m2/s。

技术磁化过程分为哪几个阶段?各个技术磁化阶段的特点是什么?

答:第一部分(OA)是可逆磁化过程:可逆是指磁场减少到零时,M沿原曲线减少到零,在可逆磁化阶段,磁化曲线是线性的,没有剩磁和磁滞。在金属软磁材料中,此阶段以可逆壁移为主。

第二部分(AB)是不可逆磁化阶段:此阶段内,M随磁化场急剧地增加,M与H曲线不再是线性。此阶段中,若把磁场减少到零,M不再沿原曲线减少到零,而出现剩磁,这种现象成为磁滞,巴克豪森指出,这一阶段由许多M的跳跃性变化组成,是畴壁的不可逆跳跃引起的。

第三部分(BC)是磁化矢量的转动过程:第二阶段结束后,畴壁消失,整个铁磁体成为一个单畴体,但其内部磁化强度方向还与外磁场方向不一致。在这一阶段内随磁化场进一步增大,磁矩逐渐转动到与外磁场一致的方向,当磁化到S点时,磁体已磁化到技术饱和,这时的磁化强度称饱和磁化强度Ms。

第四部分自C点以后,M-H曲线已近似于水平线,而M-H曲线大体上成为直线,自C点继续增大外磁,Ms还稍有增加,这一过程称为顺磁磁化过程。

分子场的本质是什么?在铁磁体中起什么作用?

答:分子场的本质:分子场的性质不是磁场,量子力学告诉我们,分子场来源于相邻原子中电子间的交换作用,它导致了磁有序。从本质上讲,这是属于静电作用。

在铁磁体中的作用:铁磁物质内部存在很强的“分子场”,它使原子磁矩同向平行排列,即自发磁化到饱和;铁磁体的自发磁化分成若干磁畴,由于磁体中各磁畴的磁化方向不一致,所以大块磁体对外不显示磁性。

简述经典自由电子气模型和量子自由电子气模型的特点?

答:经典自由电子气模型:金属(已结晶的)由原子点阵(晶格)构成,价电子(最外层电子)是完全自由的,可以在整个金属中自由运动,就像气体分子能在一个容器内自由运动一样,故可以把价电子看成“自由电子气”,这些自由电子在晶格中的运动就像气体在容器中的运动一样(但不能脱离“容器”,即晶格)。

自由电子的运动遵循经典力学的运动规律,遵循气体分子运动论。这些电子在一般情况下(没有外场的作用下)可沿所有方向运动,但在电场作用下由于静电相互作用,将逆着电场方向运动,从而使金属中产生电流(即:电子的定向运动)。

电子与带正电的离子(由于价电子脱离原来的原子)的碰撞(也叫散射)妨碍电子的被无限加速,从而形成电阻。

量子自由电子论:

量子自由电子论用量子力学观点来研究在金属的大量原子集合体中的价电子分布问题。

量子自由电子论的基本观点是:金属正离子(离子实)所形成的势场各处都是均价的;价电子是共有化的,他们不束缚于某个原子上,可以在整个金属内自由地运动,电子之间没有相互作用,电子运动服从量子力学原理。

量子自由电子论与经典自由电子论的主要区别在于电子运动服从量子力学原理。

简述非过渡族金属的电阻—温度关系,并说明原因。

答:理想晶体

温度对金属电阻的影响是由于温度引起离子晶格热振动造成电子波的散射,而使电阻率随温度的升高而增加。在绝对零度下,纯净又无缺陷的金属(完整的晶格),其电阻率等于零。随温度的升高金属的电阻率也在增加。

有缺陷的晶体

实验表明,对于普遍非过渡金属θD一般不超过500K,当T>2/3θD时,线性关系已足够正确,即在室温和更高一些温度都可写成:ρT= ρ0(1+αT),α为电阻温度系数。

在低温下决定于“电子-电子”散射的电阻可能占优势,这是由于在此低温下决定于声子散射的电阻大大减弱的缘故(低温下晶格振动大大减弱),这时的电阻与温度的平方成正比,即ρ电-电∝αT2,普通非过渡金属的电阻与温度的关系示于右图。

即:存在如下关系:

1-ρ电-声∝ T(T>>θD)

2-ρ电-声∝ T5(T<<θD)

3-ρ电-电∝ T2(T≈2K)

说明物质的抗磁性、顺磁性、铁磁性、反铁磁性及亚铁磁性之间的异同点?

答:在五种磁性物质中,只有抗磁性物质没有永久性的离子(或原子)磁矩,其他四种都有永久性的离子(或原子)磁矩,但它们的磁性行为又不相同。除了磁化率不相同以外,最主要的是它们的磁结构各不相同:

(1) 顺磁性物质的原子磁矩混乱取向,处于磁无序状态;

(2) 铁磁性物质由于静电交换作用,在一定范围内相邻原子磁矩平行取向;

(3) 在反铁磁性物质内部,相邻原子磁矩反平行排列,反铁磁性物质仅在某一临界温度下存在,此临界温度称为奈耳温度TN,加热到TN以上,反铁磁性转变为顺磁性或其它磁性;

(4) 亚铁磁性仅在化合物或合金中存在,它由磁矩大小不同的两套方向相反的铁磁性交错排列组成,即μA≠μB,相同磁性的离子磁矩同向平行排列,而不同磁性的离子磁矩是另一个相反方向的平行排列。

分析物质的抗磁性、顺磁性、反铁磁性及亚铁磁性与温度之间的关系?

答:(1) 抗磁性是由外磁场作用下电子循轨运动产生的附加磁矩所造成的,与

温度无关,或随温度变化很小。

(2) 根据顺磁磁化率与温度的关系,可以把顺磁体分为三类,一是正常顺磁体,

其原子磁化率与温度成反比;二是磁化率与温度无关的顺磁体;三是存在反铁

磁体转变的顺磁体,当温度高于一定的转变温度TN时,它们和正常顺磁体一样服从局里-外斯定律,当温度低于TN时,它们的原子磁化率随着温度下降而减小,当T→0K时,磁化率趋于常数。

(3) 反铁磁性物质的原子磁化率在温度很高时很小,随着温度逐渐降低,磁化率逐渐增大,温度降至某一温度TN时,磁化率升至最大值;再降低温度,磁化率又减小。

(4 ) 亚铁磁性物质的原子磁化率随温度的升高而逐渐降低。

简述热性能的物理本质和热稳定性。

答:热性能的物理本质:晶格的热震动即质点围绕平衡位置作微小震动。

热稳定性:材料在温度急剧变化而不被破坏的能力,也被称为抗热震性。

导电材料中的载流子有哪些?

答:电子;离子;空位。

有哪些缺陷均会使金属电阻率增加?

答:空位;位错;间隙原子以及它们的组合。

原子核外电子排布的规则是什么?

答:泡里不相容原理;能量最低原理;洪特规则。

磁畴形成的两个条件有哪些?

答:(1) 原子中必须有未填满电子的内层,因而存在未被抵消的自旋磁矩。

(2) 相邻原子间距a与未填满的内电子层半径r之比大于3,即a/r>3。

影响金属材料热导率的因素?

答:温度,原子结构,合金的成分和晶体结构,气孔率。

影响金属材料的弹性模量的主要因素?

答:金属材料原子结构;金属的点阵结构。

引起金属内耗的因素?

答:

\

1、有电子壳层参加的原子现象范围内只有两种类型的力:磁力和静电力。()

2、半导体的能带结构不取决于晶体点阵和组成元素的性质,而载流子的有效质量则是反应能带结构的重要参量

3、直流电位差计是比较测量法测量电动势(或电压)的一种仪器

4、电阻率和电导率是对材料成分、组织和结构极敏感的电参数,能灵敏地反映材料内部的微弱变化。

5、铁磁材料从退磁状态被磁化到技术饱和的过程中存在不可逆过程。()

6、矫顽力很小而磁化率很大的材料称为“软磁材料”,将矫顽力很小而磁化率也小的材料称为“硬磁材料”,磁滞回线为矩型的材料称为“矩磁材料”。()

7、抗磁体的磁化率或者与温度无关,或者随温度变化产生大变化。()

8、当合金融化、凝固以及发生同素异构转变时,磁化率不发生突变。

简答题

1、位移型铁电体及其应用?

2、反磁化过程和磁矫顽力的描述?

3、用外斯假说描述的

铁磁性的物理本质。

三、计算题

1、固溶体有限溶解度的电阻测定分析原理为何?已知Cu-Mg2Sn合金中,200oC 时Mg2Sn的溶解度为1.5wt%、400oC为1.6wt%、470oC为1.7wt%、

520oC为2.0wt%、600oC为2.85%、650oC为5.1wt%,完成右图中Mg2Sn的溶解度曲线,并估算500oC时的溶解度数值。

四、论述题

为何GaAs 在某些方面比硅或锗更具优越性。

15、简述简述电介质的四大电极化机制?

五、分析题

1、利用右图分析气孔率对材料导系数及热传导的影响,20、19、举例说明图为金属粉末导热率与气孔率的关系曲线。粉末银粉和热压银粉的实验点说明什么。

材料物理性能复习总结

1、 ?拉伸曲线: ?拉伸力F-绝对伸长△L的关系曲线。 ?在拉伸力的作用下,退火低碳钢的变形过程四个阶段: ?1)弹性变形:O~e ?2)不均匀屈服塑性变形:A~C ?3)均匀塑性变形:C~B ?4)不均匀集中塑性变形:B~k ?5)最后发生断裂。k~ 2、弹性变形定义: ?当外力去除后,能恢复到原形状或尺寸的变形-弹性变形。 ?弹性变形的可逆性特点: ?金属、陶瓷或结晶态的高分子聚合物:在弹性变形内,应力-应变间具有单值线性 关系,且弹性变形量都较小。 ?橡胶态高分子聚合物:在弹性变形内,应力-应变间不呈线性关系,且变形量较大。 ?无论变形量大小和应力-应变是否呈线性关系,凡弹性形变都是可逆变形。 3、弹性比功:(弹性比能、应变比能),用a e 表示, ?表示材料在弹性变形过程中吸收弹性变形功的能力。 ?一般用材料开始塑性变形前单位体积吸收的最大弹性变形功表示。 ?物理意义:吸收弹性变形功的能力。 ?几何意义:应力σ-应变ε曲线上弹性阶段下的面积。 4、理想弹性材料:在外载荷作用下,应力-应变服从虎克定律,即σ=Eε,并同时满足3个条件,即: ?①应变对于应力的响应是线性的; ?②应力和应变同相位; ?③应变是应力的单值函数。

?材料的非理想弹性行为: ?可分为滞弹性、伪弹性及包申格效应等几种类型 5、滞弹性(弹性后效) ?滞弹性:是指材料在弹性范围内快速加载或卸载后,随时间的延长而产生的附加弹 性应变的现象。 6、实际金属材料具有滞弹性。 ?1)单向加载弹性滞后环 ?在弹性区内单向快速加载、卸载时,加载线与卸载线会不重合(应力和应变不同步), 形成一封闭回线,称为弹性滞后环。 ?2)交变加载弹性滞后环 ?交变载荷时,若最大应力<宏观弹性极限,加载速率比较大,则也得到弹性滞后环(图 b)。 ?3)交变加载塑性滞后环 ?交变载荷时,若最大应力>宏观弹性极限,则得到塑性滞后环(图c)。 7、材料存在弹性滞后环的现象说明:材料加载时吸收的变形功> 卸载时释放的变形功,有一部分加载变形功被材料所吸收。 ?这部分在变形过程中被吸收的功,称为材料的内耗。 ?内耗的大小:可用滞后环面积度量。 8、金属材料在交变载荷(振动)下吸收不可逆变形功的能力,称为金属的循环韧性,也叫金属的“内耗”。 ?严格说,循环韧性与内耗是有区别的,但有时常混用。 ?循环韧性: ?指材料在塑性区内加载时吸收不可逆变形功的能力。 ?内耗: ?指材料在弹性区内加载时吸收不可逆变形功的能力 9、循环韧性:也是金属材料的力学性能,因它表示在交变载荷(振动)下吸收不可逆变形功的能力,故又称为消振性。 ?材料循环韧性越高,则自身的消振能力就越好。 ?高的循环韧性可减振:如汽轮机叶片(1Cr13),机床材料、发动机缸体、底座等选 用灰铸铁制造。 ?低循环韧性可提高其灵敏度:如仪表和精密机械、重要的传感元件。 ?乐器所用材料的循环韧性越低,则音质越好。 10、伪弹性有些合金如(Au金-Cd镉,In铟-Tl铊等)在受一定应力时会诱发形成马氏体,相应地产生应变,应力去除后马氏体立即逆变为母相,应变回复 11、当材料所受应力超过弹性极限后,开始发生不可逆的永久变形,又称塑性变形。 12、单晶体受力后,外力在任何晶面上都可分解为正应力和切应力。 ?正应力:只能引起弹性变形及解理断裂。 ?只有在切应力的作用下,金属晶体才能产生塑性变形。 13、金属材料常见的塑性变形方式:滑移和孪生两种。 14、滑移现象: ?表面经抛光的金属单晶体在拉伸时,当应力超过屈服强度时,在表面会出现一些与 应力轴成一定角度的平行细线。 ?在显微镜下,此平行细线是一些较大的台阶(滑移带)。 ?滑移带:又是由许多小台阶组成,此小台阶称为滑移线

材料物理性能

第一章 1、应力:单位面积上所受的内力ζ=F/A 2、应变:描述物体内部质点之间的相对运动ε=△L/Lo 3、晶格滑移:晶体受力时,晶体的一部分相对另一部分发生平移滑动。条件:①移动较小 的距离即可恢复、②静电作用上移动中无大的斥力 4、塑性形变过程:①理论上剪切强度:克服化学键所产生的强度。当η>ηo时,发生滑移 (临界剪切应力),η=ηm sin(2πx/λ),x<<λ时,η=ηm(2πx/λ)。由虎克定律η0=Gx/λ.则Gx/λ=ηm(2πx/λ)→ηm=G/2π;②位错运动理论:实际晶体中存在错位缺陷,当受剪应力作用时,并不是晶体内两部分整体相互错动,而是位错在滑移面上沿滑移方向运动,使位错运动所需的力比是晶体两部分整体相互华东所需的力小的多,故实际晶体的滑移是位错运动的结果。位错是一种缺陷,位错的运动是接力式的;③位错增值理论:在时间t内不但比N个位错通过试样边界,而且还会引起位错增值,使通过便捷的位错数量增加到NS个,其中S位位错增值系数。过程机理画图 5、高温蠕变:在高温、恒定应力的作用下,随着时间的延长,应变不断增加。⑴起始阶段 0-a:在外力作用下瞬时发生弹性形变,与时间无关。⑵蠕变减速阶段a-b:应变速率随时间递减,即a-b段的斜率dε/dt随时间的增加而愈小,曲线愈来愈平缓。原因:受阻碍较小,容易运动的位错解放出来后,蠕变速率就会降低;⑶稳态蠕变阶段b-c:入编速率几乎保持不变,即dε/dt=K(常数)原因:容易运动的位错解放后,而受阻较大的位错未被解放。⑷加速入编阶段c-d:应变绿随时间增加而增加,曲线变陡。原因:继续增加温度或延长时间,受阻碍较大的位错也能进一步解放出来。影响入编的因素:⒈温度,温度升高,入编增加。⒉应力,拉应力增加,蠕变增加,压应力增加,蠕变减小⒊气孔率增加,蠕变增加,晶粒愈小,蠕变率愈小。⒋组成。⒌晶体结构。 6、弹性形变:外力移去后可以恢复的形变。塑性形变:外力移去后不可恢复的形变 第二章 7、突发性断裂(快速扩展):在临界状态下,断裂源处的裂纹尖端所受的横向拉应力正好 等于结合强度时,裂纹产生突发性扩展。(一旦扩展,引起周围盈利的再分配,导致裂纹的加速扩展,出现突出性断裂) 8、裂纹缓慢生长:当裂纹尖端处的横向拉应力尚不足以引起扩展,但在长期受应力的情况 下,特别是同时处于高温环境中时,还会出现裂纹的缓慢生长。 9、理论结合强度:无机材料的抗压强度大约是抗拉强度的10倍。δth=(EΥ/a)0.5→(Υ=aE/100) →δth=E/10(a:晶格常数,Υ:断裂表面能断裂表面能Υ比自由表面能大。这是因为储存的弹性应变能除消耗于形成新表面外,还有一部分要消耗在塑性形变、声能、热能等方面。 10、Griffith微裂纹理论:⑴Inglis尖端分析:孔洞两个端部的应力取决于孔洞的长度和 端部的曲率半径而与孔洞的形状无关。应用:修玻璃通过打孔增加曲率来减慢裂纹扩展。 ⑵Griffith能量分析:物体内储存的弹性应变能的降低大于等于开裂形成两个新表面所需 的表面能。(产生一条长度2C的裂纹,应变能降低为We,形成两个新断面所需表面能为Ws)。裂纹进一步扩展(2dc,单位面积所释放的能量为dWe/2dc,形成新的单位表面积所需的表面能为dWs/2dc。)当dWe/2dcdWs/2dc时,裂纹失稳,迅速扩展;当dWe/2dc=dWs/2dc时,为临界状态。 应用:尽数剪裁上通过反复折导致剪断。 11、选择材料的标准:δ<δc,即使用应力小于断裂应力;Ki

材料物理性能课后习题答案

材料物理性能习题与解答

目录 1 材料的力学性能 (2) 2 材料的热学性能 (12) 3 材料的光学性能 (17) 4 材料的电导性能 (20) 5 材料的磁学性能 (29) 6 材料的功能转换性能 (37)

1材料的力学性能 1-1一圆杆的直径为2.5 mm、长度为25cm并受到4500N的轴向拉力,若直径拉细至 2.4mm,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解:根据题意可得下表 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-2一试样长40cm,宽10cm,厚1cm,受到应力为1000N拉力,其氏模量为3.5×109 N/m2,能伸长多少厘米? 解: 拉伸前后圆杆相关参数表 ) ( 0114 .0 10 5.3 10 10 1 40 1000 9 4 0cm E A l F l E l l= ? ? ? ? ? = ? ? = ? = ? = ? - σ ε 10 909 .4 0? 0851 .0 1 = - = ? = A A l l ε 名义应变

1-3一材料在室温时的氏模量为3.5×108 N/m 2,泊松比为0.35,计算其剪切模量和体积模量。 解:根据 可知: 1-4试证明应力-应变曲线下的面积正比于拉伸试样所做的功。 证: 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。 解:Maxwell 模型可以较好地模拟应力松弛过程: Voigt 模型可以较好地模拟应变蠕变过程: )21(3)1(2μμ-=+=B G E ) (130)(103.1)35.01(2105.3)1(288MPa Pa E G ≈?=+?=+=μ剪切模量) (390)(109.3) 7.01(3105.3)21(388 MPa Pa E B ≈?=-?=-=μ体积模量. ,.,1 1 2 1 212 12 1 2 1 21 S W VS d V ld A Fdl W W S W V Fdl V l dl A F d S l l l l l l ∝====∝= ===???? ? ?亦即做功或者: 亦即面积εεεεεεεσεσεσ)(2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量) (1.323)84 05.038095.0()(1 12211GPa E V E V E L =+=+=--下限弹性模量). 1()()(0)0() 1)(()1()(10 //0 ----= = ∞=-∞=-=e e e E t t t στεσεεεσεττ;;则有:其蠕变曲线方程为:. /)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ==∞==则有::其应力松弛曲线方程为

材料物理性能

材料物理性能 第一章、材料的热学性能 一、基本概念 1.热容:物体温度升高1K 所需要增加的能量。(热容是分子热运动的能量随温度变化的一个物理量)T Q c ??= 2.比热容:质量为1kg 的物质在没有相变和化学反应的条件下升高1K 所需要的热量。[ 与 物质的本性有关,用c 表示,单位J/(kg ·K)]T Q m c ??=1 3.摩尔热容:1mol 的物质在没有相变和化学反应的条件下升高1K 所需要的热量。用Cm 表示。 4.定容热容:加热过程中,体积不变,则所供给的热量只需满足升高1K 时物体内能的增加,不必再以做功的形式传输,该条件下的热容: 5.定压热容:假定在加热过程中保持压力不变,而体积则自由向外膨胀,这时升高1K 时供 给 物体的能量,除满足内能的增加,还必须补充对外做功的损耗。 6.热膨胀:物质的体积或长度随温度的升高而增大的现象。 7.线膨胀系数αl :温度升高1K 时,物体的相对伸长。t l l l ?=?α0 8.体膨胀系数αv :温度升高1K 时,物体体积相对增长值。t V V t t V ??= 1α 9.热导率(导热系数)λ:在 单位温度梯度下,单位时间内通过单位截面积的热量。(标志 材 料热传导能力,适用于稳态各点温度不随时间变化。)q=-λ△T/△X 。 10.热扩散率(导温系数)α:单位面积上,温度随时间的变化率。α=λ/ρc 。α表示温度变化的速率(材料内部温度趋于一致的能力。α越大的材料各处的温度差越小。适用于非稳态不稳定的热传导过程。本质仍是材料传热能力。)。 二、基本理论

1.德拜理论及热容和温度变化关系。 答:⑴爱因斯坦没有考虑低频振动对热容的贡献。 ⑵模型假设:①固体中的原子振动频率不同;处于不同频率的振子数有确定的分布函数; ②固体可看做连续介质,能传播弹性振动波; ③固体中传播的弹性波分为纵波和横波两类; ④假定弹性波的振动能级量子化,振动能量只能是最小能量单位hν的整数倍。 ⑶结论:①当T》θD时,Cv,m=3R;在高温区,德拜理论的结果与杜隆-珀蒂定律相符。 ②当T《θD时,Cv,m∝3T。 ③当T→0时,Cv,m→0,与实验大体相符。 ⑷不足:①由于德拜把晶体看成连续介质,对于原子振动频率较高的部分不适用; ②晶体不是连续介质,德拜理论在低温下也不符; ③金属类的晶体,没有考虑自由电子的贡献。 2.热容的物理本质。 答:温度一定时,原子虽然振动,但它的平衡位置不变,物体体积就没变化。物体温度升高了,原子的振动激烈了,但如果每个原子的平均距离保持不变,物体也就不会因为温度升高而发生膨胀。 【⑴反映晶体受热后激发出的晶格波和温度的关系; ⑵对于N个原子构成的晶体,在热振动时形成3N个振子,各个振子的频率不同,激发出的声子能力也不同; ⑶温度升高,晶格的振幅增大,该频率的声子数目也增大; ⑷温度升高,在宏观上表现为吸热或放热,实质上是各个频率声子数发生变化。材料物理的解释】 3.热膨胀的物理本质。 答:由于原子之间存在着相互作用力,吸引力与斥力。力大小和原子之间的距离有关(是非线性关系,引力、斥力的变化是非对称的),两原子相互作用是不对称变化,当温度上升,势能增高,由于势能曲线的不对称性必然导致振动中心右移。即原子间距增大。 ⑴T↑原子间的平均距离↑r>r0吸引合力变化较慢 ⑵T↑晶体中热缺陷密度↑r<r0排斥合力变化较快 【材料质点间的平均距离随温度的升高而增大(微观),宏观表现为体积、线长的增大】 4.固体材料的导热机制。 答:⑴固体的导热包括:电子导热、声子导热和光子导热。 ①纯金属:电子导热是主要机制; ②合金:声子导热的作用增强; ③半金属或半导体:声子导热、电子导热; ④绝缘体:几乎只有声子导热一种形式,只有在极高温度下才可能有光子导热存在。 ⑵气体:分子间碰撞,可忽略彼此之间的相互作用力。 固体:质点间有很强的相互作用。 5.焓和热容与加热温度的关系。P11。图1.8 ⑴①有潜热,热容趋于无穷大;⑵①无潜热,热容有突变

《材料物理性能》课后习题答案

1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解: 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。 解:Maxwell 模型可以较好地模拟应力松弛过程: V oigt 模型可以较好地模拟应变蠕变过程: ) (2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量 ) (1.323)84 05.038095.0()(112211GPa E V E V E L =+=+=--下限弹性模量 ). 1()()(0)0() 1)(()1()(1 //0 ----= = ∞=-∞=-=e E E e e E t t t στεσεεεσετ τ ;;则有:其蠕变曲线方程为:. /)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ ==∞==则有::其应力松弛曲线方程为1.0 1.0 0816.04.25 .2ln ln ln 2 2 001====A A l l T ε真应变)(91710 909.44500 60MPa A F =?==-σ名义应力0851 .0100 =-=?=A A l l ε名义应变)(99510 524.445006MPa A F T =?==-σ真应力

材料物理性能复习总结

第一章电学性能 1.1 材料的导电性 ,ρ称为电阻率或比电阻,只与材料特性有关,而与导体的几何尺寸无关,是评定材料导电性的基本参数。ρ的倒数σ称为电导率。 一、金属导电理论 1、经典自由电子理论 在金属晶体中,正离子构成了晶体点阵,并形成一个均匀的电场,价电子是完全自由的,称为自由电子,它们弥散分布于整个点阵之中,就像气体分子充满整个容器一样,因此又称为“电子气”。它们的运动遵循理想气体的运动规律,自由电子之间及它们与正离子之间的相互作用类似于机械碰撞。当对金属施加外电场时,自由电子沿电场方向作定向加速运动,从而形成了电流。在自由电子定向运动过程中,要不断与正离子发生碰撞,使电子受阻,这就是产生电阻的原因。 2、量子自由电子理论 金属中正离子形成的电场是均匀的,价电子与离子间没有相互作用,可以在整个金属中自由运动。但金属中每个原子的内层电子基本保持着单个原子时的能量状态,而所有价电子却按量子化规律具有不同的能量状态,即具有不同的能级。 0K时电子所具有最高能态称为费密能E F。 不是所有的自由电子都参与导电,只有处于高能态的自由电子才参与导电。另外,电子波在传播的过程中被离子点阵散射,然后相互干涉而形成电阻。 马基申定则:′,总的电阻包括金属的基本电阻和溶质(杂质)浓度引起的电阻(与温度无关);从马基申定则可以看出,在高温时金属的电阻基本取决于,而在低温时则决定于残余电阻′。 3、能带理论 能带:由于电子能级间隙很小,所以能级的分布可看成是准连续的,称为能带。 图1-1(a)、(b)、(c),如果允带内的能级未被填满,允带之间没有禁带或允带相互重叠,在外电场的作用下电子很容易从一个能级转到另一个能级上去而产生电流,具有这种能带结构的材料就是导体。 图1-1(d),若一个满带上面相邻的是一个较宽的禁带,由于满带中的电子没有活动的余地,即便是禁带上面的能带完全是空的,在外电场作用下电子也很难跳过禁带,具有这种能带结构的材料是绝缘体。

材料物理性能.

※ 材料的导电性能 1、 霍尔效应 电子电导的特征是具有霍尔效应。 置于磁场中的静止载流导体,当它的电流方向与磁场方向不一致时,载流导体上平行于电流和磁场方向上的两 个面之间产生电动势差,这种现象称霍尔效应。 形成的电场E H ,称为霍尔场。表征霍尔场的物理参数称为霍尔系数,定义为: 霍尔系数R H 有如下表达式:e n R i H 1 ± = 表示霍尔效应的强弱。霍尔系数只与金属中自由电子密度有关 2、 金属的导电机制 只有在费密面附近能级的电子才能对导电做出贡献。 利用能带理论严格导出电导率表达式: 式中: nef 表示单位体积内实际参加传导过程的电子数; m *为电子的有效质量,它是考虑晶体点阵对电场作用的结果。 此式不仅适用于金属,也适用于非金属。能完整地反映晶体导电的物理本质。 量子力学可以证明,当电子波在绝对零度下通过一个完整的晶体点阵时,它将不受散射而无阻碍的传播,这时 电阻为零。只有在晶体点阵完整性遭到破坏的地方,电子波才受到散射(不相干散射),这就会产生电阻——金属产生电阻的根本原因。由于温度引起的离子运动(热振动)振幅的变化(通常用振幅的均方值表示),以及晶体中异类原子、位错、点缺陷等都会使理想晶体点阵的周期性遭到破坏。这样,电子波在这些地方发生散射而产生电阻,降低导电性。 3、 马西森定律 (P94题11) 试说明用电阻法研究金属的晶体缺陷(冷加工或高温淬火)时威慑年电阻测量要在低温下进行。 马西森(Matthissen )和沃格特(V ogt )早期根据对金属固溶体中的溶质原子的浓度较小,以致于可以略去它们 之间的相互影响,把金属的电阻看成由金属的基本电阻ρL(T)和残余电阻ρ?组成,这就是马西森定律( Matthissen Rule ),用下式表示: ρ?是与杂质的浓度、电缺陷和位错有关的电阻率。 ρL(T)是与温度有关的电阻率。 4、 电阻率与温度的关系 金属的温度愈高,电阻也愈大。 若以ρ0和ρt 表示金属在0 ℃和T ℃温度下的电阻率,则电阻与温度关系为: 在t 温度下金属的电阻温度系数: 5、 电阻率与压力的关系 在流体静压压缩时,大多数金属的电阻率降低。 在流体静压下金属的电阻率可用下式计算 式中:ρ0表示在真空条件下的电阻率;p 表示压力;φ是压力系数(负值10-5~10-6 )。 正常金属(铁、钴、镍、钯、铂等),压力增大,金属电阻率下降;反常金属(碱土金属和稀土金属的大部分) 6、 缺陷对电阻率的影响:不同类型的缺陷对电阻率的影响程度不同,空位和间隙原子对剩余电阻率的影响和金属 杂质原子的影响相似。点缺陷所引起的剩余电阻率变化远比线缺陷的影响大。

武汉理工材料物理性能复习资料

第一章 一、基本概念 1.塑性形变及其形式:塑性形变是指一种在外力移去后不能恢复的形变。晶体中的塑性形变有两种基本方式:滑移和孪晶。 2.蠕变:当对粘弹性体施加恒定压力σ0时,其应变随时间而增加,这种现象叫做蠕变。弛豫:当对粘弹性体施加恒定应变ε0时,其应力将随时间而减小,这种现象叫弛豫。 3.粘弹性:一些非晶体,有时甚至多晶体在比较小的应力时可以同时表现出弹性和粘性,称为粘弹性,所有聚合物差不多都表现出这种粘弹性。 4.滞弹性:对于理想的弹性固体,作用应力会立即引起弹性应变,一旦应力消除,应变也随之消除,但对于实际固体这种弹性应变的产生与消除需要有限时间,无机固体和金属这种与时间有关的弹性称为滞弹性。 二、基本理论 1.金属材料和无机非金属材料的塑性变形机理:○1产生滑移机会的多少取决于晶体中的滑移系统数量。○2对于金属,金属键没有方向性,滑移系统多,所以易于滑移而产生塑性形变。对于无机非材料,离子键和共价键有明显的方向性,同号离子相遇,斥力极大,只有个别滑移系统才能满足几何条件与静电作用条件。晶体结构越复杂,满足这种条件就越困难,所以不易产生滑移。○3滑移反映出来的宏观上的塑性形变是位错运动的结果,无机材料不易形成位错,位错运动也很困难,也就难以产生塑性形变,材料易脆断。 金属与非金属晶体滑移难易的对比 金属非金属 由一种离子组成组成复杂 金属键物方向性共价键或离子键有方向性 结果简单结构复杂 滑移系统多滑移系统少 2.无机材料高温蠕变的三个理论 ○1高温蠕变的位错运动理论:无机材料中晶相的位错在低温下受到障碍难以发生运动,在高温下原子热运动加剧,可以使位错从障碍中解放出来,引起蠕变。当温度增加时,位错运动加快,除位错运动产生滑移外,位错攀移也能产生宏观上的形变。热运动有助于使位错从障碍中解放出来,并使位错运动加速。当受阻碍较小时,容易运动的位错解放出来完成蠕变后,蠕变速率就会降低,这就解释了蠕变减速阶段的特点。如果继续增加温度或延长时间,受阻碍较大的位错也能进一步解放出来,引起最后的加速蠕变阶段。 ○2扩散蠕变理论:高温下的蠕变现象和晶体中的扩散现象类似,并且把蠕变过程看成是外力作用下沿应力作用方向扩散的一种形式。 ○3晶界蠕变理论:多晶陶瓷中存在着大量晶界,当晶界位向差大时,可以把晶界看成是非晶体,因此在温度较高时,晶界粘度迅速下降,外力导致晶界粘滞流动,发生蠕变。 第二章 一、基本概念 1.裂纹的亚临界生长:裂纹除快速失稳扩展外,还会在使用应力下,随着时间的推移而缓慢扩展,这种缓慢扩展也叫亚临界生长,或称为静态疲劳。 2.裂纹扩展动力:物体内储存的弹性应变能的降低大于等于由于开裂形成两个新表面所需的表面能,反之,前者小于后者,则裂纹不会扩展。将上述理论用于有裂纹的物体,物体内储存的弹性应变能的降低(或释放)就是裂纹扩展动力。

EC系列板材成形试验平台技术资料

拉伸冲杯试验模具与产品 高强度板材杯凸 EC系列板材成型实验平台创新性地引入双级液 压、动态载荷平衡、模具总成机构等独特设计, 达到板材成形实验平台的测试精度高、可扩展的 测试功能多、拉伸推力大、压边力与拉伸力分别 单独可控的优点,可以做各种超过10mm厚度的高 强度板材的成形测试。测试平台对现有的汽车轻 量化技术、板材成形工艺研究、材料物理性能测 试、焊接工艺评估、润滑油品分级方面起到至关 重要的作用,经我们的平台实验后,可得出最优 设计参数,减少工业领域的材料浪费,达到节能 环保的效果 目前国内市场上的板材成形试验机主要受限于结 构,采取多立柱液压压紧,丝杠提供拉伸力的方 式,这种结构复杂、体积庞大、提供的拉伸力范 围小,只能测试国标GB15825里面规定的2mm厚 以内的板材测试;EC系列的产品的拉伸力范围、 测试精度和重复性完全满足ISO、GB、DIN、ASTM 等试验标准

⑤弯曲试验⑥扩孔试验⑦滚边试验 注:此试验的深拉冲杯完成后,需要 G1型滚边机完成滚弯过程 EC系列板材成形试验平台可做测试内容

EC系列板材成形试验平台应用领域: - 板材成形性能研究 - 冲压工艺模拟和成型工艺参数研究和评估(常温和高温) - 焊道检测、焊接工艺指标评定 - 润滑油的评估和分级 - 涂料性能检测 - 包装材料质量评定(易拉罐板材、清漆性能) EC系列板材成形试验平台技术特性: 1.双级液压拉伸压边系统,每级可单独控制位移、速度、方向、推力 2.压边力分边:带压边力自动分边装置,保证压边载荷均匀分布于圆周,结构保证由于压边力不均匀引起的物料不对称滑动,提高 拉伸试验结果的准确性 3.业内首创深拉冲杯一次成形技术,板材一次性自动冲裁圆片、自动适应均匀压边、自动拉伸、自动退料 4.创新性的模具总成成套更换方式,让模具更换更加简单方便,防止模具错误装配;更高的模具对中性 5.液压拉伸机构:冲头自动匀速推进、速度无极可调,系统推力大,整个试验过程平滑流畅 6.实验冲模对中性:0.05mm以内 7.机器停机方式:①传感器感应到冲头拉伸力急速下降,板材屈服极限到达,自动停机②手动停机:观察到裂纹出现,立即停机 8.系统内采用防尘设计,适应严酷工况;满足长期高负荷试验运行 9.拉伸力获取方式:盘辐式压力传感器、油压换算 10.全数字数据处理平台,高速动态数据采样频率超过1MSPS高速动态数据采集模块、高速嵌入式带DSP算法微处理器,数据采集密度大 11.输出:GOM-FLC系统信号接口、USB连接PC接口 12.主机自带人机界面,可独立监控实验过程,也可通过USB接口监控 13.可调滚动脚轮,移动方便 14.系统带缓冲刹车保护装置,启动、停机平稳,环保节能设计,能效比高

《材料物理性能》测试题汇总(doc 8页)

《材料物理性能》测试题 1、利用热膨胀曲线确定组织转变临界点通常采取的两种方法是: 、 2、列举三种你所知道的热分析方法: 、 、 3、磁各向异性一般包括 、 、 等。 4、热电效应包括 效应、 效应、 效应,半导体制冷利用的是 效应。 5、产生非线性光学现象的三个条件是 、 、 。 6、激光材料由 和 组成,前者的主要作用是为后者提供一个合适的晶格场。 7、压电功能材料一般利用压电材料的 功能、 功能、 功能、 功能或 功能。 8、拉伸时弹性比功的计算式为 ,从该式看,提高弹性比功的途径有二: 或 ,作为减振或储能元件,应具有 弹性比功。 9、粘着磨损的形貌特征是 ,磨粒磨损的形貌特征是 。 10、材料在恒变形的条件下,随着时间的延长,弹性应力逐渐 的现象称为应力松弛,材料抵抗应力松弛的能力称为 。 1、导温系数反映的是温度变化过程中材料各部分温度趋于一致的能力。 ( ) 2、只有在高温且材料透明、半透明时,才有必要考虑光子热导的贡献。 ( ) 3、原子磁距不为零的必要条件是存在未排满的电子层。 ( ) 4、量子自由电子理论和能带理论均认为电子随能量的分布服从FD 分布。 ( ) 5、由于晶格热振动的加剧,金属和半导体的电阻率均随温度的升高而增大。 ( ) 6、直流电位差计法和四点探针法测量电阻率均可以消除接触电阻的影响。 ( ) 7、 由于严格的对应关系,材料的发射光谱等于其吸收光谱。 ( ) 8、 凡是铁电体一定同时具备压电效应和热释电效应。 ( ) 9、 硬度数值的物理意义取决于所采用的硬度实验方法。 ( ) 10、对于高温力学性能,所谓温度高低仅具有相对的意义。 ( ) 1、关于材料热容的影响因素,下列说法中不正确的是 ( ) A 热容是一个与温度相关的物理量,因此需要用微分来精确定义。 B 实验证明,高温下化合物的热容可由柯普定律描述。 C 德拜热容模型已经能够精确描述材料热容随温度的变化。 D 材料热容与温度的精确关系一般由实验来确定。 2、 关于热膨胀,下列说法中不正确的是 ( ) A 各向同性材料的体膨胀系数是线膨胀系数的三倍。 B 各向异性材料的体膨胀系数等于三个晶轴方向热膨胀系数的加和。 C 热膨胀的微观机理是由于温度升高,点缺陷密度增高引起晶格膨胀。 D 由于本质相同,热膨胀与热容随温度变化的趋势相同。 3、下面列举的磁性中属于强磁性的是 ( ) A 顺磁性 B 亚铁磁性 C 反铁磁性 D 抗磁性 4、关于影响材料铁磁性的因素,下列说法中正确的是 ( ) A 温度升高使得M S 、 B R 、H C 均降低。 B 温度升高使得M S 、B R 降低,H C 升高。 C 冷塑性变形使得C H μ和均升高。 D 冷塑性变形使得C H μ和均降低。 5、下面哪种效应不属于半导体敏感效应。 ( ) A 磁敏效应 B 热敏效应 C 巴克豪森效应 D 压敏效应 6、关于影响材料导电性的因素,下列说法中正确的是 ( ) A 由于晶格振动加剧散射增大,金属和半导体电阻率均随温度上升而升高。 B 冷塑性变形对金属电阻率的影响没有一定规律。 C “热塑性变形+退火态的电阻率”的电阻率高于“热塑性变形+淬火态” D 一般情况下,固溶体的电阻率高于组元的电阻率。 7、下面哪种器件利用了压电材料的热释电功能 ( ) A 电控光闸 B 红外探测器 C 铁电显示器件 D 晶体振荡器 8、下关于铁磁性和铁电性,下面说法中不正确的是 ( ) A 都以存在畴结构为必要条件 B 都存在矫顽场 C 都以存在畴结构为充分条件 D 都存在居里点 9、下列硬度实验方法中不属于静载压入法的是 ( )

《材料物理性能》课后习题答案

《材料物理性能》 第一章材料的力学性能 1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至 2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解: 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2) 可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和 0816 .04.25.2ln ln ln 22 001====A A l l T ε真应变) (91710909.44500 60MPa A F =?==-σ名义应力0851 .010 0=-=?=A A l l ε名义应变) (99510524.445006MPa A F T =?== -σ真应力) (2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量) (1.323)84 05.038095.0()(1 12211GPa E V E V E L =+=+=--下限弹性模量

材料物理性能复习思考题汇总

材料物理性能复习思考题汇总 第一章绪论及材料力学性能 一.名词解释与比较 名义应力:材料受力前面积为A,则δ。=F/A,称为名义应力 工程应力:材料受力后面积为A。,则δT =F/A。,称为工程应力 拉伸应变:材料受到垂直于截面积方向大小相等,方向相反并作用在同一条直线上的两个拉伸应力时发生的形变。 剪切应变:材料受到平行于截面积大小相等,方向相反的两个剪切应力时发生的形变。 结构材料:以力学性能为基础,以制造受力构件所用材料 功能材料:具有除力学性能以外的其他物理性能的材料。 晶须:无缺陷的单晶材料 弹性模量:材料发生单位应变时的应力 刚性模量:反映材料抵抗切应变的能力 泊松比:反映材料横向正应变与受力方向线应变的比值。(横向收缩率与轴向收缩率的比值) 形状因子:塑性变形过程中与变形体尺寸,工模具尺寸及变形量相关参数。 平面应变断裂韧性:一个考虑了裂纹尺寸并表征材料特征的常数 弹性蠕变:对于金属这样的实际弹性体,当对它施加一定的应力时,它除了产生一个瞬时应变以外,还会产生一个随时间而变化的附加应变(或称为弛豫应变),这一现象称为弹性蠕变。 蠕变:在恒定的应力δ作用下材料的应变随时间增加而逐渐增大的现象 材料的疲劳:裂纹在使用应力下,随着时间的推移而缓慢扩展。 应力腐蚀理论:在一定环境温度和应力场强度因子作用下,材料中关键裂纹尖端处,裂纹扩展动力与裂纹扩展阻力的比较,构成裂纹开裂和止裂的条件。 滑移系统:滑移面族和滑移方向为滑移系统 相变增韧:利用多晶多相陶瓷中某些相成分在不同温度的相变,从而增韧的效果,统称相变增韧 弥散强化:在基体中渗入具有一定颗粒尺寸的微细粉料,达到增韧效果,这称为弥散增韧 屈服强度:屈服强度是金属材料发生屈服现象时的屈服极限,亦即抵抗微量塑性变形的应力 法向应力:导致材料伸长或缩短的应力 切向应力:引起材料切向畸变的应力 应力集中:受力构件由于外界因素或自身因素导致几何形状、外形尺寸发生突变而引起局部范围内应力显著增大的现象。

《材料物理性能》王振廷版课后答案106页要点

1、试说明下列磁学参量的定义和概念:磁化强度、矫顽力、饱和磁化强度、磁导率、磁化率、剩余磁感应强度、磁各向异性常数、饱和磁致伸缩系数。 a、磁化强度:一个物体在外磁场中被磁化的程度,用单位体积内磁矩的多少来衡量,成为磁化强度M b、矫顽力Hc:一个试样磁化至饱和,如果要μ=0或B=0,则必须加上一个反向磁场Hc,成为矫顽力。 c、饱和磁化强度:磁化曲线中随着磁化场的增加,磁化强度M或磁感强度B开始增加较缓慢,然后迅速增加,再转而缓慢地增加,最后磁化至饱和。Ms成为饱和磁化强度,Bs成为饱和磁感应强度。 d、磁导率:μ=B/H,表征磁性介质的物理量,μ称为磁导率。 e、磁化率:从宏观上来看,物体在磁场中被磁化的程度与磁化场的磁场强度有关。 M=χ·H,χ称为单位体积磁化率。 f、剩余磁感应强度:将一个试样磁化至饱和,然后慢慢地减少H,则M也将减少,但M并不按照磁化曲线反方向进行,而是按另一条曲线改变,当H减少到零时,M=Mr或Br=4πMr。(Mr、Br分别为剩余磁化强度和剩余磁感应强度) g、磁滞消耗:磁滞回线所包围的面积表征磁化一周时所消耗的功,称为磁滞损耗Q(J/m3) h、磁晶各向异性常数:磁化强度矢量沿不同晶轴方向的能量差代表磁晶各向异性能,用Ek表示。磁晶各向异性能是磁化矢量方向的函数。 i、饱和磁致伸缩系数:随着外磁场的增强,致磁体的磁化强度增强,这时|λ|也随之增大。当H=Hs时,磁化强度M达到饱和值,此时λ=λs,称为饱和磁致伸缩所致。 2、计算Gd3+和Cr3+的自由离子磁矩?Gd3+的离子磁矩比Cr3+离子磁矩高的原因是什么?

Gd3+有7个未成对电子,Cr3+ 3个未成对电子. 所以, Gd3+的离子磁矩为7μB, Cr3+的离子磁矩为3μB. 3、过渡族金属晶体中的原子(或离子)磁矩比它们各自的自由离子磁矩低的原因是什么? 4、试绘图说明抗磁性、顺磁性、铁磁性物质在外场B=0的磁行为。

中南大学出版的 材料物理性能名词解释总结

晶格热振动:固体材料由晶体或非晶体组成,点阵中的质点并不是静止不动的,而是围绕其平衡位置做微小振动。声频支振动:振动着的质点中频率甚低的格波,质点质点之间的相位差不大。光频支振动与之相反。热容:在没有相变和化学反应的条件下,材料温度升高1K时所吸收的热量。金属材料热容的影响因素:自由电子的影响,一般可忽略,低温热容缓慢下降,高温热容超过3R继续上升,合金成分对热容的影响。组织转变对热容的影响:一级相变和二级相变一级相变在相变点发生突变,二级,也剧烈变化但有限值,亚稳态组织转变,从亚稳态转变为稳态时要放出热量。热容的测量方法:量热计法,撒克司法,史密斯法和脉冲法。热分析法:差热分析,差示扫描量热法,热重法。热分析的应用:建立合金相图,热弹性马氏体相变研究,合金的有序无须转变研究,液相转变的研究。影响热膨胀性能的因素:键强,晶体结构,非等轴晶系的晶体,相变,化学成分。热膨胀系数的测量:机械杠杆式膨胀仪,光杠杆膨胀仪,电感式膨胀仪。热膨胀分析的应用:确定钢的组织转变点(切线法、极值法)研究加热转变。热导率:单位时间内通过单位截面面积的热量。热导率的测量:稳态法,非稳态法。材料的热冲击损坏类型:抗热冲击断裂性,抗热冲击损伤性。热应力:材料的热胀冷缩引起的内应力。提高抗热冲击断裂性能的措施:提高材料的强度减小弹性模量,提高材料的热导率,减小材料的热膨胀系数,减小表面散热系数,减小产品的有效厚度。载流子:材料中参与传导电流的带电粒子。费米球:在0K下自由电子在速度空间中分布形成一个中心对成球。掺杂半导体(n、p型)n型,所有结合键被价电子填满后仍有富裕的价电子,p型,价电子都成键后仍有些结合键上缺少价电子出现空穴。掺杂能级:掺入的异价原子使得局部结合键情况发生变化,导致半导体中出现附加能及。光致电导:半导体材料受到适当波长的电磁波辐射时,导电性会大幅度升高的现象。陶瓷材料的导电性:按用途分电子导电、离子导电,半导体、绝缘体。超导体:零电阻、完全抗磁,条件,温度条件、磁场条件、电流条件。磁化强度M:单位体积磁性材料内原子磁矩m的矢量总和。磁极化强度J:单位体积中磁偶极子矢量总和。材料按磁性分为:抗磁性、顺磁性、铁磁性、亚铁磁性和反铁磁性。磁致伸缩:铁磁体的长度或体积发生变化的现象。退磁场:在铁磁性材料内部,附加磁场方向和外加磁场方向相反。磁畴(三角畴、片状畴)矫顽力:畴壁越过最大的阻力峰所需要的磁场就相当于材料的矫顽力。剩余磁化强度:铁磁体磁化到饱和并去掉外磁场后,在磁化方向保留的Mr(剩余磁化强度)或Br(剩余磁感应强度)称为剩磁(用获得晶体结构或磁结构的办法来提高剩磁)磁滞损耗:铁磁性材料反复磁化一周,由于磁滞现象所造成的损耗(减小摩擦生热、或形成磁有序)。涡流损耗:感应电流所引起的损耗(做成薄片,提高电阻率)。剩余损耗:总损耗减去所剩下的损耗(控制杂质的量)。磁后效(约旦后效、李希特后效)交流(动态)磁性测量:伏安法、电桥法。OMR-正常磁电阻:传导电子受到磁场的洛伦兹力作用做回旋运动,使其有效的平均自由程减小所致。AMR-各向异性磁电阻效应:铁磁性的过渡金属、合金中,外加磁场方向平行于电流方向时的电阻率和外加磁场方向垂直电流方向时的电阻率不同。GMR-巨磁电阻效应:磁性材料的电阻率在有外磁场作用时较无外磁场作用时纯在显著变化的现象。光的本(横波、具有偏振性)质:波粒二象性。光和固相作用的本质:电子极化、电子能态转变。影响折射率的因素:元素离子半径,电子结构,材料的结构、晶型、晶态。同质异构体,外界因素。半导体材料中的光吸收:激子吸收(能产生激子的光的吸收)、本征吸收(电子在带与带之间的跃迁所形成的吸收)发光寿命:发光体在激发停止之后

材料物理性能

一、填空20*1 1.控制或改造材料性能的路线是工艺→结构→性能,即工艺决定结构,结构改变性能。 2.材料在外力作用下发生形状和尺寸的变化,称为形变。 3.弹性模量影响的因素:原子结构、温度、相变。 4.材料的各种热学性能均与晶格热振动有关。 5.可见光的波长390-770nm。 6.光的频率、波长和辐射能都是由光子源决定的。 7.欧姆定律的两种表达形式:均匀导体,I=V/R,非均匀导J=óE。 8.物质的磁性是电流产生的。 9.磁性材料的磁化曲线和磁滞回线是材料在外加磁场时表现出来的宏观特性。 10.影响材料的击穿强度的因素:介质结构的不均匀性、材料中气泡的作用、材料表面状态和边缘电场。 8.智能材料的功能和生命特征:传感功能、反馈功能、学习能力和预见性功能、响应功能、自诊断能力、自修复能力、自调节能力。 二、名词解释5*3 1.塑性形变和弹性形变 塑性形变:在超过材料的屈服应力作用下产生形变,外力移去后不能恢复的形变。 弹性形变:在超过材料的屈服应力作用下产生形变,外力移去后不能恢复的形变。 2.声频支振动和光频支振动 声频支振动:振动着的质点中包含中包含频率甚低的格波,质点间的位相差不大,则格波类似于弹性体中的应变波,称为声频支振动。 光频支振动:可以看成是相邻原子振动方向相反,形成一个范围很小、频率很高的振动。 3.反射、折射、双折射 反射:光线入射到界面时,一部分光从界面上反射,形成反射线。 折射:光线入射到界面时,其余部分进入第二种介质,形成折射线。 双折射:由一束折射光入射后分成两束光的现象。 4.压电效应、压敏效应、光电效应、热释电效应、电热效应、西贝尔效应 压电效应:在晶体的特定方向上施加压力或拉力,晶体的一些对应的表面上分别出现正负束缚电荷,其电荷密度与外施力的大小成正比例,也即正压电效应具有对称中心的点群晶体不会具有压电性。 压敏效应:对电压变化敏感的非线性电阻效应,即在某一临界电压下,电阻值非常之高,几乎无电流通过,超过该临界电压,电阻迅速降低,让电流通过。 光电效应:某些物质受到光照后,引起物质电性发生变化,这种光致电变的现象称为光电效应。 热释电效应:由于温度的变化而引起的晶体表面荷电现象。 电热效应:热电体在绝热条件下,当外加电场引起永久极化强度改变是时,其温度将发生变化的现象。 西贝尔效应:半导体材料的两端如果有温差,那么在较高的温度区有更多的电子被激发到导带中去,但热电子趋向于扩散到较冷的区域。当这两种效应引起的化学势梯度和电场梯度相等且方向相反时,就达到稳定状态。多数载流子扩散到冷端,结果在半导体两端就产生温差电动势,这种现象被称为温差电动势效应,也被称为西贝尔效应。 5.居里点 居里点:是指材料可以在铁磁体和顺磁体之间改变的温度,即铁电体从铁电相转变成顺电相引的相变温度。

相关主题
文本预览
相关文档 最新文档