当前位置:文档之家› 基于小波分析的汽轮机组动静碰摩故障诊断技术研究

基于小波分析的汽轮机组动静碰摩故障诊断技术研究

基于小波分析的汽轮机组动静碰摩故障诊断技术研究
基于小波分析的汽轮机组动静碰摩故障诊断技术研究

碰摩转子系统各种图

一、激励频率W=900Hz 但静子刚度不同时: 1、kc=7.5e6N/m: 2、kc=2.6e6N/m 时: 位移 x 位移 y kc=7.5e6N/m 的轴心轨迹图 x d x /d t kc=7.5e6N/m 的Poincare 截面图 t x kc=7.5e6N/m 的时域图 位移 x 位移 y kc=2.6e6N/m 的轴心轨迹 图 x d x /d t kc=2.6e6N/m 的Poincare 截面图 t x kc=2.6e6N/m 的时域图

3、kc=2.9e6N/m 时: 4、kc=3.1e6N/m 时: 位移 x 位移 y kc=2.9e6N/m 的轴心轨迹图 x d x /d t kc=2.9e6N/m 的Poincare 截面图 t x kc=2.9e6N/m 的时域图 位移 x 位移 y kc=3.1e6N/m 的轴心轨迹图 x d x /d t kc=3.1e6N/m 的Poincare 截面图 t x kc=3.1e6N/m 的时域图

二、静子刚度kc=3.5e6N/m 但激励频率不同时: 1、w=1000rad/s 时: 2、w=1800rad/s 时: 位移 x 位移 y w=1000rad/s 的轴心轨迹图 x d x /d t w=1000rad/s 的Poincare 截面图 t x w=1000rad/s 的时域图 位移 x 位移 y w=1800rad/s 的轴心轨迹图 x d x /d t w=1800rad/s 的Poincare 截面图 t x w=1800rad/s 的时域图

小波变换的基本原理

10.2小波变换的基本原理 地质雷达的电磁波信号和地震波信号都是非平稳随机时变信号,长期以来,因非平稳信号处理的理论不健全,只好将其作为平稳信号来处理,其处理结果当然不满意。近年来,随着科学技术的发展和进步,国内外学术界已将注意力转向非平稳随机信号分析与处理的研究上,其中非平稳随机信号的时频表示法是研究热点之一。在这一研究中,戈勃展开、小波变换、维格纳分布与广义双线性时频分布等理论发展起来,这些方法既可以处理平稳信号过程,也可以处理非平稳随机时变信号。 小波变换是上世纪80年代中后期逐渐发展起来的一种数学分析方法。1984年法国科学家J.M OLET在分析地震波的局部特性时首先使用了小波这一术语,并用小波变换对地震信号进行处理。小波术语的含义是指一组衰减震动的波形,其振幅正负相间变化,平均值为零,是具有一定的带宽和中心频率波组。小波变换是用伸缩和平移小波形成的小波基来分解(变换)或重构(反变换)时变信号的过程。不同的小波具有不同带宽和中心频率,同一小波集中的带宽与中心频率的比是不变的,小波变换是一系列的带通滤波响应。它的数学过程与傅立叶分析是相似的,只是在傅立叶分析中的基函数是单频的调和函数,而小波分析中的基函数是小波,是一可变带宽内调和函数的组合。 小波变换在时域和频域都具有很好的局部化性质,较好地解决了时域和频域分辨率的矛盾,对于信号的低频成分采用宽时窗,对高频成分采用窄时窗。因而,小波分析特别适合处理非平稳时变信号,在语音分析和图象处理中有广泛的应用,在地震、雷达资料处理中将有良好的应用前景。 下边就小波分析的基本原理、主要作用及在雷达资料处理中的应用三方面作以介绍。 10.2.1小波分析的基本原理 小波函数的数学表达

汽机缺陷分析及处理

6MW余热电站汽轮机缺陷原因分析及处理 1.故障现象 我公司综合利用焦炉剩余煤气余热发电站,采用洛阳发电设备厂生产的汽轮机,型号:N6-3.34。从2007年6月并网发电至今的7年运行时间当中,汽轮机出现的主要故障现象为以下三个方面:(1)汽轮机的振动偏高;(2)真空度相对较低;(3)调速系统不稳定; 2.故障分析 2.1汽轮机的振动偏高 振动是一种周期性的反复运动。处在高速旋转下的汽轮发电机组,在正常运行中总是存在着不同程度和方向的振动。对于振动,我们希望它愈小愈好。不同转速机组的振动允许值不同,凡是在允许范围内的振动,对设备的危害不大,因而是允许的。超出允许范围,就会对设备造成伤害。而本机组在运行中最高振动超过85um,最低振动时也在50um以上,超出了汽轮机振动的允许范围50um以下。 汽轮机振动过高直接威胁着机组的安全运行,因此,在机组出现过高振动时,就应及时找出引起振动的原因,并予以消除,绝不允许在强烈振动的情况下让机组继续运行。 汽轮发电机组的振动是一个比较复杂的问题,造成振动的原因很多,为找出汽轮机振动大的原因,我们曾通过做试验方法

来查找汽振动大的原因: 1)励磁电流试验 目的在于判断振动是否是由于电气方面的原因引起的,以及是由电气方面的哪些原因引起的。 2)转速试验 目的在于判断振动和转子质量不平衡的关系,同时可找出转子的临界转速和工作转速接近的程度。 3)负荷试验 目的在于判断振动和机组中心,热膨胀,转子质量不平衡的关系,判断传递力矩的部件是否有缺陷。 4)轴承润滑油膜试验 目的在于判断振动是否是由于油膜不稳,油膜被破坏和轴瓦紧力不当所引起的。 5)真空试验 目的是判断振动是否是由于真空变化后机组中心在垂直方向发生变化引起的。 6)机组外部特性试验,实际上就是在振动值比较大的情况下测量机组振动的分布情况,根据振动分布情况分析判断不正常的部位。 2.1.1汽轮机振动是一个多方面的综合因素,通过以上实验对振动过高的原因分析如下: 1)通过汽轮机的转速实验,在开机,暖机过程中,每一个阶

小波分析的发展历程

小波分析的发展历程 一、小波分析 1910年,Haar提出了L2(R)中第一个小波规范正交基,即Haar正交基。 (1)操作过程:Haar正交基是以一个简单的二值函数作为母小波经平移和伸缩而形成的。 (2)优点:Haar小波变换具有最优的时(空)域分辨率。 (3)缺点:Haar小波基是非连续函数,因而Haar小波变换的频域分辨率非常差。 1936年,Littlewood和Paley对傅立叶级数建立了二进制频率分量分组理论,(即L-P理论:按二进制频率成分分组,其傅立叶变换的相位并不影响函数的大小和形状),这是多尺度分析思想的最早起源。 1952年~1962年,Calderon等人将L-P理论推广到高维,建立了奇异积分算子理论。 1965年,Calderon发现了著名的再生公式,给出了抛物型空间上H1的原子分解。 1974年,Coifman实现了对一维空间和高维空间的原子分解。 1976年,Peetre在用L-P理论对Besov空间进行统一描述的同时,给出了Besov空间的一组基。1981年,Stromberg引入了Sobolev空间H p的正交基,对Haar正交基进行了改造,证明了小波函数的存在性。 1981年,法国地球物理学家Morlet提出了小波的正式概念。 1985年,法国数学家Meyer提出了连续小波的容许性条件及其重构公式。 1986年,Meyer在证明不可能存在同时在时频域都具有一定正则性(即光滑性)的正交小波基时,意外发现具有一定衰减性的光滑性函数以构造L2(R)的规范正交基(即Meyer基),从而证明了正交小波系的存在。 1984年~1988年,Meyer、Battle和Lemarie分别给出了具有快速衰减特性的小波基函数:Meyer小波、Battle-Lemarie样条小波。 1987年,Mallat将计算机视觉领域中的多尺度分析思想引入到小波分析中,提出了多分辨率分析的概念,统一了在此前的所有具体正交小波的构造,给出了构造正交小波基的一般方法,提出了快速小波变换(即Mallat算法)。它标志着第一代小波的开始? (1)操作过程:先滤波,再进行抽二采样。 (2)优点:Mallat算法在小波分析中的地位相当于FFT在经典傅立叶分析中的地位。它是小波分析从纯理论走向实际应用。 (3)缺点:以傅立叶变换为基础,直接在时(空)域中设计滤波器比较困难,并且计算量大。 1988年,Daubechies基于多项式方式构造出具有有限支集的光滑正交小波基(即Daubechies基)。 Chui和中国学者王建忠基于样条函数构造出单正交小波函数,并提出了具有最优局部化性能的尺度函数和小波函数的一般性构造方法。1988年,Daubechies在美国NSF/CBMS主办的小波专题研讨会上进行了10次演讲,引起了广大数学家、物理学家、工程师以及企业家的重视,将小波理论发展与实际应用推向了一个高潮。 1992年,Daubechies对这些演讲内容进行了总结和扩展形成了小波领域的经典著作——小波十讲《Ten Lectures on Wavelet》。 1992年3月,国际权威杂志《IEEE Transactions on Information Theory》专门出版了“小波分析及其应用”专刊,全面介绍了此前的小波分析理论和应用及其在不同学科领域的发展,从此小波分析开始进入了全面应用阶段。 1992年,Kovacevic和Vetterli提出了双正交小波的概念。 1992年,Cohen、Daubechies和Feauveau构造出具有对称性、紧支撑、消失矩、正则性等性质的双正交小波。 (1)操作过程:利用两组互为对偶的尺度函数和小波函数实现函数的分解与重构。 (2)优点:具有正交小波无法同时满足的对称性、紧支撑、消失矩、正则性等性质。

转子故障振动机理分析

转子故障振动机理分析 转子故障引起振动有许多形式, 现对其中的几个典型振动故障产生的原因及其对应的振动机理进行如下分析: 1.转子不平衡故障及振动机理分析 转子不平衡包括转子系统的质量偏心及转子部件出现缺陷;转子质量偏心是由于转子的制造误差、装配误差、材料不均匀等原因造成的,称为初始不平衡。转子部件缺损是指转子在运行中由于腐蚀、磨损、介质结垢以及转子受疲劳力的作用,使转子的零部件(如叶轮、叶片等)局部损坏、脱落、碎片飞出等,造成的新的转子不平衡。转子质量偏心及转子部件缺损是两种不同的故障,但其不平衡振动机理却有共同之处。 振动机理分析:旋转过程中,转子产生不平衡离心力与力矩通过支承点作用在轴及轴承上,引起振动.设转子质量为M(包括偏心质量m),偏心距e,旋转角频率w=2 f(v f为 v 转动频率),在t瞬时位移在直角坐标系分量x,y,如图6-3所示,则可得转子中心运动微分方程为 图6-3 转子力学模型

则有 以上几式中的K可以近似简化为机器的安装总刚度,M为机器的总质量,为K和M构成的振动体的无阻尼固有频率。为无量纲阻尼因子,它的取值不同,会影响到系统 的响应,是激励频率与固有频率之比,也是无量纲因子。根据上式,按不同的频率比和阻尼系数的变化,作出幅频响应图及相频响应图,如下图所示: 图6-4 幅频响应图及相频响应图 转子不平衡所引起振动有下列特点:振动方向为径向,振动的特征频率等于转频;转子的轴承均发生较大的振动;在转子通过临界转速时振幅有特别显著的增大;在高速下随转轴转速上升振动很快增大;振动频率与转速相等且为正弦波;在没有带负荷时振动就达到最大值. 2.转子不对中故障振动机理分析 机组各转子之间由联轴器联接构成轴系,传递运动和转动。由于机器的安装误差、承载后的变形以及机器基础的沉降不均等,造成机器工作状态时各转子轴线之间产生轴线平

基于连续小波变换的信号检测技术与故障诊断

机械工程学报 CHINESE JOURNAL OF MECHANICAL ENGINEERING 2000 Vol.36 No.12 P.95-100 基于连续小波变换的信号检测技术与故障诊断 林京 屈梁生 摘 要:通过分析指出,连续小波变换具有很强的弱信号检测能力,非常适合故障诊断领域。从参数离散到参数优化系统研究了连续小波变换的工程应用方法,建立 了“小波熵”的概念,并以此作为基小波参数的择优标准。论文最后把连续小波技术应用在滚动轴承滚道缺陷和齿轮裂纹的识别中,诊断效果十分理想。 关键词:小波故障诊断滚动轴承齿轮 分类号:TH133.33 TH132.41 FEATURE DETECTION AND FAULT DIAGNOSIS BASED ON CONTINUOUS WAVELET TRANSFORM Lin Jing(State Key Laboratory of Acoustics, Institute ofAcou stics, Chinese Academy of Science)  Qu Liangsheng(Xi’an Jiaotong University) Abstract:It is pointed out that continuous wavelet transform(CWT) has powerful ability for weak signal detection which help itself to be used for fault diagnosis. The method for parameter discretization and optimi zation of CWT is estabished. The concept of wavelet entropy is introduced and it is used as a rule for parameter optimization. In the end, CWT is used fo r fault diagnosis of rolling bearing and gear-box. Very good results are obtain ed using this method. Keywords:Wavelet Fault diagnosis Rolling bearing Gear

基于小波变换的边缘检测技术(完整)

第一章图像边缘的定义 引言 在实际的图像处理问题中,图像的边缘作为图像的一种基本特征,被经常用于到较高层次的特征描述,图像识别。图像分割,图像增强以及图像压缩等的图像处理和分析中,从而可以对图像进行进一步的分析和理解。 由于信号的奇异点或突变点往往表现为相邻像素点处的灰度值发生了剧烈的变化,我们可以通过相邻像素灰度分布的梯度来反映这种变化。根据这一特点,人们提出了多种边缘检测算子:Roberts算子Prewitt算子Laplace算子等。 经典的边缘检测方法是构造出像素灰度级阶跃变化敏感的微分算子。这些算子毫无例外地对噪声较为敏感。由于原始图像往往含有噪声、而边缘和噪声在空间域表现为灰度有大的起落,在频域则反映为同是主频分量,这就给真正的边缘检测到来困难。于是发展了多尺度分析的边缘检测方法。小波分析与多尺度分析有着密切的联系,而且在小波变换这一统一理论框架下,可以更深刻地研究多尺度分析的边缘检测方法,Mallat S提出了一小波变换多尺度分析为基础的局部极大模方法进行边缘检测。 小波变换有良好的时频局部转化及多尺度分析能力,因此比其他的边缘检测方法更实用和准确。小波边缘检测算子的基本思想是取小波函数作为平滑函数的一阶导数或二阶导数。利用信号的小波变换的模值在信号突变点处取局部极大值或过零点的性质来提取信号的边缘点。常用的小波算子有Marr 算子Canny算子和Mallat算子等。

§1.1信号边缘特征 人类的视觉研究表明,信号知觉不是信号各部分简单的相加,而是各部分有机组成的。人类的信号识别(这里讨论二维信号即图像)具有以下几个特点:边缘与纹理背景的对比鲜明时,图像知觉比较稳定;图像在空间上比较接近的部分容易形成一个整体;在一个按一定顺序组成的图像中,如果有新的成份加入,则这些新的成份容易被看作是原来图像的继续;在视觉的初级阶段,视觉系统首先会把图像边缘与纹理背景分离出来,然后才能知觉到图像的细节,辨认出图像的轮廓,也就是说,首先识别的是图像的大轮廓;知觉的过程中并不只是被动地接受外界刺激,同时也主动地认识外界事物,复杂图像的识别需要人的先验知识作指导;图像的空间位置、方向角度影响知觉的效果。从以上这几点,可以总结出待识别的图像边缘点应具有下列特征即要素:具有较强的灰度突变,也就是与背景的对比度鲜明;边缘点之间可以形成有意义的线形关系,即相邻边缘点之间存在一种有序性;具有方向特征;在图像中的空间相对位置;边缘的类型,即边缘是脉冲型、阶跃型、斜坡型、屋脊型中哪一种。 §1.2图像边缘的定义 边缘检测是图像处理中的重要内容。而边缘是图像中最基本的特征,也是指周围像素灰度有变化的那些像素的集合。主要表现为图像局部特征的不连续性,也就是通常说的信号发生奇异变化的地方。奇异信号沿边缘走向的灰度变化剧烈,通常分为阶跃边缘和屋顶边缘两种类型。阶跃边缘在阶跃的两边的灰度值有明显的变化;屋顶边缘则位于灰度增加与减少的交界处。我们可以利用灰度的导数来刻画边缘点的变化,分别求阶跃边缘和屋顶边缘的一阶,二阶导数。如图可见,对于边缘点A,阶跃边缘的一阶导数在A点到最大值,二阶导数在A点过零点;屋顶边缘的一阶导数在A点过零点,二阶导数在A点有最大值。

故障诊断

第一章绪论 1.1 研究背景及意义 旋转机械是以转子、齿轮、轴承等回转部件为主体的设备,在企业生产中处于核心 地位。当它们发生故障时,会带来一系列的经济损失。随着旋转机械运转速度的日益提高,机械设备集成化发展,系统的非线性将更加突出,可能直接(或间接)导致转子系 统发生不平衡、不对中、碰摩、松动等故障。其中,转静碰摩是其非常普遍的一种故障[1] ,其发生频率随转定子间的密封间隙的减少而增加。与其它故障相比,碰摩故障更容 易引起整机振动过大,引起耦合效应,导致系统结构破坏,生产效率低下,缩短其使用 寿命等一系列后果。因此,探究转子碰摩故障机理,研究其故障信号特征的提取,实现 智能诊断,获得可靠有效的诊断结果具有十分重要的现实指导意义。 碰摩故障是一种典型的多发性事件,是由其他故障或是由耦合故障所带来的“二次 效应”[2] 。碰摩故障一般伴随有不平衡、不对中故障,两种或两种以上故障相互影响形成耦合。尽管目前不少研究人员针对不平衡-碰摩、不对中-碰摩耦合故障进行了研究, 但由于耦合故障的振动响应呈现非线性特点,对信号的分解存在一定难度,不能很好地 提取出故障的特征。 含有碰摩故障的耦合振动信号具有冲击、不平稳的特性,这给耦合故障的检测和特 征提取带来一定难度。常用的信号处理方法,对单一故障的特征提取,具有很好地分析 效果,但在研究耦合故障时,难以得到有用的特征信息。因此,以碰摩和碰摩耦合故障 为研究对象,研究出能够处理非均布信号的方法,实现故障特征提取和诊断,具有十分 重要的现实意义。 1.2 国内外研究现状 1.2.1 转子碰摩故障机理的国内外研究现状 目前,人们针对碰摩故障的机理从非线性动力学模型、动力学响应等方面进行了研 究,发表了许多有价值的的论文。Agnieszka Muszynska [3] 就在其《Rotor Dynamics》— 书中,建立了边界约束条件较为完备的转子碰摩力模型,引入弹性恢复力来表示碰摩产 生的碰撞,详细描述了碰摩的分类情况,并分析了局部碰摩和整周碰摩的故障特征,但 没有考虑定子的弹性。Muszynska [4] 在建立的模型中引入了弹性恢复系数,为了降低动 力学分析的难度,假设定子在碰摩的过程中不发生弹性变形,计入碰摩过程中的能量损失,由此该模型只能用于研究单点和局部碰摩的情况。SawiCki [5] 建立的动力学模型中,郑州轻工业学院硕士学位论文 2 将定子简化为具有一定质量弹性的基础支承,假设转定子碰撞过程收到了弹性力和切向 摩擦力,计算弹性力的的摩擦系数与转定子之间的相对转速有关。沈小要[6] 建立了具有初始弯曲的不平衡Jeffcott转子碰摩力模型,在非线性油膜力的作用下,判断是否发生了 碰摩,并动态检测出碰摩开始时的转速。 在转子碰摩的动力学响应分析方面,Ehrich [7] 研究了局部碰摩的动力学响应,在过 渡区域中的超谐波阶段里,出现了混沌现象。胡鸾庆[8] 建立了偏心Jeffcott碰摩模型,考虑局部碰摩力变化,在不同平衡力、阻尼、转速的情况下,仿真分析局部碰摩的拟周期 结果和混沌、分叉现象,并提出了检测早期微弱碰摩信号的方法:Duffing方程外轨解的 最大轨道所对应的分叉阈值法。吴敬东[9] 研究了理想转子的单点碰摩情况,绘制Poincare 截面图,研究碰摩产生的周期分岔、拟周期和混沌运动形式。褚福磊和张正松[10] 分析了碰摩转子系统在油膜力的作用下,产生的倍周期分叉和拟周期运动,并将转速和不平衡 量作为控制参数研究运动的路径和形式。 1.2.2 转子碰摩耦合故障机理的国内外研究现状

基于小波分析的机械故障诊断

绪 论 机械故障诊断技术作为一门新兴的科学,自从二十世纪六七十年代以来已经取得了突飞猛进的发展,尤其是计算机技术的应用,使其达到了智能化阶段。现在,机械故障诊断技术在工业生产中起着越来越重要的作用,生产实践已经证明开展故障诊断与状态预测技术研究具有重要的现实意义。 我国的故障诊断技术在理论研究方面,紧跟国外发展的脚步,在实践应用上还是基本落后于国外的发展。在我国,故障诊断的研究与生产实际联系不是很紧密,研究人员往往缺乏现场故障诊断的经验,研制的系统与实际情况相差甚远,往往是从高等院校和科研部门开始,再进行到个别行业,而国外的发展则是从现场发现问题进而反映到高等院校或科研部门,使得研究有的放矢[1]。 要求机械设备不出故障是不现实的,因为不存在绝对安全可靠的机械设备。因此,为了预防故障和减少损失,必须对设备的运行状态进行监测,及时发现设备的异常状况,并对其发展趋势进行跟踪:对己经形成的或正在形成的故障进行分析诊断,判断故障的部位和产生的原因,并及早采取有效的措施,这样才能做到防患于未然。因此,设各状态监测与故障诊断先进技术的研究对于保证复杂机械设备的安全运行具有重要意义。 关键词:小波分析,故障诊断,小波基选取,奇异性 基于小波分析的机械故障检测 小波奇异性理论用于机械故障检测的基本原理 信号的奇异性与小波变换的模极大值之间有如下的关系: 设)(x g 为一光滑函数,且满足条件0g(x) lim ,1x)dx ( g x ==∞→+∞ ∞-?,不妨设)(x g 为高斯函数,即σσπ2221)(x e x g -= ,令 d x,/x)( dg x)(=ψ由于?+∞ ∞-=0x)dx (ψ,因此,可取函数x)(ψ

基于小波分析的故障诊断算法

基于小波分析的故障诊断算法 前言: 小波变换是一种新的变换分析方法,它继承和发展了短时傅立叶变换局部化的思想,同时又克服了窗口大小不随频率变化等缺点,能够提供一个随频率改变的“时间- 频率”窗口,是进行信号时频分析和处理的理想工具。它的主要特点是通过变换能够充分突出问题某些方面的特征,因此,小波变换在许多领域都得到了成功的应用,特别是小波变换的离散数字算法已被广泛用于许多问题的变换研究中。从此,小波变换越来越引起人们的重视,其应用领域来越来越广泛。 在实际的信号处理过程中,尤其是对非平稳信号的处理中,信号在任一时刻附近的频域特征都很重要。如在故障诊断中,故障点(机械故障、控制系统故障、电力系统故障等)一般都对应于测试信号的突变点。对于这些时变信号进行分析,通常需要提取某一时间段(或瞬间)的频率信息或某一频率段所对应的时间信息。 因此,需要寻求一种具有一定的时间和频率分辨率的基函数来分析时变信号。小波变换继承和发展了短时傅里叶变换的局部化思想,并且克服了其窗口大小和形状固定不变的缺点。它不但可以同时从时域和频域观测信号的局部特征,而且时间分辨率和频率分辨率都是可以变化的,是一种比较理想的信号处理方法。 小波分析被广泛应用于信号处理、图像处理、语音识别、模式识别、数据压缩、故障诊断、量子物理等应用领域中。 小波分析在故障诊断中应用进展 1)基于小波信号分析的故障诊断方法 基于小波分析直接进行故障诊断是属于故障诊断方法中的信号处理法。这一方法的优点是可以回避被诊断对象的数学模型, 这对于那些难以建立解析数学模型的诊断对象是非常有用的。 具体可分为以下4种方法: ①利用小波变换检测信号突变的故障方法连续小波变换能够通过多尺度分析提取信号的奇异点。基本原理是当信号在奇异点附近的Lipschitz指数a >0时,其连续小波变换的模极大值随尺度的增大而增大;当a <0时,则随尺度的增大而减小。噪声对应的Lipschitz指数远小于0, 而信号边沿对应的Lipschitz 指数大于或等于0。因此, 利用小波变换可以区分噪声和信号边沿, 有效地检测出强噪声背景下的信号边沿(奇变)。动态系统的故障通常会导致系统的观测信号发生奇异变化, 可以直接利用小波变换检测观测信号的奇异点, 从而实现对系统故障的检测。比如根据输油管泄漏造成的压力信号突变的特点, 用小波变换检测这些突变点, 实现输油管道的泄漏点诊断。 ②观测信号频率结构变化的故障诊断方法小波多分辨率分析能够描述信号的频谱随 时间变化情况或信号在某时刻

汽轮机常见故障及措施全解

《汽轮机设备故障诊断》 常见故障分析 一、汽轮机原理简介 汽轮机是用蒸汽做功的一种旋转式热力原动机,具有功率大、效率高、结构简单、易损件少,运行安全可靠,调速方便、振动小、噪音小、防爆等优点。主要用于驱动发电机、压缩机、给水泵等,在炼油厂还可以充分利用炼油过程的余热生产蒸汽作为机泵的动

力,这样可以综合利用热能。 一列喷嘴叶栅和其后面相邻的一列动叶栅构成的基本作功单元称为汽轮机的级,它是蒸汽进行能量转换的基本单元。蒸汽在汽轮机级内的能量转换过程,是先将蒸汽的热能在其喷嘴叶栅中转换为蒸汽所具有的动能,然后再将蒸汽的动能在动叶栅中转换为轴所输出的机械功。具有一定温度和压力的蒸汽先在固定不动的喷嘴流道中进行膨胀加速,蒸汽的压力、温度降低,速度增加,将蒸汽所携带的部分热能转变为蒸汽的动能。从喷嘴叶栅喷出的高速汽流,以一定的方向进入装在叶轮上的动叶栅,在动叶流道中继续膨胀,改变汽流速度的方向和大小,对动叶栅产生作用力,推动叶轮旋转作功,通过汽轮机轴对外输出机械功,完成动能到机械功的转换。排汽离开汽轮机后进入凝汽器,凝汽器内流入由循环水泵提供的冷却工质,将汽轮机乏汽凝结为水。由于蒸汽凝结为水时,体积骤然缩小,从而在原来被蒸汽充满的凝汽器封闭空间中形成真空。为保持所形成的真空,抽气器则不断的将漏入凝汽器内的空气抽出,以防不凝结气体在凝汽器内积聚,使凝汽器内压力升高。集中在凝汽器底部及热井中的凝结水,通过凝结水泵送往除氧器作为锅炉给水循环使用。 只有一列喷嘴和一列动叶片组成的汽轮机叫单级汽轮机。由几个单级串联起来叫多级汽轮机。由于高压蒸汽一次降压后汽流速度极高,因而叶轮转速极高,将超过目前材料允许的强度。因此采用压力分级法,每次在喷嘴中压力降都不大,因而汽流速度也不高,

小波分析笔记

过去10年来,小波变换在图像压缩领域取得了巨大的成功。它在处理具有点状奇异性的一维信号时远胜于傅立叶分析,在应用中,大多数的二维小波变换使用的可分离滤波器组是一维小波变换在行和列方向的张量积。由于小波基函数仅能表示水平、垂直、对角三个方向,因此在表示高维奇异信号如图像的几何边界等就显得无能为力。因此小波变换在捕捉0维奇异性或处理分片光滑区域时是最优工具,但是在处理高维信号时就不是最优的。 小波分析在一维时所具有的优异特性并不能简单的推广到二维或更高维,由一维小波张成的可分离小波(Separable wavelet)只具有有限的方向,不能“最优”地表示含线或者面奇异的高维函数,但事实上具有线或面奇异的函数在高维空间中非常普遍,例如,自然物体光滑边界使得自然图像的不连续性往往体现为光滑曲线上的奇异性,而并不仅仅是点奇异。 实现函数的稀疏表示是信号处理、计算机视觉等很多领域中一个非常核心的问题。对于模型(7)(焦李成谭山图像的多尺度几何分析:回顾和展望),正交基所能达到的最优逼近误差应该具有s M-的衰减级[D L Donoho: Sparse component analysis and optimal atomic decomposition[j]. Constructive Approximation, 1998, 17:353-382],然而小波变换的非线性逼近误差只能达到1 M-的衰减级。其中重要的原因是二维可分离小波基只具有有限的方向,即水平、垂直、对角,方向性的缺乏使小波变换不能充分利用图像本身的几何正则性。据生理学家对人类视觉系统的研究结果和自然图像统计模型,一种“最优”的图像表示法应具有如下特征:(1)多分辨:能够对图像从粗分辨率到细分辨率进行连续逼近,即“带通”性;(2)局域性:在空域和频域,这种表示方法的“基”应该是“局部”的;(3)方向性:其“基”应该具有“方向”性,不仅仅局限于二维可分离小波的3个方向。 上图表示了分别用傅立叶分析、二维可分离小波变换以及Bandelet变换来逼近图像中奇异曲线的过程。由一维小波张成的二维小波基具有正方形的支撑区间,不同的分辨率下,其支撑区间为不同尺寸大小的正方形。二维小波逼近奇异曲线的过程,最终表现为用“点”

小波分析在故障诊断中的实际应用

测 控 系统 课 程 设 计 题目:基于小波分析的故障诊断 院 (系) 机电及自动化学院 专 业 测控技术与仪器1班 学 号 0911211014 姓 名 李志文 级 别 2 0 0 9 指导老师 王启志 2012年6月 Huaqiao university

摘要 基于小波变换的故障诊断是当前比较热门的一项研究之一,如何快速、准确地提取故障信号,如何准确定位故障的发生点及进行故障的预测是故障分析与检测的关键性问题。本文就此问题展开如下研究。 本文详细分析了小波变换的基本理论、小波变换用于故障检测的基本原理。介绍了几种常用的小波及其应用特点。通过实例分析比较不同小波类型的应用特点,通过对他们的优缺点的了解,能够在不同的环境下选取合适的小波类型进行故障检测,同时针对不同的着重点选取恰当的小波。 关键词:小波分析,故障检测,小波基选取,奇异性 ABSTRACT Fault diagnosis based on wavelet transform is one of the popular a study, how quickly and accurately extract the fault signal, and how to accurately locate the fault occurred and the failure of the forecasts are the key issues of fault analysis and detection. On this issue, the following research. In this paper a detailed analysis of the basic theory of wavelet transform, the basic principles of wavelet transform for fault detection. Several commonly used wavelet and its application characteristics. By case analysis comparing different wavelet characteristics, by understanding their strengths and weaknesses in different environments to select the appropriate wavelet for fault detection, and select the appropriate wavelet for a different focus. KEY WORDS:wavelet analysis,defect detection,wavelet basis selection, singularity

旋转机械(转子)故障诊断.

旋转机械(转子)故障诊断 摘要:旋转机械故障诊断技术在企业中的应用能够及早发现设备故障、防止生产线停工、避免重大事故。本文首先展示了国内外转子故障诊断技术现状,回顾过往不平衡模拟实验通过对振动特征的分析研究总结了不平衡的振动特征。而后再利用振动信号分析处理方法以及时一频分析技术,对转子系统的不平衡、不对中两个典型的故障诊断做了详细的介绍。由于技术发展,以后的转子故障诊断将朝着自动化、智能化方向发展。 关键词:旋转机械;不平衡;不对中;故障诊断 Vibration Faults in Rotor System Abstract: Application of the rotating machinery fault diagnosis technology in the enterprise can predicte equipment failure, prevent shutdown the production line , avoid major accidents. This paper shows the present situation of rotor fault diagnosis technology at home and abroad at first, retrospects the imbalance simulation experiment based on the analysis of the vibration characteristics of the study summarized the unbalanced vibration characteristics. Then,with the vibration signal analysis method and spectrum analysis technology, I will introduce imbalance and misalignment two typical fault diagnosis in detail. Due to the technical development, the rotor fault diagnosis will develop in automatic and intelligent direction. Keywords: Rotating Machinery; Imbalance;Misalignment ; Fault Diagnosis

汽轮机故障诊断技术

汽轮机故障诊断技术 摘要:当前我国的发展已经愈来愈迅速,在经济的持续稳定的增长下,工业的 发展以及科学技术的进步也在不断的发生变化。其中汽轮机的发展与以往相比就 有着比很大的跨越,我国的工业生产在当下正以迅猛的速度向前攀升,而工业生 产中的相关设备也愈来愈先进,在设备的安全性以及可用性方面也受到了当下很 多人的关注。本文主要就当前的汽轮机故障的诊断技术进行详细的分析探究,希 望能够对此领域的发展起到一定的促进作用。 关键词:汽轮机;故障;诊断技术 1 前言 伴随我国对工业发展的越来越高度重视,人们对工业设备的运行安全性、稳 定性与可靠性等多方面提出了更高的要求。如何加强机械设备故障诊断,降低故 障发生几率成为现代工业领域工作的首要任务。汽轮机作为电力生产中的重要设 备之一,一旦其发生故障将会给整个电力系统带来巨大的不良影响,甚至引发人 员伤亡事故。因此,非常有必要对汽轮机故障进行分析与诊断,这样才能有效提 高汽轮机的安全性与可靠性。 2 汽轮机故障分析方法 对于汽轮机而言,其故障普遍表现为机组振动过大。在现场故障诊断中,常 用到的故障分析方法便是振动分析法。 2.1波形分析法 时间波形是最初的振动信息源。由传感器进行输出的振动信息在普遍情况下 均为时间波形。对一些有着明显特征的波形,可以直接用于设备故障的判断。波 形分析简易直观,这也是波形分析法的优势之所在。 2.2轨迹分析法 对于轴承座的运动轨迹而言,转子轴心直接性地对转子瞬时的运动状态反应 出来,并且涵盖了很多关于机械运作情况的信息[2]。由此可见,对于设备故障的 诊断,轨迹分析法的作用是非常明显的。基于正常状态,轴心轨迹具有稳定性, 每一次转动循环一般情况下均保持在相同的位置上,且轨迹普遍上是相互重合的。在轴心轨迹的形状与大小呈现不断变化的势态时,便表现转子运行状态不具稳定性。面对此种情况,需进行及时有效的调整工序,不然极易致使机组失去稳定性,进而造成停车事故的发生。 2.3频谱分析法 对于设备故障的分析,频谱分析法在应用方面极具广泛性。普遍应用到的频 谱有两种:其一是功率谱;其二是幅值谱。其中,功率谱代表在振动功率随振动 频率的分布状况,其物理含义较为清晰。幅值谱代表相对应的各个频率的谐波振 动分量所具备的振幅,在应用过程中,幅值谱具有直观的特点。并且,幅值谱的 谱线高度便是此频率分量的振幅大小。总之,对于频谱分析法而言,其目的便是 把形成信号的每一种频率成分均进行分解,以此为振源的识别提供方便。 3 汽轮机故障诊断技术的发展 3.1信号采集与信号分析 3.1.1传感器技术 目前汽轮机工作的环境较为特殊,在汽轮机故障诊断过程中容易受到周围环

汽轮机设备故障诊断技术研究文献综述

汽轮机设备故障诊断技术研究 1 选题背景及意义 随着现代科学技术的进步与发展,设备越来越大型化,功能越来越多,结构越来越复杂,自动化程度越来越高。随之而来的问题是,一旦关键设备发生故障,不仅会造成巨大的经济损失,而且可能危及人身安全,产生重大的社会影响。因此,人们对设备的安全、稳定、长周期、满负荷运行的要求越来越迫切,希望能即时了解设备运行状态、预防故障、杜绝事故。(1)本文介绍了汽轮机设备故障诊断技术的发展与对其研究的主要内容,以便人们能更好的运行设备。 设备故障诊断技术是一种了解和掌握设备在使用过程中的状态,确定其整体或局部正常或异常,早期发现故障及其原因,并能预报故障发展趋势的技术。(4)这项技术最初形成于英国,由于其实用性以及为企业和社会带来的效益,日益受到企业政府的重视。特别是近三十年来,随着科学的技术的不断进步和发展,尤其是测试技术、计算机技术的迅速发展,它已经逐步形成了一门较为完整的学科。该学科以设备管理、状态监测和故障诊断为内容,以建立新的维修体质为目标,在欧美、日本以不同形式得到推广,在国际上称为一大热门学科。(2)近年来,振动与噪声理论、测试技术、信号分析与数据处理技术、计算机技术及其他相关基础学科的发展,为设备状态监测与故障诊断技术打下了良好的基础,而工业生产逐步向大型化、高速化、自动化、流程化方向发展,又为设备状态监测与故障诊断技术开辟了广阔的应用前景。(7)可以预见,这项源于身缠生产实际、又与近代科学技术发展密切相关的新兴学科在实际生产中必将发挥越来越大的作用。(10) 2 故障诊断研究现状 2.1 测试技术 测试是测量与试验的概括,是人们借助于一定的装置,获取被测对象有相关信息的过程。测试包含两方面的含义:一是测量,指的是使用测试装置通过实验来获取被测量的量值;二是试验,指的是在获取测量值的基础上,借助于人、计算机或一些数据分析与处理系统,从被测量中提取被测量对象的有关信息。测试分为动态测试和静态测试。如果被测量不随时间变化,这样的量称为静态量,相应的测试称为静态测试;反之为动态。(9) 2.2 信号分析 设备在运行过程中会产生各种表征其状态的物理现象,并引起相应参数的变化,这些为设备的观测、监视提供了可能性。通常把这些参数变换成容易测量、

小波分析原理

小波分析原理 1.1 小波变换及小波函数的多样性 小波是函数空间2()L R 中满足下述条件的一个函数或者信号()x ψ: 2 ?().R C d ψψωωω+=<∞? 式中,*{0}R R =-表示非零实数全体,?()ψ ω是()x ψ的傅里叶变换,()x ψ成为小波母函数。 对于实数对(,)a b ,参数a 为非零实数,函数 1 (,)()x b a b x a a ψψ-??= ??? 称为由小波母函数()x ψ生成的依赖于参数对(,)a b 的连续小波函数,简称小波。其中:a 称为伸缩因子;b 称为平移因子。 对信号()f x 的连续小波变换则定义为 ,1 (,)()(),()f a b R x b W a b f x dx f x x a a ψψ-??==?? ??? ? 其逆变换(回复信号或重构信号)为 *1 ()(,)f R R x b f x W a b dadb C a ψψ?-??= ??? ?? 信号()f x 的离散小波变换定义为 2(2,2)2()(2)j j j j f W k f x x k dx ψ+∞ ---∞=-? 其逆变换(恢复信号或重构信号)为 (2,2)()(2,2)()j j j j f k j k f t C W k x ψ+∞ +∞=-∞=-∞=∑∑ 其中,C 是一个与信号无关的常数。 显然小波函数具有多样性。在MATLAB 小波工具箱中提供了多种小波幻术,包括Harr 小波,Daubecheies (dbN )小波系,Symlets (symN )小波系,ReverseBior (rbio )小波系,Meyer (meyer )小波,Dmeyer (dmey )小波,Morlet(morl)小波,Complex Gaussian(cgau)小波系,Complex morlet(cmor)小波系,Lemarie (lem )小波系等。实际应用中应根据支撑长度、对称性、正则性等标准选择合适的小波函数。 1.2 小波的多尺度分解与重构 1988年Mallat 在构造正交小波基时提出多尺度的概念,给出了离散正交二进小波变换的金字塔算法,其小波分析树形结构如图1所示,即任何函数2()()f x L R ∈都可以根据分

转子碰摩故障分析 (DEMO)

转子碰摩、摩擦故障分析 一、机理分析 在旋转机械中,由于转子弯曲、转子不对中引起轴心严重变形,间隙不足和非旋转部件弯曲变形等原因引起转子与固定件接触碰撞而引起的异常振动时有发生。转子碰摩、摩擦是一个复杂的过程,其主要表现为振动响应的随机性和频谱的非线性特征,从机理上分析,摩擦振动对转子有以下四方面的影响: 1)直接影响 转子运动可分为自转和进动(即公转)两种形式。摩擦对自转的影响在于附加了一个力矩,因此,在转子原有力矩不变的条件下有可能使转子转速发生波动。至于进动,由于摩擦力的干预可能使正进动转化为反进动,特别是全周摩擦,常常产生所谓的“干摩擦”现象,从而引起自激振动,影响转子的正常运行,甚至损坏机组。 2)间接影响 摩擦的作用使动静部件相互抵触,相当于增加了转子的支承条件,增大了系统的刚度,改变了转子的临界转速及振型。且这种附加支承是不稳定的,从而可能引起不稳定振动及非线性振动。 3)冲击影响 局部碰摩除了摩擦作用外还会产生冲击作用。其直观效应是给转子施加了一个瞬态激振力,激发转子以固有频率作自由振动。虽然自由振动是衰减的,但由于碰摩在每个旋转周期内都产生冲击激励作用,在一定的条件下有可能使转子振动成为叠加自由振动的复杂振动。 4)热变形 摩擦引起的热变形可能引起转子弯曲,加大偏心量,使振动增大。 二、转子碰摩、摩擦的特征分析 摩擦分全圆径环形摩擦和局部摩擦两种,其特征有:a) 振动频带宽,既有与转速频率相关的低频部分,也有与固有频率相关的高次谐波分量,并伴随有异常噪声,可根据振动频谱和声谱进行判别;b) 振动随时间而变。在转速、负荷工况一定,由于接触局部发热而引起振动矢量的变化,其相位变化与旋转方向相反;c)接触摩擦开始瞬间会引起严重相位跳动(大于100°相位变化)。局部摩擦时,无论是同步还是异步其轨迹地带有附加的环(说明相位在很大的变化)。

相关主题
文本预览
相关文档 最新文档