当前位置:文档之家› 过电流保护

过电流保护

过电流保护
过电流保护

低电压启动的过电流保护

对升压变压器或容量较大的降压变压器,当过电流保护的灵敏度不够时,可采用低电压启动的过电流保护。

一、电流继电器的整定计算。

电流继电器的动作电流应按躲过变压器的额定电流整定。

I op=(K rel I N)/(K r n a)

K rel-可靠系数,取1.2;

K r-返回系数,取0.85~0.95;

I N-变压器的额定电流。

二、低电压启动元件的动作电压整定计算

低电压启动元件的整定计算应考虑以下情况:

1、按躲过正常运行时可能出现的最低电压整定

U op=U min/(K rel K r n v)

U min-正常运行时可能出现的最低电压,一般取U min=0.9U N(U N为额定相电压或额定线电压);

K rel-可靠系数,取1.1~1.2;

K r-返回系数,取1.05~1.25;

n v-电压互感器变比。

2、按躲过电动机自启动时的电压整定

当低电压继电器由变压器低压侧电压互感器供电时:

U op=(0.5~0.6)U N/n v

当低电压继电器由变压器高压侧电压互感器供电时:

U op=0.7U N/n v

3、灵敏系数校验

电流继电器的灵敏系数校验与不带低电压闭锁的过电流保护相同。

低电压继电器的灵敏系数按下式校验:

K sen=U op/(U r.max/n v)

U r.max-计算运行方式下,灵敏系数校验点发生金属性相间短路时,保护安装处

的最高残压。

要求K sen≥1.3(近后备)或1.2(远后备)

复合电压启动的过电流保护

复合电压启动的过电流保护通常作为变压器的后备保护,它是由一个负序电压继电器和一个接在相间电压上的低电压继电器共同组成的电压复合元件,两个继电器只要有一个动作,同时过电流继电器也动作,整套装置即能启动。

该保护较低电压闭锁过电流保护有下列优点:

(1)在后备保护范围内发生不对称短路时,有较高灵敏度。

(2)在变压器后发生不对称短路时,电压启动元件的灵敏度与变压器的接线方式无关。

(3)由于电压启动元件只接在变压器的一侧,故接线比较简单。

保护由三部分组成:

电流元件、电压元件(含负序电压继电器KVN和低电压继电器KV)、时间元件。其中负序电压继电器由负序电压滤过器和过电压继电器组成。

装置动作情况如下:

(1)当发生不对称短路时,故障相电流继电器动作;同时不对称短路产生负序电压,负序电压继电器动作,其常闭触点断开,致使低电压继电器KV失压,常闭触点闭合,起动闭锁中间继电器KM。相电流继电器通过KM常开触点起动时间继电器KT,经整定延时起动信号和出口继电器,将变压器两侧断路器断开。(2)当发生对称短路时,由于短路初始瞬间也会出现短时的负序电压,KVN也会动作,使KV失去电压。当负序电压消失后,KVN返回,常闭触点闭合,此时加于KV线圈上的电压已是对称短路时的低电压,只要该电压小于低电压继电器的返回电压,起动闭锁中间继电器KM。复合电压启动的过流保护在对称短路和

不对称短路时都有较高的灵敏度。

变压器Yd11解释

在变压器的联接组别中“Y”表示高压侧为星形接线;“d”表示低压侧为三角形接线。“11”表示变压器低压侧的线电压Uab滞后高压侧线电压UAB330度(或超前30度)

变压器接线方式有4种基本连接形式:“Yy”、“Dy”、“Yd”和“Dd”。我国只采用“Yy”和“Yd”。由于Y连接时还有带中性线和不带中性线两种,不带中性线则不增加任何符号表示,带中性线则在字母Y后面加字母N表示。

带中性线是为了防止发生短路故障时三相不平衡,110kV以上电压等级电网运行中,采用中性点直接接地方式,这样可以避免系统内发生短路故障时三相不平衡运行。三相不平衡运行在大电网运行中是不允许的。

最大的区别,中性点引出时,存在按分级绝缘设计的可能性。中性点不引出,只能按全绝缘设计

当一次侧线电压相量作为分针指在时钟12点的位置时,二次侧的线电压相量在时钟的11点位置。

直流电源过电压过流保护电路

直流电源过电压、欠电压及过流保护电路 该保护电路在直流电源输入电压大于30V或小于18V或负载电 流超过35A时,晶闸管都将被触发导 通,致使断路器QF跳闸。图中,YR 为断路器QF的脱扣线圈;KI为过电 流继电器。 带过流保护的电动自行车无级调速电路

图中,RC为补偿网络,以改善电动机的力矩特性。具体数值由实验决定。 电路如图16-91所示。它适用于电动自行车或电动三轮车。调节电位器RP,可改变由555 时基集成电路A组成的方波发生器的方波占空比,达到调速的目的。Rs是过电流取样电 阻,当电动机过载时,Rs上的压降增大,使三极管VTz导通,触发双向晶闸管V导通,分 流了部分负载,从而保护了功率管VTi。 过流保护用电子保险的制作电路图 本电路适用于直流供电过流保护,如各种电池供电的场合。 如果负载电流超过预设值,该电子保险将断开直流负载。重置电路时,只需把电源关掉,然后再接通。该电路有两个联接点(A、B标记),可以连接在负载的任意一边。 负载电流流过三极管T4、电阻R10和R11。A、B端的电压与负载电流成正比,大多数的电压分配在电阻上。当电源刚刚接通时,全部电源电压加在保险上。三极管T2由R4的电流导通,其集电极的电流值由下式确定:VD4=VR7+0.6。因为D4上的电压(VD4)和R7上的电压(VR7)是恒定的,所以T2的集电极电流也是恒定。该三极管提供稳定的基极电流给T3,因而使其导通,接着又提供稳定的基极电流给T4。保险导电,负载有电流流过。当电源刚接通时,电容器C1提供一段延时,从而避免T1导电和保持T2断开。

保险上的电压(VAB)通常小于2V,具体值取决于负载电流。当负载电流增大时,该电压升高,并且在二极管D4导通时,达到分流部分T2的基极电流,T2的集电极电流因而受到限制。由此,保险上的电压进一步增大,直到大约4.5V,齐纳二极管D1击穿,使T1导通,T2便截止,这使得T3和T4也截止,此时保险上的电压增大,并且产生正反馈,使这些三极管保持截止状态。 C1的作用是给出一段短时延迟,以便保险可以控制短时过载,如象白炽灯的开关电流,或直流电机的启动电流。因此,改变C1的值可以改变延迟时间的长短。该电路的电压范围是10~36V的直流电,延迟时间大约0.1秒。对于电路中给出的元件值,负载电流限制为1A。通过改变元件值,负载电流可以达到10mA~40A。选择合适额定值的元件,电路的工作电压可以达到6~500V。通过利用一个整流电桥(如下面的电源电路),该保险也可以用于交流电路。电容器C2提供保险端的瞬时电压保护。二极管D2避免当保险上的电压很低时,C1经过负载放电。 过压过流保护器电路图 当电源供给电压或负载吸取的电流太大时,下图电路可断开负载给出故障指示。 正常工作时,Tr1和Tr2均截止,555复位,555中的放电晶体管导通,它从Tr3基极吸取电流,使Tr3处开饱和,电源5~12V便直接送主负载。当负载吸取电流超过规定值时,Rsc上压降增加,使Tr1导通,555被触发,于是内部放电晶体管截止,跟着Tr3也截止,将电源与负载隔离,这时555处于单稳状态,单稳时间一到,只要负载过流现象不排除,555又重新触发,Tr3继续将负载隔离。

过流保护电路设计

过流保护电路如上图所示。此电路是过流保护电路,其中100kΩ电阻用来限流,通过比较器LM311 对电流互感器采样转化的电压进行比较,LM311的3脚接一10kΩ电位器来调比较基准电压,输出后接一100Ω的电阻限流它与后面的220μF的电容形成保护时间控制。当电流过流时比较器输出是高电平产生保护,使SPWM不输出,控制场效应管关闭,等故障消除,比较器输出低电平,逆变器又自动恢复工作。 1.第一个部分是电阻取样...负载和R1串联...大家都知道.串联的电流相等...R2上的电压随着负载的电流变化而变化...电流大,R2两端电压也高...R3 D1组成运放保护电路...防止过高的电压进入运放导致运放损坏...C1是防止干扰用的... 2.第二部分是一个大家相当熟悉的同相放大器...由于前级的电阻取样的信号很小...所以得要用放大电 路放大.才能用...放大倍数由VR1 R4决定... 3.第三部分是一个比较器电路...放大器把取样的信号放大...然后经过这级比较...从而去控制后级的动作...是否切断电源或别的操作...比较器是开路输出.所以要加上上位电阻...不然无法输出高电平... 4.第四部分是一个驱动继电器的电路...这个电路和一般所不同的是...这个是一个自锁电路... 一段保护 信号过来后...这个电路就会一直工作...直到断掉电源再开机...这个自锁电路结构和单向可控硅差不多. 1 采用电流传感器进行电流检测过流检测传感器的工作原理如图1所示。通过变流器所获得的变流器次级电流经I/V转换成电压,该电压直流化后,由电压比较器与设定值相比较,若直流电压大于设定值,则发出辨别信号。但是这种检测传感器一般多用于监视感应电源的负载电流,为此需采取如下措施。由于感应电源启动时,启动电流为额定值的数倍,与启动结束时的电流相比大得多,所以在单纯监视电流电瓶的情况下,感应电源启动时应得到必要的输出信号,必须用定时器设定禁止时间,使感应电源启动结束前不输出不必要的信号,定时结束后,转入预定的监视状态。 2 启动浪涌电流限制电路开关电源在加电时,会产生较高的浪涌电流,因此必须在电源的输入端安装防止浪涌电流的软启动装置,才能有效地将浪涌电流减小到允许的范围内。浪涌电流主要是由滤波电容充电引起,在开关管开始导通的瞬间,电容对交流呈现出较低的阻抗。如果不采取任何保护措施,浪涌电流可接近数百A。 开关电源的输入一般采用电容整流滤波电路如图2所示,滤波电容C可选用低频或高频电容器,若用低频电容器则需并联同容量高频电容器来承担充放电电流。图中在整流和滤波之间串入的限流电阻Rsc是为了防止浪涌电流的冲击。合闸时Rsc限制了电容C的充电电流,经过一段时间,C上的电压达到预置值或电容C1上电压达到继电器T动作电压时,Rsc被短路完成了启动。同时还可以采用可控硅等电路来短接Rsc。当合闸时,由于可控硅截止,通过Rsc对电容C进行充电,经一段时间后,触发可控硅导通,从而短接了限流电阻Rsc。 3 采用基极驱动电路的限流电路在一般情况下,利用基极驱动电路将电源的控制电路和开关晶体管隔离开。控制电路与输出电路共地,限流电路可以直接与输出电路连接,工作原理如图3所示,当输出过载或者短路时,V1导通,R3两端电压增大,并与比较器反相端的基准电压比较。控制PWM信号通断。 4 通过检测IGBT的Vce 当电源输出过载或者短路时,IGBT的Vce值则变大,根据此原理可以对电路采取保护措施。对此通常使用专用的驱动器EXB841,其内部电路能够很好地完成降栅以及软关断,并具有内部延迟功能,可以消除干扰产生的误动作。其工作原理如图4所示,含有IGBT过流信息的Vce不直接发送到EXB841 的集电极电压监视脚6,而是经快速恢复二极管VD1,通过比较器IC1输出接到EXB841的脚6,从而消除正向压降随电流不同而异的情况,采用阈值比较器,提高电流检测的准确性。假如发生了过流,驱动器:EXB841的低速切断电路会缓慢关断IGBT,从而避免集电极电流尖峰脉冲损坏IGBT器件。 为避免在使用中因非正常原因造成输出短路或过载,致使调整管流过很大的电流,使之损坏。故需有快速保护措施。过流保护电路有限流型和截流型两种。 限流型:当调整管的电流超过额定值时,对调整管的基极电流进行分流,使发射极电流不至于过大。图4-2为其简要电路图。图中R为一小电阻,用于检测负载电流。当IL不超过额定值时,T1、截止;当IL 超过额定值时,T'1导通,其集电极从T1的基极分流。从而实现对T1管的保护

2005(许生礼)简单实用的过流过压保护电路

智 能建筑 Z H I N E N G J I A N Z H U 简单实用的过流过压保护电路 2005年第19卷第2期《工程建设与档案》157  收稿日期:2005-03-04 作者简介:许生礼(1947-),男,江苏江阴人,安徽省房地产公司六安市公司工程师. 简单实用的过流过压保护电路 许生礼 (安徽省房地产公司六安市公司,安徽六安 237012) 摘 要:为了保护生活环境,目前住宅小区均要求自建污水处理系统。由于污水处理设备所用的电机都长期在地下室工作,为了延长电机的使用寿命,采用晶闸管及其控制模式实现过流过压保护。关键词:环保;晶闸管;大电流;保护 中图分类号:T M307.2 文献标识码:A 文章编号:1671-4857(2005)02-0157-02 0 引 言 根据环保要求,各住宅小区按要求均建立了自处理污水系统,由于现有设备均采用的是老式的电机保护系统(如热继电器等),导致经常发生烧毁污水泵电机及风机电机,影响了设备的正常使用,增加了运行成本。为了保护电机,现使用简单的电子过流过压保护电路。 晶闸管以其额定电流大、额定电压高、效率高、反应快以及体积小等优点,作为中频静止逆变电源中主要元件而被选用,但其缺点是过载能力低。因此,在晶闸管中频静止逆变电源中,为了使晶闸管免受大电流、高电压的冲击,均设置了过流过压保护电路。当晶闸管中频静止电源用于金属熔炼时,由于负载为时变性元件,变化大,情况比较复杂,若保护不可靠,速度慢,故障一旦出现, 晶闸管立即被损坏的现象常有发生。影响了整个设备的性能和使用,因而保护电路显得尤为重要。 1 过流过压的保护过程 如图1所示,可控硅中频静止电源主回路采用的 是AC 2DC 2AC 变换电路。从三相全控桥式整流器到单相桥式逆变器,均选用了晶闸管。保护电路是把从电流、电压采样回路中所采取的电流和电压信号,经判断后,控制或封锁整流桥触发脉冲,使得三相全控整流桥输出电压为零,切断了逆变桥电源的供给,从 而起到了保护整机的作用[1,2] 。可是,不同的保护电路控制点却往往不同,致使保护电路性能的好坏有较 大的差异。 图1 过流过压保护框图 2 过流过压保护电路 针对上述情况,结合目前国内大多数可控硅中频静止电源和整流脉冲形成的电路,大多数采用了KJ 004和KJ 041组成的触发脉冲电路,设计出了可靠性 高、线路简单的过流过压保护电路[3] ,其保护原理如 图2所示。2.1 过流保护电路 该电路由W 1、I C 1(运算放大器)组成比较电路,I C 3(D 触发器)组成双稳态记忆电路I C 5、I C 6(或门) 组成的逻辑电路及T 1、XD 1组成的显示电路4个单元构成。 当中频静止逆变电源处于正常工作时,输入比较器同相端的电流信号形成的输入电压小于反相端定值电压(即所要求的保护定值电压)I C 1输出低电平,D 触发器处于复位状态,Q 端为“0”,逻辑门输出则为 低电平,T 1反偏而截止,XD 1不亮。同理I C 6输出为“0”,KJ 041的控制端(P 7)为“0”,有整流触发脉冲输出。当电流信号形成的输入电压W 1确定的定值电

电流保护的范围

电流保护:(按照保护的整定原则,保护范围及原理特点) A、过电流保护---是按照躲过被保护设备或线路中可能出现的最大负荷电流来整定的。如大电机启动电流(短时)和穿越性短路电流之类的非故障性电流,以确保设备和线路的正常运行。为使上、下级过电流保护能获得选择性,在时限上设有一个相应的级差。 B、电流速断保护---是按照被保护设备或线路末端可能出现的最大短路电流或变压器二次侧发生三相短路电流而整定的。速断保护动作,理论上电流速断保护没有时限。即以零秒及以下时限动作来切断断路器的。 过电流保护和电流速断保护常配合使用,以作为设备或线路的主保护和相邻线路的备用保护。 C、定时限过电流保护---在正常运行中,被保护线路上流过最大负荷电流时,电流继电器不应动作,而本级线路上发生故障时,电流继电器应可靠动作;定时限过电流保护由电流继电器、时间继电器和信号继电器三元件组成(电流互感器二次侧的电流继电器测量电流大小→时间继电器设定动作时间→信号继电器发出动作信号);定时限过电流保护的动作时间与短路电流的大小无关,动作时间是恒定的。(人为设定) D、反时限过电流保护---继电保护的动作时间与短路电流的大小成反比,即短路电流越大,继电保护的动作时间越短,短路电流越小,继电保护的动作时间越长。在10KV 系统中常用感应型过电流继电器。(GL-型)

E、无时限电流速断---不能保护线路全长,它只能保护线路的一部分,系统运行方式的变化,将影响电流速断的保护范围,为了保证动作的选择性,其起动电流必须按最大运行方式(即通过本线路的电流为最大的运行方式)来整定,但这样对其它运行方式的保护范围就缩短了,规程要求最小保护范围不应小于线路全长的15%。另外,被保护线路的长短也影响速断保护的特性,当线路较长时,保护范围就较大,而且受系统运行方式的影响较小,反之,线路较短时,所受影响就较大,保护范围甚至会缩短为零。 概念 过电流保护 当电流超过预定最大值时,使保护装置动作的一种保护方式。保护类型过电流保护主要包括短路保护和过载保护两种类型。短路保护的特点是整定电流大、瞬时动作。电 磁式电流脱扣器( 或 继电 器 )

过流保护时间定值测试 (2)

1、保护相关设置: 本次试验的保护相关设置同“5-1 过流保护电流定值测试”。 2、试验接线: 本次试验的接线图同图3.5.2 所示。 3、过流保护时间定值测试:本次试验的具体测试方法参见第一章线路保护及测试实例中的“1-2 过流保护时间定值测试”。 5-3 过流保护方向元件测试 1、保护相关设置: (1)保护定值设置: (2)保护压板设置: 在“整定定值”里,把系统参数定值中的“I侧后备保护投入”置为“1”,把I 侧后备保护定值中的“过流I段经方向闭锁”、“过流方向指向”置为“1”;把“过流I 段经复压闭锁”、“PT断线保护投退原则”和“本侧电压退出”都置为“0”(即过流I 段保护经方向闭锁,灵敏角为45°,但不经复合电压闭锁。) 在保护屏上,仅投“投高压侧相间后备硬压板”。 2、试验接线: 本次试验的接线图同图3.5.2 所示。 3、过流保护方向元件测试:

本次试验的具体测试方法参见第一章线路保护及测试实例中的“1-3 过流保护方向元件测试”。 注意事项: 在进行测试仪参数设置时,应注意根据该方向元件采用的是正序电压,接线方式为零度接线方式,进行合理的参数设置。为避免PT 异常(PT 断线)对方向元件测试的影响,应保证在进行方向元件测试之前,PT 断线已复归。故在“交流试验”或者“状态序列”菜单里,应先给装置一个正常状态时间,一般为12.0s(大于PT 断线复归时间),复归电压设为额定电压57.735V,保证PT 断线闭锁等信号复归。 5-4 过流保护复合电压元件测试 1、保护相关设置: (1)保护定值设置: (2)保护压板设置:

在“整定定值”里,把系统参数定值中的“I侧后备保护投入”置为“1”,把I 侧后备保护定值中的“过流I段经复压闭锁”置为“1”;把“过流I段经方向闭锁”、“TV 断线保护投退原则”和“本侧电压退出”都置为“0”(即过流I段保护经复合电压闭锁,但不经方向闭锁。) 在保护屏上,仅投“投高压侧相间后备硬压板”。 2、试验接线: 本次试验的接线图同图3.5.2 所示。 3、过流保护复合电压元件测试: 本次试验的具体测试方法参见第一章线路保护及测试实例中的“1-4 过流保护复合电压闭锁值测试”。 注意事项: 该保护的复合电压指相间电压低或负序电压高,在测试“复压闭锁相间低电压”定值时,为避免负序电压高开放过流保护,建议把“复压闭锁负序相电压”定值设为最大值;同理,在测试“复压闭锁负序相电压”定值时,为避免相间电压低开放过流保护,建议把“复压闭锁相间低电压”定值设为最小值。为避免PT 异常(PT 断线)对复合电压测试的影响,应保证在进行复合电压测试之前,PT 断线已复归。故在“交流试验”或者“状态序列”菜单里,应先给装置一个正常状态时间,一般为12.0s(大于PT 断线复归时间),复归电压设为额定电压57.735V,保证PT 断线闭锁等信号复归。

【国家电网 继电保护】5方向电流保护习题

1 方向电流保护 一、选择题 1. 方向电流保护是在电流保护的基础上,加装一个(C ) A :负荷电压元件 B :复合电流继电器 C :方向元件 D :复合电压元件 2、相间短路保护功率方向继电器采用90°接线的目的是(B ) A 、消除三相短路时方向元件的动作死区 B 、消除出口两相短路时方向元件的动作死区 C 、消除反方向短路时保护误动作 D 、消除正向和反向出口三相短路保护拒动或误动 3、功率方向继电器的电流和电压为a bc ca ab U ,U ,U b c I I I 、、、时,称为(A ) A :90°接线 B :60°接线 C :30°接线 D :0°接线 4、所谓功率方向继电器的潜动,是指(B )的现象。 A :只给继电器加入电流或电压时,继电器不动作; B :只给继电器加入电流或电压时,继电器动作; C :加入继电器的电流与电压反相时,继电器动作; D :与电流、电压无关。 5、相间方向过电流的按相启动接线方式是将(B ) A :各相的电流元件触点并联后,再串入各功率方向继电器的触点; B :同名相的电流和功率方向继电器的触点串联后再并联; C :非同名相的电流元件触点和方向元件的触点串联后再并联; D :各相功率方向继电器的触点和各相电流元件触点分别并联后再串联

二、判断题 1. 方向过流保护动作的正方向是短路功率从母线流向线路。(√) 2、双电源幅射形网络中,输电线路的电流保护均应加方向元件才能保证选择性。(×) 3.功率方向继电器采用900接线方式时,接入电压和电流的组合为相电压和相电流。(×) 三、填空题 1.在两电气量之间进行比较的继电器可归纳为(幅值)比较和(相位)比较两类。 2.在电网中装带有方向元件的过流保护是为保证动作的(选择性)。 3.为了确保方向过流保护在反向两相短路时不受(非故障)相电流的影响,保护装置应采用(按相)起动的接线方式。 4.90度接线功率方向元件在(保护安装处)附近发生(三相)短路时存在“死区”。 5.功率方向继电器采用90度接线的优点在于(两相短路时无死区)。 6.方向电流保护主要用于(双电源辐射形)和(单电源环网)线路上。 7.LG-11功率方向继电器采用90o接线方式,C相方向元件电压接( U), AB 电流接( I)。 C 8.按900接线的相间功率方向继电器,当线路发生正向故障时,若短路阻抗角φk为300,为使继电器动作最灵敏,其内角α值应是(30°)。 9.功率方向继电器按90o接线时,当输入电流 I 时,输入的电压为 B ( U)。 C A 10. 按900接线的相间功率方向继电器,内角α值为(30°或45°) 1

过电流保护的计算

变压器过电流保护的整定计算: DL-21CE型电流继电器 DL-21CE系列电流继电器用于电机、变压器及输电线路的过负荷与短路保护线路中,作为起动元件。 (1)DL-21CE型电流继电器有一个动合触点,动作于过电流。 (2)动作值极限误差为6%。 (3)动作时间 倍实测动作值时不大于;2倍实测动作值时不大于。 (4)动作一致性不大于5%。 (5)环境温度引起的变差不大于5%。 (6)过载能力 电流继电器测定最大整定值和最小整定值两点,测最小整定值时,继电器线圈串联;测最大整定值时,继电器线圈并联,输入电流分别从最小和最大整定值上升到表4所列的相应试验电流,经5次试验,继电器的动合触点不应有不能工作的抖动,取出输入电流时不应有不返回现象,每次试验时间不大于5s。附加电阻表面温度不超过150℃。 (7)绝缘电阻不小于300 MΩ。 (8)介质强度为2kV/50Hz/1min。 (9)动作可靠性 a.当对线圈突然施加整定值的倍激励量时,继电器的动合触点应无抖动地闭合; b.当无外来的碰撞和振动,继电器的整定值在刻度盘的中值时,过电流继电器激励量为整定值的倍时,继电器的动断触点应可靠闭合,动合触点应可靠断开。 c.在动作值或返回值下,继电器动作过程中的可动系统不应当停滞在中间位置。 过电流保护整定原则 过电流保护,其单相原理接线如图4—1 所示。保护装置的动作电流应按躲过变压器可能出现的最大负荷电流 .max l I来整定,即 I set =K re =×/= (4-6) 式中:K rel—可靠系数,一般采用~; K re —返回系数,一般采用;

—变压器的最大负荷电流。 可靠系数K rel 的引入可按其字面意思理解就可以了,一般电流保护按一定的 原则计算,再乘以一定的可靠系数防止保护在计算值边缘时误动,可靠系数大小的选取一般都是经验值,没有很严格的规定,大多都是或左右,计算准确可靠的就选小点,估算成分或不确定因素比较多的就选大点。 公式中引入返回系数K rs 的意义在于:可提高可靠性和灵敏度。因为当在最 大负荷时若出现瞬时故障(时间小于保护装置的动作时限),电流达到了整定值,继电器动作。在这种情况下若考虑到了返回系数,则当瞬时故障消失后继电器会可靠返回而不至于跳闸;若不考虑返回系数,则继电器会由最大负荷电流的存在而不能反回,导致跳闸。 过电流保护整定的动作时限 动作时限由变压器供电的线路保护装置的最大时限大一时限阶段,一般取—,这里取(当过电流保护的动作时限大于时,增设电流速断保护。 保护装置的灵敏校验 78 .992.3min ==OP sen I I K (4-7) 式中I min —最小运行方式下,在灵敏度校验发生两相短路时,流过保护装置的最 小短路电流。 在被保护变压器受电侧母线上短路时,要求K sen =;在后备保护范围末端短路 时,要求2.1≥sen K 保护装置的动作时限应与下一级过电流保护配合,要比下一级保护中最大动作时限大一个时限级差 Δt。 过电流保护整定计算 保护的启动电流按照躲过变压器可能出现的最大负荷电流来整定,即 re l rel set K I K I max .= (4-8) 考虑切除一台变压器后产生的过负荷,各台变压器容量相同时计算式为 N l I m m I 1 max .-= (4-9) 又因为 N N N S I = (4-10) 所以

第六节 方向性电流保护

第六节方向性电流保护 本节主要讲方向性电流保护工作原理以及中性点直接接地电网中接地短路的零序电流及方向保护。 一、方向性电流保护工作原理 前面所讲的三段式电流保护是以单侧电源网络为基础进行分析的,各保护都安装在被保护线路靠近电源的一侧,在发生故障时,它们都是在短路功率从母线流向被保护线路的情况下,按照选择性的条件和灵敏性的配合来协调工作的。 短路功率:一般指短路时某点电压与电流相乘所得到的感性功率,在无串联电容也不考虑分布电容的线路上短路时,认为短路功率从电源流向短路点。 目前双侧电源供电较为普遍。 在下图的双侧电源网络接线中,由于两侧都有电源,则在每条线路的两侧均需装设断路器和保护装置。假设断路器8断开,电源不存在,则发生短路时,保护1、2、3、4的动作情况和由电源单独供电是一样的,它们之间的选择性是能够保证的。 如果电源不存在,则保护5、6、7、8由电源单独供电,此时它们之间也同能够保证动作的选择性。 图2-29 双侧电源网络接线 如果两个电源同时存在,当点短路时,按照选择性的要求,应该由距故障点最近的保护2、 6动作切除故障。但由电源供给的短路电流也将通过保护1,如果保护1采用电流速断且 大于保护装置的起动电流,则保护1的电流速断就要误动作;如果保护1采用过电流保护且其动作时限,则保护1的过电流保护也将误动作。 (b)中k2点短路时,本应由保护1和7动作切除故障,但是由电源供给的短路电流将通 过保护6,如果,则保护6的电源速断要误动作;如果过电流保护的动作时限,则保护6的过电流保护也要误动作。其他亦如此。

图2-30 方向过电流保护的原理接线图 方向性继电保护的主要特点就是在原有保护的基础上增加一个功率方向判别元件,以在反方向故障时保证保护不致误动作。 原理图如上图所示,主要由方向元件、电流元件和时间元件组成,方向元件和电流元件必须都动作之后,才能去起动时间元件,再经过预定的延时后动作于跳闸。 二、中性点直接接地电网中接地短路的零序电流及方向保护

过电流保护的计算

4.2 变压器过电流保护的整定计算: 4.2.1 DL-21CE型电流继电器 DL-21CE系列电流继电器用于电机、变压器及输电线路的过负荷与短路保护线路中,作为起动元件。 (1)DL-21CE型电流继电器有一个动合触点,动作于过电流。 (2)动作值极限误差为6%。 (3)动作时间 1.1倍实测动作值时不大于0.12s;2倍实测动作值时不大于0.04s。 (4)动作一致性不大于5%。 (5)环境温度引起的变差不大于5%。 (6)过载能力 电流继电器测定最大整定值和最小整定值两点,测最小整定值时,继电器线圈串联;测最大整定值时,继电器线圈并联,输入电流分别从最小和最大整定值上升到表4所列的相应试验电流,经5次试验,继电器的动合触点不应有不能工作的抖动,取出输入电流时不应有不返回现象,每次试验时间不大于5s。附加电阻表面温度不超过150℃。 (7)绝缘电阻不小于300 MΩ。 (8)介质强度为2kV/50Hz/1min。 (9)动作可靠性 a.当对线圈突然施加整定值的1.75倍激励量时,继电器的动合触点应无抖动地闭合; b.当无外来的碰撞和振动,继电器的整定值在刻度盘的中值时,过电流继电器激励量为整定值的0.6倍时,继电器的动断触点应可靠闭合,动合触点应可靠断开。 c.在动作值或返回值下,继电器动作过程中的可动系统不应当停滞在中间位置。 4.2.2 过电流保护整定原则 过电流保护,其单相原理接线如图4—1 所示。保护装置的动作电流应按躲 I来整定,即 过变压器可能出现的最大负荷电流 l .max I set=K rel I l.max/K re=(1.2×6.93)/0.85=9.78(4-6)

三段式定时限过流保护

三段式定时限过流保护 过流Ⅰ段保护为定时限过流保护,主要作为无时限电流速断保护,用于相间短路的主保护。过流Ⅱ段保护为阶段性相间保护后备保护,可用作限时电流速断保护、过电流保护,以满足保护选择性的要求,过流Ⅲ段保护为定时限/反时限可选过流保护,若定时限控制字投入则过流Ⅲ段按定时限动作,若反时限控制字投入则过流Ⅲ段按反时限动作。图3—1给出了定时限过流保护的逻辑框图。 图3—1过流保护逻辑框图 Idz、Tdz分别为过流保护电流启动值和延时定值。即A、B、C三相电流中一相或一相以上大于整定值Idz且持续时间大于整定延时Tdz时过流段保护动作。当整定时间为零秒时,动作时间<30ms。过流保护动作后,在三相电流同时低于定值的93%时,保护动作复归。 “使能”是指装置某项保护功能的“投入/禁止”,如过流保护使能,即指过流保护投入。在本书中的保护原理及定值说明等部分将大量使用此术语。 3.1.2.2带复合电压的方向过流保护 带复合电压闭锁的方向过流保护,是否带复合电压闭锁和方向继电器可以在定值菜单里面选择。其逻辑框图如图3—2所示。 Ia>Ip 方向继电器使能 Ib>Ip 图3—2带复合电压的方向过流保护逻辑框图 发信、跳闸 过流保护使能 Ia>Idz Ib>Idz Ic>Idz

Ip 、Tdz 、Udz 、Ufx 分别为过流保护的电流启动值、延时时间、电压启动值、负序电压整定值。即A 、B 、C 三相电流中一相或一相以上大于整定值Ip 且持续时间大于整定延时Tdz 时过流保护动作。 若需投入方向特性,则需把“方向继电器使能”投入,同时设置好方向特性,如正方向动作则负方向应拒动,反之亦然。 若需投入复合电压闭锁过流保护,则需把“复合电压启动”使能投入,同时设置好电压启动值和负序电压值。定值菜单中的“负序电压”对三段过流皆起作用。定值中Ue 为相电压二次额定值57.7V 。 3.1.2.3 带反时限的过流保护 过流保护定时限/反时限可选过流保护,同时带复合电压闭锁的方向过流保护,是否带复合电压闭锁和方向继电器可以在定值里面选择,其逻辑框图如图3—3所示。 跳闸、发信 Ia>Ip Ib>Ip Ic>Ip 图3—3 带反时限的过流保护逻辑框图 Ip 、Tdz 、Udz 、Ufx 分别为过流保护电流启动值、延时时间、电压启动值、负序电压整定值。即A 、B 、C 三相电流中一相或一相以上大于整定值Ip 且持续时间大于整定延时Tdz 时过流保护动作。 在装置中,共有四组动作时间特性方程(曲线)供用户选择使用,后三组动作方程根据IEC255-4标准和英国标准BS142制定。 1·常用反时限,T=p p T I I *2 ??? ? ? ? 2·一般反时限,T=1)(14.002.0-*p p I I T

过电流保护

低电压启动的过电流保护 对升压变压器或容量较大的降压变压器,当过电流保护的灵敏度不够时,可采用低电压启动的过电流保护。 一、电流继电器的整定计算。 电流继电器的动作电流应按躲过变压器的额定电流整定。 I op=(K rel I N)/(K r n a) K rel-可靠系数,取1.2; K r-返回系数,取0.85~0.95; I N-变压器的额定电流。 二、低电压启动元件的动作电压整定计算 低电压启动元件的整定计算应考虑以下情况: 1、按躲过正常运行时可能出现的最低电压整定 U op=U min/(K rel K r n v) U min-正常运行时可能出现的最低电压,一般取U min=0.9U N(U N为额定相电压或额定线电压); K rel-可靠系数,取1.1~1.2; K r-返回系数,取1.05~1.25; n v-电压互感器变比。 2、按躲过电动机自启动时的电压整定 当低电压继电器由变压器低压侧电压互感器供电时: U op=(0.5~0.6)U N/n v 当低电压继电器由变压器高压侧电压互感器供电时: U op=0.7U N/n v 3、灵敏系数校验 电流继电器的灵敏系数校验与不带低电压闭锁的过电流保护相同。 低电压继电器的灵敏系数按下式校验: K sen=U op/(U r.max/n v) U r.max-计算运行方式下,灵敏系数校验点发生金属性相间短路时,保护安装处

的最高残压。 要求K sen≥1.3(近后备)或1.2(远后备) 复合电压启动的过电流保护 复合电压启动的过电流保护通常作为变压器的后备保护,它是由一个负序电压继电器和一个接在相间电压上的低电压继电器共同组成的电压复合元件,两个继电器只要有一个动作,同时过电流继电器也动作,整套装置即能启动。 该保护较低电压闭锁过电流保护有下列优点: (1)在后备保护范围内发生不对称短路时,有较高灵敏度。 (2)在变压器后发生不对称短路时,电压启动元件的灵敏度与变压器的接线方式无关。 (3)由于电压启动元件只接在变压器的一侧,故接线比较简单。

电流速断和过电流区别

用电设备过电流是一种故障形式,当过负荷不严重时,可以不立即切除,另一个长一点延时,如果过负荷再严重一点,延时就短一点,这相当于限时电流速断保护,如果过负荷特别严重,即发生短路了,变必须立即切除故障,这就是瞬时电流速断保护,因此电流速断可以理解为特别大的过电流保护,即过负特别严重,必须立即将用电设备从系统中断开,这就是电流速断保护。电流速断不能保护线路全长,是因为整定电流速断保护时是按躲过被保护线路未端故障时的电流来整定的,既然是躲过,当然就不能保护全长,按躲过线路未端故障时的电流来整定的目的是为了防止下一级线路首端故障时,保护越级误动,因为下一级首端故障应由下一级的电流速断保护切除。而下一级的首端故障和本线路未端故障时,短路电流大小几乎相等,无法区分。 追问 “下一级的首端故障和本线路未端故障时”这里的下一级与本线路之间的划分是不是比如是用变压器来区分的,另外过电流保护为什么说是可以配合下一级线路的保护呢 回答 一般不是用变压器来区分的,因为变压器的阻抗较大,变压器一次侧和二次侧故障的短路电流是相差较大的,因此从短路电流的大小上是可以区别的。“下一级的首端故障和本线路未端故障时”这里的下一级与本线路之间是指:比如一个供电线路供到某一个变电所,通过该变电所的母线(注意没有变压器)直接分配至许多供电出线线路,这时变电所的母线就是区分上下级线路的分界点,分界点前后的不长的范围内,短路电流相等,是一个电气联接点,母线向下的故障应该由出线开关切除,而不能由进线开关或进线开关的上一级开关切除。过电流保护的整定值一般较小,是按躲过线路或用电器的最大负荷电流来整定的,因此,对于短路来讲,过电流保护一定会起动,为了防止过电流保护误动,所以过电流保护都加了延时,正因为过电流保护的整定值小且加了延时,所以可以作为下一级线路的后备保护,当下一级线路故障时,如果下一级线路的保护拒动,则经过延时,上一级保护的过电流保护动作。因此,为了保证过电流保护的选择性,必须保证上下级之间动作时限配合,一般上级比下级大0.5S,如果是微机保护可以缩短为0.2-0。3S。 当线路较长时,线路短路有两种情况,一种首端短路:电流很大很大,这种情况是不允许的,称作速断电流(一般是额定电流的五倍以上),实施速断保护电流,不设时限。另一种是未端线路短路:因为线路长,有一定的阻抗,短路电流较大(约为额定电流的3-5倍),称为过流,虽然电流较大,但在0.2-2秒内不至于把线路设备烧坏,所以此情设过流保护,将时限设定在2秒之内,超过此时限就会跳闸保线路和设备,同也可以区分假故障,如大风、雷电造成的短路等。 电流速断就是电流达到这个数就跳闸或延长的时间短,很快就跳闸。电流速断由于定值取得过大,当线路过长时,由于线路电阻较大,末端短路电流达不到跳闸值,不一定跳闸,所以不能保护线路全长。过电流保护设置的跳闸电流比电流速断小,达到跳闸值要延长一定时间,如果电流还大就跳闸。

电网方向性电流保护的建模与仿真

1 电网方向性电流保护的建模与仿真
1 绪论
微机保护是用微型计算机构成的继电保护,是电力系统继电保护的发展方向(现已基 本实现,尚需发展) ,它具有高可靠性,高选择性,高灵敏度。微机保护装置硬件包括微 处理器(单片机)为核心,配以输入、输出通道,人机接口和通讯接口等.该系统广泛应用 于电力、石化、矿山冶炼、铁路以及民用建筑等。微机的硬件是通用的,而保护的性能和 功能是由软件决定。 微机保护装置的数字核心一般由 CPU、存储器、定时器/计数器、Watchdog 等组成。 目前数字核心的主流为嵌入式微控制器(MCU) ,即通常所说的单片机;输入输出通道包括 模拟量输入通道(模拟量输入变换回路(将 CT、PT 所测量的量转换成更低的适合内部 A/D 转换的电压量,± 2.5V、± 或± 5V 10V) 、低通滤波器及采样、A/D 转换)和数字量输入 输出通道(人机接口和各种告警信号、跳闸信号及电度脉冲等) 。微机保护一般有进线保 护、出线保护、母联分段保护、进线或母联备自投保护、厂用变压器保护、高压电动机保 护、高压电容器保护、高压电抗器保护,差动保护,后备保护,PT 测控装置等。它的保护功能 有定时限/反时限保护、后加速保护、过负荷保护、负序电流保护、零序电流保护、单相接 地选线保护、过电压保护、低电压保护、失压保护、负序电压保护、风冷控制保护、零序 电压保护、低周减载保护、低压解列保护、重合闸保护、备自投保护、过热保护、过流保 护、逆功率保护、差动保护、启动时间过长保护、非电量保护等。微机保护可靠性高,灵 活性大,动作迅速,易于获得附加功能,维护调试方便,有利于实现电力自动化。
1

定时限和反时限过流保护

定时限和反时限过流保护 2007-12-15 16:48:22| 分类:知识| 标签:|字号大中小订阅 流过保护装置的短路电流与动作时间之间的关系曲线称为保护装置的延时特性。延时特性又分为定时限延时特性和反时限延时特性。定时限延时动作时间是固定的,与短路电流的大小无关。反时限延时动作时间与短路电流的大小有关,短路电流大,动作时间短,短路电流小,动作时间长。短路电流与动作时限成一 定曲线关系。 过电流保护一般是按避开最大负荷电流这一原则整定的。为了使上、下级的过电流保护具有选择性,在时限上也应应有一个级差。这就使靠近电源端的保护动作时限将很长,这在许多情况下是不允许的。为克服这一缺点,通常采用提高整定值以限制动作范围的办法,不加时限,可以瞬时动作,这种保护叫做电流速 断保护。 无时限电流速断不能保护线路全长,它只能保护线路的一部分。所以,为了保证动作的选择性,其起动电流必须按最大运行方式来整定(即通过本线路的电流为最大电流),这就存在着保护的死区。为了弥补瞬时速断保护不能保护线路全长的缺点,常采用略带时限的速断保护,即延时速断保护。这种保护一般与瞬时速断保护配合使用,其特点与定时限过电流保护装置基本相同,所不同的是其动作时间比定时限过电流保护的整定时间短。为了使保护具有一定的选择性,其动作时间应比下一级线路的瞬时速断大一时限级差 一般取0.5秒。 定时限过流保护电流和时间是定值。反时限过流保护是以I2t等于一个常数来整定的,即电流越大,时间越 短,其实I2t是发热量。 如发电机负序保护一般5%发信;9%启动反时限,I2t=8或10;80%时启动定时限,0.5秒跳发变组。三段的区别主要在于启动电流的选择原则不同。其中速断和限时速断保护是按照躲开某一点的最大短路电流来整定的,而过电流保护是按照躲开最大负荷电流来整定的。电流速断不能保护线路全长,限时电流速断不能作为相邻元件的后备,过电流保护的动作时限较长。

电网的电流保护和方向性电流保护

第二章 电网的电流保护和方向性电流保护 第一节 单测电源网络相间短路的电流保护 配置: 一、电流速断保护(第Ⅰ段): 对于仅反应于电流增大而瞬时动作电流保护,称为电流速断保护。 1、短路电流的计算: 图中、1――最大运行方式下d (3) 2――最小运行方式下d (2) 3――保护1第一段动作电流 d s d s d l Z Z E Z Z E I 1)3(+= += φφ d s d d l Z Z E I I 1)3() 2(23 23+= = φ 可见,I d 的大小与运行方式、故障类型及故障点位置有关 最大运行方式:对每一套保护装置来讲,通过该保护装置的短路电流为最大的方式。(Z s.min ) 最小运行方式:对每一套保护装置来讲,通过该保护装置的短路电流为最小的方式。(Z s.max ) 2、整定值计算及灵敏性校验 为了保护的选择性,动作电流按躲过本线路末端短路时的最大短路短路整定 max ..1.B d k dz I K I ?=I I 注①)参看15 (3.1~2.1p K k =I 保护装置的动作电流:能使该保护装置起动的最小电流值,用电力系统一次测参数表示。(I dZ ) I 1.dz I 在图中为直线3,与曲线1、2分别交于a 、b 点 可见,有选择性的电流速断保护不可能保护线路的全长 三段式 主保护 后备保护

灵敏性:用保护范围的大小来衡量 l max 、l min 一般用l min 来校验、 %100min ?l l 要求:≥(15~20)% 希望值50% 方法:① 图解法 ② 解析法: min .1max 1 .23 d s dZ l Z Z E I += I φ 可得 )23(1%100max 1 .min s dZ L Z I E Z l l -?=?I φ 式中 Z L =Z 1l ――被保护线路全长的阻抗值 动作时间t =0s 3、构成 中间继电器的作用: ① 接点容量大,可直接接TQ 去跳闸 ② 当线路上装有管型避雷器时,利用其固有动作时间(60ms )防止避雷器放电时保护误动 4、小结 ① 仅靠动作电流值来保证其选择性 ② 能无延时地保护本线路的一部分(不是一个完整的电流保护)。 二、限时电流速断保护(第Ⅱ段) 1、 要求 ① 任何情况下能保护线路全长,并具有足够的灵敏性 ② 在满足要求①的前提下,力求动作时限最小。 因动作带有延时,故称限时电流速断保护。 2、 整定值的计算和灵敏性校验

定时限过电流保护及电流速短保护实验

北京联合大学 实验报告 课程名称:供电技术 定时限过电流保护及电流速短保护实验 学院:自动化学院专业:电气工程与自动化姓名:皮博迪学号: 2011100334229 指导教师:宋玉秋成绩: 2014年5月16日

定时限过电流保护及电流速短保护 一:实验目的: 1. 理解供电技术中定时限过电流保护及电流速短保护线路及其保护原理; 2. 学会自我设计电路原理图,并分析判断运行结果的正确性。 3. 明确定时限过电流保护及电流速短保护装置中信号继电器、中间继电器的应 用与作用; 4. 掌握定时限过电流保护及电流速短保护的整定原则与方法以及灵敏度的计算; 二:实验原理: 继电保护装置是一种能反映供电系统中电气元件(电气线路、变压器、母线、用电设备等)发生故障或处于不正常运行状态、并动作于断路器跳闸或发出信号的自动装置。继电保护装置由三部分组成: 所谓继电保护,泛指继电保护的技术和由各种继电保护设备组成的保护系统,具体包括:继电保护的设计、配置、整定、调试等技术;从获取电量信息的互感器二次回路、经过继电保护装置、至电路器跳闸线圈的一整套设备。如果需要利用通信手段传递信息,还包括通信设备。 动作于跳闸的继电保护,在技术上一般应满足四个基本要求,即选择性、速动性、灵敏性和可靠性。 a) 选择性 继电保护动作的选择性是指保护装置动作时,仅将故障元件从电力系统中切除,使停电范围尽量缩小,以保证系统中的无故障部分仍能继续安全运行。 b).速动性 所谓速动性,就是发生故障时,保护装置能迅速动作切除故障。对不同的电压等级要求不一样,对110KV及以上的系统,保护装置和断路器总的切故障时间为0.1秒,因此保护动作时间只有几十个毫秒(一般30毫秒左右),而对于35KV 及以下的系统,保护动作时间可以为0.5秒。 c)灵敏性 继电保护的灵敏性,是指对于其保护范围内发生故障或不正常运行状态的反

定时限和反时限过电流保护

定时限和反时限 定时限过电流保护是指保护装置的动作时间不随短路电流的大小而变化的保护。 反时限过电流保护是指保护装置的动作时间随短路电流的增大而自动减小的保护。 过电流保护一般是按避开最大负荷电流这一原则整定的。为了使上、下级的过电流保护具有选择性,在时限上也应应有一个级差。这就使靠近电源端的保护动作时限将很长,这在许多情况下是不允许的。为克服这一缺点,通常采用提高整定值以限制动作范围的办法,不加时限,可以瞬时动作,这种保护叫做电流速断保护。 无时限电流速断不能保护线路全长,它只能保护线路的一部分。所以,为了保证动作的选择性,其起动电流必须按最大运行方式来整定(即通过本线路的电流为最大电流),这就存在着保护的死区。为了弥补瞬时速断保护不能保护线路全长的缺点,常采用略带时限的速断保护,即延时速断保护。这种保护一般与瞬时速断保护配合使用,其特点与定时限过电流保护装置基本相同,所不同的是其动作时间比定时限过电流保护的整定时间短。为了使保护具有一定的选择性,其动作时间应比下一级线路的瞬时速断大一时限级差一般取0.5秒。 定时限 变配电站继电保护是根据变配电站运行过程中发生故障时出现的电流增加、电压升高或降低、频率降低、出现瓦斯、温度升高等现象超过继电保护的整定值(给定值)或超限值后,在整定时间内,有选择的发出跳闸命令或报警信号。根据时间来进行选择性跳闸的称为定时限保护,定时限在故障电流超过整定值后,经过时间定值给定的时间后才出现跳闸命令。 反时限 反时限过电流保护是指动作时间随短路电流的增大而自动减小的保护。使用在输电线路上的反时限过电流保护,能更快的切除被保护线路首端的故障。 反时限特性:流过熔断器的电流越大,熔断时间越短。 软压板 软压板是指软件系统的某个功能投退,比如投入和退出某个保护和控制功能。通常以修改微机保护的软件控制字来实现。

相关主题
文本预览
相关文档 最新文档