当前位置:文档之家› 塑料改性的目的、手段及方法

塑料改性的目的、手段及方法

塑料改性的目的、手段及方法
塑料改性的目的、手段及方法

塑料改性的目的、手段及方法

第一章概论

塑料改性:是在把现有树脂加工成塑料制品的过程中,利用化学的或物理的方法改变塑料制品的一些性能,以达到预期目的。

塑料改性分类:物理改性和化学改性

物理改性:填充改性、增强改性和共混改性

化学改性:接枝共聚改性、嵌段共聚改性、辐射交联改性等

填充改性:是指在塑料成型加工过程中加入无机或有机填料,以满足一定的要求。填充改性能显著改善塑料的机械性能、耐摩

檫性能、热学性能、耐老化性能等,例如能克服塑料的低

强度、不耐高温、低刚硬性、易膨胀性、易蠕变等缺点。

所以选用合适的填料既可以有增量作用,又有改性效果。

但并非所有填料都能起这种作用:有些填料具有活性,起

补强作用,可显著提高塑料强度,如木粉添加到酚醛树脂

中,在相当大的范围内起补强作用;而有些填料添加后起

到稀释作用,降低了机械强度,如普通轻质碳酸钙添加到

聚氯乙烯中,这种填料称为惰性填料。

增强改性:某些填料,如玻璃纤维,填充时对塑料的机械强度影响很大,如玻璃纤维填充聚酯,弯曲弹性模量可由原来的2764

兆帕提高到9800兆帕,提高近350%,增强效果极为明显,

于是把这种填料改性的塑料称为增强塑料,这种方式称为

增强改性。除玻璃纤维外,碳纤维、硼纤维、云母等填料

都可明显提高塑料的机械强度。

共混改性:是指在原来塑料基体中,再通过各种混合方法(如开放式炼塑机、挤出机等)混进另外一种或几种塑料或弹性体,

以此改变塑料的性能。例如ABS(丙烯氰-丁二烯-苯乙烯

共聚物),就综合了丙烯氰(A)、丁二烯(B)、苯乙烯(S)

三者的特性,其微观形态结构类似于合金。

接枝共聚改性:是先将母体树脂溶解在所要接枝的塑料单体中,然后使要接枝的单体聚合,这时形成的树脂便接枝到母体树脂

中去。

嵌段共聚改性:指每一种单体单元以一定长度的顺序,在其末端相互联结,形成一种新的线性分子。根据单体单元的种类,可

分为二嵌段、三嵌段、多嵌段共聚物。

辐射交联改性:

*常用的塑料改性大多采用物理改性技术,即高分子共混:ABC 技术;是利用容积参数相近和反应共混的原理在双螺杆(或单螺杆、炼塑机)中将两种或两种以上聚合物及其助剂通过机械掺混形成一种宏观上均相、微观上分相的新材料。

影响改性塑料的内在因素:共混组分的相容性、共混组分的相对含量、

分散相的尺寸、两相界面的相互作用。

塑料改性应注意的问题:

第二章塑料填充改性

一、填料的种类:见表2.1

2.5 填充改性塑料后成型加工技术中应注意的几个问题

二、影响填充改性的因素

*填料的形状:圆柱状、片状、粒状、柱状、纤维状

*填料的粒径

*填料的表面:表面的物理结构;

表面的化学结构;

表面处理

*填料的特殊结构

三、填料改性的效果

*机械力学性能

*热学性能

*成型加工性能

*其他性能

四、填充改性的作用机理

填料对塑料的补强作用和填料在塑料中的堆砌理论。

*填料的补强作用:填料粒子分散在塑料体网络中,形成一种多相

复合材料,补强作用的大小取决于塑料本身的

本体结构(交联网和缠结网结构)、填充粒子用

量、比表面积大小、表面活性、粒子大小及分

布、相结构以及粒子在高聚物中集聚和分散等。

*最重要的因素是:填料同树脂链所形成界面层的相互作用(分直

接作用和间接作用,前者是指粒子和高分子链

间直接发生作用,后者是指它们之间通过表面

活性剂或偶联剂发生作用)。这种相互作用既包

括粒子表面对高分子链的物理或化学的作用

力,又包括界面层内高分子链的取向和结晶(招

结晶聚合物)等。

填料的补强作用可分为两种,一种是活性填料的正补强,另一种是惰性塑料的负补强。

惰性填料(即非活性填料)来说,它与基体高分子链几乎没有作用,所以没有补强效果,相反还由于填料的存在,会引起应力集中,从而导致填充材料强度下降。而对于活性填料,在一定范围内,用量越大,粒度越细,或粒子内部孔隙越大,则填料与高分子链间的相互作用越强,补强效果越明显。

五、填充改性塑料后成型加工技术中应注意的几个问题

*填料和制品的水分是制品产生气泡及银纹的原因

*填料的形状对材料流动性能影响较大

直接注射成型时,必须注意以下几个问题:

*由于混炼不均匀造成填料凝集、分散不良

*粘度上升引起的流动性能下降;

*由于纤维状填料的断裂造成制品强度下降;

*由于填料的加入降低了收缩率,提高了制品的刚性,以致造成脱模不良;

*由于取向而产生强度的方向性及其翘曲

*焊接部位的强度降低等。

第三章塑料增强改性

第一节概述

塑料的增强改性是以纤维类材料或其他材料作为增强材料进行适当组合;塑料品种一般可用PP、PA、PC、PPO、POM、PBT、ABS、酚醛树脂、环氧树脂等。纤维类材料及其制品有:玻璃纤维、玻璃布、玻璃毡、石棉纤维、有机聚合物纤维及其织物、碳纤维、硼纤维、金属晶须等。其他非纤维材料如云母等。

一、玻璃纤维增强塑料的特点:

1力学性能在不同程度上得到提高,如机械强度、疲劳强度、弹性模量、耐蠕变性能、减振性、破损安全性等。

2热性能得到提高,如热变形温度增大、热膨胀系数下降、热传导率增大。

3尺寸稳定性得到提高,由于成型时收缩率减小、受热变形小,所以尺寸稳定性好。

4成型加工性能得到了改善,缩短了成型加工周期。

5其他性能如硬度得到提高,吸水性降低,流动性能减小。

6材料的明显缺点是:材料比重增加,制品表面平滑性降低;

光泽降低;材料的力学性能和成型收缩率及热膨胀系数容易出

现各向异性;制品透明性降低;摩擦系数增大;材料焊接强度

降低;纤维本身对设备的磨损大;玻璃纤维的集束剂和偶联剂

对设备也有腐蚀作用。

二、玻纤基本知识

破纤的制造

破纤的化学组成

*玻纤是无机化合物,耐热性能和阻燃性能好,抗化学药品性能、

耐候性能、耐腐蚀性能、电绝缘性能等也较好。

*玻纤的直径一般为3~25微米。分初级、中级、高级、超级玻纤,直径越细,扭曲性越好。

*玻纤的缺点是质脆、易碎。

三、影响玻纤增强塑料性能的因素

*玻纤的组成及性质

*玻纤在增强塑料中的分散形式

*玻纤的长度

*玻纤的含量

*基体树脂的性能

*树脂与玻纤的黏结性

*成型工艺及设备

四、玻纤增强塑料在成型中应注意的问题:

玻纤增强塑料的成型加工可以采用挤出、注射、压制等方法,或其他其他特殊成型方法。对于热塑性玻纤增强塑料的粒料,采用单螺杆或双螺杆挤出,制造成品时,多数采用注射成型法。

成型时的主要问题是:

*玻纤含量增大时,熔融粘度大,成型困难;

*玻纤与树脂混合混炼不匀时,影响制品性能;

*制品具有方向性;

*制品表面光泽度降低,加大设备磨损。

*必须重视由于热分解造成的设备腐蚀和磨损。对于高填充聚氯乙烯,单螺杆的寿命只有一年多。

五、成型的条件对制品的物理性能的影响:

*成型温度高,玻璃纤维增强聚酯塑科的性能就好;但由于熔融粘度高,容易引起热分解。

*螺杆背压能促进玻璃纤维的分散,但却降低冲击强度,并易烧伤树脂。

*注射压力及注射速度和制品性能也有很大关系。

*模具的温度对制品性能也有较大影响。模具温度高时,可减少制品内残留应力,而能改善制品的表面光泽。

如30%玻璃纤维增强PBT时:

模具温度20℃50℃70℃90℃

光洁度15%33%38%40%

*玻纤增强塑料在成型时如果处理不当,制品容易翅曲和收缩,焊接强度下降。产生收缩和翘曲的原因不仅是模具结构或加工精度不高所引起,而且多数是由于制品各部分收缩率差而引起的。纤维量多时,收缩率降低,但取向性增强,易产生和流动方向成直角方向的收缩率差,两者差值不能自由收缩时,便产生应力而发生翘曲。

*粉状填料对制品的翅曲及成型收缩率影响很小,尤其对非结晶型树脂可防止制品的翘曲及收缩。为了减少由于取向而产生的翘曲,可采用填料(云母)、纤维(玻纤)复合改性的方法。

防翘曲增强PP的性能:

在复合材料制品的焊接处,强度显著降低。

滑石粉填充聚丙烯

滑石粉含量0 20%40%

焊接部位拉伸强度(兆帕)35 18 12

玻纤增强ABS

纤维含量10%30%

焊接处的强度(兆帕)40 40

非焊接处的强度(兆帕)90 110

提高焊接处的强度:提高辊筒温度、注射压力、注射速度、模具

温度,应尽量在没有负荷的部位进行焊接。

塑料共混改姓

第一节概述

共混改性塑料就是在一种塑料中,混入其他一种或多种塑料、橡胶、添加剂等,互相取长补短,成为具有特殊性能的塑料。这种塑料也称作塑树合金。

*改善抗冲击性能:混进橡胶组分,如高抗冲聚苯乙烯(HIPS)、

ABS、抗冲聚氯乙烯等;

*改善应力开裂现象:PE/PC、ABS/PC;

*改善缺口敏感性:PVC、尼龙、PC中加入橡胶、PE、嵌段

共聚物;

*改善加工性能:聚苯醚(PPO)/PS,PC/ABS;

*产生协同效应:ABS/PVC、PE/PC、或在PS、ABS、聚甲

醛(POM)等加入PVC、CPE、聚苯醚

(PPO)、聚苯硫醚(PPS)能提高耐燃性

能。在PC/聚甲基丙烯酸甲酯(PMMA),

可使制品具有珍珠光彩。

*降低成本、扩大应用范围。

共混改性的两种方法:物理混合法(机械混合、溶液或乳液混合)和化学混合法(接技、交联共聚)。

目前机械混合法是普通采用的方法,它是使用混合设备(如双辊筒炼塑机、挤出机、密炼机等)将物料在软化熔融状态下加以混合。

共混的基本条件:选择共混的各塑料具有相容性,又能产生改善性能的协同效应。

塑料共混的比例范围根据需要而定。

共混塑料在成型加工时,由于多组分树脂性质不同,造成加工过程困难,必须严格控制共混量和工艺条件等,否则将达不到预期性能。

第二节共混聚合物的结构形态

共混聚合物的结构形态,大致可分为掺混聚合物和接枝嵌段共聚物两种类型的结构形态。

(一) 掺混聚合物

掺混的共混体系大致可分为三类。

1.非晶态-非昌态共混物:“海岛结构”

高抗冲聚苯乙烯(HIPS):PS/丁苯橡胶(BSR),聚苯乙烯(PS)连续相(海相),橡胶组分为分散相(岛相),岛相粒子内还包藏

有更小的聚苯乙烯粒子,两相界面处有一过渡层。

2.结晶—非结晶共混物

例如全同立构的聚苯乙烯和无规聚苯乙烯,全同立构的聚苯乙烯和聚苯醚,聚偏氟乙烯和聚甲基丙烯酸甲酯,聚己内酯含量大于50%时和聚氯乙烯的共混物等均属于结晶—非结晶类型。其结构形态大致可归纳为四种情况:

1)晶粒分散在非晶态介质中。

2)球晶分散在非易态介质中。

3)非晶态分散在球晶中。

4)非晶态聚集成较大的区域,分布在球晶中。

3)、4)两种情况的出现是由于非结晶部分的扩散速度与结

晶部分晶体生长速度不同而引起的。

3.结晶—结晶共混物

如PET/PBT、PP/PE等。结晶部分可成为混晶型,也可分别结

晶;非结晶部分可以是互溶的,也可以是不互溶的等。

(二)接枝嵌段共聚物

这是一种相当微观的相分离体系,两种成分相互成球状,棒状,分散于对方的介质中,或者两种成分相互交替,连接成层状,这些组织形式与两种成分的组成比有很大关系。

(三)影响共混体系结构形态的因素

1.共混体系的组成

*初始聚合物的粘度差别愈大,形成的分散相粒子就越大。

如PC/PE,随PC分子量的增大,熔融粘度增如,PE分散相粒子变大。

*聚合物用量比例不同,结构形态也不同。

如PC/PE,当聚乙烯含量为5%时,聚乙烯分散相的粒子较小,共混材料的冲击强度得到提高。当聚乙烯含量增大时,聚乙烯分散相粒子变大,分散性较差,共混材料的冲击强度下降。当聚乙烯含量达到20%时,引起相的变化,发生明显的分层现象,巳无使用价值。

*界面结合力

共混物中有接枝共聚、交联、共同的单体结构单元时,则共混物中海相与岛相间的过渡层的结合力就强;若两组分的溶解度参数值相差较大时,这时可用偶联剂处理使分散相粒子变小,也能增强相界面间的结合力。两者溶解度参数相差较小时,则两相间分子链段相互扩散越深,两相结合力越强,易形成比较厚的过渡层

2.共混时的工艺过程

*共混方法不同,共混物的结构形态也不同。

*共混时的温度、剪切力变化也影响结构形态。

3.其他添加剂对共混物有不同的影响。

(四)共混聚合物结构形态的测定方法

直接观察法:光学显微镜1~10微米。

电子显微镜0.0~l微米的范围。

透射电子显微镜透明样品,内部结构;

扫描电子显微镜不透明样品,样品形貌。

间接观察法:玻璃化转变温度(Tg),测两种聚合物达到分子级

混合的程度。也就是说,根据共湿物出现的是一个

玻璃化转变温度,还是两个玻璃化转变温度,这两

个温度值完全分开否、相互接近程度如何、与两组

分的玻璃化转变温度相等否等等来推断共混物的

分子级混合程度,间接得到结构形态方面的信息。

Tg的测定方法:动态力学法、介电松弛法、核磁共振法及示差

扫描热分析法等。

第三节共混体系的相容性

共混塑料物理机械性能的好坏,主要取决于共混体系各组分间的结合力,而结合力的大小又与聚合物之间的相容性有密切关系。

一、基团间的相互作用

1.氢键导致的相容体系:有机玻璃(羟基)和聚环氧乙烷(醚键)由于形成氢键导致成均相体系。

2.离子相互作用导致的相容体系:聚苯乙烯的磺酸盐和它的季胺盐,带有相反电荷的两种聚合物电解质可以形成结合物。

3.电荷转移导致的相容体系

二、链结构的改变

1.共聚引入的极性基团

苯乙烯和丙烯氰共聚(SAN)后,能和许多高聚物(如PC、PVC、聚砜等)。

乙烯与丙烯酸的共聚物(EV A)和尼龙6。

2.高分子链的化学改性

CPE可以和许多聚甲基丙烯酸酯类形成相容体系。

3.引入特殊作用的基团

在高分子链中引入少量可形成氢键或离子型基因,可改善共混

体系的相容性。

三、相容剂的作用

也叫增容剂、界面剂等

*相容剂最好是两种要共混聚合物的单体共聚而成的嵌段共聚物,或是接按共聚物,这种共聚物即相容剂能分布在两种要共混聚合物界面之间。

*相容剂的分子量应与相应的共混物分子量相匹配。一般选用二嵌段的共聚物作为相容剂,效果较好。如聚乙烯与聚丙烯简单共混物的机械强度很低,但在混合物中加进5%的聚乙烯和聚丙烯的嵌段共聚物,作为相容剂,其强度可以大幅提高。

四、形成互贯网络结构

由两种或两种以上交联聚合物网络,组成致密的塑料混合物,网络链互相贯穿,机械缠绕,可形成一种新型塑料共混物。

五、工艺条件的影响

*温度

*机械混合中的剪切力会促进相容性:在强剪切力作用下,高聚物间产生化学反应,或生成嵌段、接枝共聚物等。如尼龙6和聚乙烯、聚酯和聚乙烯等。

第四节塑料-橡胶共混体系

橡塑并用:提高塑料材料的抗冲击强度。

(一) 橡胶增韧机理

关于橡胶增韧塑料的机理,归纳起来,有如下几种:橡胶吸收能量理论;屈服膨胀理论;裂纹理论;银纹剪切带理论。其中比较重要的是银纹剪切带理论。该理论认为:橡胶颗粒可以控制银纹的发展并能终止它,还能作为应力集中中心。

(二) 影响增韧效果的因素

1.塑料相方面的因素

*塑料相的化学结构对共混材料的冲击韧性的影响很大,如在

HIPS中,添加组分丙烯氰,则就变成了ABS,它的冲击强度、屈服强度比前者均有较大提高。

*分于量的大小和分子量分布对共混材料的影响也很大,如在PS

/乙苯橡胶的机械共混物中,PS增大时,材料的抗冲击强度

提高,但分子量太大时,成型加工困难。

2.橡胶相方面的因素

1)橡胶粒子大小及分布:如HIPS中要求橡胶粒径为1~5微米;

而ABS中橡胶粒子的粒径为0.1~1微米。两者不同的原因在于:HIPS不能产生银纹和剪切带,只能靠橡胶粒子来中止裂缝,所以粒子大些可以更有效地终止裂缝;而ABS可产生剪切带,橡胶粒子可小些。同时橡胶粒子大小应尽量均匀。

2)橡胶粒子的密度:在一定范围内,符合要求的橡胶粒子数目愈多,则材料的韧性愈好;但橡胶粒子含量太多时,应变能转变成热能,反而加速材料的破坏,同时材料的模量和强度也降低。

3)橡胶粒子的结构:橡胶的交联度太大时,粒子不易变形,引发裂纹的效率降低,抗冲性能下降,玻璃化温度提高。但交联度太小时,粒子形态不稳定,成型加工时易变形破裂,成型后的制品易使裂纹通过最后形成裂缝。此外,橡胶粒子内包藏的塑料量不能太多,也不能太少。

4)橡胶的玻璃化温度橡胶的玻璃化温度必须足够低,共混物才会有较好的韧性,否则增韧效果差,如表19所示。

3.相界面的影响

塑料相与橡胶相的界面结合好,则增韧效果明显。共混物的两组分溶解度参数相近,在结构上有一定的相容性,界面结合力大。

用热塑性弹性体等。

4.工艺条件及设备

共混时的交联、工艺路线、工艺条件、设备等因素影响界面结合。刚性粒子增韧机理

第五节共混塑料配方举例

1.聚氯乙烯共混塑料

PVC/ABS:可提高冲击性能及改善加工性能。由于丁二烯有双键,一般不适于作户外制品,热稳定性稍差些。当ABS占总重量的30%时,冲击强度优于ABS,加工时注意防止PVC的热分解。一般用于电子仪表外壳、计算机零件等。

PVC/NBR:可提高抗冲击性能。如用10%的NBR共混,缺口冲击强度由原来的6提高到34.6干焦耳/米2。这是因为NBR中的丙烯氰具有极性,能与PVC很好相容,丙烯氰含量一般为26%左右较好。该共混物耐候性能较好,适于作户外制品,如外墙披迭板,也

可作汽车零件、鞋底等。

2.聚碳酸酯共混塑料

聚碳酸酯(PC)的缺点是由于应力集中而造成制品开裂,影响强度。PC/AB5共混可以改善抗冲击性能及低温(—40℃)冲击性能、加工性能。还可得到耐热性为116℃的共混塑料,并能降低成本,缺口冲击强度为14.5干焦耳/米2,弯曲弹性模量为2450兆帕,拉伸强度为59.5兆幅,可作为耐热和耐冲击材料,广泛用于汽车和电子工业等。

PC/PE:冲击强度提高4倍,耐沸水性优异;耐热、耐候性好;降低了粘度和熔融温度,改善了加工条件,减少制品残余应力,提高了制品耐应力开裂性能;产品外观具有珍珠光泽。PC/PE可制纬纱管,其中HDPE含量在5”7份,采用慢速注射5厘米/秒法成型,混炼工艺采用分步法,材料中HDPE呈球状颗粒,直径为6—10微米,两相之间有较大的空洞存在,表明两者相容性较差。PC/PE制品表面易产生银纹,主要是由原料中水分、注射成型时熔料中的挥发物和空气造成。

3.PET/PBT:PET结晶速度慢,PBT成本高。它可采用机械共混法,在240℃左右通过挤出机混炼和造粒。两者之间有较好的相容性,它们的共混物形成了共晶,其结晶熔点不同于两组分的熔点,且随两组分的比例而变化。该共混物可用来制造电子、电气元件及连接件,用玻纤增强后还可制传动零件。

4.增韧PS:丁苯胶(BSR)、顺丁胶、SBS等,其中SBS效果最好。5.PA/ABS:共混物的韧性可以提高,抗电弧性也好。如在聚酰胺

中添加20%的ABS,在双螺杆挤出机上混合,熔体温度270℃,转速40转/分,共混物的缺口冲击强度60干焦

米2,极限弯曲强度为115兆帕,拉伸弹性模量2160兆帕、维卡热变形温度为124℃。

6.热塑性弹性体(TPR)改性合成树脂已引起人们的重视。用SBS、EPDM、POE等改性PE、PP、PS等可提高冲击强度,同时使弯曲弹性模量和刚性得到改善。例如,用SBS改性PP,可使抗冲击强度提高5倍以上,低温脆性温度下降到-20℃以下,拉伸强度和相对伸长率也有明显提高。用40%的SBS改性聚酰亚胺也可提高抗冲击性能,这种共混物着色力强、加工方便、产品外观好,可用于仪表、保险柜等。

塑胶材料的选用原则

迄今为止,已见报道的树脂种类达到上万种,实现工业化生产的也不下千余种。塑料材料的选用就是在众多的树脂品种中,选择一个合适的品种。初看起来,可供我们选择的塑料品种太多,有眼花缭乱的感觉。但实际上并不是所有的树脂品种都获得了具体应用。我们所指的塑料材料的选用,并不是漫无边际的选择,而是在常用的树脂品种中选用。 塑料材料的选用原则: 一.塑胶材料的适应性; 1.各种材料的性能比较; 2.不宜选用塑料的条件; 3.选用塑料的适宜条件。 二.塑料制品的使用性能 1.塑料制品的使用条件 a.塑料制品的受力情况; b.塑料制品的电性能; c.塑料制品的尺寸精度要求; d.塑料制品的渗透性要求; e.塑料制品的透明性要求; f.塑料制品的外观要求。 2.塑料制品的使用环境 a.环境温度; b.环境湿度; c.接触介质; d.环境的光、氧及辐射. 三.塑料的加工性能 1.塑料的可加工性; 2.塑料的加工成本; 3.塑料加工的废料处理.

四.塑料制品的成本 1.塑料原料的价格; 2.塑料制品的使用寿命; 3.塑料制品的维护费用. 五.塑料原料的来源。 在实际选用过程中,有些树脂在性能上十分接近,难分伯仲。究竟选择哪一种更为合适?需要多方考虑、反复权衡,才可以确定下来。因此说塑胶材料的选用是一项十分复杂的工作,可遵循的规律并不十分明显。有一点需提醒大家特别注意,从各种书刊上引用的塑料材料性能数据,都是在特定条件下测定的,这些条件可能与实际工作状态差别较大。如不吻合则要将所引数据转换成实际使用条件下的性能或按实际条件重新测定。 面对一个要开发制品的设计图纸,选材应遵循如下步骤。 首先要确定这个产品是否可选用塑料材料制造;其次,如果确定可用塑料材料来制造,究竟选用那种塑料材料是进一步需要考虑的因素。 根据产品精度选择塑料材料: 不同塑料材料对应的产品精度 精度等级可用塑料材料品种 1级无 2级无 3级 PS、ABS、PMMA 、PC、PSF、PPO、PF、AF、EP、UP、 F4 UHMW、30%GF增强塑料等,其中以30%GF增强塑料的精度最高. 4级 PA类、氯化聚醚 HPVC等 5级 POM 、PP、HDPE等 6级 SPVC、LDPE、LLDPE等 衡量塑料制品耐热性能好坏的指标有热变形温度、维卡软化点和马丁耐热温度三种,其中以热变形温度最为常用. 从下表中可以看出,塑料的最高使用温度一般不超过400°C,而且大多数塑料的使用温度都在100到260°C范围内;只有不熔聚酰亚胺、液晶聚合物、聚苯酯(AP)、聚苯并咪唑(PBI)、聚硼二苯基硅氧烷(PBP)的热变形温度可大于300°C。因此,如果使用环境的温度长时间超过400°C,几乎没有塑料材料可供选用;如果使用环境的温度短期超过400°C,甚至达到500°C以上,并且无较大的负荷,有些耐高温塑料可短时使用。不过以碳纤维、石墨或玻璃纤维增强的酚醛等热固性塑料很特别,虽然其长期耐热温度不到200°C,但其瞬时可耐上千度高温,可用作耐烧蚀材料,用于导弹外壳及宇宙飞船面层材料。

如何提高塑料的耐热性

如何提高塑料的耐热性 如何提高塑料的耐热性塑料的耐热性一般定义为在高温环境下,还能保持常温下面多少特性的衡量标准。一般的高分子材料在高温下,因为分子运动加剧从而改变了材料的一些物理特性,最为明显的就是弹性。对于提高高分子材料的耐热性,最为普遍的办法就是抑制分子运动。一般有以下的方法1. 让高分子的分子模型架成三维结构,形成网眼,从而抑制分子运动2. 在分子机构里面加入难以运动的芳香族环和脂环结构3. 在高分子里面加入极性基,从而依靠像氢氧链的结合力量的来抑制分子结构4. 在高分子结构里面导入晶体构造做耐热改性,用耐热改性剂,现在市场上有: 1:SAM-Ⅰ耐热改性剂:SAM-Ⅰ耐热改性剂是一种专用树脂,是苯乙烯、丙烯腈和N-苯基马来酰亚胺的三元共聚物,具有很高的结构刚性和热稳定性,与ABS、PVC和SAN等有较好的共混相容性,是一种优异的高分子耐热改性剂,可以与ABS树脂共混制备耐热改性树脂,也可以进行PVC改性、玻纤填充,具有广泛的应用领域。维卡113-145℃,熔指1-5g/10min。 N-苯基马来酰亚胺:N-苯基马来酰亚胺(N-PM1)在天然橡胶和合成橡胶中可作为硫化交联剂,在ABS,PVC,PMMA树脂和感光材料中作为耐热改性剂,可提高树脂的耐热性,耐冲击性,热熔性和加工性等。N-PMI可用作树脂中间体,用来制造耐热聚合物,植物生长促进剂等农用化学品,N-PMI还有一定的抗菌活性。 2.NR-188耐热改性剂:系α-甲基苯乙烯基聚合物,能显著提高PVC、ABS及共混物的热变形温度,并与PVC、ABS有很好的相容性,维卡>125℃,熔指>5g/10min。与国外品牌 Blendex 587、S700N相当 PVC专业知识(121)PVC耐热改性剂部分品种 (2010-06-19 21:09:32) 转载 分类:技术介绍 标签: 改性剂 abs pvc树脂 维卡 日本

塑料改性的知识

本文摘自再生资源回收-变宝网(https://www.doczj.com/doc/4018150078.html,) 塑料改性的知识 何谓塑料改性? 塑料改性是将通用树脂通过物理的、化学的、机械的方法,改善或增加其功能,在电、磁、光、热、耐老化、阻燃、机械性能等方面达到特殊环境条件下使用的功能。从原料树脂的生产到多种规格及品种的改性塑料母料,为了降低塑料制品的成本,提高其功能性,都会存在塑料改性技术。 改性的目的是什么? 塑料表面改性的目的主要可分为两大类:一类是直接应用的改性,另一类是间接应用的改性。 (1)直接应用的塑料表面改性直接应用改性是指可以直接获得应用的一些改性,具体有表面光泽度、表面硬度、表面耐磨性及摩擦性、表面防老化、表面阻燃、表面导电及表面阻隔等。塑料表面这方面的改性近年来开发应用很快,如在塑料阻隔改性方面,表面阻隔改性占有很重要的地位。 (2)间接应用的塑料表面改性间接应用改性是指为直接应用打基础的一些改性,具体如为改善塑料的粘接性、印刷性及层化性等而进行的提高塑料表面张力的改性。例如,以塑料电镀为例,未经表面处理的塑料品种只有ABS的镀层牢度能达到要求;尤其聚烯烃类塑料品种,镀层牢度十分低,必须进行表面改性以提高与镀层的结合牢度,方可进行电镀处理。 改变塑料的密度

(1)降低塑料密度 说降低密度可能你清楚,但是换个说法你就明白了:让塑料变轻。降低塑料的密度方法有发泡改性、添加轻质填料及共混轻质树脂三种。塑料制品的发泡成型是降低其密度的最有效方法。而添加轻质添料和共混轻质树脂两种改性方法,只能小幅度地降低密度,其降幅一般只有50%左右,最低相对密度只能达到0.5左右。塑料发泡制品的密度变化范围很广范,相对密度最低可达到10-3。 (2)提高塑料密度 提高塑料的密度是使原树脂相对密度升高的一种方法,主要为添加重质填料和共混重质树脂。添加重质填料提高塑料的密度方法主要的填料有金属粉、重质矿物填料;共混重质树脂提高塑料的密度,此种方法提高幅度比较小,一般最高只能达到50%左右。主要适于一些轻质树脂如PE、PP、PS、EV A、PA1010及PPO等。常加入的重质树脂有:PTFE、FEP、PPS及POM等。 塑料的透明性改进 关于塑料的透明性,在之前的文章中有所介绍,这里只简单介绍一下。改进塑料透明性的原理是利用晶体与透明性的关系。塑料的透明性大小与其制品的结晶度大小和结晶结构有关,通过控制制品的不同形态结构,可以改善其透明性。 衡量一种材料的透明性好坏,有许多性能指标都需要考虑。常用的指标有:透光率、雾度、折光指数、双折射及色散等。在上述指标中,透光率和雾度二个指标主要表征材料的透光性,而折光指数、双折射及色散三个指标主要用于表征材料的透光质量。一种好的透明性材料,要求上述性能指标优异且均衡。 常用的改变晶型方法有: ①控制结晶质量,例如晶型、球晶含量、晶体尺寸、晶体规整性的控制; ②提高折射率,主要是通过加入不影响透明性的高折射率有机物或无机物来提高;

改性塑料简介

改性塑料简介 Prepared on 22 November 2020

改性塑料改性塑料,是指在通用塑料和工程塑料的基础上,经过填充、共混、增强等方法加工改性,提高了阻燃性、强度、抗冲击性、韧性等方面的性能的塑料制品。

改性塑料是涉及面广、科技含量高、能创造巨大经济效益的一个塑料产业领域。而改性技术—填充、共混和增强改性更是深入几乎所有的塑料制品的原材料与成型加工过程。 普通的塑料往往会有它自身的特性和缺陷,改性塑料就是给塑料改变一下性质,基本的技术包括: 1、增强:将玻璃纤维等与塑料共混以增加塑料的机械强度。 2、填充:将矿物等填充物与塑料共混,使塑料的收缩率、硬度、强度等性质得到改变。 3、增韧:通过给普通塑料加入增韧剂共混以提高塑料的韧性,增韧改性后的产品:铁轨垫片。 4、阻燃:给普通塑料树脂里面添加阻燃剂,即可使塑料具有阻燃特性,阻燃剂可以是一种或者是几种阻燃剂的复合体系,如溴+锑系,磷系,氮系,硅系,以及其他无机阻燃体系。 5、耐寒:增加塑料在低温下的强度和韧性,一般塑料在低温下固有的低温脆性,使得在低温环境中应用受限,需要添加一些耐低温增韧剂改变塑料在低温下的脆性,例如汽车保险杠等塑件,一般要求耐寒。 3、特点 改性塑料凭借优越的性价比在越来越多的下游领域得到应用,可以说改性塑料已经成为一种消费趋势,而这种趋势背后隐含了如下五种因素: 高性能:改性塑料不仅具备传统塑料的优势,如密度小、耐腐蚀等,同时物理、机械性能得到很好的改善,如高强度、高韧度、高抗冲性、耐磨抗震,此外塑料综合性能的提高为其下游领域的广泛应用提供了基础。 低成本:与其他材料相比,塑料得益于生产效率高、密度低等优势,具有更低的成本,单位体积塑料的成本仅为金属的十分之一左右。 政府政策:中国推行的“3C”强制认证制度,对目录内产品的安全性能进行了严格的规定,从而推动了阻燃塑料在家用电器、IT、通讯等领域的广泛应用。

电线电缆材料中塑料改性技术的应用分析

电线电缆材料中塑料改性技术的应用分析 发表时间:2016-11-10T14:36:16.637Z 来源:《电力设备》2016年第17期作者:潘鑫鑫张丽翠 [导读] 21世纪以来,我国经济飞速发展,带动了塑料行业的快速发展。 (江苏南瑞银龙电缆有限公司 221700) 摘要:电线电缆行业的蓬勃发展,电线电缆被广泛使用,需求量也在增加,塑料改性技术的应用在一定程度上满足了电线电缆的生产需求。本文主要对聚氯乙烯电线电缆料、高压绝缘电缆料和聚烯烃低烟无卤电线电缆中塑料改性技术的应用做出了分析,希望进一步对塑料改性技术的发展作出分析与研究。 关键词:电线电缆;塑料改性技术;聚氯乙烯;高压绝缘塑料改性技术是一种将各种树脂通过物理、化学、机械或者物理化学相结合的方法,使其在电、磁、光、热、阻燃和防老化等方面的性能得到改善以达到人们预设变化的技术。近几年我国塑料行业的迅速发展使得塑料改性技术得到越来越广泛的应用,塑料改性技术现已成为塑料工业特别是电线电缆行业中应用技术的重要部分,其在电线电缆行业中的地位及实际意义也日益突显出来。 一、前言 21世纪以来,我国经济飞速发展,带动了塑料行业的快速发展。由于塑料本身具有污染性,以及人们一直以来追求比较健康的替代物,因此,塑料改性技术得以发展。所谓塑料改性技术就是通过物理和化学的手段,改善塑料的使用性能的高科技。研发人员提高了塑料行业的使用性能,才能让更多的消费者接受产品,最终提高企业的利润。 如今,塑料改性技术备受塑料行业的高度重视,其附带的经济效益以及在塑料科研中的重要地位正逐渐突显出来。例如,在研究具有高性能高分子材料的过程中,将塑料改性技术应用其中,对已有的塑料进行改性,很大程度上可以节约人力,大大降低成本,更有助于研发出具有大市场的高性能塑料;另一方面,通过塑料改性技术,科研人员提高了塑料中的科技含量和使用性能,提高了产品的性价比。 二、电线电缆材料中塑料改性技术的应用分析 在现阶段,电线电缆材料在市场上需求越来越大,又由于人们对各种产品的安全性和低污染性的要求越来越高,塑料改性技术的快速发展正好能够满足电线电缆的安全性,并能够降低其污染性。在实际应用中,塑料改性技术的应用探究主要有以下几点: 1 聚氯乙烯电线电缆料中塑料改良技术的应用分析 聚氯乙烯的物理性能和化学性能好,具有燃点高,抗化学腐蚀,耐油性,耐水性,良好的导电性等优良性能,因此在电线电缆行业中使用非常广泛。作为电缆料的包覆材料以及树脂的主要组成部分,聚氯乙烯的性能好坏很大程度上决定了电缆料的质量。然而聚氯乙烯本身抗老化性能较弱,容易随着温度而变质以及耐磨性能不好,缩短了电线电缆的使用周期,造成了材料的浪费。电缆报废后,聚氯乙烯在燃烧时会产生大量的有毒气体,严重污染环境,不符合环保的要求。 针对上述问题,需要对聚氯乙烯进行改性设计,主要方法有三种。第一种是无毒聚氯乙烯热稳剂的应用,其主要研究目的是改良材料的耐热性,环保性。其中稀土热稳定剂正逐渐代替铅镉稳定剂,原因是在加工聚氯乙烯时,稀土能够吸收聚氯乙烯产生的氯化氢,提高稳定性和环保性;第二种是聚氯乙烯辐照交联技术的应用;第三种是聚氯乙烯阻燃抑烟技术的应用。聚氯乙烯自身的燃点较高,阻燃性能不错,但因大量增塑剂加入其中,会降低聚氯乙烯的阻燃性。因此,阻燃改性设计是有必要的。市场上阻燃抑烟剂成本不高,生产流程简单,主要有无机和有机、纳米阻燃抑烟剂可供选择。 2 高压绝缘电缆的应用分析 2.1 国内高压绝缘电缆料的市场分析 在国外,聚乙烯绝缘材料作为高压电线电缆料的绝缘材料,能达到几百千伏的抗压效果,其应用技术相对比较成熟。纵观国内电力电缆行业在现阶段的发展情形,容易发现国内目前高压交联电缆的抗压级别难以达到100k V以上,远远无法满足当前的高压需求。这就促使了我国在绝缘材料的研究上务必加大科研力度,提高我国高压交联聚乙烯绝缘塑料的改性技术水平,达到110k V的抗压能力,满足正常的工业输电需求。 2.2 对高压绝缘电缆料的改性技术分析 首先通过精确的数据分析,严格对比国内外高压电缆国家标准中绝缘材料的性能,即对比以下几点指标:标准温度下的电阻率、50Hz 时的介电常数、韧性(拉伸强度、断裂伸长率)、凝胶含量、抗老化能力、杂质含量等。易知前五项指标含量虽有差异,但都在同一量级上,差异不大;而第六项指标即杂质水平的含量差异很大,具体数据为国外高压产品中的杂质含量为零,而国内高压电缆每1000g杂质含量为2个,且尺寸大于0.1mm,达不到高压电缆国家标准要求。 因此,我国要提高高压交联聚乙烯绝缘塑料的改性技术水平,应将减小聚乙烯基料中杂质的含量和大小,提高绝缘性能作为科研重点。那么,如何提高高压电缆所用绝缘材料的各项性能呢?显然,仅仅靠目前的科技手段,运用物理上的过滤和净化方式,是无法达到国家标准水平的,这就要求国内电缆企业和科研所加大对净化聚乙烯基料这的开发力度,提高材料的抗压能力,缩减与国外的差距。 2.3 现阶段国内开发高压绝缘电缆料的难题 由于长时间以来对高压电缆行业的重视力度不够,国内的绝缘料科技含量较低,高压交联聚乙烯的抗压能力还未达到50k V,长期以来一直依靠进口国外先进的交联聚乙烯绝缘材料,从经济的角度上讲,其发展严重受到国际的制约。因此,提高我国的塑料改性技术水平,改善基料的绝缘性能是真正发展高压交联聚乙烯绝缘材料的重点所在,也是促进国内高压电力电缆行业快速发展的根本要求。 3 聚烯烃低烟无卤电线电缆的应用分析 选择聚乙烯、聚丙烯、交联聚乙烯等聚烯烃无卤材料作为低烟无卤电缆料的制作原料,但由于这些材料不阻燃,还需添加无卤阻燃剂,其中氢氧化铝和氢氧化镁阻燃剂的使用最为普遍,两种阻燃剂在燃烧过程中不会产生毒气,具有一定优势,但两者使用时需大量添加才能起到明显的效果,而这也带来了塑料韧性降低、粘度增大等问题,所以还要对阻燃剂进行适当的处理。 阻燃剂的处理过程可分为三步:一是表面化处理,用硅烷偶联剂或硬脂酸钠等表面活性剂处理阻燃剂与材料的相容性,主要方法有干

塑料改性的目的、手段及方法

塑料改性的目的、手段及方法 第一章概论 塑料改性:是在把现有树脂加工成塑料制品的过程中,利用化学的或物理的方法改变塑料制品的一些性能,以达到预期目的。 塑料改性分类:物理改性和化学改性 物理改性:填充改性、增强改性和共混改性 化学改性:接枝共聚改性、嵌段共聚改性、辐射交联改性等 填充改性:是指在塑料成型加工过程中加入无机或有机填料,以满足一定的要求。填充改性能显著改善塑料的机械性能、耐摩 檫性能、热学性能、耐老化性能等,例如能克服塑料的低 强度、不耐高温、低刚硬性、易膨胀性、易蠕变等缺点。 所以选用合适的填料既可以有增量作用,又有改性效果。 但并非所有填料都能起这种作用:有些填料具有活性,起 补强作用,可显著提高塑料强度,如木粉添加到酚醛树脂 中,在相当大的范围内起补强作用;而有些填料添加后起 到稀释作用,降低了机械强度,如普通轻质碳酸钙添加到 聚氯乙烯中,这种填料称为惰性填料。 增强改性:某些填料,如玻璃纤维,填充时对塑料的机械强度影响很大,如玻璃纤维填充聚酯,弯曲弹性模量可由原来的2764 兆帕提高到9800兆帕,提高近350%,增强效果极为明显, 于是把这种填料改性的塑料称为增强塑料,这种方式称为 增强改性。除玻璃纤维外,碳纤维、硼纤维、云母等填料 都可明显提高塑料的机械强度。 共混改性:是指在原来塑料基体中,再通过各种混合方法(如开放式炼塑机、挤出机等)混进另外一种或几种塑料或弹性体, 以此改变塑料的性能。例如ABS(丙烯氰-丁二烯-苯乙烯 共聚物),就综合了丙烯氰(A)、丁二烯(B)、苯乙烯(S) 三者的特性,其微观形态结构类似于合金。 接枝共聚改性:是先将母体树脂溶解在所要接枝的塑料单体中,然后使要接枝的单体聚合,这时形成的树脂便接枝到母体树脂 中去。 嵌段共聚改性:指每一种单体单元以一定长度的顺序,在其末端相互联结,形成一种新的线性分子。根据单体单元的种类,可 分为二嵌段、三嵌段、多嵌段共聚物。

改性塑料调研报告

改性塑料调研报告 一、概述 所谓改性塑料,是指通用塑料经过填充、共混、增强等方法加工,从而使它们具有阻燃、高抗冲等性能,它具有取代钢铁的功能。几乎所有塑料的性能都可通过改性方法得到改善。 改性塑料产品主要分为三大类, 一类是以粉体材料为主要原料 的填充改性塑料产品, 包括活性粉体、填充母料和粉体材料占20%-- 30%的改性塑料专用料;另一类是以不同类别的高分子材料经过共混制成的塑料合金专用料, 如ABS/聚碳酸酯( PC)合金、PA/ABS 合金、聚丙烯( PP)/PA 合金等; 第三类是为达到电、光、热、燃烧等方面的功能性, 综合使用功能性填料和不同类别的高分子材料, 以及适 量的相容剂、增韧剂而制成的功能性专用料, 如阻燃ABS、无卤阻燃PP、汽车保险杠、仪表板专用料等。三大类改性塑料产品的年总产量已超过3000kt , 三大类产品所占比例分别为50%、35% 和15%左右, 即1600kt、1000kt 和600kt左右。 行业内认为的改性塑料包括通用塑料中的PP、ABS、PS,工程塑料中的通用工程塑料(PC、PA、PBT、PPO 和POM)的树脂改性。经过改性以后,塑料的外观、透明性、密度、精度、加工性、机械性能、化学性能、电磁性能、耐腐蚀性能、耐老化性、耐磨性、硬度、热性能、阻燃性、阻隔性等某些方面有所改善或提高。 二、生产情况 根据2010 年中国改性塑料行业十佳企业评选活动中各改性塑料企业上报的数据分析, 全国已有以改性塑料产品为主营业务的企业近1000 家, 就业人数达十几万人,多数年产量在3000吨左右,超过3000吨的接近50家,万吨以上的屈指可数,而超过10万吨的仅

ABS塑料配方成分分析,塑料改性技术

ABS塑料配方成分分析,塑料改性技术导读:本文详细介绍了ABS塑料的研究背景,理论基础,参考配方等,本文中的配方数据经过修改,如需更详细资料,可咨询我们的技术工程师。 禾川化学引进尖端配方解剖技术,致力于ABS塑料成分分析,配方还原,研发外包服务,为ABS塑料相关企业提供一整套配方技术解决方案。 一、ABS树脂的介绍 丙烯腈-丁二烯-苯乙烯共聚物(Acrylonitrile-butadiene-Styrene copolymers,简称ABS)是一种应用广泛的工程塑料,在汽车保险杠、手机以及电脑外壳等制品上应用广泛。大部分ABS无毒,略透水蒸气但不透水,吸水率低,抗冲击性极好,冲击强度在低温下也不会快速下降,大多数ABS的拉伸性能在35.2~46.2Mpa,特殊品种可达63.3Mpa,屈服伸长率为2~4%,在负荷为14.1Mpa、温度为50℃条件下压缩24h,其尺寸变化在0.2~1.7%之内,半硬质和硬质ABS的弯曲强度约为28.1Mpa和63.3~70Mpa。ABS耐磨性很好,摩擦系数很低,不能作为自润滑材料,但可作为中转速轴承材料。因品种不同其抗蠕变性能不同,但总体而言升温时抗蠕变应力不会迅速下降。ABS电性能稳定,受温度、湿度影响较小;水、无机盐、酸、碱类对其性能影响较小,在醛、酮、酯、盐酸中会溶解或形成乳浊液,不溶于大部分醇和烃,但在烃中会软化或溶胀。在加工中,ABS的加工性由剪切速率调节,而并非温度。成分中的丁二烯橡胶相提供塑料以强韧性,聚苯乙烯相提供塑料以电气性、成型性和透明性。 禾川化学技术团队具有丰富的分析研发经验,经过多年的技术积累,可以运用尖端的科学仪器、完善的标准图谱库、强大原材料库,彻底解决众多化工企业生产研发过程中遇到的难题,利用其八大服务优势,最终实现企业产品性能改进

改性塑料简介

改性塑料 改性塑料,是指在通用塑料和工程塑料的基础上,经过填充、共混、增强等方法加工改性,提高了阻燃性、强度、抗冲击性、韧性等方面的性能的塑料制品。 目录1简要5改性知识6细分类别 2发展?简介7改性PA 3特点?分散状态8改进技术 4硬度?填充物态9、基本定义 中文名改性塑料加工方法填充、共混、增强 基础通用塑料和工程塑料作用提咼了阻燃性、强度、抗冲击性 1、简要 通过改性的塑料部件不仅能够达到一些钢材的强度性能,还具有质轻、色彩丰富、易成型等一系列优点,因此“以塑代钢”的趋势在很多行业都显现出来,而现阶段要找出一种大规模替代塑料制品的材料几乎是不可能的。 2、发展 改性塑料属于石油化工产业链中的中间产品,主要由五大通用塑料和五大工程塑料为塑料基质加工而成,具有阻燃、抗冲、高韧性、易加工性等特点。

我国改性塑料行业发展迅猛,产量、表观消费量年均增长分别达到20% 15%国内改性塑料年总需求在500万吨左右,约占全部塑料消费量的10%左右,但仍远低于世界平均水平20%此外,我国人均塑料消费量与世界发达国家相比还有很大的差距。作为衡量一个 国家塑料工业发展水平的指标一一塑钢比,我国仅为30:70,不及世界平均的50:50,更 远不及发达国家如美国的70:30和德国的63: 37。 塑料在汽车工业中的应用始于20世纪50年代,已经有50多年的历史。随着汽车向轻量化发展、节能方向发展,对材料提出了更高的要求。由于1kg塑料可以替代2-3kg钢等 更重的材料,而汽车自重每下降10%油耗可以降低6%-8%所以增加改性塑料在汽车中的用量可以降低整车成本、重量,并达到节能效果。 改性塑料是涉及面广、科技含量高、能创造巨大经济效益的一个塑料产业领域。而塑料改性技术一填充、共混和增强改性更是深入几乎所有的塑料制品的原材料与成型加工过程。 普通的塑料往往会有它自身的特性和缺陷,改性塑料就是给塑料改变一下性质,基本的技术包括: 1、增强:将玻璃纤维等与塑料共混以增加塑料的机械强度。 2、填充:将矿物等填充物与塑料共混,使塑料的收缩率、硬度、强度等性质得到改变。 3、增韧:通过给普通塑料加入增韧剂共混以提高塑料的韧性,增韧改性后的产品:铁轨垫片。 4、阻燃:给普通塑料树脂里面添加阻燃剂,即可使塑料具有阻燃特性,阻燃剂可以是一种或者是几种阻燃剂的复合体系,如溴+锑系,磷系,氮系,硅系,以及其他无机阻燃体系。 5、耐寒:增加塑料在低温下的强度和韧性,一般塑料在低温下固有的低温脆性,使得在低温环境中应用受限,需要添加一些耐低温增韧剂改变塑料在低温下的脆性,例如汽车保险杠等塑件,一般要求耐寒。

注塑模具-塑料制品热变形温度

衡量塑料制品耐热性能好坏的指标有热变形温度马丁耐热温度和维卡软化点三种,其中以热变形温度最为常用. 常用塑料的耐热性能(未经改性的) 热变形温度----------维卡软化点------------马丁耐热 HDPE -----------------80-------------------------120 ------------------------\ LDPE-------------------50--------------------------95--------------------------\ EVA---------------------\---------------------------- 64-------------------------\ PP........................102........................110........................\ PS........................85............................105..................... \ PMMA...................100..........................120...................... \ PTFE.....................260..........................110.......................\ ABS.......................86...........................160. (75) PSF.......................185..........................180 (150) POM.......................98............................141 (55) PC.........................134.............................153. (112) PA6.......................58..............................180.. (48) PA66......................60..............................217. (50) PA1010..................55..............................159 (44) PET........................70..............................\ (80) PBT........................66..............................177.. (49) PPS........................240.............................\ (102) PPO.......................172..............................\ (110) PI...........................360........................... 300..................... \ LCP........................315..............................\ .........................\ 大家一定对上面的温度觉得奇怪,怎么PA PBT料的热变形温度那么低呢? 其实PA PBT如果不进行耐热改性,其耐热性能是很差的. 下面具体介绍一些塑料经耐热改性后的耐热性能对比例子. 一.塑料的填充耐热改性:在所有填料中,除有机料外,大部分无机矿物填料 都可明显提高塑料的耐热温度.常用的耐热填料有:碳酸钙滑石粉硅灰石 云母锻烧陶土铝矾土及石棉等. 且填料的粒度越小,改性效果越好. a.纳米级填料: PA6填充5%纳米蒙脱土,其热变形温度可由70度提高到150度 PA6填充10%纳米海泡石,其热变形温度可由70度提高到160度 PA6填充5%合成云母,其热变形温度可由70度提高到145度 b.常规填料: PBT填充30%滑石粉,其热变形温度可由55度提高到150度 PBT填充30%云母,其热变形温度可由55度提高到162度 二.塑料的增强耐热改性 用增强改性的方法提高塑料的耐热性效果比填充还好,常用的耐热纤维主要有:石棉纤维玻璃纤维碳纤维晶须聚1.结晶型树脂经30%玻璃纤维增强耐热改性. PBT的热变形温度由66度提高到210度. PET的热变形温度由98度提高到238度. PP的热变形温度由102度提高到149度. HDPE的热变形温度由49度提高到127度. PA6的热变形温度由70度提高到215度.

改性尼龙塑料主要改性技术手段

改性尼龙塑料主要改性技术手段 衡水金轮网销部讯:在通用尼龙塑料的基础上,通过物理、化学、机械等方式,经过填充、共混、增强等手段,改善尼龙塑料的性能,对强度、抗冲击性、阻燃性等机械性能得到改善和提高,使得塑料能适用在更多的环境条件。那么改性尼龙塑料有哪些改性技术手段呢? 在改性手段上有物理改性和化学改性。物理改性是不发生化学反应,主要是物理混合过程。化学改性是在聚合物分子链上通过化学方法进行嵌段共聚、接枝共聚、交联与降解等反应,或者引入新的官能团而形成特定功能的高分子材料,主要的改性技术手段主要有:增强、增韧、填充、阻燃、耐候、合金。 ①增强 通过添加玻璃纤维、碳纤维等纤维状物质,与尼龙树脂经过双螺杆挤出机充分混炼挤出,能够明显改善材料的刚性强度和硬度。尼龙树脂本身具有很多固有的物理性能、化学性能和加工性能,经过挤出机混炼后,可以起到树脂的力学或其他性能,而树脂对材料可以起到粘合和传递载荷的作用。 ②增韧 有很多的材料韧性不足,可以通过加热韧性较好的材料或者超细无机材料,增加韧性和耐低温性能。常使用的增韧剂有马来酸酐POE、EPDM(三元乙丙橡胶),可以降低改性尼龙硬化后的脆性,提高冲击强度和伸长率。

③填充 通过给尼龙加入矿物粉末,改善材料的刚性、硬度、耐热性等性能,常使用的填充剂有活性碳酸钙、云母、滑石粉,提高加工性能,降低成本。 ④阻燃 尼龙本身属于HB阻燃,在UL94中级别较低,在很多使用环境电子电器、汽车行业等对阻燃性要求较高,往往通过物理添加阻燃剂来获得阻燃性,阻燃剂添加的多少与阻燃性有直接的关系。常使用的阻燃剂有含卤阻燃剂和无卤阻燃剂两种,无卤阻燃剂更先进更环保一些,更受到大家的喜爱。 ⑤耐候 尼龙在低温下的耐寒能力是比较差的,和塑料一样固有一些低温脆性,使材料在低温下变脆。耐候性是指塑料制品因受到阳光照射、温度变化、风吹雨打等外界条件的影响,而出现褪色、变色、龟裂、粉化和强度下降等一系列老化现象,其中紫外线是促进老化的关键因素。可以添加抗紫外线剂、抗水解剂等来得到改善。 ⑥合金 尼龙合金是利用物理共混或化学接枝、共聚的方法,将两种或多种材料制备成高性能、功能化、专业化的一种材料,达到改善一种材料的性能或兼具更多性能的目的。往往采用的有PE合金、PP合金等,改性尼龙合金主要应用于汽车、办公设备、电子电器、包装材料等行业。

改性塑料加工过程中常见问题及对策

改性塑料加工过程中常见问题及对策 针对改性塑料颗粒在加工过程中常见问题及对策,先总结分析如下: 一、黑点偏多的原因 原料本身质量差,黑点偏多; 螺杆局部过热,造成物料炭化加重,炭化物被带到料条中,造成给点偏多; 螺杆局部剪切太强,造成物料炭化加重,炭化物被带到料条中,造成给点偏多; 机头压力太大(包括堵塞、滤网太多、机头温度太低等),回流料太多,物料炭化加重,炭化物被带到料条中,造成给点偏多; 机台使用年限偏长,螺杆与机筒间隙增加,机筒壁粘附炭化物增多,随挤出时间推移,被逐步带到料条中,造成给点偏多; 自然排气口和真空排气口长时间不清理,堆积的炭化物增多,随后期连续挤出被带到料条中,造成黑点偏多; 外部环境或人为造成其他杂质混入,造成黑点偏多; 口模(包括出料口和内部死角)清理不干净,造成黑点偏多; 出料口不够光滑(如,一些浅槽及坑洼等),长时间可能积存物料,随挤出时间推移,被逐渐炭化,再被带到料条中,造成黑点偏多; 部分螺纹原件损坏(缺角、磨损等形成死角),造成死角处的物料炭化加重,在后续连续挤出过程中,被逐步带出到料条,造成黑点偏多; 自然排气和真空排气不畅,造成螺杆内物料炭化,造成黑点偏多。 二、成品加工过程问题分析 断条产生原不足: 增加滤网目数或张数; 适当调低主机转速或调高喂料转速; 适当降低挤出加工温度(机头或其他各区)。 外部杂质: 检查混料和放料各环节的设备死角是否清理干净及是否有杂质混入; 尽量少加破碎料或人工对破碎料进行初筛,除去杂质; 增加滤网目数及张数; 尽量盖住可能有杂物掉落的孔洞(实盖或网盖)。 内部杂质:

机头压力太高(包括口模堵塞、滤网太多、机头温度太低等),造成回流增加而导致炭化加重,炭化物被带出到料条中,在牵引力作用下,造成断条; 挤出机局部过热,造成炭化加重,炭化物被带出到料条,在牵引力作用下,造成断条; 螺杆剪切局部太强,造成物料局部炭化加重,炭化物被带出到料条,在牵引力作用下,造成断条;机器使用年限长,螺杆和机筒磨损,缝隙增大,回流增加,机筒壁粘附的炭化物增加,随挤出时间延长,炭化物逐步被带出到料条,在牵引力作用下,造成断条; 真空或自然排气口(此处包括垫片和死角)长时间不清理,存在的炭化物被带到料条,在牵引力作用下,造成断条; 机头口模(此处包括出料口和机头内部死角)未清理干净,口模里面含有炭化物或杂质被带到料条,在牵引力作用下,造成断条; 更换滤网的时间间隔太长,滤网被堵住,物料出不来,造成断条。 物料塑化不良: 挤出温度偏低或螺杆剪切太弱,物料未充分塑化,出现料疙瘩,在牵引力作用下,造成断条; 原料物性变化: 共混组分在同一温度,流动性存在太大差异,由于流动性不匹配或未完全相容(包括物理缠结和化学反应),理论上讲这种叫“相分离”,“相分离”一般在共混挤出不会出现,较多出现在注塑过程中,但如果MFR相差太大,在螺杆相对剪切较弱的前提下,可能出现断条; 共混组分黏度变化:对同一材料而言,如果MFR减小,硬度、刚性和缺口变大,有可能该批料的分子量较之前有所偏大,造成黏度变大,在原有的加工温度和工艺作用下,造成塑化不良,此时提高挤出温度或降低主机螺杆转速可解决。 料条困汽或排气不畅: 加工温度太高或螺杆局部剪切太强或螺杆局部过热,造成某些阻燃剂等助剂的分解,释放出气体,真空未及时将气体抽出,气体困在料条里面,在牵引力作用下,造成断条; 物料受潮严重,加工水汽未及时经过自然排气和真空排除,汽体困在料条,在牵引力作用下,造成断条; 自然排气或真空排气不畅(包括堵塞、漏气、垫片太高等),造成有气(或汽)困在料条里,在牵引力作用下,造成断条。 物料刚性太大、水太冷或过水太多、牵引不匹配:

改性塑料简介

改性塑料简介标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

改性塑料 改性塑料,是指在通用塑料和工程塑料的基础上,经过填充、共混、增强等方法加工改性,提高了阻燃性、强度、抗冲击性、韧性等方面的性能的塑料制品。 中文名改性塑料加工方法填充、共混、增强 1、简要 通过改性的塑料部件不仅能够达到一些钢材的强度性能,还具有质轻、色彩丰富、易成型等一系列优点,因此“以塑代钢”的趋势在很多行业都显现出来,而现阶段要找出一种大规模替代塑料制品的材料几乎是不可能的。 2、发展 改性塑料属于石油化工产业链中的中间产品,主要由五大通用塑料和五大工程塑料为塑料基质加工而成,具有阻燃、抗冲、高韧性、易加工性等特点。 我国改性塑料行业发展迅猛,产量、表观消费量年均增长分别达到20%、15%。国内改性塑料年总需求在500万吨左右,约占全部塑料消费量的10%左右,但仍远低于世界平

均水平20%。此外,我国人均塑料消费量与世界发达国家相比还有很大的差距。作为衡量一个国家塑料工业发展水平的指标——塑钢比,我国仅为30:70,不及世界平均的50:50,更远不及发达国家如美国的70:30和德国的63:37。 塑料在汽车工业中的应用始于20世纪50年代,已经有50多年的历史。随着汽车向轻量化发展、节能方向发展,对材料提出了更高的要求。由于1kg塑料可以替代2-3kg钢等更重的材料,而汽车自重每下降10%,油耗可以降低6%-8%。所以增加改性塑料在汽车中的用量可以降低整车成本、重量,并达到节能效果。 改性塑料是涉及面广、科技含量高、能创造巨大经济效益的一个塑料产业领域。而改性技术—填充、共混和增强改性更是深入几乎所有的塑料制品的原材料与成型加工过程。 普通的塑料往往会有它自身的特性和缺陷,改性塑料就是给塑料改变一下性质,基本的技术包括: 1、增强:将玻璃纤维等与塑料共混以增加塑料的机械强度。 2、填充:将矿物等填充物与塑料共混,使塑料的收缩率、硬度、强度等性质得到改变。 3、增韧:通过给普通塑料加入增韧剂共混以提高塑料的韧性,增韧改性后的产品:铁轨垫片。 4、阻燃:给普通塑料树脂里面添加阻燃剂,即可使塑料具有阻燃特性,阻燃剂可以是一种或者是几种阻燃剂的复合体系,如溴+锑系,磷系,氮系,硅系,以及其他无机阻燃体系。 5、耐寒:增加塑料在低温下的强度和韧性,一般塑料在低温下固有的低温脆性,使得在低温环境中应用受限,需要添加一些耐低温增韧剂改变塑料在低温下的脆性,例如汽车保险杠等塑件,一般要求耐寒。 3、特点 改性塑料凭借优越的性价比在越来越多的下游领域得到应用,可以说改性塑料已经成为一种消费趋势,而这种趋势背后隐含了如下五种因素:

常用工程塑料耐热温度

常用工程塑料耐热温度 通常耐热塑料的选用原则: 1.考虑耐热性高低 a.满足耐热性即可,不要选择太高,太高会造成成本的提高; b.尽可能选用通用塑料改性。耐热类塑料大都属于特种塑料类, 其价格都很高;而通用类塑料的价格都比较低; c.尽可能选用耐热改性幅度大的通用塑料。 2.考虑耐热环境因素 a.瞬时耐热性和长期耐热性; b.干式耐热或湿式耐热; c.耐介质腐蚀性; d.有氧耐热或无氧耐热; e.有载耐热和无载耐热. 大家一定对上面的温度觉得奇怪,怎么PA PBT料的热变形温度那么低呢?其实PA PBT如果不进行耐热改性,其耐热性能是很差的.下面具体介绍一些塑料经耐热改性后的耐热性能对比例子. 一.塑料的填充耐热改性: 在所有填料中,除有机料外,大部分无机矿物填料都可明显提高塑料的耐热温度.常用的耐热填料有: 碳酸钙滑石粉硅灰石云母锻烧陶土铝矾土及石棉等.且填料的粒度越小,改性效果越好. a.xx填料:

PA6填充5%纳米蒙脱土,其热变形温度可由70度提高到150度 PA6填充10%纳米海泡石,其热变形温度可由70度提高到160度 PA6填充5%合成云母,其热变形温度可由70度提高到145度 b.常规填料: PBT填充30%滑石粉,其热变形温度可由55度提高到150度 PBT填充30%云母,其热变形温度可由55度提高到162度 二.塑料的增强耐热改性 用增强改性的方法提高塑料的耐热性效果比填充还好,常用的耐热纤维主要有: 石棉纤维玻璃纤维碳纤维晶须聚 1.结晶型树脂经30%玻璃纤维增强耐热改性. PBT的热变形温度由66度提高到210度. PET的热变形温度由98度提高到238度. PP的热变形温度由102度提高到149度. HDPE的热变形温度由49度提高到127度. PA6的热变形温度由70度提高到215度. PA66的热变形温度由71度提高到255度. POM的热变形温度由110度提高到163度. PEEK的热变形温度由230度提高到310度. 2.非结晶树脂经30%玻璃纤维增强耐热改性. PS的热变形温度由93度提高到104度.

改性塑料和回料的区别

改性塑料和再生回料的区别 塑料改性方法: 1.填充改性:通过在塑料中添加一定量的填料可有效降低塑料生产成本,[2] 2.共混改性:性质相近的两种或两种以上的高分子化合物按一定比例混合制成高分子共混物。 3.共聚改性:两种或两种以上的单体发生聚合反应得到一种共聚物, 如: 性能可以改良为:导电塑料、抗静电、抗寒、耐光、抗UV、合金塑料、阻燃树脂、增韧改性、耐磨塑料、耐高低温塑料。

回过头不再讲讲再生料,那么什么是再生料呢? 再生料一般都是化工产品的回收再利用而产生的,通过某种加工手段,制造出各种相对应的产品,产品需求不同,再生料的属性也就不同,这样就可以利用再生料制造出不同的产品,因为世界资源的问题。使用再生料的用户越来越多,塑料产品制造商也越来越青睐与再生料的使用。再生料根据材料不同,有很多分类,一般以塑料再生料最多,再生塑料颗粒是根据使用的原料不同,以及加工生产出来的再生塑料颗粒的特点来区分等级,一般分为一级再生塑料颗粒、二级再生塑料颗粒、三级再生塑料颗粒。 1.再生料――塑料成型加工中的边角料或其他来源的废塑料,经过适当的处理而 使其能再用于制造质量较低的制品的物料。 2.再生塑料――以再生料为基材的塑料。 3.水口料――指注塑制品生产过程中产生的流道、边角和不合格产品所形成的废料。 4.机头料――指挤出制品生产过程中的泄漏料或者过渡料以及注塑机打空时的清膛料。 5.副牌料――塑料原料在合成过程中因为更换牌号或品种而产生的部分性能不合格的塑料原料 缺点:再生塑料的耐热性能等较差,易于老化。材料不稳定,色质也有差异,环保也不确定,存在很多不确定因素。 所以改性料和再生料是有本质的区别的,好多客户朋友误认为改性塑料价格便宜就是再生料做的,现在明白了吧。

塑料改性-改的是什么性

塑料改性总结: “塑料改性”、“改性塑料”等这些词经常被我们挂在嘴边,那么,塑料改性是什么,改的是什么性呢?小编就来扒一扒! 何谓塑料改性? 塑料改性是将通用树脂通过物理的、化学的、机械的方法,改善或增加其功能,在电、磁、光、热、耐老化、阻燃、机械性能等方面达到特殊环境条件下使用的功能。从原料树脂的生产到多种规格及品种的改性塑料母料,为了降低塑料制品的成本,提高其功能性,都会存在塑料改性技术。 塑料改性技术方法有哪些? 提及塑料改性,很多人会想到填充、共混、纤维增强等,但很少人非常全面了解塑料改性技术方法。其实,塑料改性常用的方法有以下几种: 1、添加改性 (1)添加小分子无机物或有机物 在聚合物(树脂)中加入小分子无机物或有机物,通过物理或化学作用,以取得某种预期性能的一种改性方法。这种方法是最早的一种改性方法,它改性效果明显,工艺简单,成本低,因而应用十分广泛。相信在高校做过毕业课题的都接触和了解这种方法。

这种改性方法按照改性目的分为降低成本(添加各种价廉的无机、有机填料)、提高强度(添加各种增强纤维)、提高韧性(添加弹性体及超细填料等)、提高阻燃性(添加金属氧化物、金属氢氧化物、无机磷、有机卤化物、有机磷化物、有机硅及氮化物等)、提高寿命(添加各种抗氧剂、光稳定剂等)、改善加工性(添加增塑剂、热稳定剂、润滑剂及加工助剂等)、增加耐磨性(添加石墨、MoS2、SiO2等)、改善结晶结构(添加成核剂,具体有有机羧酸类、山梨醇类等)、改善抗静电及导电性(添加抗静电剂及导电剂)、改善可降解性(淀粉填充、降解添加剂等)、改善抗射线辐射性能等。 这种方法常用的添加剂有:无机添加剂(填充剂、增强剂、阻燃剂、着色剂及成核剂等)、有机添加剂(增塑剂、有机锡稳定剂、抗氧剂及有机阻燃剂、降解添加剂等)。 (2)添加高分子物质 这种方法也成为共混改性,其主要的方法是在一种树脂中掺入一种或多种其它树脂(包括塑料和橡胶),从而达到改变原有树脂性能。由于共混改性的复合体系中都为高分子物质,因而其相容性好于添加小分子的体系,改性同时对原有树脂的其它性能没有太大影响。我们常见的聚合物合金就是此方法改性产物。共混改性是一种开发新型高分子材料最有效的办法,也是对现有塑料品种实现高性能化、精细化的主要途径。 2、形态及结构改性 这种方法主要是针对塑料本身的树脂形态及结构来改性。通常方法是改变塑料的晶型状态、交联、共聚、接枝等。 (1)形态控制改性 塑料的形态控制改性即控制塑料制品不同的聚集形态,使之取得我们预期的性能。这种方法是在非外力作用下通过加工成型工艺条件的调整,进行形态控制,一般称之为自我改性,其中以自增强最为常用。通过塑料形态控制可以改善塑料的许多性能,如力学、热学、光学等各个方面,有些方面的改性效果十分明显。例如通过成核技术控制结晶质量,用双向拉伸技术获取高度取向。 (2)交联改性 交联应该很熟悉,一般为线性结构交联为网状结构或立体结构。引发交联是需要外界条件的,通常为不同形式的能源(例如光、热、辐射等)。大分子链由于外界作用产生可反应

相关主题
文本预览
相关文档 最新文档