当前位置:文档之家› 最优化模型(第五讲)

最优化模型(第五讲)

最优化模型(第五讲)
最优化模型(第五讲)

matlab多目标优化模型教程

fgoalattain Solve multiobjective goal attainment problems Equation Finds the minimum of a problem specified by x, weight, goal, b, beq, lb, and ub are vectors, A and Aeq are matrices, and c(x), ceq(x), and F(x) are functions that return vectors. F(x), c(x), and ceq(x) can be nonlinear functions. Syntax x = fgoalattain(fun,x0,goal,weight) x = fgoalattain(fun,x0,goal,weight,A,b) x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq) x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub) x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon) x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon,... options) x = fgoalattain(problem) [x,fval] = fgoalattain(...) [x,fval,attainfactor] = fgoalattain(...) [x,fval,attainfactor,exitflag] = fgoalattain(...) [x,fval,attainfactor,exitflag,output] = fgoalattain(...) [x,fval,attainfactor,exitflag,output,lambda] = fgoalattain(...) Description fgoalattain solves the goal attainment problem, which is one formulation for minimizing a multiobjective optimization problem.

多目标优化模型

多目标优化模型 中国水资源具有显著地区域特征,我们对区域水资源多目标优化配置,以多目标和大系统优化为手段,在一定时间内可供水量和需水量确定的条件下,建立区域有限的水资源量在各流域的优化配置模型,求解模型得到水量优化配置方案. 目标函数的建立: 水资源配置主要考虑3 个目标函数,即用水效益函数、用水费用函数和区域均衡性函数。对于优质水资源而言,用水效益重点考虑工业和第三产业所产生的效益,将农业用水排除在外,旨在优先考虑经济效益好的区域用水需求。用水费用主要指输水费用,包括管道铺设和渠道建设费用,优质水资源还需要着重考虑饮用水的制水成本. 区域均衡性函数则为了避免供水一味向经济发达区域倾斜,使各区域供水与需水之差满足某种准则,以体现社会和谐精神.具体目标如下: (1) 用水收益最大;(2) 运营成本最低;(3)区域水资源供需尽量均衡. 设i g 为第i 个流域使用每立方米水资源所产生的效益参数, c ij 为第i 个用户由第j 个供水源输送每立方米水所需的费用, x ij 为由第j 个水源供给第i 个流域的水量,各区域的用水量x M x i j ij =∑=, D i 为第i 个区域的需水总量,则水资源配置的目标函数可以综合表示成如下形式: 2 111max (c )/(1/)n n n i i ij j i i i j i Z opt g x x x D ===??=--???? ∑∑∑ 式中:右边分子第一项表示水资源利用所产生的经济效益,包括环境效益,对 于优质水资源则取非农业经济效益;右边分子第二项为运营成本,主要涉及制水成本和水库至流域的输水成本;分母反映区域水资源供需之间的均衡程度,表示各区域的用水保证率尽可能最大,N 为供水区域数. 1. 2 参数及约束条件设置 中国各流域的水资源需要进行合理分配,以达到水资源的平衡,需要适当设置参数和约束条件. 首先按照2 种方式划分区域:其一以流域为单元,便于在模型中计算经济效益;其二以供水源为单元,以利于分析区域水资源的供需平衡关系. 各流域从水库获得的水量受水库供水量的限制,而水库供水量又受水源的水来源的可供水量约束. 根据中国历年的降雨量资料计算出各水库在不同频率下的可供水量,结合中国供水状况获得在若干种供水保证率下各水库的可供水量,各流域可取得的水量不得超过水源地水库的可供水量与水厂供水量中的较小者 j Q ,以此作为各变量的约束条件1)。设水库数为1R ,供水源为2 R ,供水单元数 为M ,当出现若干水库是同一水源的情形时取2M R = ,而当一个水厂以多个水库为水源地时取1M R = . 在这两种情形下,除满足约束条件1)外,尚需满足这些水库的供水量之和不大于水源地的可供水量或水库的供水量小于水源地的

多目标最优化问题全面介绍

§8.1多目标最优化问题的基本原理 一、多目标最优化问题的实例 例1 梁的设计问题 设用直径为1的圆木加工成截面积为矩形的梁,为使强度最大而成本最低, 问应如何设计梁的尺寸? 解: 设梁的截面积宽和高分别为1x 和2x 强度最大=惯性矩最大 2 216 1x x = 成本最低=截面积最小=21x x 故数学模型为: min 1 x 2 x max 2216 1x x .s t 221 2 1x x += 10x ≥,20x ≥ 例2 买糖问题 已知食品店有1A , 2 A , 3 A 三种糖果单价分别为4元∕公斤,2.8元∕公斤, 2.4元∕公斤,今要筹办一次茶话会,要求用于买买糖的钱不超于20元,糖 的总量不少于6公斤,1A , 2 A 两种糖的总和不少于3公斤,问应如何确定买糖的最佳方案? 解:设购买1A , 2 A , 3 A 三种糖公斤数为1x ,2x ,3x 1 A 2 A 3 A 重量 1x 2x 3x 单价 4元∕公斤 2.8元∕公斤 2.4元∕公斤 min 14x +22.8x +3 2.4x (用钱最省)

max 1x +2x +3x (糖的总量最多) .st 14x +22.8x +3 2.4x 20≤ (用钱总数的限制) 1x +2x +3x 6≥(用糖总量的要求) 1x +2x 3≥(糖品种的要求) 1x ,2x ,3x 0≥ 是一个线性多目标规划。 二、 多目标最优化的模型 12min ()((),(),.....())T m V F x f x f x f x -= .st ()0g x ≥ ()0h x ≥ 多目标规划最优化问题实际上是一个向量函数的优化问题,当m=1,多目标优化就是前面讲的单目标优化问题 三、解的概念 1.序的概念 12,.....()T m a a a a = 12,.....()T m b b b b = (1)b a =?a i i b = 1,2....i m = (2)a b ≤?a i i b ≤ 1,2....i m = 称a 小于等于b (3)a b < =?a i i b ≤ 且?1≤j ≤m ,使a j j b ≠,则a 小于向量b (4)a

多目标函数的优化设计方法

第9章 多目标函数的优化设计方法 Chapter 9 Multi-object Optimal Design 在实际的机械设计中,往往期望在某些限制条件下,多项设计指标同时达到最优,这类问题称为多目标优化设计问题。与前面单目标优化设计不同的是,多目标优化设计有着多种提法和模式,即数学模型。因此,解决起来要比单目标问题复杂的多。 9.1 多目标最优化模型 9.1.1 问题举例 例9-1 生产计划问题 某工厂生产n (2≥n )种产品:1号品、2号品、...、n 号品。 已知:该厂生产)...,,2,1(n i i =号品的生产能力是i a 吨/小时; 生产一吨)...,,2,1(n i i =号品可获利润i α元; 根据市场预测,下月i 号品的最大销售量为)...,,2(n i b i =吨; 工厂下月的开工能力为T 小时; 下月市场需要尽可能多的1号品。 问题:应如何安排下月的生产计划,在避免开工不足的条件下,使 工人加班时间尽可能的地少; 工厂获得最大利润; 满足市场对1号品尽可能多地要求。 为制定下月的生产计划,设该厂下月生产i 号品的时间为)...,,1(n i x i =小时。 9.1.2 基本概念 如图9.1所示,两个目标函数f 1,f 2中的若干个设计中,3,4称为非劣解,若 )(min{)(*x f x f j j ≤ S.t .0)(≤x g u u=1,2,………….m 成立,则称* x 为非劣解。若不存在一个方向,同时满足: 0)(*≤*?s x f (目标函数值下降0)(*≤*?s x g (不破坏约束) 图9.1 则称* x 为约束多目标优化设计问题的K-T 非劣解。这样,多目标优化设计问题的求解过程为:先求出满足K-T 条件的非劣解,再从众多的非劣解确定一个选好解。 多目标优化的数学模型: T r x f x f x f X F V )](),........(),([)(m in 21=--

人力资源安排的最优化模型

人力资源安排的最优化模型 2 1陈才兴 3 黄晓瑜 任冠峰 (韶关学院,广东韶关512005) 1.韶关学院03级信息技术(1)班 2.韶关学院02级应用数学本科班 3.韶关学院03级应用数学本科班 摘要:某大学数学系人力资源安排问题是一个整数规划的最优化问题,通过具体分析数学系现有的技术力量和各方面的约束条件,在问题一的求解中,可以列出一天最大直接收益的整数规划,求得最大的直接收益是42860元;而在问题二的求解中,由于教授一个星期只能工作四天,副教授一个星期只能工作五天,在这样的约束条件下,列出一个星期里最大直接收益的整数规划模型,求得其最大直接收益是198720元。 关键词:技术力量;整数规划;直接收益

1. 问题的提出 数学系的教师资源有限,现有四个项目D C B A 来源于四个不同的客户,工作 的难易程度不一,各项目对有关技术人员的报酬不同。所以: 1. 在满足工作要求的情况下,如何分配数学系现有的技术力量,使得其一天的直接收益最大? 2. 在教授与副教授工作时间受到约束的条件下,如何分配数学系现有的技术力量,使得其在一个星期里的直接收益最大? 2.模型的假设 1. 不同技术力量的人每天被安排工作的几率是相等的,且相同职称的个人去什么地方工作是随机的; 2. 客户除了支付规定的工资额外,在工作期间里,还要支付所有相关的花费(如餐费,车费等); 3. 当天工作当天完成. 3.符号的约定 :i 取1,2,3,4,分别表示教授、副教授、讲师、助教 :j 取1,2,3,4,分别表示D C B A 地 :k 取1到7,分别表示一个星期里的七天 :x ijk i 种职称的人员在j 地第k 天工作的人数 :p ij i 职称的人在j 地工作平均每天的报酬 :b j 表示每天在j 地所需的最多工作人数 :c i 数学系有i 职称的人数 :d i 数学系i 职称的人每天的工资额 j L ij :地所需i 职称技术人员人数的最小值 j U ij :地所需i 职称技术人员人数的最大值 4.问题的分析 由题意可知各项目对不同职称人员人数都有不同的限制和要求.对客户来说质量保证是关键,而教授相对稀缺,因此各项目对教授的配备有不能少于一定数目的限制.其中由于项目D 技术要求较高,助教不能参加.而D C ,两项目主要工作是在办公室完成,

多目标最优化模型

第六章 最优化数学模型 §1 最优化问题 1.1 最优化问题概念 1.2 最优化问题分类 1.3 最优化问题数学模型 §2 经典最优化方法 2.1 无约束条件极值 2.2 等式约束条件极值 2.3 不等式约束条件极值 §3 线性规划 3.1 线性规划 3.2 整数规划 §4 最优化问题数值算法 4.1 直接搜索法 4.2 梯度法 4.3 罚函数法 §5 多目标优化问题 5.1 多目标优化问题 5.2 单目标化解法 5.3 多重优化解法 5.4 目标关联函数解法 5.5 投资收益风险问题 第六章 最优化问题数学模型 §1 最优化问题 1.1 最优化问题概念 (1)最优化问题 在工业、农业、交通运输、商业、国防、建筑、通信、政府机关等各部门各领域的实际工作中,我们经常会遇到求函数的极值或最大值最小值问题,这一类问题我们称之为最优化问题。而求解最优化问题的数学方法被称为最优化方法。它主要解决最优生产计划、最优分配、最佳设计、最优决策、最优管理等求函数最大值最小值问题。 最优化问题的目的有两个:①求出满足一定条件下,函数的极值或最大值最小值;②求出取得极值时变量的取值。 最优化问题所涉及的内容种类繁多,有的十分复杂,但是它们都有共同的关键因素:变量,约束条件和目标函数。 (2)变量 变量是指最优化问题中所涉及的与约束条件和目标函数有关的待确定的量。一般来说,它们都有一些限制条件(约束条件),与目标函数紧密关联。 设问题中涉及的变量为n x x x ,,,21 ;我们常常也用),,,(21n x x x X 表示。 (3)约束条件 在最优化问题中,求目标函数的极值时,变量必须满足的限制称为约束条件。 例如,许多实际问题变量要求必须非负,这是一种限制;在研究电路优化设

多目标最优化模型

第六章最优化数学模型 §1最优化问题 1.1最优化问题概念 1.2最优化问题分类 1.3最优化问题数学模型 §2经典最优化方法 2.1无约束条件极值 2.2等式约束条件极值 2.3不等式约束条件极值 §3线性规划 3.1线性规划 3.2整数规划 §4最优化问题数值算法 4.1直接搜索法 4.2梯度法 4.3罚函数法 §5多目标优化问题 5.1多目标优化问题 5.2单目标化解法 5.3多重优化解法 5.4目标关联函数解法 5.5投资收益风险问题 第六章最优化问题数学模 §1最优化问题 1.1最优化问题概念 (1)最优化问题在工业、农业、交通运输、商业、国防、建筑、通信、政府机关等各部门各领域的实际工作中,我们经常会遇到求函数的极值或最大值最小值问题,这一类问题我们称之为最优化问题。而求解最优化问题的数学方法被称为最优化方法。它主要解决最优生产计划、最优分配、最佳设计、最优决策、最优管理等求函数最大值最小值问题。 最优化问题的目的有两个:①求出满足一定条件下,函数的极值或最大值最小值; ②求出取得极值时变量的取值。 最优化问题所涉及的内容种类繁多,有的十分复杂,但是它们都有共同的关键因素:变量,约束条件和目标函数。 (2)变量变量是指最优化问题中所涉及的与约束条件和目标函数有关的待确定的量。 一般来说,它们都有一些限制条件(约束条件),与目标函数紧密关联。 设问题中涉及的变量为x1,x2, , x n ;我们常常也用X (x1,x2, ,x n)表示。 3)约束条件 在最优化问题中,求目标函数的极值时,变量必须满足的限制称为约束条件例如,许多实际问题变量要求必须非负,这是一种限制;在研究电路优化设

多目标最优化数学模型

第六章最优化数学模型 §1 最优化问题 1.1 最优化问题概念 1.2 最优化问题分类 1.3 最优化问题数学模型 §2 经典最优化方法 2.1 无约束条件极值 2.2 等式约束条件极值2.3 不等式约束条件极值 §3 线性规划 3.1 线性规划 3.2 整数规划 §4 最优化问题数值算法4.1 直接搜索法 4.2 梯度法 4.3 罚函数法 §5 多目标优化问题 5.1 多目标优化问题 5.2 单目标化解法 5.3 多重优化解法 5.4 目标关联函数解法5.5 投资收益风险问题

第六章 最优化问题数学模型 §1 最优化问题 1.1 最优化问题概念 (1)最优化问题 在工业、农业、交通运输、商业、国防、建筑、通信、政府机关等各部门各领域的实际工作中,我们经常会遇到求函数的极值或最大值最小值问题,这一类问题我们称之为最优化问题。而求解最优化问题的数学方法被称为最优化方法。它主要解决最优生产计划、最优分配、最佳设计、最优决策、最优管理等求函数最大值最小值问题。 最优化问题的目的有两个:①求出满足一定条件下,函数的极值或最大值最小值;②求出取得极值时变量的取值。 最优化问题所涉及的内容种类繁多,有的十分复杂,但是它们都有共同的关键因素:变量,约束条件和目标函数。 (2)变量 变量是指最优化问题中所涉及的与约束条件和目标函数有关的待确定的量。一般来说,它们都有一些限制条件(约束条件),与目标函数紧密关联。 设问题中涉及的变量为n x x x ,,,21 ;我们常常也用),,,(21n x x x X =表示。 (3)约束条件 在最优化问题中,求目标函数的极值时,变量必须满足的限制称为约束条件。 例如,许多实际问题变量要求必须非负,这是一种限制;在研究电路优化设计问题时,变量必须服从电路基本定律,这也是一种限制等等。在研究问题时,这些限制我们必须用数学表达式准确地描述它们。 用数学语言描述约束条件一般来说有两种: 等式约束条件 m i X g i ,,2,1,0)( == 不等式约束条件 r i X h i ,,2,1, 0)( =≥ 或 r i X h i ,,2,1, 0)( =≤ 注:在最优化问题研究中,由于解的存在性十分复杂,一般来说,我们不考虑不等式约束条件0)(>X h 或0)(

多目标优化问题(over)

第七章多目标优化问题的求解 优化问题按照目标函数的数量,可以分为单目标优化问题和多目标优化问题,前面我们讲过的线性优化就是一个单目标优化问题,对单目标优化问题进一步突破,将目标函数扩展为向量函数后,问题就转化为多目标优化问题。本节将简要介绍多目标最优化问题的建模与求解方法。 1、多目标优化模型 多目标优化问题一般表示为 ..()min () s t J ≤= x G x 0 x F 其中121()[(),(),,()]T f f f =F x x x x ,下面将通过例子演示多目标优化问题的建模。 例1 设某商店有123,,A A A 三种糖果,单价分别为4,2.8和2.4元/kg ,现在 要举办一次茶话会,要求买糖果的钱不超过20元,但糖果的总重量不少于6kg , 1A 和2A 两种糖果的总重量不低于3kg ,应该如何确定最好的买糖方案。 分析:首先应该确定目标函数如何选择的问题,本例中,好的方案意味着少花钱多办事,这应该是对应两个目标函数,一个是花钱最少,一个是买的糖果最重,其他的可以认为是约束条件。当然,这两个目标函数有些矛盾,下面考虑如何将这个问题用数学描述。 设123,,A A A 三种糖果的购买重量分别为123,,x x x kg ,这时两个目标函数分别为花钱:1123min ()4 2.8 2.4f x x x =++x ,糖果总重量:2123max ()f x x x =++x ,如果统一用最小值问题表示,则有约束的多目标优化问题可以表示为 123123123123121234 2.8 2.4min -4 2.8 2.4206.. +3,,0 x x x x x x x x x x x x s t x x x x x ++?? ??++??++≤??++≥?? ≥??≥?()模型建立以后,可以考虑用后面的方法进行求解。

最优化问题的数学模型及其分类

最优化问题的数学模型及其分类 例1.1.1 产品组合问题 某公司现有三条生产线用来生产两种新产品,其主要数据如表1-1所示。请问如何生产可以让公司每周利润最大? 表1-1 设每周生产的产品一和产品二 的产量分别为1x 和2x ,则每周的生产利润为:2153x x z +=。由于每周的产品生产受到三条生产线的可用时间的限制,因此1x ,2x 应满足以下条件: ?????? ?≥≤+≤≤0, 18231224212121 x x x x x x 故上述问题的数学模型为

2153max x x z += . .t s ?????? ?≥≤+≤≤0, 18231224212121 x x x x x x 其中max 是最大化(maximize )的英文简称,??t s 是受约束于(subject to )的简写。 例1.1.2 把一个半径为1的实心金属球熔化后,铸成一个 实心圆柱体,问圆柱体取什么尺寸才能使它的表面积最小? 设圆柱体的底面半径为r ,高为h ,则该问题的数学模型为: ??? ??=? ?+=ππππ3 422min 22 h r t s r rh S 其中min 是最小化(minimize )的简写。 通过以上二例,可以看出最优化问题的数学模型具有如下结构: (1) 决策变量(decision variable ):即所考虑问题 可归结为优选若干个被称为参数或变量的量 n x x x ,,,21 ,它们都取实数值,它们的一组值构 成了一个方案。 (2) 约束条件(constraint condition ):即对决策

变量n x x x ,,,21 所加的限制条件,通常用不等式或等式表示为: ()(),,,2,1, 0,,,,,2,1, 0,,,2121l j x x x h m i x x x g n j n i ===≥ (3) 目标函数(objective function )和目标:如使 利润达到最大或使面积达到最小,通常刻划为极大化(maximize )或极小化(minimize )一个实值函数()n x x x f ,,21 因此,最优化问题可理解为确定一组决策变量在满足约束条件下,寻求目标函数的最优。 注意到极大化目标函数()n x x x f ,,21相当于极小化 ()n x x x f ,,21-,因此,约束最优化问题的数学模型一般可 表示为: () ()()()?? ? ??===≥??l j x x x h m i x x x g t s x x x f n j n i n ,,2,1,0,,,1.1.1,,2,1,0,,,,,min 212121 若记()T n x x x x ,,21=,则(1.1.1)又可写成:

相关主题
文本预览