当前位置:文档之家› 圆形磁场中的几个典型问题

圆形磁场中的几个典型问题

圆形磁场中的几个典型问题
圆形磁场中的几个典型问题

圆形磁场中的几个典型问题

许多同学对带电粒子在圆形有界磁场中的运动问题常常无从下手,一做就错.常见问题分别是“最值问题、汇聚发散问题、边界交点问题、周期性问题”.对于这些问题,针对具体类型,抓住关键要素,问题就能迎刃而解,下面举例说明.

一、最值问题的解题关键——抓弦长

1.求最长时间的问题

例1 真空中半径为R=3×10-2m的圆形区域内,

有一磁感应强度为B=的匀强磁场,方向如图1所示一带正电的粒子以初速度v0=106m / s 从磁场边界上直径 ab 一端 a 点处射入磁场,已知该粒子比荷为q/m=108C / kg ,不计粒子重力,若要使粒子飞离磁场时偏转角最大,其入射时粒子初速度的方向应如何(以 v0与 Oa 的夹角 表示)最长运动时间多长

小结:本题涉及的是一个动态问题,即粒子虽然在磁场中均做同一半径的匀速圆周运动,但因其初速度方向变化,使粒子运动轨迹的长短和位置均发生变化,并且弦长的变化一定对应速度偏转角的变化,同时也一定对应粒子做圆周运动轨迹对应圆心角的变化,因而当弦长为圆形磁场直径时,偏转角最大.

2 .求最小面积的问题

例2 一带电质点的质量为m,电量为q,以

平行于 Ox 轴的速度v从y轴上的a点射人如图

3 所示第一象限的区域.为了使该质点能从x

轴上的b点以垂直于x轴的速度 v 射出,可在适当的地方加一个垂直于xoy平面、磁感应强度为B的匀强磁场.若此磁场仅分布在一个圆形区域内,试求此圆形磁场区域的最小面积,重力忽略不计.

小结:这是一个需要逆向思维的问题,而且同时考查了空间想象能力,即已知粒子运动轨迹求所加圆形磁场的位置.解决此类问题时,要抓住粒子运动的特点即该粒子只在所加磁场中做匀速圆周运动,所以粒子运动的 1 / 4 圆弧必须包含在磁场区域中且圆运动起点、终点必须是磁场边界上的点,然后再考虑磁场的最小半径.上述两类“最值”问题,解题的关键是要找出带电粒子做圆周运动所对应的弦长.

二、汇聚发散问题的解题关键——抓半径

当圆形磁场的半径与圆轨迹半径相等时,存在两条特殊规律;

规律一:带电粒子从圆形有界磁场边界上某点射入磁场,如果圆形磁场的半径与圆轨迹半径相等,则

粒子的出射速度方向与圆形磁场上入射点的切线方向平行,如甲图所示。

规律二:平行射入圆形有界磁场的相同带电粒子,如果圆形磁场的半径与圆轨迹半径相等,则所有粒子都从磁场边界上的同一点射出,并且出射点的切线与入射速度方向平行,如乙

图所示。

例3 如图5所示,x 轴正方向水平向右, y 轴

正方向竖直向上.在半径为 R 的圆形区域内加一

与xoy平面垂直的匀强磁场.在坐标原点 O 处放

置一带电微粒发射装置,它可以连续不断地发射具有相同质量 m 、电荷量 q ( q > 0 )且初速为v0的带电粒子,不计重力.调节坐标原点 O 处的带电微粒发射装置,使其在xoy平面内不断地以相同速率v0沿不同方向将这种带电微粒射入x 轴上方,现要求这些带电微粒最终都能平行于 x 轴正方向射出,则带电微粒的速度必须满足什么条件

小结:研究粒子在圆形磁场中的运动时,要抓住圆形磁场的半径和圆周运动的半径,建立二者之间的关系,再根据动力学规律运动规律求解问题.

3.如图甲所示,x轴正方向水平向右,y轴正方向竖直向上。在xoy 平面内有与y轴平行的匀强电场,在半径为R的圆形区域内加有与

xoy平面垂直的匀强磁场。在坐标原点O处放置一带电微粒发射装置,它可以连续不断地发射具有相同质量m、电荷量q()和初速为

的带电粒子。已知重力加速度大小为g。

(1)当带电微粒发射装置连续不断地沿y轴正方向发射这种带电微粒时,这些带电微粒将沿圆形磁场区域的水平直径方向离开磁场,并继续沿x轴正方向运动。求电场强度和磁感应强度的大小和方向。(2)调节坐标原点处的带电微粒发射装置,使其在xoy平面内不断地以相同速率v0沿不同方向将这种带电微粒射入第1象限,如图乙所示。现要求这些带电微粒最终都能平行于x轴正方向运动,则在保证匀强电场、匀强磁场的强度及方向不变的条件下,应如何改变匀强磁场的分布区域并求出符合条件的磁场区域的最小面积。

答案

三、边界交点问题的解题关键―抓轨迹方程

例 4 如图 7 所示,在 xoy平面内 x>0区域中,有一半圆形匀强磁场区域,圆心为 O,半径为 R

=0.10m ,磁感应强度大小为 B=,磁场方向垂直xoy平面向里.有一线状粒子源放在 y 轴左侧(图中未画出),并不断沿平行于 x 轴正方向释放出电荷量为q=+×10-19C ,初速度 v0= ×106m / s 的粒子,粒子的质量为 m =×10-26kg ,不考虑粒子间的相互作用及粒子重力,求:从 y 轴任意位置(0,y)入射的粒子离开磁场时的坐标.

点评:带电粒子在磁场中的运动是最能反映抽象思维与数学方法相结合的物理模型,本题则利用圆形磁场与圆周运动轨迹方程求交点,是对初等数学的抽象运用,能较好的提高学生思维.

四、周期性问题的解题关键——寻找圆心角

1 .粒子周期性运动的问题

例 5 如图 9 所示的空间存在两个匀强磁场,其

分界线是半径为 R 的圆,两侧的磁场方向相反且垂

直于纸面,磁感应强度大小都为 B .现有一质量为

m 、电荷量为 q 的带正电粒子(不计重力)从 A 点沿 aA 方向射出.求:

(1)若方向向外的磁场范围足够大,离子自 A 点射出后在两个磁场不断地飞进飞出,最后又返回 A 点,求返回 A 点的最短时间及对应的速度.

(2)若向外的磁场是有界的,分布在以 O 点为圆心、半径为 R 和2R的两半圆环之间的区域,上述粒子仍从 A 点沿 QA 方向射出且粒子仍能返回 A 点,求其返回 A 点的最短时间.

2.磁场发生周期性变化

例 6 如图 12 所示,在地

面上方的真空室内,两块正对

的平行金属板水平放置.在两

板之间有一匀强电场,场强按

如图 13 所示规律变化(沿 y 轴方向为正方向)

在两板正中间有一圆形匀强磁场区域,磁感应强度按图 14 所示规律变化,如果建立如图 12 所示的坐标系,在 t=0时刻有一质量 m=×10-9kg 、电荷量 q =×10-6C 的带正电的小球,以v0=1m / s 的初速度沿 y 轴方向从 O 点射入,分析小球在磁

场中的运动并确定小球在匀强磁场中的运动时

间及离开时的位置坐标.

小结:对于周期性问题,因为粒子运动轨迹和磁场边界都是圆,所以要充分利用圆的对称性及圆心角的几何关系,寻找运动轨迹的对称关系和周期性.

五、磁场问题的规律

前面分析的六个典型例题,其物理情景各异,繁简不同,但解题思路和方法却有以下四个共同点.

(1)物理模型相同即带电粒子在匀强磁场中均做匀速圆周运动.(2)物理规律相同即洛伦兹力提供运动的向心力,通常都由动力学规律列方程求解.

(3)数学规律相同即运用几何知识求圆心角、弧长、半径等物理量.

(4)解题关键相同:一是由题意画出正确轨迹;二是寻找边界圆弧和轨迹圆弧的对应圆心角关系;三是确定半径和周期,构建合适的三角形或平行四边形,再运用解析几何知识求解圆的弦长、弧长、圆心角等,最后转化到题目中需求解的问题.

【同步练习】

1.如图所示,在半径为R的圆形区域内充满磁感应

强度为B的匀强磁场,MN是一竖直放置的感光板.从

圆形磁场最高点P垂直磁场射入大量的带正电,电荷

量为q,质量为m,速度为v的粒子,不考虑粒子间的相互作用力,关于这些粒子的运动以下说法正确的是()D

A.只要对着圆心入射,出射后均可垂直打在MN上

B.对着圆心入射的粒子,其出射方向的反向延长线不一定过圆心

C.对着圆心入射的粒子,速度越大在磁场中通过的弧长越长,时间也越长

D.只要速度满足qBR

,沿不同方向入射的粒子出射后均可垂直

v

m

打在MN上

2.如图所示,长方形abcd的长ad=0.6m,宽

ab=0.3m,O、e分别是ad、bc的中点,以e为

圆心eb为半径的四分之一圆弧和以O为圆心Od

为半径的四分之一圆弧组成的区域内有垂直纸

面向里的匀强磁场(边界上无磁场)磁感应强度

B=。一群不计重力、质量m=3×10-7kg、电荷量

q=+2×10-3C的带正电粒子以速度v=5×102m/s

沿垂直ad方向且垂直于磁场射人磁场区域,则下列判断正确的是()CD

A.从Od边射入的粒子,出射点全部分布在Oa边

B.从aO边射入的粒子,出射点全部分布在ab边

C.从Od边射入的粒子,出射点分布在ab边

D.从ad边射人的粒子,出射点全部通过b点

3、一质量为、带电量为的粒子以速度从O点沿轴正方向射入

磁感强度为的一圆形匀强磁场区域,磁场方向垂直于纸面,粒子飞出磁场区后,从处穿过轴,速度方向与轴正向夹角为30°,如图1所示(粒子重力忽略不计)。

试求:(1)圆形磁场区的最小面积;

(2)粒子从O点进入磁场区到达点所经历的时间;

(3)点的坐标。

解:

(1)带电粒子在磁场中做匀速圆周运动的半径

由图可知,

磁场区域最小半径

磁场区域最小面积

(2)粒子从O至a做匀速圆周运动的时间,从a飞出磁场后做匀速直线运动

(3)∵

故b点的坐标为(,0)

4、在xoy平面内有许多电子(质量为、电量为),

从坐标O不断以相同速率沿不同方向射入第一象

限,如图所示。现加一个垂直于平面向内、磁感

强度为的匀强磁场,要求这些电子穿过磁场后都能平行于轴向正方向运动,求符合该条件磁场的最小面积。

5.如图所示,在坐标系xoy内有一半径为a的圆形区域,圆心坐标为O1(a,0),圆内分布有垂直纸面向里的匀强磁场,在直线y=a的上方和直线x=2a的左侧区域内,有一沿x轴负方向的匀强电场,场强大小为E,一质量为m、电荷量为+q(q>0)的粒子以速度v从O点垂直于磁场方向射入,当入射速度方向沿x轴方向时,粒子恰好从

O1点正上方的A点射出磁场,不计粒子重力,求:

(1)磁感应强度B的大小;

(2)粒子离开第一象限时速度方向与y轴正方向的夹角;

(3)若将电场方向变为沿y轴负方向,电场强度大小不变,粒子以速度v从O点垂直于磁场方向、并与x轴正方向夹角θ=300射入第一象限,求粒子从射入磁场到最终离开磁场的总时间

t。

解:(1)设粒子在磁场中做圆运动的轨迹半径为R,牛顿第二定律有粒子自A点射出,由几何知识

解得

(2)粒子从A点向上在电场中做匀减运动,设在电场中减速的距离为y1

所以在电场中最高点的坐标为(a,)

(3)粒子在磁场中做圆运动的周期

粒子从磁场中的P点射出,因磁场圆和粒子的轨迹圆的半径相等,OO1PO2构成菱形,故粒子从P点的出射方向与y轴平行,粒子由O到P所对应的圆心角为θ1= 60°

由几何知识可知,粒子由P点到x轴的距离S=acosθ

粒子在电场中做匀变速运动,在电场中运动的时间

粒子由P点第2次进入磁场,由Q点射出,PO1QO3构成菱形,由几何知识可知Q 点在x轴上,粒子由P到Q的偏向角为θ2=120°

粒子先后在磁场中运动的总时间

粒子在场区之间做匀速运动的时间

解得粒子从射入磁场到最终离开磁场的时间

【答案】

(1);(2);(3);(4)

轨迹如图。

【解析】(1)由题意可得粒子在磁场中的轨迹半径为r=a (1

分)

(2分)

(1分)

(2)所有粒子在电场中做类平抛运动(1分)

从O点射出的沿x轴正向的粒子打在屏上最低点

(1分)

(1分)

从O点沿y轴正向射出的粒子打在屏上最高点

(1分)

(1分)所以粒子打在荧光屏上的范围为

(1分)(3)粒子在磁场中做匀速圆周运动,出磁场时:

(2分)

粒子进电场后做匀减速运动,在上升阶段有:

(2分)

(1分)

所以在电场中最远坐标为)(1分)

因为粒子的轨迹半径与磁场的边界半径相等,粒子返回磁场后射入点和射出点与轨迹圆心及磁场的边界圆心的连线构成棱形。所以最后射出磁场的坐标为(2a,0)(2分)

(4)可以加一个匀强磁场或者两个方向不同的匀强电场方向如图,

大小与已知条件相同( 2分)

轨迹如图所示( 2分)

6.如图所示的直角坐标系中,从直线

x=?2l0到y轴区域存在两个大小相等、

方向相反的有界匀强电场,其中x轴上

方的电场方向沿y轴负方向,x轴下方

的电场方向沿y轴正方向。在电场左边界从A(?2l0,?l0)点到C (?2l0,0)点区域内,连续分布着电量为+q、质量为m的粒子。从某时刻起,A点到C点间的粒子依次连续以相同速度v0沿x轴正方向射入电场。从A点射入的粒子恰好从y轴上的A (0,?l0)点沿沿x 轴正方向射出电场,其轨迹如图所示。不计粒子的重力及它们间的相互作用。

(1)求从AC间入射的粒子穿越电场区域的时间t和匀强电场的电场强度E的大小。

(2)求在A、C间还有哪些坐标位置的粒子通过电场后也能沿x轴正方向运动

(3)为便于收集沿x轴正方向射出电场的所有粒子,若以直线x=2l0上的某点为圆心的圆形磁场区域内,设计分布垂直于xOy平面向里的匀强磁场,使得沿x轴正方向射出电场的粒子经磁场偏转后,都能通过x=2l0与圆形磁场边界的一个交点。则磁场区域最小半径是多大相应的磁感应强度B是多大

解析:

(1)从A点射出的粒子,由A到A′的运动时间为T,根据运动轨迹和对称性可得:

x轴方

向(2分)

y轴方向(2分)

解得:(2分)

⑵设到C点距离为△y处射出的粒子通过电场后也沿x轴正方向,粒子第一次达x轴用时△t,水平位移为△x,则(1分)

粒子从电场射出时的速度方向也将沿x轴正方向,则(2分)

解之得:(2分)

即AC间y坐标为(n = 1,2,3,……)(1分)

7.如图所示,在xoy坐标系中分布着三个有界场区:第一象限中有一半径为r=0.1m的圆形磁场区域,磁感应强度B1=1T,方向垂直纸面向里,该区域同时与x轴、y轴相切,切点分别

为A、C;第四象限中,由y轴、抛物线FG

(2

=-+-,单位:m)和直线DH

100.025

y x x

(0.425

=-,单位:m)构成的区域中,存在着

y x

方向竖直向下、强度E=C的匀强电场;以及直线

DH右下方存在垂直纸面向里的匀强磁场B2=。现

有大量质量m=1×10-6 kg(重力不计),电量大小

为q=2×10-4 C,速率均为20m/s的带负电的粒子从A处垂直磁场进入第一象限,速度方向与y轴夹角在0至1800之间。

(1)求这些粒子在圆形磁场区域中运动的半径;

(2)试证明这些粒子经过x轴时速度方向均与x轴垂直;

(3)通过计算说明这些粒子会经过y轴上的同一点,并求出该点坐标。

设其从K点离开磁场,O1和O2分别是磁场区域和圆周运动的圆心,因为圆周运动半径和磁场区域半径相同,因此O1AO2K为菱形,离开磁场时速度垂直于O2K,即垂直于x轴,得证。(6分)

相关主题
文本预览
相关文档 最新文档