当前位置:文档之家› 飞思卡尔MC9S12系列单片机地址影射以及分页问题

飞思卡尔MC9S12系列单片机地址影射以及分页问题

飞思卡尔MC9S12系列单片机地址影射以及分页问题
飞思卡尔MC9S12系列单片机地址影射以及分页问题

飞思卡尔MC9S12系列单片机地址影射以及分页问题

对于用MCU的人来说,不一定要明白HCS12(x) memory map的机制和联系。因为如果没有系统地学习操作系统和编译原理之类的课程,确实有些难度。并且,对于DG128 XS128这样的MCU,默认的emory 分配方式已经够用了。从这个意义上讲,搞清楚memory map似乎不必要。

但是,你有没有RAM不够用的情况?有没有想定义变量到FLASH ROM的情况?有没有因为欲提高寻址效率而定义变量到非分页区的情况?有没有写EEPROM但没写成功的情况?

飞思的memory非常灵活,通过地址映射来提高效率是芯片制造商的一惯作风(当然,首先这个CPU 要有这种寻址和内存映射转换机制),但是,纵观HCS12(x) memory map的东西,真是做到极限了。用我以前的话讲是,用有限的资源获得无限的好处了。看看DG128,64K的逻辑空间,映射之后RAM EEPROM FALSH ROM,都可以充分发挥作用,而且扩展FLASH也方便。而XS128更高级一筹,有专门的MMC管理HCS12(x) memory map。

我大体上了解这两个片子的HCS12(x) memory map,因此就此谈谈理解和看法,如有错误,请大家不吝指出

首先,说说6个概念。

1

memory map 地址映射,不要理解成内存映射,内存是RAM。

2 为什么要映射?因为CPU的寻址是对物理地址操作,但是单片机的RESET之后只有相对地址。相对地址,我理

解为是一块一块的,不是连断的。相对地址,顾名思义,是个相对的,没有映射之前,CPU是找不到他的,也

用不了相对地址的数据。粘一句百度上的解释:为了保证CPU执行指令时可正确访问存储单元,需将用户程序

中的逻辑地址转换为运行时由机器直接寻址的物理地址,这一过程称为地址映射。

3 RAM,这个不多说,是存变量和栈的东西,高速,掉电即失。

4 EEPROM,这个是一种特别的FLASH。一般用来保存少量数据,掉电不会丢失。FLASH也是非易失的,SD 卡就是

一种FLASH。EEPROM和普通FLASH的区别,在于读写时的字节操作上。这个我基本上没有体会,因为是相当底层

的东西。

5 FLASH和ROM,在HCS12(X)里,建议把FLASH和ROM等同起来理解。大家的程序就是放在这里面的。还有一个

CONST变量和中断向量也是存在这里面的。ROM可能有个误区,只能读不能写,一次性的,不错。但是,有加个

前提,应该是可控的ROM。

6 还有一个重要的register 空间,这个是存放I/0地址和单片机可编程寄存器的空间,是厂家定义的。在头文件里可以看到。如extern volatile PORTABSTR _PORTAB @(REG_BASE + 0x00000000)就是典型的register 空间映射。

我把memory map理解成为3个内容:一个是映射管理,一个是分页机制,一个是寻址的问题。映射管理,就

是单片机RESET之后,逻辑地址和物理地址之间的关系。分页机制的产生主要由于16位寻址能力有限,需要分

页解决,另外在虚拟内存管理上可以获得更多的优势。至于,CPU寻址的问题,这个就不深纠了。

这次以DG128的为例,XS128的稍复杂一些。理解了DG128的,XS128的问题就不大。

先说一说映射管理:DG128里通过设置INITRG、INITRM、INITEE来实现映射。具体的设置看DS吧。默认情况

下:register 空间映射到0X0000到0x03FF,这个优先级最高。RAM空间映射到0x0400-0X1FFF,看到没有,实际

上只有7K,也就是说能用的RAM只有7K。但是,DG128的RAM有8K的逻辑空间啊。所以,可以改INITRG、INITRM

、INITEE重映射以提高RAM的实际可用空间。怎么改,看需要了。WJ在这里逻嗦一句,可以看看PE 是怎么改的

。而FLASH映射了3个,有两个非分页地址0x4000-0x7FFF和0xC000-0xFEFF。还有一个分页地址,这一个分页地

址有6个页面。6个页面占用一个分页窗,用一个逻辑空间,如何让这6个页面协作工作并让CPU能找到他们呢?

这就是分页管理机制的内容。这6个页面分别是:

PAGE_38 = READ_ONLY 0x388000 TO 0x38BFFF;

PAGE_39 = READ_ONLY 0x398000 TO 0x39BFFF;

PAGE_3A = READ_ONLY 0x3A8000 TO 0x3ABFFF;

PAGE_3B = READ_ONLY 0x3B8000 TO 0x3BBFFF;

PAGE_3C = READ_ONLY 0x3C8000 TO 0x3CBFFF;

PAGE_3D = READ_ONLY 0x3D8000 TO 0x3DBFFF;

上面说的大家可以新建一个DG128工程,到PRM文件里看。

再看看分页管理机制:DG128里只有FLASH空间可以分页,而XS128里,分页的东西太多了。DG128里FLASH分

页是通过PPAGE寄存器搞定的。PPAGE是5位寄存器,CPU12内核规位每页只能有16KB。因此DG128的FLASH寻址空

间就是2^5*16KB=512KB了。

首先问一个问题:

中断函数为什么要加:#pragma CODE_SEG __NEAR_SEG NON_BANKED 这个声明?这个声明是干什么用的?这要还是要从FLASH分页和非分页的区别说起。

下面详细说一说,FLASH里非分页和分页的使用。要明白一点,分页是不可见的,要用的时候PPAGE 参与寻

址。

1 FLASH里非分页工作机制

FLASH一共为128K,一页是16K,那么应该有8页才是,但是实际只有6个分页。有2个非分页放在4000-7FFF

,和C000-FFFF两个逻辑地址窗里。那么,当程序的寻址在64K之内(2^16=64K,16位机的寻址能力是64K)时,

就不用分页了,直接使用那两个非分页的数据。实际上,3E页 3F页是可见的,其实他们就是那2个非分页的映

射。因此,使用非分页FLASH,就不须设置PPAGE寄存器,直接使用逻辑地址即可。见图1。

这点我们可以从以下看出:

/* non-paged FLASHs */

ROM_4000 = READ_ONLY 0x4000 TO 0x7FFF;

ROM_C000 = READ_ONLY 0xC000 TO 0xFEFF;

PLACEMENT

NON_BANKED, INTO ROM_C000/*, ROM_4000*/;

很直观地看出,把这两个可以直接使用逻辑地址的页面设为NON_BANKED, 那么中断函数放在

NON_BANKED里

,就可以把函数放在64K的寻址程序段中。这么一来,进中断就方便多了,效率也高很多。这就是对本文开篇

的解释。

2 FLASH里分页工作机制

好了,上面是3E页 3F页是可见的分页区,还有3D 3C 3B 3A 39 38不可见的分页区。当你的程序要寻址

64K以外的空间,即不是是可见的3E页 3F页时,就要涉及分页了。

PPAGE是MMC模块的东西,我搞了个图片大家看看,如图2。每一页在DG128中的逻辑地址都是由PPAGE 中的

页号和重叠窗口内地址组成的24位绝对地址。通过设置寄存器PPAGE,可以使用全部的FLASH空间。例如:程序

要将数据存入$3D页,设置PPAGE的值为$3D,那么逻辑地址范围说是$3D8000-$3DBFFF。有一点要注意:为了分页描述的完整性,可以如下理解:对于3E页 3F页有两个逻辑地址映射到物理地址。拿3E页来说,有$004000-$007FFF和$3E8000-$3EBFFF。

对于程序是如何寻址,这个是内核的东西,大家可以看看CPU这个文档。

通过分析,相信大家知道地址这个东西是非常有用的吧。下次说说XS128,XS128的RAM FLASH EEPROM 都可

以分页。更高级,更主动,编程弹性更大。

飞思卡尔单片机LED控制例程详解

我的第一个LED程序 准备工作: 硬件:Freescale MC9S08JM60型单片机一块; 软件:集成开发环境codewarrior IDE; 开发板上有两个LED灯,如下图所示: 实验步骤: 1.首先,确保单片机集成开发环境及USBDM驱动正确安装。其中USBDM的安装步骤如下:?假设之前安装过单片机的集成开发环境6.3版本:CW_MCU_V6_3_SE; ?运行USBDM_4_7_0i_Win,这个程序会在c盘的程序文件夹下增加一个目录C:\Program Files\pgo\USBDM 4.7.0,在这个目录下: 1〉C:\ProgramFiles\pgo\USBDM 4.7.0\FlashImages\JMxx下的文件 USBDM_JMxxCLD_V4.sx是下载器的固件文件; 2〉C:\Program Files\pgo\USBDM 4.7.0\USBDM_Drivers\Drivers下有下载器的usb 驱动 所以在插入usb下载器,电脑提示发现新的usb硬件的时候,选择手动指定驱动 安装位置到以上目录即可。 ?运行USBDM_4_7_0i_Win之后,还会在目录: C:\Program Files\Freescale\CodeWarrior for Microcontrollers V6.3\prog\gdi 下增加一些文件,从修改时间上来看,增加了6个文件,这些文件是为了在codewarrior 集成开发环境下对usb下载器的调试、下载的支持。

2.新建一个工程,工程建立过程如下: ?运行单片机集成开发环境codewarrior IDE ?出现如下界面 ●Create New Project :创建一个新项目工程 ●Load Example Project :加载一个示例工程 ●Load Previous Project :加载以前创建过的工程 ●Run Getting started Tutorial:运行CodeWarrior软件帮助文档 ●Start Using CodeWarrior:立刻使用CodeWarrior ?点击Create New project按钮,以创建一个新的工程,出现选择CPU的界面 如下,请选择HCS08/HCS08JM Family/MC9S08JM60,在右边的Connection窗口

飞思卡尔单片机问题总结

飞思卡尔单片机问题总结 常见问题回答精华列表 为了方便网友查询相关问题,特将常见问题精华帖整理归类 本帖不断更新,欢迎网友们给出建议 另外,在提问时,请在标题中选用具体问题的字眼避免使用请问某某、请教、紧急求助等作为标题。对于具体器件,可以直接把器件类型写上,比如HC08QY4等;对于具体技术,比如CAN/LIN/ZigBee等也直接写明,便于版主分类回答,也便于其他网友查询。 一、flash/EEPROM的操作 Tips: a、HC08系列MCU中,很多Monitor ROM中固化了对flash操作的函数,用户只需调用即可,参考AN2874等应用笔记 b、HCS08系列和HCS12系列MCU对flash的操作十分类似,可以参考 AN2140 1、FLASH操作函数 (HCS08系列)

https://www.doczj.com/doc/401427727.html,/dispbbs.asp?boardID=3&RootID=111907&ID= 111907 2、如何将flash中的程序copy至ram中 https://www.doczj.com/doc/401427727.html,/dispbbs.asp?boardID=3&RootID=104074&ID= 104074 3、S12内部寄存器的映射 https://www.doczj.com/doc/401427727.html,/dispbbs.asp?boardID=3&RootID=103261&ID= 103261 4、S12EEPROM的使用、 INITRG,INITRM,INITEE寄存器的说明https://www.doczj.com/doc/401427727.html,/dispbbs.asp?boardID=3&RootID=102260&ID= 102260 5.INITRM寄存器的使用 https://www.doczj.com/doc/401427727.html,/dispbbs.asp?boardID=3&RootID=103214&ID= 103214 二、编程技巧

飞思卡尔单片机寄存器及汇编指令详解

附录I:寄存器地址列表 直接页面寄存器总结

高页面寄存器总结

非易失寄存器总结 注:直接页面寄存器表地址的低字节用粗体显示,直接寻址对其访问时,仅写地址低字节即可。第2列中寄存器名用粗体显示以区别右边的位名。有0的单元格表示未用到的位总是读为0,有破折号的单元格表示未用或者保留,对其读不定。

附录II 指令接与寻址方式 HCS08指令集概括 运算符 () = 括号种表示寄存器或存储器位置的内容 ← = 用……加载(读: “得到”) & = 布尔与 | = 布尔或 ⊕= 布尔异或 ×= 乘 ÷ = 除 : = 串联 + = 加 - = 求反(二进制补码) CPU registers A =>累加器 CCR =>条件代码寄存器 H =>索引寄存器,高8位 X => 索引寄存器,低8位 PC =>程序计数器 PCH =>程序计数器,高8位 PCL =>程序计数器,低8位 SP =>堆栈指针 存储器和寻址 M =>一个存储区位置或者绝对值数据,视寻址模式而定 M:M + 0x0001 => 两个连续存储位置的16位值.高8位位于M的地址,低8位位于更高的连续地址. 条件代码寄存器(CCR)位 V => 二进制补码溢出指示,第7位 H => 半进位,第4位 I => 中断屏蔽,第 3位 N => 求反指示器, 第2位 Z => 置零指示器, 第1位 C => 进/借, 第0位 (进位第 7位 ) CCR工作性符号 – => 位不受影响 0 = > 位强制为0 1 = > 位强制为1

= >根据运算结果设置或清除位 U = > 运算后没有定义 机器编码符号 dd =>一个直接寻址0x0000–0x00FF的低8位(高字节假设为0x00) ee => 16位偏移量的高8位 ff => 16位偏移量的低8位 ii => 立即数的一个字节 jj => 16位立即数值的高位字节 kk => 16位立即数值的低位字节 hh => 16位扩展寻址的高位字节 ll => 16位扩展寻址的低位字节 rr => 相对偏移量 n —任何表达范围在0–7之间的一个有符号数的标号或表达式 opr8i —任何一个表达8位立即值的标号或表达式 opr16 —任何一个表达16位立即值的标号或表达式 opr8a —任何一个表达一个8位值的标号或表达式.指令对待这个8位值为直接页面64K 字节地址空间(0x00xx)中地址的低8位. opr16a —任何一个表达16位值的标号或表达式.指令对待这个值为直接页面64K字节地址空间. oprx8 —任何一个表达8位无符号值的标号或表达式,用于索引寻址. oprx16 —任何一个16位值的标号或表达式.因为HCS08有一个16位地址总线,这可以为一个有符号或者无符号值. rel —任何指引在当前指令目标代码最后一个字节之后–128 to +127个字节之内的标号或表达式.汇编器会计算包括当前指令目标代码在内的8位有符号偏移量. 寻址方式 隐含寻址(Inherent)如CLRA,只有操作码,无操作数,需要操作的数据一般为CPU寄存器,因此不需要再去找操作数了。(INH) 立即寻址 (Immediate)如LDA #$0A,“$”表示16进制,此时操作数位于FLASH空间,与程序一起存放。(IMM) 直接寻址 (Direct)如 LDA $88,只能访问$0000-$00FF的存储器空间,指令短速度快; (DIR) 扩展寻址 (Extended)如果操作数地址超出了$00FF,自动为扩展寻址;(EXT) 相对寻址(Relative)如BRA LOOP,指令中一般给出8位有符号数表示的偏移量。(REL) 变址寻址 (Indexed) 采用[H:X]或SP作为指针的间接寻址方式。( IX )( IX1 )( IX2 ) 变址寻址 (Indexed) 1〉无偏移量:CLR ,X 简写(IX) 2〉无偏移量,指令完成后指针加1(H:X = H:X + 0x0001) ,简写(IX+)只用于指令MOV和CBEQ指令中;

飞思卡尔单片机编程

关于Codewarrior 中的 .prm 文件 网上广泛流传的一篇文章讲述的是8位飞思卡尔单片机的内存映射,这几天,研究了一下Codewarrior 5.0 prm文件,基于16位单片机MC9S12XS128,一点心得,和大家分享。有什么错误请指正。 正文: 关于Codewarrior 中的.prm 文件 要讨论单片机的地址映射,就必须要接触.prm文件,本篇的讨论基于Codewarrior 5.0 编译器,单片机采用MC9S12XS128。 通过项目模板建立的新项目中都有一个名字为“project.prm”的文件,位于Project Settings->Linker Files文件夹下。一个标准的基于XS128的.prm文件起始内容如下: .prm文件范例: NAMES END SEGMENTS RAM = READ_WRITE DATA_NEAR 0x2000 TO 0x3FFF;

READ_ONLY DATA_NEAR IBCC_NEAR 0x4000 TO 0x7FFF; ROM_C000 = READ_ONLY DATA_NEAR IBCC_NEAR 0xC000 TO 0xFEFF; //OSVECTORS = READ_ONLY 0xFF10 TO 0xFFFF; EEPROM_00 = READ_ONLY DATA_FAR IBCC_FAR 0x000800 TO 0x000BFF; EEPROM_01 = READ_ONLY DATA_FAR IBCC_FAR 0x010800 TO 0x010BFF; EEPROM_02 = READ_ONLY DATA_FAR IBCC_FAR 0x020800 TO 0x020BFF; EEPROM_03 = READ_ONLY DATA_FAR IBCC_FAR 0x030800 TO 0x030BFF; EEPROM_04 = READ_ONLY DATA_FAR IBCC_FAR 0x040800 TO 0x040BFF; EEPROM_05 = READ_ONLY DATA_FAR IBCC_FAR 0x050800 TO 0x050BFF; EEPROM_06 = READ_ONLY DATA_FAR IBCC_FAR 0x060800 TO 0x060BFF; EEPROM_07 = READ_ONLY DATA_FAR IBCC_FAR 0x070800 TO 0x070BFF; PAGE_F8 = READ_ONLY DATA_FAR IBCC_FAR 0xF88000 TO 0xF8BFFF;

飞思卡尔16位单片机MC9S12XS128加密(程序下载不进去,正负极未短路,通电芯片不发烫)后解锁的方法及步骤w

飞思卡尔16位单片机MC9S12XS128加密(程序下载不进去,正负极未短路,通电芯片不发烫)后解锁的方法及步骤 /*****************************************************************************/ *本人用此法成功解救了4块板子【窃喜!】,此说明是本人边操作边截图拼成的,有些是在别的说明上直接截图【有些图本人不会截取,就利用现成的了,不过那也是本人用豆和财富值换来的】,表达不清之处还望见谅,大家将就着看吧!如能有些许帮助,我心甚慰!!! ————武狂狼2014.4.23 /*****************************************************************************/ 编译软件:CW5.1版本,下载器:飞翔BDMV4.6 【1】,连接好单片机,准备下载程序,单击下载按钮出现以下界面 或 (图1.1) 图 1.1——4中所有弹出窗口均单击“取消”或红色“关闭”按钮依次进入下一界面

(图1.2) (图1.3)

(图1.4) ******************************************************************************* ******************************************************************************* 【2】单击出现如下图所示下拉列表,然后单击 (图2.1) 出现下图(图2.2)对话框,按下面说明操作 (图2.2)

飞思卡尔MC9S12XS128单片机中断优先级设置简易教程

本教程试图用最少的时间教你飞思卡尔XS128单片机的中断优先级设置方法和中断嵌套的使用,如果是新手请先学习中断的基本使用方法。 先来看看XS128 DataSheet 中介绍的相关知识,只翻译有用的: 七个中断优先级 每一个中断源都有一个可以设置的级别 高优先级中断的可以嵌套低优先级中断 复位后可屏蔽中断默认优先级为1 同一优先级的中断同时触发时,高地址(中断号较小)的中断先响应 注意:高地址中断只能优先响应,但不能嵌套同一优先级低地址的中断 下面直接进入正题,看看怎么设置中断优先级: XS128中包括预留的中断一共有128个中断位,如果为每个中断都分配一个优先级寄存器的话会非常浪费资源,因此飞思卡尔公司想出了这样一种办法:把128个中断分为16个组,每组8个中断。每次设置中断时,先把需要的组别告诉某个寄存器,再设置8个中断优先寄存器的某一个,这样只需9个寄存器即可完成中断的设置。 分组的规则是这样的:中断地址位7到位4相同的中断为一组,比如MC9SX128.h中 这些中断的位7到位3都为D,他们就被分成了一组。0~F正好16个组。

INT_CFADDR就是上面说到的用来设置组别的寄存器: 我们需要设置某个组别的中断时,只要写入最后8位地址就行了,比如设置SCI0的中断优先级,就写入0xD0。 设置好组别之后,我们就要该组中相应的中断进行设置,设置中断的寄存器为 这其实是一组寄存器,一共有8个,每个都代表中断组中的一个中断。对应规则是这样的:中断地址的低四位除以2 比如还是SCI0,低四位是6,除以二就是3,那么我们就需要设置INT_CFDATA3 往INT_CFDATAx中写入0~7就能设置相应的中断优先级了 拿我本次比赛的程序来举个例子:我们的程序中需要3个中断:PIT0,PORTH,SCI0。PIT0定时检测传感器数值,PORTH连接干簧管进行起跑线检测,SCI0接收上位机指令实现急停等功能。因此中断优先级要SCI0>PORTH>PIT0。 我们先要从头文件中找出相应中断的地址: PIT0【7:4】位为7,选择中断组: INT_CFADDR=0x70;

飞思卡尔单片机知识点

1、单片机组成:1> CPU 2> 存储器3>I/O ; 2、存储器包括2大类:ROM , RAM 3、标准ASCII码使用(1)个字节表示字符; 4、BCD码是用()进制表示的()的数据; 5、HCS08QG8的最小系统包括(电源电路,复位电路,下载口,(内部时钟)); 6、QG8管脚数量(16)、只能输入的是(PTA5)、只能输出的是(PTA4)、程序下载的是、接外部时钟的是; 7、QG8的管脚可以作为数字输入输出、也可以作为模拟输入,可以作为模拟输入的有(); 8、QG8管脚复用优先级最低的功能是(I/O); 9、QG8存储器配置中,不同资源的分界线……; 10、CPU寄存器有(A, HX, PC, CCR, SP); 11、可以执行位操作的地址范围(0X0000~0X005F); 12、有地址的寄存器分成了(3)块(0页,高页,非易失); 13、如何在C语言中定义常数(数据类型变量名;),如何指定变量的地址(数据类型变量名@ 地址;); 14、堆栈的管理者是寄存器(SP); 15、SP的复位缺省值是(0X00FF); 16、堆栈对数据的操作特点是(向上生长型:先压后涨、先减后弹); 17、堆栈一般在RAM的高地址区域还是低地址区域?高地址区 18、内部时钟源包括哪4大部分? 19、外部时钟分哪2大类;振荡器,整形外部时钟 20、内部时钟中FLL固定倍频(512倍频); 21、ICS的7种工作模式(FEI, FEE, FBI, FBILP, FBE, FBELP, stop); 22、ICS的内部参考时钟是可以校准、微调的,调整的寄存器名(ICSTRM);该寄存器的数值越大,输出时钟频率越(低); 23、FLASH是按页管理的,页大小(512)字节,每页分(8)行; 24、高页寄存器位于FLASH的最后一页的(第六行/0xFFB0~0xFFBF)位置; 25、FLASH的最后一页最后一行是(中断向量); 26、FLASH块保护寄存器(FPROT);块加密寄存器(FOPT);对应的非易失寄存器分别是(NVOPT, NVPROT); 27、FLASH操作的一般过程是(); 28、FLASH操作的有效命令有(空检查,字节编程,突发模式编程,页擦除,全部ROM 擦除); 29、记录程序运行状态的CPU寄存器是(CCR); 30、指令系统包括6大类指令,分别是(算术运算指令、数据传送指令、数据和位操作、逻辑运算、程序控制、堆栈处理); 31、寻址方式是指(CPU访问操作数和数据的方法); 32、寻址方式包括7大类16种,分别是: INH IMM DTR EXT IX,IX1,IX2,SP1,SP2,IX+,IX1+ REL IMD, DD,IX+D,DIX+ 33、8指令模板和6指令模板分别是(); 34、QG8是高电平复位还是低电平复位?低电平 35、QG8数据存储器RAM的大小为(512)字节; 36、上电复位期间将管脚(A4)设置为(低)电平可以进入调试模式 37、QG8的存储器结构为冯·诺伊曼还是哈佛结构?冯诺依曼

飞思卡尔单片机复习题

复习题: 1.根据总线时钟频率会计算TCNT计数时钟周期的最大值?最小值?溢出周期最大值? 如:fbus=2.4576MHz,值分别为多少?若fbus=8MHz呢? 2.熟悉LED共阴极共阳字型码的计算。 3.熟悉A W60各输入输出端口功能。 4. 不带缓冲和带缓冲的PWM有什么差异性? 5.为什么要将某些寄存器名和寄存器位在头文件中进行宏定义? 6.简述中断的作用与处理过程。 7.AW60 MCU都有哪些中断源? 8.为了实现对键盘的编程,如何区分按键是否真正地被按下,还是抖动?如何处理重键问题? 9.为了实现对键盘的编程,如何识别键盘上的按键? 10.实现计数与定时的基本方法有哪些?比较它们的优缺点。 11.比较AW60定时器模块实现输出比较功能与PWM功能的异同点。 12.为什么要对采集的数据进行滤波,有哪些滤波方法? 13.什么是输出比较?主要用途是什么? 14.什么是中断?什么是中断向量?什么是中断向量地址?GP32一共有多少个中断源? 15.什么是LED静态扫描、LED动态扫描? 16.请描述键盘逐行逐列扫描法原理。判断是否有键按下通常有哪两种方法?各有何优缺点?17.键盘设计思路中是如何获取按键的行列位置信息的?以3*3键盘为例。 18.LED和LCD各有何特点? 19.什么是脉宽调制波?脉宽调制输出功能主要用途是什么? 20.微控制器的片外晶体振荡器的频率是不是越高越好?为什么? 21.简述定时接口的基本原理。 22.如果系统中需要9个按键,那么矩阵式键盘接口方案应如何设计?并编写键盘初始化子程序及读取键值子程序,键值存入A中,若无键按下,为$FF。 23.设计并编程:仿照本章给出的定时器1通道0输入捕捉中断里程,捕捉两路输入信号,分别用相应的指示灯指示。 24.使用中断方式,对通道0输入的模拟信号连续采样8次,送入缓冲区。 25.用AW60不带缓冲的输出比较功能产生周期约为1S的方波。设内部总线时钟频率为32.768KHz。26.根据P178页码图9-3硬件连接图,编写程序完成在四个8段数码管上显示8字循环的程序。27.根据P178页码图9-3硬件连接图,编写程序完成在四个8段数码管上的4个8段abcdefgh 轮流点亮。 28.编写一个子程序对T1CH0初始化,使T1CH0产生20ms定时中断,并编写T1CH0中断服务程序使PTC0输出周期为1S的方波。设fbus=8MHz。 29.复习所有的实验。 30.复习所有的例题、作业题。 题型:选择题(30分)、问答题(40分)、编程题(30分) 1

飞思卡尔技术报告

K60模块分配 K60的简介,我们本次使用了以下模块。 1. FTM模块:K60中集成3个FTM模块,而今年我们选用两个B车进行追踪循迹。B车模使用单电机、单舵机,另外需要一个编码器。所以对3个FTM模块进行如下配置:FTM0用以产生300Hz PWM信号控制舵机,FMT1用以产生18.5KHz PWM信号控制电机,FTM2用以采集编码器数据。 2. 定时器模块:K60中有多个定时器模块,我们使用了其中2个。其一用以产生5ms 中断,处理相关控制程序。另一个用以超声波模块的计时。 3. SPI模块:我们使用了K60的一个SPI模块,用以和无线射频模块NRF24L01P通信。 4.外部中断:我们使用了三个外部中断。第一个是PORTA的下降沿中断,用以响应干簧管检测到磁铁。第二个是PORTD的跳变沿中断,用以响应超声波模块的输出信号。最后一个是PORTE的下降沿中断,用以响应NRF24L01P模块的相关操作。 数据采集算法 传感器是智能车的眼睛,它们给智能车循迹和追踪提供了必不可少的信息。因此,在智能车软件设计中必须保证数据采集算法的稳定性,同时兼顾其快速性。本车比赛,我们的智能车主要采集以下传感器的数据:电感传感器电路板、编码器、超声波、干簧管。下面主要详述超声波模块、电感传感器电路板的数据采集。 1 .超声波模块数据采集 我们使用的超声波模块的DO引脚输出50Hz的矩形波信号,通过高电平的时间向单片机传递数据。本超声波传感器的高电平时间为声波单程传输的时间,通过这个时间可计算出两车之间的距离。 我们使用外部中断和计时器结合的方式测量高电平时间。首先配置PORTD11为跳变沿中断。中断被触发时,如果PORTD11为高电平则开始计时,如果PORTD11为低电平则停止计时并记录时间间隔。 2. 电感传感器电路板的数据采集 电感传感器电路板通过输出电压的大小反应响应位置和方向的磁场强度。本次比赛中,我们使用了10个电感分布在6个不同位置,因此每个周期都要采集10路ADC数据,每路ADC数据采集32次进行平均滤波。K60芯片中有两路ADC模块,为了最大程度的减少采集数据的时间,我们采用两个ADC模块并行采集的方法。 首先,将10路ADC分为两组,第一组6个使用ADC0模块采集,第二组4个使用ADC1模块采集,两个ADC模块同时采集数据。以第一组为例,依次采集6路ADC 数据,循环32次。当两个ADC模块都完成任务时,ADC转换结束。最后进行平均滤波。 控制算法 1.定位算法 A.两个电感定位算法 在电磁组算法设计中,“差比和”(即用连个电感数据的差除以它们的和)是一个简单易用的定位算法,但是我们测量发现“差比和”算法得出的偏差距离用着较大非线性。如下图所示,其横轴为实际偏差(单位mm),其纵轴为“差比和”得出的偏差。可以发现,在实际偏差较小时,“差比和”算出的偏差变化较快,实际偏差较大时“差比和”算出的偏差变化较缓。

飞思卡尔S12系列寄存器和中断讲解

S12的输入/输入端口(I/O口) I/O端口功能 可设置为通用I/O口、驱动、内部上拉/下拉、中断输入等功能。 设置I/O口工作方式的寄存器有: DDR、IO、RDR、PE、IE和PS。 DDR:设定I/O口的数据方向。 IO :设定输出电平的高低。 RDR:选择I/O口的驱动能力。 PE:选择上拉/下拉。 IE:允许或禁止端口中断。 PS:1、中断允许位置位时,选择上升沿/下降沿触发中断;2、中断禁止时且PE有效时,用于选择上拉还是下拉。 I/O端口设置 1、A口、B口、E口寄存器 (1)数据方向寄存器DDRA、DDRB、DDRE DDRA、DDRB、DDRE均为8位寄存器,复位后其值均为0。 当DDRA=0、DDRB=0、DDRE=0 时A口、B口和E口均为输入口。 否则,A口、B口、E口为输出口。当DDRA、DDRB、DDRE的任何一 位置1时,则该位对应的引脚被设置为输出。 例如,将A口设置为输出口,则其C语言程序的语句为:DDRA=0xff;(2)A口、B口、E口上拉控制寄存器PUCR PUCR为8位寄存器,复位后的值为0。当PUPAE、PUPBE、PUPEE被设置为1时,A口、B口、E口具有内部上拉功能;为0时,上拉无效。当A口、B口、E口为地址/数据总线时,PUPAE和PUPBE无效。 (3)A口、B口、E口降功率驱动控制寄存器RDRIV RDRIV为8位寄存器,复位后的值为0,此时,A口、B口、E口驱动保持全功率;当RDPA、RDPB、RDPE为1时,A口、B口、E口输出引脚的驱动功率下降 (4)数据寄存器PORTA、PORTB、PORTE PORTA、PORTB、PORTE均为8位寄存器,复位后的值为0,端口引脚输出低电平;要使引脚输出高电平,相应端口对应位应该置1。 由于PE0是/XIRQ、PE1是IRQ,因此,PE0和PE1只能设置为输入。

飞思卡尔单片机优点

常有人问freescale的单片机有什么优点,今天转篇别人写的文章来,可以部分回答这些朋友的问题,但需要说明的是下面这篇文章主要是针对S08,S12这类单片机说的,飞思卡尔处理器远非只是单片机。飞思卡尔(freescale)半导体公司,就是原来的Motorola公司半导体产品部。于2004年从Motorola分离出来,更名为freescale!freescale系列单片机采用哈佛结构和流水线指令结构,在许多领域内都表现出低成本,高性能的的特点,它的体系结构为产品的开发节省了大量时间。此外freescale提供了多种集成模块和总线接口,可以在不同的系统中更灵活的发挥作用!所有单片机都具有的功能我就不多说了,freescale单片机的特有的特点如下: (1)全系列: 从低端到高端,从8位到32位全系列应有尽有,最近还新推出8位/32位管脚兼容的QE128,可以从8位直接移植到32位,弥补单片机业界8/32 位兼容架构中缺失的一环! (2)多种系统时钟模块:三种模块,七种工作模式 多种时钟源输入选项,不同的mcu具有不同的时钟产生机制,可以是RC振荡器,外部时钟或晶振,也可以是内部时钟,多数CPU同时具有上述三种模块!可以运行在FEI,FEE,FBI,FBILP,FBE,FBELP,STOP这七种工作模式! (3)多种通讯模块接口: 与其它系列的单片机不同,freescale单片机几乎在内部集成各种通信接口模块:包括串行通信接口模块SCI,多主I2C总线模块,串行外围接口模块SPI,MSCAN08控制器模块,通用串行总线模块(USB/PS2)! (4)具有更多的可选模块:某些MCU具有LCD驱动模块,某些MCU带有温度传感器,某些MCU具有超高频发送模块,部分MCu含有同步处理器模块,某写含有同步处理器的MCU 还具有屏幕显示模块OSD,还有少数的MCU具有响铃检测模块RING和双音多频/音调发生器DMG模块! (5)可靠性高,抗干扰性强 (6)低功耗 也许freescale系列的单片机的功耗没有msp430的低,但是他具有全静态的“等待”和“停止”两种模式,从总体上降低您的功耗!新近推出的几款超低功耗已经与msp430的不相上下! (7)多种引脚数和封装选择 可以说freescale系列单片机具有的MCU种类是最多的了,有些MCU本身就有几种不同的引脚数和封装形式,这样用户各异根据需要来选择,总有一款适合你的开发的单片机! 有关于部分人的freescale单片机模块寄存器多,配置困难不容易上手,可以说freescale单片机模块寄存器的确相对多,就拿GPIO来说就有端口数据寄存器、端口数据方向寄存器、端口内部上拉使能寄存器、端口转换率使能寄存器和端口驱动强度选择寄存器5个寄存器,它的寄存器多是为了解决客户对IO端口的高要求和高可靠性要求,如果不考虑这些,您就只需要配置端口数据寄存器、端口数据方向寄存器这两个寄存器,这就和其他的单片机如430和pic 的难易度一样了! 独有的BDM仿真开发方式和单一引脚用于模态选择和背景通信,HCS08 的开发支持系统包括了背景调试控制器(BDC)和片内调试模块(DBG),BDC提供了一个至目标MCU 的单线调试接口,也就是提供了一个便于在片内FLASH 或其它固定存储器编程的接口.

飞思卡尔HC12系列单片机USBDM烧录操作指导

飞思卡尔HC12系列单片机USBDM烧录操作指导 步骤一 将USBDM烧录器连接到电脑的USB口,然后,双击桌面的“hiwave.exe”图标,出现图1的窗口。 图1 假如USBDM没有连接或者连接不良,会出现如下图2的窗口,关掉程序,检查连接,再启动程序,直到出现图1的窗口。

步骤二. 将USBDM连接到需要烧录的仪表上,点击图1的“OK”按钮,将窗口最大化,然后看显示器的右下角,见图3所示,有“ACKN SYNC STOPPED”,表示连接正常。假如出现图4的窗口,表示BDM没有和仪表连接上,检查下载线。点击Cancel按钮。直到出现图3的“ACKN SYNC STOPPED”状态。 图3 图4 步骤三 点击图5的菜单栏的“TBDML HCS12”,然后点击“Load”,出现目标文件选择的窗口。见图6

图6 选择烧录的目标文件,目标文件的后缀名为“.abs”, 这里举例 1:选择DM281HZ-V1.2.abs, 2:勾选Automatically erase and program into FLASH and EEPROM 3:不勾选V erify memory image after loading code,为了节省烧录时间,不勾选这个选项。 3: 勾选Run after successful load.(可以在程序烧完的时候,自动的运行程序,看仪表是否能工作,可以作为仪表的第一次粗测) 4:点击“打开” 5:等待烧录完成, 图7,正在擦除……

图8,正在编程…… 图8 6:如果在完成编程后,仪表没有自动的进入工作状态,有以下几种可能: a.仪表有问题 b.烧录时出现问题,这个问题可以通过配置烧录选项来排除,见图6, 可以勾选选项V erify memory image after loading code ,在编程后会进行程序校验,如果校验错误表示烧录出现问题,一般来说出现烧录错误的几率很小,但也不排除。为了在批量烧录的时候,节省时间,没有选择校验。 c.烧录文件选择错误 7:如果仪表正常,拔掉USBDM和仪表的下载线,直接换上新的仪表,重复步骤三。 给程序建立快捷方式,方便操作 由于hiwave.exe程序在桌面没有快捷方式,可以自己建立一个快捷方式。 1. 打开路径C:\Program Files\Freescale\CodeWarrior for S12(X) V5.0\Prog,找到“hiwave.exe”文件 (如果CodeWarrior不是安装在C盘,则请按照…Freescale\CodeWarrior for S12(X) V5.0\Prog 寻找。)2.在文件上点击右键选择“发送到”—选择“桌面快捷方式”,就可以在桌面看到一个“hiwave.exe”程 序文件的快捷图标。以后再启动程序的时候,只需点击桌面的这个图标即可。 图1

飞思卡尔万能初始化函数

/*IQR.H */ /*Designed by chen binbin */ /*2011-1-26 18:39 */ /*单片机外部接收中断用于计数或处理*/ /*实时事件 */ #include /* common defines and macros */ #include unsigned char IRQ_flag=0; unsigned int IRQ_count=0; /*中断初始化*/ void IRQ_Init(void) { IRQCR_IRQE=1; //1 下降沿触发中断,0 低电平有效 IRQCR_IRQEN=1;//使能IRQ 中断 } //中断服务子函数 #pragma CODE_SEG __NEAR_SEG NON_BANKED void interrupt 6 IRQ_ISR(void)//PE1 接收中断 { IRQ_flag=1; IRQ_count++; //IRQCR_IRQEN=0;//这两条指令共同作用清除中断标志 //IRQCR_IRQEN=1;//以响应下一次中断 } /*PIT.H / /*Designed by chen binbin */ /*2011-1-27 18:03 */ /*4 位内部定时器可产生准确的时间中断*/ /*用于处理特定时间下系统需求功能 */ #include /* common defines and macros */ #include #define PITTIME0 10000//设定为20ms 定时 #define PITTIME1 20000//设定为40ms 定时 #define PITTIME2 30000//设定为60ms 定时 #define PITTIME3 40000//设定为80ms 定时 volatile uint count0=0,count1=0,count2=0,count3=0; //定时器初始化 void PIT_Init(void)//定时中断初始化函数 { //通道0 初始化,20ms 定时中断设置 //PITCFLMT_PITE=0; //定时中断通道关,4 个通道均关闭 PITCE_PCE0=1;//定时器通道0 使能 PITMUX_PMUX0=0;//0:8 位定时器0 与16 位定时器共同作用,需设定PITMTLD0 初值//1:8 位定时器1 与16 位定时器共同作用,需设定PITMTLD1 初值

飞思卡尔单片机各种功能程序

流水灯四种效果: #include /* common defines and macros */ #include #include /* derivative information */ #pragma LINK_INFO DERIV ATIVE "mc9s12xdp512" #include "main_asm.h" /* interface to the assembly module */ unsigned char temp; //unsigned char pa @0x200; //unsigned char pb @0x202; unsigned char key; static void delay(void) { volatile unsigned long i; for(i=0;i<100000;i++); } static unsigned char random; static void Random(void) { random = (unsigned char)rand(); } void effect1() { unsigned char c; for(c=0;c<=6;c++) { delay(); PORTB = ~(1<=1;c--) { delay(); PORTB = ~(1<=1;c--) {

飞思卡尔电机控制模块详解

M=2. 一、关键点 1、MC 模块驱动电机的PWM 波频率在20K 左右时效果比较好。DITH 位等于0时,计算方法如下: DITH=1时, 其中,左对齐和有对齐方式下 M=1,中间对齐是2、MC 模块定时计数器的中断最好禁止,如果开启,在相应的中断服务程序中至少要添加一条“清楚中断标志位”的指令。 3、电机控制模块共8个通道,每个通道有2个Pin 脚组成。 4、Fast 位控制精度,7位或者11位。 5、给周期寄存器写入数值,可启动 MC 计数器,写0关闭所有通道的计数器。 6、MCAM[1:0]写入0x00可关闭某个channel ,写入非零值不是启动MC 计数器,而是控制对齐方式。为了精确周期寄存器的值应尽量大,Ftc 应尽量小。 二、寄存器寄存器讲解讲解讲解:: 1 MCCTL0 (Motor Controller Control Register 0) 第7位保留; 第6、5位是MCPRE[1:0]控制电机控制器定时计数器时钟f TC 预分频系数。如下: 第4位 MCSWAI 置1,等待模式中电机控制器正常运行,清0,在等待模式中电机控制模块时钟关闭。 第3位,FAST ,清0,电机控制器PWM 模块占空比寄存器分辨率设置为11位,置1,电机控制器PWM 模块占空比寄存器分辨率设置为7位。 第2位,DITH ,清零,电机控制器dith 特性禁止,置1电机控制器dith 特性使能。 第1位保留; 第0位MCTOIF ,为1表示,电机控制模块定时计数器溢出;为0,表示自上次复位或清零以来,电机控制模块定时计数器没有发生溢出。 2 MCCTL1 (Motor Controller Control Register 1)

基于飞思卡尔的Bootloader程序下载更新

基于飞思卡尔的Bootloader程序下载更新 前言 写这篇文档是因为大三暑假时在一家公司实习,做一个基于飞思卡尔的bootloader远程更新项目,刚开始定的技术指标是基于MC9S12XS128单片机的Bootloader程序、远程(基于GSM网络)和CAN总线通信。但因为我只是一个本科实习生而且实习时间只有一个多月,所以只完成了基于SCI的本地写入.S19文件的更新。这大概也就是这篇文档所包含的内容啦。 整个程序是存在瑕疵甚至基本上可以说是不成功的,但是我觉得自己在做这个项目的过程中确实也解决了网上没有提到或者没有答案的一些问题,特写此文档,希望大家各取所需,如果有什么高见或者发现了我明显错误的地方,也非常欢迎大家给我指出。欢迎大家前来指教。 小目录 一、Bootloader的含义---------------------------------------------------------2 二、SCI串口的使用------------------------------------------------------------3 三、Flash的擦除和写入--------------------------------------------------------5 四、.S19文件的写入-----------------------------------------------------------13 五、心得体会-----------------------------------------------------------------14

飞思卡尔讲解

哈尔滨工程大学本科生毕业论文 第1章绪论 1.1论文研究的背景 闭环控制是自动控制论的一个基本概念,也称反馈控制,在日常生活的各种控制实例中有具体的表现方式,比如常用交通工具中电车的速度控制,汽车的速度控制,冰箱的温度调节等,其中采用闭环控制方案对直流电机进行调速是生产生活中最常见的一种闭环控制实例。在工业自动化飞速发展的今天,利用高性能单片机来完成对仪器设备的自动化控制是其中最重要的一个环节。本文研究对象是基于Freescale单片机的移动小车控制系统设计,涉及到对直流电机的速度控制,倒车防撞报警器设计,LCD(Liquid Crystal Display)显示等功能,既应用了本科阶段所学的电路基础知识、自动控制理论知识,又充分利用了Freescale单片机的高性能与可靠性。 1.1.1速度闭环控制系统 随着工业自动化以及电子信息技术和自动控制技术的不断发展,电机的种类不断增加,性能也更加出色。以电机为动力的车辆的自动化程度也越来越高,对车辆自动化程度的要求也越来越高,电车近几十年来发展十分迅速,直流电机电瓶车的速度控制水平也得到了极大的提高。转速控制作为电机控制中最关键的部分,具体反映到电车就是在车体速度控制上,而速度闭环控制作为重要的控制方式,得到了最广泛的应用。 直流电机速度闭环控制系统包括以下内容: (1)直流电机在接到起动电压后起动; (2)转速达到预设速度后,利用PWM脉宽调制电路产生方波,并通过单片机设定占空比,达到无级调速; (3)采用直流电机反接制动原理来调速,在增量PID控制算法下达到稳定转速的效果。 1

哈尔滨工程大学本科生毕业论文 速度闭环控制系统硬件组成: (1)PWM脉宽调制电路 (2)测速装置(电压输出型光电码盘) (3)动力装置(直流电机) (4)直流电机驱动器 1.1.2超声波倒车防撞系统 改革开放以后,我国经济快速发展,汽车的拥有量大大增加,一些大中型城市交通拥挤,导致交通事故频发。安全驾驶逐渐成为大家关注的焦点,倒车防撞系统的需求非常迫切,因此对其进行设计生产显得非常重要。此倒车防撞系统利用了超声波的特点和优点,将超声波测距和飞思卡尔单片机结合为一体,设计出一种基于MC9S12DG128B单片机的超声波倒车防撞报警系统。 1、超声波测距模块 在本系统中,超声波模块的主要任务是:通过单片机产生40KHz的脉冲,来激发发射探头发出超声波,接收探头接收到超声波后反馈给单片机一段脉冲。单片机定时器记录发射跟接收的40KHz脉冲的时间,算出时间间隔,然后通过编程算法计算出距离。 2、防撞报警系统 本系统采用LED发光二极管作为报警器。在车体逐渐逼近障碍物的过程中,通过编程使单片机引脚产生一定频率的脉冲,驱动发光二极管。当倒车时候,如果逼近障碍物,则发光二极管闪烁频率会加快,进而判定有障碍物,达到防撞报警的作用。 1.1.3LCD液晶显示系统 在日常生活中,我们对液晶显示器并不陌生。液晶显示模块已作为很多电子产品的最大辅助功能,如在计算器、万用表、电子表及很多家用电子产品中都可以看到,显示的主要是数字、专用符号和图形。在单片机的人机交 2

飞思卡尔入门程序总结

1.对IO口输入输出操作程序举例:A口接流水灯并实现闪烁 void main(void) { while(1) { DDRA=0xff; delay(500); PORTA=0xff; delay(500); PORTA=0; } 另外,B、E口的IO功能操作也是一样的,因为位数一样寄存器一样,其他口的寄存器就不太一样了!J,P,M,T,S这五个口除具有数据寄存器外,他们都另外多出另一个端口输入寄存器(该寄存器功能我未知)! 2.SPI总线接口 SPI是一种高速高效的同步串行接口,这种接口主要用于MCU与外部的接口芯片交换数据,只要有SPI口的芯片都可以与单片机相连形成主从机系统进行数据的传递,比如SPI用于移位寄存器74HC164,这是个串入并出的芯片这样可以实现扩展IO口。 还有AD转换芯片AD7793,可以实现数模转换,还有飞思卡尔公司的电源管理芯片MC33389。 因设备有限此功能待以后调试! 3.SCI总线接口 MC9S12DG128单片机有两个SCI模块,可以选用其中任何一个。他的使用有8个相应寄存器共设置,其中有波特率设置寄存器SCIBDH,SCIBDL,还有控制寄存器SCICR1,SCICR2,状态寄存器SCISR1,SCISR2,数据寄存器SCIDRH,SCIDRL; 简单讲SCI的使用就是寄存器初始化,数据传送方式设置,下面举个初始化使用的简单例子:SCICR2=0x08;//发送使能设置 SCIBDH=0x00;//波特率设置为9600 SCIBDL=0x9c; 就是这样这个是简单实用时的设置,发送函数如下: While(!(SCISR1&0x40))//检测是否发送完毕,一旦发送完毕就进入到死循 环里边 {} SCIDRL=C;//C代表需要传送的数据 4.有关定时器TCNT TCNT是芯片内部的16位主定时器,他不停地对内部时钟信号进行计数,从0x0000直到0xffff,计满后溢出又返回到0x0000,程序随时可以读取,但在普通模式下禁止写入。 TCNT应该按字访问,分别访问高低字节将出现错误! 可以直接利用它的来实现一些延时的功能! 例如下面的程序: #include #include "derivative.h" void TimerOverflow() { unsigned char i=1,j=0x80;

相关主题
文本预览
相关文档 最新文档