当前位置:文档之家› 单光子成像

单光子成像

单光子探测用于光子统计测量的研究

论文第49卷第8期 2004年4月 单光子探测用于光子统计测量的研究 肖连团降雨强赵延霆尹王保赵建明贾锁堂 (山西大学物理电子工程学院, 量子光学与光量子器件国家重点实验室, 太原 030006. E-mail: xlt@https://www.doczj.com/doc/3f8172850.html,) 摘要实验研究了通过记录每一个光子事件直接测量微弱脉冲激光(平均光子数n≈0.1, 脉冲持续时间10ns)的Mandel 参数. 在基于Hanbury-Brown-Twiss探测结构, 取样时间内每个单光子计数器最多探测到一个光子的情况下, 测量发现低于阈值电流工作的二极管激光呈Super-Poisson统计分布. 另外验证了工作于远高于阈值电流的二极管激光(强度噪声主要为散粒噪声)的Poisson分布相干态的Mandel 参数Q C约为?n/2. 在测量误差内, 实验结果与理论分析一致. 关键词光子统计Mandel参数死区时间单光子计数器Poisson分布 辐射源的光量子态特性对于研究近代量子光学中光与物质的相互作用具有重要意义. 对光量子态的严格表述需要密度算符或Wigner函数, 但是这些参数在通常的实验条件下难以测量[1]. 为了进行光场的非经典特性研究, 通常利用基于经典电磁场理论的Hanbury-Brown-Twiss (HBT)结构形式[2]测量光子统计分布. 通过50/50光分束器把光束分为两束, 其中一束经过一个可调变的时间延迟装置, 由两个光电探测器分别接收后进入相关器进行处理, 从而获得两束光强度涨落的关联特性. 这种光子统计测量的方法是单光子源如单原子[3]、单分子[4]和量子点[5]研究中的重要测量手段, 同时在分子生物学[6]和生物化学[7]等学科领域有着广泛的应用. 分析光子统计特性普遍采用对二阶关联函数的测量, 即通过测量一定时间内的光子数和两通道光子事件之间的时间间隔[8], 利用时间幅度转换得到的峰值大小确定光子源的光子分布概率P S(n; n = 0, 1, 2), 计算Mandel参数Q. 但是这种开始-停止的测量方法不能给出光子数在时域上的起伏变化, 同时不能准确给出光子统计概率. 最近Roch小组[4]通过记录两个单光子计数器响应触发式单分子光源输出的每一个事件, 由大量光子计数事件获得统计分布概率P S(n), 直接测量Mandel 参数Q. 利用单光子计数器在死区时间(数十至数百纳秒)不对光子响应的特点,即在测量过程中单光子计数器首先对第1个到达的光子信号响应, 而对后续死区时间到达的光子没有反应, 使得在小于死区时间的取样时间内对每次光脉冲触发信号事件最多只能探测到一个光子. 研究得到基于HBT形式的单光子探测对具有Poisson 光子统计的相干态光脉冲的Mandel 参数Q C = ?n/2, n为平均光子数, 通过比较测得Q与Q C的大小分析单分子光源的光子统计分布特性. 单光子态的量子信息传输是量子密钥分配的物理基础[9]. 在量子密钥分配的实际应用方案中[9,10], 人们通常认为单模二极管激光的光子统计分布特性服从相干态Poisson分布, 通过不断衰减二极管激光强度以降低双光子和更多光子的分布概率, 把具有超低平均光子数(远小于1)的相干态近似为单光子态. 这里我们采用直接测量Q参数的方法研究单模二极管激光脉冲的光子统计分布特性. 通过测量比较连续二极管激光工作于不同驱动电流下强度噪声中的过剩噪声与散粒噪声基准, 研究二极管激光分别工作于阈值电流、强度噪声主要为过剩噪声和远高于阈值电流工作时强度噪声为散粒噪声基准的情况下经脉冲调制和强衰减后(脉冲持续时间10 ns, 平均光子数n≈0.1)的光子统计分布, 并首次给出了这种测量方法的误差分析. 1基于HBT结构的单光子探测与光子统计特性 为了研究光子数随时间的起伏变化, 我们首先给出W个取样周期内光子数随时间的起伏, 定义归一化相对涨落V W, V W <(?n)2>W /<n>W, (1) 这里<(?n)2>w 2 1 ()/, W i W i n n W = ? ∑<>n i是第i个脉冲激发时探测到的光子数, <n>W是W个激发周期内探测到的平均光子数. 对于<n>W = 0, V W定义为1. 对于光电计数为Poisson 分布时V W= 1, 相应V W < 1为Sub-Poisson分布, V W > 1为Super-Poisson 分布. 如图1所示. 如果考虑全部采样事件, 测量结果对应单一相对涨落V. 为了分析光子统计分布, 我们采用Mandel

【CN209946009U】光学相干层析和双光子荧光同步成像系统【专利】

(19)中华人民共和国国家知识产权局 (12)实用新型专利 (10)授权公告号 (45)授权公告日 (21)申请号 201920375721.9 (22)申请日 2019.03.22 (73)专利权人 中国科学院苏州生物医学工程技 术研究所 地址 215163 江苏省苏州市高新区科技城 科灵路88号 (72)发明人 徐欣 高峰 张欣 金幸杰  (74)专利代理机构 北京远大卓悦知识产权代理 事务所(普通合伙) 11369 代理人 韩飞 (51)Int.Cl. G01N 21/64(2006.01) (ESM)同样的发明创造已同日申请发明专利 (54)实用新型名称 光学相干层析和双光子荧光同步成像系统 (57)摘要 本实用新型公开了一种光学相干层析和双 光子荧光同步成像系统,包括双光子光源、快轴 扫描模块、慢轴扫描模块、第一二向色镜、共用扫 描模块、光学相干层析模块、第二二向色镜、双光 子荧光成像模块以及成像显微物镜。本实用新型 的光学相干层析和双光子荧光同步成像系统,通 过将双光子扫描成像技术和光学相干层析成像 技术相结合,采用共光路共振镜同步扫描成像方 法有效减少了系统硬件,实现了光学相干层析技 术和双光子荧光扫描成像扫描速度的有效利用, 达到了样品荧光快速面成像和断层成像的目的。权利要求书2页 说明书6页 附图2页CN 209946009 U 2020.01.14 C N 209946009 U

权 利 要 求 书1/2页CN 209946009 U 1.一种光学相干层析和双光子荧光同步成像系统,其特征在于,包括双光子光源、快轴扫描模块、慢轴扫描模块、第一二向色镜、共用扫描模块、光学相干层析模块、第二二向色镜、双光子荧光成像模块以及成像显微物镜; 所述光学相干层析模块中发出的样品光经过所述慢轴扫描模块后透射所述第一二向色镜,所述双光子光源发出的飞秒激光经过所述快轴扫描模块后被所述第一二向色镜反射,与透射所述第一二向色镜的样品光相结合,共同经过所述共用扫描模块后透射所述二向色镜,再经过所述成像显微物镜后照射到样品上;飞秒激光激发样品产生的荧光经所述成像显微物镜后被所述第二二向色镜反射至所述双光子荧光成像模块进行荧光成像,样品光照射到样品上被反射形成的成像光沿原路返回,依次经所述成像显微物镜、透射第二二向色镜、共用扫描模块、透射第一二向色镜、慢轴扫描模块后进入所述光学相干层析模块进行层析成像。 2.根据权利要求1所述的光学相干层析和双光子荧光同步成像系统,其特征在于,所述双光子荧光成像模块包括沿光路依次设置的成像聚焦透镜、滤光片和探测器,样品被激发后发出的荧光经所述第二二向色镜反射后,依次经所述成像聚焦透镜、滤光片后由所述探测器接收,进行荧光成像。 3.根据权利要求2所述的光学相干层析和双光子荧光同步成像系统,其特征在于,所述快轴扫描模块包括快轴扫描振镜和快轴聚焦透镜,所述慢轴扫描模块包括慢轴扫描振镜和慢轴聚焦透镜。 4.根据权利要求3所述的光学相干层析和双光子荧光同步成像系统,其特征在于,所述共用扫描模块包括依次设置的共用扫描振镜、共用聚焦透镜和中继透镜组。 5.根据权利要求4所述的光学相干层析和双光子荧光同步成像系统,其特征在于,所述快轴扫描振镜的扫描轴方向与共用扫描振镜的扫描方向相互垂直,且所述快轴扫描振镜的扫描轴分别与所述双光子光源发出光的光轴以及快轴聚焦透镜的光轴垂直; 所述慢轴扫描振镜的扫描轴方向与快轴扫描振镜的扫描方向相互平行,且所述慢轴扫描振镜的扫描轴分别与所述光学相干层析模块发出光的光轴方向以及慢轴聚焦透镜的光轴垂直; 所述共用扫描振镜与所述快轴扫描振镜的扫描方向相互垂直,且所述共用扫描振镜的扫描轴分别与所述共用聚焦透镜、中继透镜组的光轴垂直。 6.根据权利要求5所述的光学相干层析和双光子荧光同步成像系统,其特征在于,所述慢轴聚焦透镜和共用聚焦透镜构成4f系统,所述慢轴扫描振镜和共用扫描振镜位于4f系统的透镜焦点位置;所述快轴聚焦透镜和共用聚焦透镜构成4f系统,所述快轴扫描振镜和共用扫描振镜位于4f系统的透镜焦点位置。 7.根据权利要求1所述的光学相干层析和双光子荧光同步成像系统,其特征在于,所述光学相干层析模块包括谱域光学相干层析系统或者扫频源光学相干层析系统。 8.根据权利要求1所述的光学相干层析和双光子荧光同步成像系统,其特征在于,所述第一二向色镜截止波长为900nm,长波反,短波通,其透射所述光学相干层析模块发出的样品光以及样品反射的成像光均,且反射所述双光子光源发出的飞秒激光。 9.根据权利要求1所述的光学相干层析和双光子荧光同步成像系统,其特征在于,所述第二二向色镜截止波长为650nm,长波通,短波反,其透射所述双光子光源发出的飞秒激光、 2

高压设备紫外、红外成像在线监测系统及其检测方法的制作技术

图片简介: 本技术涉及一种高压设备紫外、红外成像在线监测系统,包括视频采集模块、视频处理模块、中心测距模块、温湿度测量模块和远程监控终端,视频采集模块包括第一级分光镜、第二级分光镜、紫外视频采集器、红外视频采集器、可见光视频采集器;视频处理模块包括中央处理控制模块、紫外前处理模块、红外前处理模块、视频叠加模块、视频压缩模块和网络通讯模块。本技术的有益效果:采用这样的结构后,利用分光镜头获得重合的多光谱成像,计算获得设备的温度与紫外线放电数据,可在线监测红外、可见、紫外光叠加视频,并增加激光测距与温湿度传感器,修正红外测温数据。同时用计算机系统软件进行分析,得出设备的运行状态与健康状况,提高故障检测成功率。 技术要求

1.一种高压设备紫外、红外成像在线监测系统,包括视频采集模块、视频处理模块、中心测距模块、温湿度测量模块和远程监控终端,其特征在于:所述视频采集模块包括第一级分光镜、第二级分光镜、紫外视频采集器、红外视频采集器、可见光视频采集器;所述紫外视频采集器、所述红外视频采集器、所述可见光视频采集器分别与所述视频处理模块相连;所述视频处理模块包括中央处理控制模块、紫外前处理模块、红外前处理模块、视频叠加模块、视频压缩模块和网络通讯模块;所述紫外视频采集器、所述红外视频采集器、所述可见光视频采集器分别与所述视频处理模块相连;所述中央处理控制模块分别与所述中心测距模块、所述温湿度测量模块相连;所述网络通讯模块通过无线网络与远程监控终端通信。 2.根据权利要求1所述的高压设备紫外、红外成像在线监测系统,其特征在于:所述紫外视频采集器包括紫外镜头、紫外线滤波器、紫外成像传感器、紫外视频采集模块;所述紫外镜头连接所述紫外线滤波器;所述紫外线滤波器连接紫外成像传感器;所述紫外成像传感器连接紫外视频采集模块;所述紫外视频采集模块连接所述紫外前处理模块。 3.根据权利要求1所述的高压设备紫外、红外成像在线监测系统,其特征在于:所述红外视频采集器包括红外镜头、红外热成像传感器、红外视频采集模块;所述红外镜头连接红外热成像传感器;所述红外热成像传感器连接所述红外视频采集模块;所述红外视频采集模块连接所述红外前处理模块。 4.根据权利要求1所述的高压设备紫外、红外成像在线监测系统,其特征在于:所述可见光视频采集器包括可见光镜头、可见光摄像头、可见光视频采集模块;所述光镜头连接可见光摄像头;所述可见光摄像头连接所述可见光视频采集模块;所述可见光视频采集模块连接所述视频叠加模块。 5.根据权利要求1所述的高压设备紫外、红外成像在线监测系统,其特征在于:所述视频采集模块还被设置在控制云台上;所述中央处理控制模块连接控制所述控制云台控制所述视频采集模块。

紫外成像技术影响因素的实验研究

收稿日期:2015-11-16通讯作者:张 显(1993 ),男,硕士,主要从事输电线路及绝缘子运行维护方面的研究;E -mail :1191693513@qq https://www.doczj.com/doc/3f8172850.html, 第31卷第3期 2016年9月电力科学与技术学报JOURNAL OF EIECTRIC POWER SCIENCE AND TECHNOLOGY Vol.31No.3Se p .2016 紫外成像技术影响因素的实验研究 易 琳1,陈聚文2,彭向阳1,张 显2,王 锐1,林 茂2 (1.广东电网有限责任公司电力科学研究院,广东广州 510000;2. 上海日夜光电技术有限公司,上海 200000)摘 要:介绍Su p erb 紫外成像仪成像的基本原理,分析影响紫外设备成像的因素三通过实验得出环境因素对紫 外成像仪光子计数率的影响,绘制测试距离二增益及温度对光子计数率的曲线图,由曲线图得知:检测距离二增益对 光子计数率的影响大,温度及气压对成像仪计数率的影响小三实验结果验证了相关理论,对规范紫外成像仪在电 力系统中的应用具有一定的指导意义三 关 键 词:电力系统;紫外成像;检测距离;光子计数率 中图分类号:TM93 文献标识码:A 文章编号:1673-9140(2016)03-0159-06 Ex p erimental research of influence factors for ultraviolet ima g in g technolo gy YI Lin 1,CHEN Ju -wen 2,PENG Xian g -y an g 1, ZHANG Xian 2,WANG Rui 1,LIN Mao 2(1.Electric Power Research Institute of Guan g don g Power Grid Co.Ltd.,Guan g zhou 510000,China ;2.Shan g hai Sun O p tics Technolo gy Co.Ltd. ,Shan g hai 200000,China )Abstract :The basic p rinci p le of su p erb ultraviolet ima g er and its influencin g factors were de -scribed in this p a p er.The influences of environmental factors on ultraviolet ima g er p hoton count rate were ex p erimental tested ,and the influence curves between p hoton count rate and testin g distance ,g ain and environmental humidit y were drew.The curves indicated that detection dis -tance and g ain have a g reat influence on the p hoton count rate ,and the effects of tem p erature ,humidit y and barometric p ressure on the p hoton count rate are less than the effects of the detec -tion distance and the g ain.The ex p erimental results demonstrate the relevant theor y ,which p ro -vides a si g nificant value of usin g ultraviolet ima g er in p ower s y stem.Ke y words :p ower s y stem ;UV ima g in g ;detection distance ;p hoton count rate 电晕放电是指气体介质在不均匀电场中局部的 气体自持放电[1]三随着中国特高压及超高压输电线路及变电站的不断发展,电晕放电更尤为常见三由于高压设备表面粗糙不均二尖端二污秽二缺陷二导体接 万方数据

双光子荧光显微镜的原理特点

双光子荧光显微镜的原理特点 双光子荧光显微镜是结合了激光扫描共聚焦显微镜和双光子激发技术的一种新技术。 双光子激发的基本原理是: 在高光子密度的情况下,荧光分子可以同时吸收2个长波长的光子,在经过一个很短的所谓激发态寿命的时间后,发射出一个波长较短的光子;其效果和使用一个波长为长波长一半的光子去激发荧光分子是相同的。 双光子激发需要很高的光子密度,为了不损伤细胞,双光子显微镜使用高能量锁模脉冲激光器。 这种激光器发出的激光具有很高的峰值能量和很低的平均能量,其脉冲宽度只有100飞秒,而其周期可以达到80至100兆赫。 在使用高数值孔径的物镜将脉冲激光的光子聚焦时,物镜的焦点处的光子密度是的,双光子激发只发生在物镜的焦点上,所以双光子显微镜不需要共聚焦针孔,提高了荧光检测效率。 为形态学、分子细胞生物学、神经科学、和药理学等研究领域中重要的研究手段。 1.双光子显微镜出现的背景----传统激光共聚焦显微镜的两大局限: 1)一是光毒性现象: 因为共聚焦的针孔必须足够小以获得高分辨率的图像,而孔径小又会挡掉很大部分从样品发出的荧光,包括从焦平面发出的荧光,相应的,激发光必须足够强以获得

足够的信噪比; 而高强度的激光会使荧光染料在连续扫描过程中迅速褪色,荧光信号会随着扫描进程度进行变得越来越弱。 2)光毒作用是另外一个问题,在激光照射下,许多荧光染料分子会产生诸如单态氧或自由基等细胞毒素,所以实验中要限制扫描时间和激发光的光功率密度以保持样品的活性。 在针对活性样品的研究中,尤其是活性样品生长、发育过程的各个阶段,光漂白和光毒现象使这些研究受到很大的限制。 2.为什么说双光子显微镜一般不需要配备紫外激发激光器? 双光子显微镜技术是建立在双光子激发效应的基础上的一种荧光激发技术:荧光染料分子可以同时吸收低能量的两个光子而被激发(两个光子到达荧光分子的时间间隔小于1飞秒),其激发效果可以等同于吸收一个1/2波长的高能量光子。 例如,吸收两个红色波长的光子,相当于一个吸收紫外的分子。长波长的光子不易被细胞吸收,因此对活细胞的光毒性减少,也降低了光漂白。这样即起到紫外激发的功能,又避免了紫外光线对样品的伤害。 3.双光子显微镜的激光器有何特别之处? 双光子吸收几率依赖于两个入射光子在空间和时间上的重合程度(两个光子必须在10-18秒内到达)。双光子吸收截面很小,只有在具有很大光子流量的区域的荧光团才会被激发。 因此所用激光器多为钛宝石激光器,可以达到皮秒或者飞秒级的扫描速度,且具有非常高的峰值功率和较低的平均功率,从而可以减小或者消除光漂白和光毒作用。

紫外成像技术在变电设备带电检测中的应用

紫外成像技术在变电设备带电检测中的应用 发表时间:2017-06-22T13:25:50.737Z 来源:《基层建设》2017年5期作者:李萌 [导读] 本文主要研究紫外成像技术在变电站带电检测中的应用,分析了紫外成像技术的原理和诊断评估方法. 广东电网有限责任公司湛江供电局广东湛江 524000 摘要:紫外成像技术能够更加快捷、直观、灵敏的检测高压设备放电情况,在变电站带电检测中具有重要的应用价值,能够显著增强设备故障点的检测能力,有效提高变电站运行的稳定性。本文主要研究紫外成像技术在变电站带电检测中的应用,分析了紫外成像技术的原理和诊断评估方法,并通过结合具体实例,对紫外成像技术在变电站带电检测中的具体应用进行了探讨。 关键词:紫外成像法;诊断;故障;检测;处理 引言 电晕是在极不均匀电场中的气体局部放电现象,在变电站内比较常见。电晕放电一方面会造成一些不利的影响,但另一方面高压设备上若产生电晕放电,则预示着设备可能存在某些薄弱环节或缺陷。因此,及时发现电晕现象并查明其损坏部位对于保证变电站的可靠运行具有十分重要的意义。目前,电晕放电检测方法主要有:脉冲电流法、声波法、红外成像法等,这些方法在保障设备可靠运行方面起到了积极的作用,但也存在一定的局限性。而近年来兴起的紫外成像法为电晕放电的检测提供了一种新的思路和途径,它能直观地显示运行设备的放电部位和放电形态,具有抗干扰能力强、放电点定位准确和灵敏度高的特点,所以成为了电力系统带电检测中一种行之有效的技术手段,并正被广泛应用于实际生产中。 1 紫外成像法及其诊断评估方法 电晕放电时,空气中N2的电离会辐射出光波(紫外线等)和声波,产生不同波长的紫外光谱,波长范围一般为230nm~405nm。在240nm~280nm的光谱段中,太阳传输来的紫外光分量极低,因而可以通过特殊的滤镜,最大程度降低太阳辐射的干扰,检测到240nm~280nm之间设备放电产生的紫外光谱,并将其转换成可见光图像,达到对设备绝缘状态的评估。 紫外成像检测仪的工作原理:首先利用分光镜将输入的光线分离成两部分,一部分形成可见光影像,另一部分经过紫外光过滤后,只保留紫外部分,再经放大器处理后可以得到高清晰度的紫外图像;然后,通过特殊的影像处理工艺将紫外光影像和可见光影像叠加起来,形成复合影像。 一般用紫外成像仪检测到的紫外光子数(或光斑面积)来表征或量化放电强度,判断设备的放电状况。 目前,世界上最权威的紫外检测导则是美国电力科学研究院(EPRI)制定的《架空输电线路紫外检测导则》和《变电站电晕电弧紫外检测导则》。两个导则都介绍了电晕现象的三种评估方法。 (1)直接法。直接利用电晕检测仪的检测结果对设备的电晕状况进行评价,一般仅用于严重故障的判断。 (2)同类比较法。对同一回路的同类设备或同一设备在相同运行工况下的同一部件之间作检测结果比较。具体做法:利用电晕检测仪获得同类设备的对应部位电晕活动产生的光子数量进行纵向和横向比较。用同类比较法容易判断出电晕放电是否正常,其适用范围比较广,运用也比较方便。 (3)档案分析法。对测量结果与设备电晕活动档案记录的数据进行比较分析。其基础工作是要建立设备电晕放电技术档案。该方法可分析设备在不同时期的电晕检测结果,包括温度、湿度等分布变化,以掌握设备电晕活动的变化趋势,然后进行判断。 我国的行业标准DL/T345—2010《带电设备紫外诊断技术应用导则》给出的诊断方法如下:(1)图像观察法。根据带电设备电晕状态,对异常电晕的属性、发生部位和严重程度进行判断和缺陷定级; (2)同类比较法。通过同类带电设备对应部位电晕放电的紫外图像或紫外计数进行横向比较,对带电设备电晕放电状态进行评估。 2 故障检测实例 湛江供电局220kV赤坎变电站于1996年投产,最近发现该变电站220kVⅡM母线在运行中有异常放电声响。220kVⅡM母线绝缘子为纯瓷材质。 2.1 检测数据与放电图像 2013年4月1日,用CoroCAM504P型紫外成像仪在线检测排查,检测环境温度为15℃,环境相对湿度为40%。紫外放电图像如图1所示,绝缘子紫外成像检测数据如表1所示。 C相绝缘子紫外放电量较A、B两相明显偏大,紫外放电粒子集中在绝缘子与导线连接部位。

双光子荧光探针的研究进展

有机双光子材料的研究进展 随着以光电子学为中心的信息时代的到来,具有特殊信息处理功能和超快响应的光电材料将成为未来信息材料发展的主体,而非线性光学材料就是其中发展较为迅猛的一种。非线性光学是强光光学,研究的是物质在强光作用下产生的输出光强度与原入射光的非线性关系。非线性光学材料在强光作用下,反映介质性质的物理量(如极化强度P等)不仅与场强E的一次方有关,而且还决定于E的更高幂次项,从而导致许多在线性光学中不能解释的新现象,表现出独特的非线性光学性质。双光子吸收属于三阶非线性光学效应的一种,有着独特的光学和电学效益,使得双光子技术在未来光电子集成、生物分子探测、医学诊断等领域具有巨大的应用潜力和广阔前景[1]。 一、双光子吸收的基本概念 双光子吸收属于三阶非线性光学效应,该理论最早是由Goeppert- Mayer于1931年首次提出的。它是指在强激光激发下,利用近两倍于样品的线性吸收波长的光源激发该样品,使其通过一个虚中间态(virtue state)直接吸收两个光子跃迁至高能态的过程,所吸收的两个光子的能量可以相同(ω1=ω2,简并吸收),也可以不同(ω1≠ω2,非简并吸收),其机理如图1所示。 图1 单、双光子吸收和发射机理示意图 和单光子吸收和发射相比,双光子吸收和发射有以下本征特点: (1)在材料中高的穿透深度。单光子荧光过程是短波激发长波发射,吸收和发射所涉及的基元光物理过程服从Stark-Einstein定律。而双光子荧光是长波激发短波发射,所用激发光的波长红移近一倍,一般位于600-900nm,远远低于单光子过程紫外辐照光(波长为250-400nm)的光子能量。这一波段的光具有很好的穿透性,Rayleigh散射小,背景光干扰小,便于观测,并且光损伤、光漂白、光毒性都较小。

紫外成像检测技术的交流特高压试验基地的应用

紫外成像检测技术的交流特高压试验基地的 应用 刘云鹏杨迎建蔡炜万启发易辉丁一正许中 国网武汉高压研究院 摘要利用紫外成像技术,对国家电网公司特高压交流试验基地的变电设备、构架和试验线段等开展电晕放电检测,发现的电晕放电源主要包括:变电构架中相绝缘子串的均压环和引流板,试验线段刚性跳线(软硬接合处),以及加工和施工过程造成的损伤、缺陷和突起等。检测过程中,对主要噪声源(特高压基地变电构架中相均压环电晕放电等)进行紫外成像的光子数测量,并与噪声测量结果进行初步对比,验证了紫外成像技术在特高压输电线路和变电设备的电晕放电检测中的有效性。 关键词紫外成像;交流特高压试验基地;电晕放电;光子数;噪声 1引言 紫外线检测设备和技术正快速进入我国市场,但我国电力系统尚未制订相应的规程标准,目前仍处于技术引进的初级阶段。国内少数几个高压实验室,开始进行紫外成像仪的应用试验,并取得初步效果:如湖北电力试验研究院利用紫外成像技术试验研究了极不均匀电场工频电压下的电晕放电;成都供电公司通过紫外成像仪观察线路绝缘子的紫外成像特点来分析其沿面放电特点;东北电力科学研究院也提出了用紫外成像检测电器设备外绝缘状况,并对其检测方法进行了探讨;华东电力试验研究院分析了距离、仪器增益、气压、温度、湿度等因素对紫外检测的影响,并进行了绝缘子常见缺陷的模拟试验;沈阳供电公司应用紫外成像仪检测绝缘子的电晕放电所产生紫外光子数的多少及放电频率来判断绝缘子的绝缘状况。这些研究表明紫外成像技术检测输电线路和变电站电气设备的电晕及表面放电是有效的。 目前,我国1000kV交流特高压试验基地已经在武汉带电运行,开展特高压输电设备紫外成像检测与诊断的研究是十分必要的,其研究成果对保障1000kV特高压电网的安全可靠运行具有重要的工程价值。 本文利用以色列Daycor紫外成像仪,对国网交流特高压试验基地的变电设备、构架和试验线段等开展电晕放电检测,目的在于发现特高压试验基地的主要电晕放电源,为降低特高压基地的噪声、无线电干扰水平提供技术支持,相应的研究成果可以进一步为特高压试验示范工程提供帮助。 2交流特高压试验基地 特高压交流试验基地位于武汉市南约16km的江夏区五里界蔡王村(属藏龙岛开发区),距关山工业区16km,东距500kV凤凰山变电站150m,总占地面积133357m2(200亩)。目前已经带电运行的有以下几部分:(a)特高压交流单回试验线段 试验线段总长约1000m,分为“耐-直-直-耐”4档。中间2基直线塔为猫头塔,间距约450m。导线形式为8×LGJ-500。塔上设计不同挂点实现导线对地距离和相间距离可调。 (b)特高压交流同塔双回试验线段 试验线段总长约1000m,分为“耐-直-直-耐”4档。中间2基直线塔为鼓形塔,间距约450m。导线形式为8×LGJ-630。塔上设计不同挂点实现导线对地距离和相间距离可调。 (c)变电构架

单光子源技术推动量子通信发展

单光子源技术推动量子通信发展量子通信中有三项核心技术,分别是单光子源技术、量子编码和传输技术、单光子检测技术。大量研究已经证明,使用单光子源的量子通信是绝对安全的,并且具有很高的效率。由此可见,理想的单光子源是量子通信的基础,其特性的研究具有很高的价值。 基于安全性方面考虑,为了保证在通信过程中不会被光子数分束攻击,理想的单光子源应该严格满足每个脉冲中仅含有一个光子。然而,现阶段大多数实验所用的光源都是经过强烈弱光脉冲衰减得到,其光子数服从泊松分布。这种光源严格意义上讲是无法实现单光子脉冲的,实际做法是尽量降低每个脉冲里含有两个以上光子的几率,降低到不会对安全性产生影响。通信系统中是存在损耗的,即使脉冲中含有两个以上的光子也很少带来安全隐患,此外由于脉冲大多是不含光子的空脉冲,因此严重降低了密钥分配系统的传输效率,同时也增加了系统的误码率。所以高性能单光子源的研究已经成为影响量子通信发展的重要课题之一。 量子点单光子源:使用量子点可以稳定地发出单个光子流,每个光子可由光谱过滤器分离出来。与其他单光子源相比,量子点单光子源具有较高的振子强度,较窄的谱线宽度,且不会发生光退色。目前的半导体基本上可以覆盖从可见光到红外波段。

量子点单光子源的研究一直很活跃。2001年斯坦福大学的科研人员在GaAs衬底上制造出一层发光波长为877nm的InGaAs量子点,通过激光器发射把激光发射到量子点的台面上。结果表明,在激光脉冲的作用下产生的激子进入一个量子点后,量子点吸收一个光子后再吸收第二个光子的可能性大大降低,这使产生反聚束光子流成为可能。Toshiba-Cambridge大学的欧洲联合研究小组在2002年采用量子点结构的LED实现了电注入单光子发射。2005年他们成功利用量子点制造出波长在1.3μm 通信波段的单光子光源。2007年,我国中科院半导体研究所超晶格国家重点实验室相关研究人员成功实现了量子点的单光子发射:8K温度下脉冲激光激发InAs单量子点,可以观测到 932nm的单光子发射,发射速率大于10kHz。但是,这一领域仍然有很多难题需要解决,比如尺寸、形状的均一性控制,光谱的单色控制,以及对低温的要求等。 纳米天线单光子源:基于SPP共振效应的纳米天线结构可以有效收集光能量,并将其限制在亚波长尺度,其巨大的局域场增强效应为纳米光子学提供了广阔的应用前景。 目前,每个脉冲产生一个光子的器件已经研制成功,问题是怎样将产生的光子沿某一特定的方向高效率地发射出去。光子晶体、介质球、光学微腔结构、金属表面等都可以改变光场方向,而共振光学天线对光场的改变更为局限化。它可以将入射光场有效限制在亚波长区域,也可使纳米尺度的小颗粒辐射强度显著增

单光子探测器

单光子探测器 单光子探测器是进行光子探测的实验设备,它通常只能探测光子的有或者没有,不能直接给出光量子态的完整信息,要想从探测结果来重构光量子态信息,需要结合其他的理论和实验手段。目前在可见和红外波段,单个光子的能量约为10-19 J,实现对如此低能量粒子的准确探测是很有挑战的工作。早期的单光子主要是光电倍增管,随着材料科学和量子信息科学的发展,单光子探测器的类型也逐渐丰富起来,这里主要介绍单光子探测器性能的主要指标:特征波长范围,死时间,暗计数,探测效率,时间抖动,光子数分辨能力。 探测器的特征波长范围指的是探测器能够响应的光谱频率范围。目前的单光子探测器都只对某一波段的光子敏感,这是由探测器的制作材料及加工工艺决定的,而探测器的光谱响应特性也决定了它的应用范围。例如对自由空间的量子通信来说,使用的光子波长主要集中在可见光波段400nm-1060nm或者近红外波段900nm-1700nm,需要对这一波段较敏感的探测器;而对于光通信来说,由于光纤在1550nm这个波长具有最小的损耗,所以对基于光纤的量子信息网络,探测器必须对1550nm光子有足够高的探测效率。 当探测器探测到一个光子之后,在一定的时间内,探测器不能响应新的光子,这一段时间称为探测器的死时间,一般来说死时间越短越好。在当前的技术条件下,死时间取决于探测器的电子学后处理系统而非探测器的感光材料。例如,对于基于雪崩二极管的单光子探测器,当探测器探测到一个光子之后,探测器需要抑制这个信号带来的后脉冲信号,这样就必须将探测器关断一段时间,等到前一个探测器的后脉冲信号基本消除之后才能重新开启,这一段时间就是雪崩二极管的单光子探测器的死时间,可见光波段400nm-1060nm探测器的死时间一般固定为33ns,近红外波段900nm-1700nm探测器的死时间一般从500ns到1ms可调,死时间决定了探测器的最大计数率。 当没有光子进入探测器时,探测器仍然有计数率,这就是暗计数。暗计数是由于感光材料的缺陷,电压偏置和外界环境的干扰比如温度,湿度,热噪声等因素引起的。暗计数对实验的信噪比有直接影响,因此降低暗计数是单光子探测器发展的重要目标。现在法国Aurea Technology的单光子探测器暗计数可以做到小于25cps(世界第一). 探测效率指的是当有光子进入探测器的时候,它被探测到的概率。目前商用探测器的最大探测效率约为70%,如Aurea Technology生产的SPD_A_VIS.提高探测效率在

单光子探测器应用

单光子探测技术典型应用 单光子探测是一种探测超低噪声的技术,增强的灵敏度使其能够探测到光的最小能量量子——光子。单光子探测器可以对单个光子进行计数,实现对极微弱目标信号的探测,因此也活跃在许多可获得的信号强度仅为几个光子能量级的新兴应用领域中。 人眼安全激光雷达 激光雷达是一种基于光学探测与测距的光学遥感技术,实用窄线宽短脉冲激光在大气中进行光子激射从而产生背向散射。接收这些微弱的背向散射信号需要用到单光子计数器等高灵敏度的光学探测设备。今天,激光雷达活跃在污染监测,空气质量分析,气候学等很多领域。 激光雷达典型应用 量子密码学/量子密钥分配 量子密码学/量子密钥分配是一种非常前沿的技术,它利用量子物理特性获得传统技术无法企及的安全传输保证。这种技术基于量子原理将秘钥安全保密的分配给通信双方。同光纤通信技术相结合,实现量子密钥分配需要将光信号能量降低至光子水平,因此,高精度的光子探测设备是必须的。在此类应用里,单光子源/双光子纠缠源,单光子计数器都需要用到。特别是单光子计数器,它不仅能够接收极低水平的量子密钥信号,还能够探测不明侵入,从而保障系统安全。 量子通信

光子源特性测试 随着量子物理技术、非线性技术和量子点技术的进步和发展,单光子源和光子纠缠源的开发需求日益增多。在这些设备的开发过程中,需要高灵敏度的检测手段来对其进行特性分析和测试,单光子计数器就是一种有效的手段。 荧光测量 莹光时间测量技术(Fluorescence Timing Measurement)被应用在很多科研和工业领域,例如:分子特性,纳米技术和成像显微技术等等。莹光信号是一种非常微弱的光信号,因此需要非常灵敏的光学探测器进行探测,单光子计数器就是不二之选。

紫外成像检测技术

紫外成像检测技术 靳贵平1 庞其昌 2 (1中科院西安光学精密机械研究所,西安710068) (2暨南大学物理系,广州510632) 摘 要 提出一种新型的紫外成像检测系统.此系统利用紫外增强技术和紫外滤光技术观察和检测紫外光信号.详细介绍了系统的关键技术:紫外镜头、紫外 日盲 滤光技术、紫外增强技术和光谱转换技术,给出了紫外成像检测系统的研制实例,以及用该系统得到的实验结果.此系统在公安、电力、森林火灾等领域有远大的应用前景. 关键词 紫外成像;紫外检测;紫外光滤光片;像增强器中图分类号 TN247 文献标识码 A Tel:029-******* Email:ji nguiping1012@si https://www.doczj.com/doc/3f8172850.html, 收稿日期:20021030 0 引言 紫外(UV)光谱成像检测技术是欧美国家为军事目的发展起来的新型检测成像技术.它的特点是用于观察和检测 日盲 [1,2] (240~280nm)紫外光信号,并将紫外图像信号转换成可见光图像信号,进行观察和测量.利用该技术可以观察到许多用传统光学仪器观察不到的物理、化学、生物现象;又因为其工作在 日盲 波段,所以它的工作不受日光的干扰[1] ,即采用该技术的仪器可以在日光下工作,图像清晰、工作可靠、使用方便.欧美发达国家和俄罗斯均已有这类仪器投入使用[3].这类仪器可用于电力系统检测、太空科学和环境保护研究等领域.而国内对紫外成像检测系统的研究工作起步较晚,国产化产品几乎是空白,所以急需开展这方面的工作.文中详细地介绍了紫外成像检测系统研制中的几个关键的技术问题,同时给出了相应的解决方案.最后还给出了具体的研制实例. 1 检测系统的工作原理 紫外成像检测系统主要包括:紫外成像物镜、紫外光滤光镜、紫外像增强系统、CC D 、图像显示等[4] .紫外成像检测系统工作原理如图1.紫外信号 源被背景光(包括可见光、紫外光和红外光等)照射,从信号源传输到成像镜头的有信号源自身辐射的紫外光,也有信号源反射的背景光.成像光束经过紫外成像镜头后,有一部分背景光被滤除,有一部分背景光仍然存在.其后光束再通过 日盲 滤光片,照到紫外像增强器的光电阴极上,经过紫外增强器后,信号被增强放大并被转化为可见光信号输出,然后,成像 光束经CCD 相机,最后,经信号处理后输出到观察记录设备. 图1 紫外成像检测系统的工作原理 Fig.1 Skeleton drawing of UV imag i ng and detecting system 2 检测系统的关键技术问题 2.1 紫外镜头 根据工作原理知,从信号源传输到成像镜头的除了信号源自身的紫外辐射,还有被信号源反射的背景光(包括可见光、紫外光和红外光等).而实验中需要的是信号源自身辐射的紫外光图像.为此,选用紫外光成像镜头能减少背景噪音. 研制紫外光谱波段的透镜主要的问题是寻找合适的材料,在0.2 m~0.4 m 的光谱范围,最重要的材料为尚矽石和氟化钙.虽然开发了几种玻璃来降低0.4 m 以下的吸收,但其使用仍受限.因为在0.3 m 都还有吸收.两种此类的玻璃为UBK -7及UK -5. 紫外成像镜头如F 4.5f =105mm 的尼康紫外镜头,可以工作在全光圈.镜头上可装 日盲 紫外光滤光片.其性能指标如表1. 表1光学镜头性能指标 视场角焦距 mm 最大光圈后像距 m m 尺寸 mm 2重量 g 23 20 105 f 4.5 52 68.5 108 515 2.2 紫外光滤光技术 为了实现紫外滤光,比较了国产的三种紫外光滤光片.发现若选择宽带滤光片,则背景噪音太大, 第32卷第3期 2003年3月 光 子 学 报 ACTA P HOTONICA SINICA Vol 32No 3 March 2003

单光子调制光谱与成像特性研究

单光子调制光谱与成像特性研究 【摘要】:量子信息技术是量子物理与信息技术相结合发展起来的新学科,已成为目前最具吸引力的前沿领域之一,涉及众多学科领域,在量子信息领域开展的工作主要有量子通信、量子计算、量子成像等方面,具有经典信息技术无法比拟的优势和前景。单光子的产生、检测和操纵不断开拓光物理应用的新领域。由于在量子信息领域的广泛应用,单光子源的研究引起了人们的极大兴趣。一方面,作为一个非经典光源,单光子源可以用来演示量子力学的基本原理,展现量子物理的奇异性。另一方面,基于量子力学的量子信息技术也需要利用单光子源来实现量子保密通信和量子计算。因此,对实用、可靠的单光子源的制备、测量和操控已经成为当前量子物理学最前沿的研究内容之一。利用单量子体系产生单光子是制备单光子源的有效手段之一,我们研究了光场激发单分子单光子源,在利用单光子调制光谱研究单分子系统动力学过程中,发现了许多新奇的实验现象。在此基础上对激发光场进行强度调制,实现对单分子荧光光子的强度调制,利用锁相放大器解调后的模拟信号消除了分子荧光辐射起伏、光子计数的量子涨落,实现高清晰度的单SR分子荧光成像,给出一种有效提高信噪比的单分子荧光成像方法。利用光子计数调制的方法测量了DiD分子的荧光寿命,研究了外加电场对分子荧光强度的操控。到目前为止,还没有理想的单光子源达到商业应用状态,现有的研究中大多采用衰减相干光模拟单光子源,在这种准单光子源的测量中,灵敏度、信噪比等关键

技术问题一直是很大的困扰。我们利用单光子调制光谱技术和锁相放大技术,明显改善了单光子探测器的探测效率,消除了量子涨落的影响,提高微弱信号检测中的信噪比。本论文工作的创新点:1.提出了一种可靠的单光子调制的方法,将相干光衰减至单光子量级,提高了1.55微米InGaAs单光子雪崩光电二极管的探测效率,抑制了探测背景噪声。通过对较低的甄别电压进行优化,利用单光子调制的方法可将在 1.55微米波长的探测效率比传统的光子计数方法提高1.87倍。增加了在高背景噪声场合下进行高灵敏探测的可能性,这种灵敏测量可以扩展到其他波长的单光子有效检测。2.测量单光子调制吸收光谱。将 1.5微米分布反馈半导体激光器的输出光衰减至单光子量级,测量得到乙炔气体v1+v3带P5e支的单光子吸收光峰。这种单光子波长高频调制吸收光谱消除了低频段较高背景的噪声,通过探测乙炔气体的单光子吸收光谱,对离散的单光子响应脉冲进行锁定放大,获得信噪比为51的激光器频率锁定的鉴频曲线,稳频后的激光在175s内频率起伏小于25MHz。3.无量子涨落的单分子荧光成像,利用声光调制器对激发光场进行强度调制,实现了对单分子荧光光子的强度调制,通过锁相放大器解调,使得只包含荧光信号的调制谐波信号成分得到了放大,其它频率的背景信号被明显抑制,显著提高了光谱成像信号的信噪比,将量子涨落由1/3压制到了1/15,实现了高清晰度的单分子荧光成像。4.单光子源的外场操控,测量了系综分子和DiD分子的荧光寿命,并研究了外加电流对荧光寿命的影响,研究发现在电流作用下,分子荧光平均寿命减小大约20%。利用外电场调制单SR分子荧光强度,实现了单分子荧光

半导体量子点及其应用概述_李世国(精)

科技信息2011年第29期 SCIENCE&TECHNOLOGY INFORMATION 0引言 近年来半导体材料科学主要朝两个方向发展:一方面是不断探索扩展新的半导体材料,即所谓材料工程;另一方面是逐步从高维到低维深入研究己知半导体材料体系,这就是能带工程。半导体量子点就是通过改变其尺寸实现能级的改变,达到应用的目的,这就是半导体量子点能带工程。半导体量子点是由少量原子组成的准零维纳米量子结构,原子数目通常在几个到几百个之间,三个维度的尺寸都小于100纳米。载流子在量子点的三个维度上运动受尺寸效应限制,量子效应非常显著。在量子点中,由于量子限制效应作用,其载流子的能级类似原子有不连续的能级结构,所以量子点又叫人造原子。由于特殊能级结构,使得量子点表现出独特的物理性质,如量子尺寸效应、量子遂穿效应、库仑阻塞效应、表面量子效应、量子干涉效应、多体相关和非线性光学效应等,它对于基础物理研究和新型电子和光电器件都有很重要的意义,量子点材料生长和器件应用研究一直是科学界的热点之一[1]。 1量子点制备方法 目前对量子点的制备有很多方法,主要有外延技术生长法、溶胶-凝胶法(Sol-gel 和化学腐蚀法等,下面简单介绍这几种制备方法: 1.1外延技术法 外延技术法制备半导体量子点,主要是利用当前先进的分子束外延(MBE、金属有机物分子束外延(MOCVD和化学束外延(CBE等技术通过自组装生长机理,在特定的生长条件下,在晶格失配的半导体衬底上通过异质外延来实现半导体量子点的生长,在异质外延外延中,当外延材料的生长达到一定厚度后,为了释放外延材料晶格失配产生的应力能,外延材料就会形成半导体量子点,其大小跟材料的晶格失配度、外延过程中的条件控制有很大的关系,外延技术这是目前获得高质量半导体量子点比较普遍的方法,缺点是对半导体量子点的生长都是在高真空或超高真空下进行,使得材料生长成本非常高。1.2胶体法

相关主题
文本预览
相关文档 最新文档