当前位置:文档之家› 近海海洋风电地基基础的现状介绍

近海海洋风电地基基础的现状介绍

近海海洋风电地基基础的现状介绍
近海海洋风电地基基础的现状介绍

近海海洋风电地基基础的现状

1.海洋风电开发形势及前景

当今世界能源消耗量不断上升, 且以煤炭、石油、天然气等化石能源为主. 未来几十年内, 世界能源消耗还将持续增长. 然而, 由于化石能源可开发量日益减少, 能源需求的缺口越来越大. 并且, 化石能源的生产和消费对环境造成极大的破坏, 甚至影响到全球气候的变化. 因此, 当前全球经济发展与能源需求的矛盾日益突出, 能源危机已成为人们的共识.为应对全球气候变化,

我国提出了“到2020年非化石能源占一次能源需求15%左右和单位GDP二氧化碳排放比2005 年降低40%–45%”的目标, 目前正加快推进包括水电、核电等非化石能源的发展, 并积极有序做好风电、太阳能、生物质能等可再生能源的转化利用. 然而, 2011年3月日本福岛核电站事故给全球核能发展带来了极大的冲击, 各国对核能的发展采取了非常谨慎的态度, 中国甚至一度停止了核电的审批作业.事实上, 发展可再生的环境友好型能源是解决“能源危机”、缓解“气候变化”、保持社会可持续发展的关键举措. 风电是目前最具规模化发展前景的可再生能源, 世界各国发展风能开发技术呈现争先恐后之势. 1973 年石油危机后, 美国开始研发风能资源, 这是风能发展史上的重要里程碑. 与此同时,欧洲的风能业稳步发展, 经过1990 年后的20 年, 欧洲已俨然成为全球风能业的引领者.

由于土地资源有限, 大规模的陆地风电场越来越面临选址困难的问题. 而海上风能资源优于陆地,海上风的品质更加优越, 因为海面

粗糙度小, 风速大, 离岸10 km的海上风速通常比沿岸陆地高约25%;海上风湍流强度小, 具有稳定的主导风向, 有利于减轻风机疲劳; 且海上风能开发不涉及土地征用、噪声扰民等问题; 另外, 海上风场往往离负荷中心近、电网容纳能力强. 因而大规模发展海上风电越来越受到高度重视, 近十年来发展迅猛, 欧洲尤其是丹麦和英国引领着全球风电的发展.

2.海洋风电资源

海上风能资源储量相当丰富, 以我国海域的统计数据为例, 联合国环境计划署与美国可再生能源实验室的一份联合研究报告指出, 中国海上风能资源为600 GW. 中国气象局21世纪初的统计数据表明, 我国水深小于20 m海域的风能储量达750 GW,是陆上风能资源的3 倍左右. 2009年底国家气象局发布消息称, 我国沿海水深5–25 m海域的3类风能(平均风能密度大于300 W/m2)储量达200 GW。根据中国国家海洋局最新调整的数据, 我国海上风电可开发容量为400–500 GW.具有发展海洋风电的巨大风力资源。

3. 海上风电开发现状

欧洲是全球海上风电发展的先驱, 1990 年在瑞典的Nogersund 安装了世界第一台海上风力发电机组, 1991 年丹麦建成了世界上第一个海上风电场Vindeby, 但装机只有4.95 MW. 此后, 丹麦、瑞典、荷兰和英国相继建设了一批研发性的海上风电项目.2002年总装机160 MW的Horns Rev 海上风电场在北海建成, 这是全球首个真正意义上的大型海上风电场, 此前最大的海上风电项目规模仅为40

MW[6].从1991年至2009年, 欧洲建成并投入运营的海上风中, 装机容量排在前四位的均在英国, 均在300 MW以上, 最大者为Greater Gabbard, 装机504 MW; 年发电量最大的海上风电场为丹麦的Horns Rev 二期,2011 年发电9.11 亿度; 按运行以来的累积发电量计,排在前三位的均建在丹麦, Horns Rev 一期居首, 已累积发电超过52亿度.

近几年, 我国加快了海上风能的发展步伐, 陆续建成了几个海上风电试验样机. 特别是, 2010年7月我国建成了第一个海上风电场——上海东海大桥100MW 海上风电示范项目, 这也是全球除欧洲以外的第一个海上风电场. 此外, 2010 年12月30日, 在江苏响水沿海滩涂建设的201 MW 风电场134 台1.5MW机组全部实现并网发电, 2012年11月23日, 龙源江苏如东150 MW海上(潮间带)示范风电场全部投产发电. 目前, 一批海上风电场正在建设中。

4. 海上风电发展趋势

从全球海上风电工程建设和科学研究的情况来看, 海上风电逐步在从近岸浅水海域向远岸深水海域(水深大于50 m)发展, 与此相应, 单机装机容量逐渐增大, 风机的支撑结构由固定式向漂浮式发展.目前, 海上风机绝大部分都安装在30 m以下的浅海, 采用固定式支撑结构, 水深最大的固定式风机安装在英国Beatrice风场, 水深45 m. 一般而言, 离岸越远, 风速越大, 风况越稳定, 因而海上风电向远海发展是很自然的, 但固定式支撑结构的成本越来越高. 于是, 人们提出了漂浮式风机的概念, 认为当水深超过50 m时, 宜采用浮式支撑结构. 事实上, 早在20 世纪70 年代, 麻省理工就提出了大功率漂

浮式海上风机的概念, 90年代, 美国和斯堪的纳维亚半岛国家的研究机构开始关注漂浮式海上风机概念. 2000年后, 欧洲开始了漂浮式海上风机原型机的设计. 2008年, 日本三菱重工表示, 将开发用于深海的浮式基座和相应的风机设备. 2008年, 荷兰Blue H公司在意大利海岸东南离岸17 km、水深108 m处安装了第一台漂浮式海上风机, 但装机仅80 kW. 2009年, 该公司又将另一台商业化运作的2.4 MW 原型机投入运用. 2009年6月, 第一台大型漂浮式海上风机原型机Hywind(2.3 MW)由Statoil Hydro公司和西门子公司共同设计, 安装在挪威的峡湾, 离最近的陆地90 km,风机由海面下一根100 m长的浮桶支撑, 浮筒由三根固定于海底的缆绳约束. 近年来, 人们提出了很多浮式风机支撑结构的概念, 并开展研究. 但目前除少数样机外, 还没有大型浮式风电场的建设计划.

随着海上风电的发展, 单机容量逐渐增大. 1991年建成的首座海上风电场Vindeby 的单机装机容量只有450 kW. 此后, 兆瓦级风机迅速投入运用, 目前已建和在建的海上风机以 3.6 MW 居多. 近年来, 5MW 以上大容量风机的研究和应用越来越受到重视,Jonkman & Matha和Robertson & Jonkman分别研究并比较了不同形式的深水5 MW 风机系统的动力响应, 挪威科技大学甚至已经开始研究10 MW 海上风机叶片的结构设计和气动性能. 我国在东海大桥海上风电场已建成一台 5 MW样机, 在建的上海临港海上风电示范项目采用 6 MW风机.

5.海上风电的结构特征

海上风电系统由风机、支撑结构、地基基础三部分组成. 风机由叶片、轮毂、机舱构成,支撑结构包括: 塔筒和下部结构, 下部结构分为固定式和漂浮式两种形式.固定式结构包括:重力式、单桩、高桩承台、三脚架、导管架、吸力桶, 其中重力式、单桩和高桩承台结构一般适用于水深小于30 m的海域, 三脚架和导管架结构可用于50 m 水深以下的海域. 除水深外, 地质条件也是选择支撑结构形式需要考虑的重要因素. 各种固定式支撑结构的适用条件、2011年9月GL Garrad Hassan咨询公司的统计表明, 当时已建和在建的海上风机支撑结构绝大部分采用单桩形式, 其他形式也有采用.高桩承台结构在中国东海大桥示范风电场首次使用,上海临港风电场也采用了这种结构.当水深大于50 m时, 宜采用浮式结构, 如: TLP或TLB(Tension Leg Buoy)、Spar-buoy、半潜式、Pontoon或Barge等形式. 此外, 日本学者曾提出移动式海上风电场(Sailing-type Wind Farm)的概念,即在大型浮式结构上安装若干台风机,.目前为止, 除少数几台示范样机外, 浮式风机还未实现规模化建设, 浮式支撑结构还处在概念研究阶段. 5.1 重力式结构

重力式结构(Gravity-Based)为钢筋混凝土结构,靠自身重量和压载物的重量稳定座落在海床上。与其它形式的基础结构相比,重力式结构的体积庞大。如英国Array West风电场,按3.6MW风电机组设计,单桩结构重仅为400吨,而重力式结构重1500吨,但重力式结构的价格远低于单桩结构,重力式结构的成本为30万欧元,而单桩结构为60欧元,重力式结构的结构成本仅为单桩结构的二分之一。

考虑安装成本等因素,重力式结构的成本比单装成本低20%左右。丹麦的Vindeby、TunΦKonb 和Middelgrunden 风电场即是采用这种型式,为混凝土沉箱型。这种基础结构简单,其稳定性和可靠性已得到证实。另一种较新的结构是将圆柱钢管焊接在较薄的钢制基座上,填充重矿物以增加重量,此种结构便于运输和安装。基础的重量需随着水深的增加而增加,所以随着水深的增加基础建造的费用也会增加。重力式结构的适用水深为0~10m。重力式结构不适用于软基海底,且对冲刷比较敏感。

5.2 单桩结构

单桩结构是桩承结构中最简单的一种结构形式,采用打桩、钻孔或喷孔方法将单桩基础安装在海底泥面以下一定的深度,单桩结构一般为钢质。欧洲已建成的大部分海上风电场都采用了单桩结构,制约,适用水深为0~30m。这种结构受到海底地质条件和水深的单桩结构的结构形式简单,塔架与桩体有两种连接方法:一是用法兰将塔架和桩直接连接起来,这种连接方式对桩的施工要求甚高,因此,一般不采用这种连接。二是通过过渡段将塔架和桩连接起来。过渡段与桩采用灌浆连接,过渡段与塔架采用法兰连接。这种连接关键是灌浆连接的强度和疲劳性能,目前采用的灌浆材料为Ducorit S5。

单桩结构在海床活动区域和海底冲刷区域是非常有利的,主要是缘于其对水深变化的灵活性。单桩结构对振动和不直度较为敏感,因此,对设计和施工的要求较高。单桩结构的桩径一般为4~6m,最大可达7m。因此,施工难度大,一般采用打桩或钻孔桩。

5.3 三角架结构

三角架结构与边际油田开发的简易平台相似,三根桩通过一个三角形刚架与中心立柱连接,风电机组塔架连接到立柱上形成一个结构整体。三角架结构的刚度大于单桩结构,且不采用灌浆连接,可以通过调整三角架来保证中心立柱的垂直度。其适用水深大于20m。三角架结构用三根桩取代了单桩结构的一根桩,因此,桩径远远小于单桩结构,一般为1~2m。因此,不需要重型施工设备,特别是深水条件下,三角架结构的施工难度远远小于单桩结构,比较适合我国目前的施工条件。当桩的承载能力不足时,还可以增加桩的数量,相应地将三脚架延伸为多角架。我国的东海大桥风电场拟采用四角架结构。

5.4 导管架结构

导管架结构借鉴了海洋石油平台的概念,采用了比三角架结构刚度更大的结构形式。因此,其适用水深和可支撑的风机规格大于三角架结构。导管架的适用水深为20~50m。导管架结构的造价高于单桩结构和三角架结构,是固定式海上风电机组基础结构中适用水深最深的一种结构。导管架结构的关键部位是塔架与导管架的连接处,它控制着结构的刚度与疲劳性能。

5.5 桶基单立柱结构

桶基单立柱由一个中心立柱与钢制圆桶通过带有加强筋的剪切板相连,剪切板将中心立柱载荷分配到桶壁并传入基础。塔架与桶型基础的立柱在水面上连接,钢质桶由竖直的钢裙组成。桶型基础通过负压安装,由于桶内土的重力作用,桶型基础的承载机制与重力式基础

相似。在一个波浪周期内,由于没有足够的时间将桶基础从海底拔出,这就保证了桶型基础的稳定性。因为,当波浪的作用对桶产生拉力时,桶底和土之间的负压空间将趋于扩大。然而,负压空间的扩大必须有足够的水充填,以保证这一过程的继续。但由于波浪周期一般很短,因而,桶基础不会被拔出。不过,拆除时可以利用这个过程。桶基单立柱结构的适用水深为0~25m。

5.6 浮式结构

海上风电机组浮式基础结构用于水深50~200m 的海域,对于一些浅海风能资源贫乏的国家,如美国和日本,浮式结构是海上风电机组基础结构的主要发展方向。目前,浮式结构主要有三大类——张力腿式、三(四)浮柱式和Spar 式,分别以美国国家可再生能源实验室开发的张力腿结构(NREL TLP)(Tri-floater)和日本研发的Spar结构为代表,如图4所示。、荷兰开发的三浮柱结构)和日本研发的Spar 结构为代表。

6我国海上风电基础结构的适用性分析

我国海上风电产业正在迅速崛起,海上风电产业将是我国“十一五”乃至今后一个时期的发展方向。目前,上海、山东、浙江和江苏的沿海地区都在着手海上风电场的建设规划。由于基础结构在海上风电场的总投资中所占的比重较大,因此,积极地吸收国外海上风电场建设的经验,大力发展适合我国国情的海上风电机组基础结构,对我国海上风电产业的健康发展将是至关重要的。我国渤海水深较浅,辽东湾北部浅海区水深多小于10 m ,海底表层为淤泥、粉质粘土、淤泥质粉砂,

粉土底部沉积物以细砂为主,承载力相对较大,可作持力层。和粉砂层,承载力小,易液化,不适宜作持力层;而黄河口海域多为黄河泥沙冲淤海底,因此,渤海的大部分海域为淤泥质软基海底,冲刷现象也较为严重,且冬季有冰荷载的作用,不宜采用重力式基础和负压桶基础,可采用单桩结构。单桩结构在海床活动区域和海底冲刷区域是非常有利的,主要是缘于其对水深变化的灵活性。东海平均水深在5 ~15 m的海域多为淤泥质软基海底,不适宜采用重力式基础和浮压桶基础,只能采用桩基结构。因此,东海大桥风电场的备选基础结构为三角架基础、四角架基础、高桩承台群桩基础和单桩基础。这四种基础结构中,单桩基础的经济性最优,但其施工机具和技术均要求较高,故东海大桥风电场最终选择了四角架结构。南海北部湾和琼州海峡的海底表层沉积物主要为陆源碎屑堆积,颗粒较细,主要为淤泥质粉质粘土和粉

砂,其次为粉土和中砂,以粘土、粉砂和细砂为主。在琼州海峡侵蚀洼地的边缘和潮流沙脊下部发育有大中型沙波。海底沙波的存在使海底坎坷不平,同时,沙波和大波痕都是迁移型海底微地貌,它们的存在表明海底泥沙运动较强,海底稳定性差,沙波活动伴随着海底强烈冲刷、淤积及泥沙群体运动。因此,也不宜采用重力式基础和负压桶基础,桩基础是较好的选择。由于南海的水深较大,且海洋环境条件恶劣,应采用刚度较大的导管架结构。分析可知,我国发展海上风电产业将以桩基结构为主要基础结构形式,而桩基结构中,单桩结构对于渤海和东海的水深和地质条件是较为合理的基础结构形式,但我国目前的海上施工能力限制了该结构的应用。据悉,我国已着手引进大型液压打桩

锤,这将从设备能力上解决单桩结构的安装问题。

7. 海洋风电发展的瓶颈

海上风电工程不同于陆上风电, 在系统结构、环境条件、荷载特征等方面都具有特殊性.

首先,海上风机与塔架要经受台风的严峻考验, 其下部结构还要受到波浪、海流的作用, 且风、浪、流是相互耦合的, 这是陆地风能工程无需考虑的复杂耦合环境条件; 另外, 海上地基可能出现冲刷、液化、软化等现象, 这是陆地风电工程无需考虑的可能引起基础破坏的现象. 其次, 与油气开发平台等传统海洋结构相比, 海上风机支撑结构具有“高耸”的特征, 塔架长径比大、刚度小, 风的横向作用占主导地位, 在横向风载作用下, 塔架易产生大的振动和变形, 风载对海上风机结构的影响比海洋平台显著得多;

此外,其下部结构的直径往往较海洋平台的桩柱大, 如单桩桩径一般为4–7 m, 重力式基础尺度更大, 而海洋油气平台的桩径一般仅1–2 m, 上海东海大桥海上风机基础承台直径14 m. 并且, 随着水深和单机容量的增大, 桩柱尺寸还会向更大发展.

再次,海上风机的高耸结构特征和所处的复杂环境条件决定了其下部结构要受到巨大倾覆力矩的作用,将对地基的强度和稳定性产生显著影响.

最后,海上风机支撑结构正向漂浮式发展, 其上部高耸塔架的荷载对浮式支撑结构及其水下系泊系统的影响不可忽视, 且浮式基座的平移和旋转以及锚链的运动比海洋油气平台显著得多, 非线性效应强

得多. 因此,切实针对海上风电工程所面临的复杂水动力环境条件和支撑结构几何与运动特征的研究工作亟待深入开展。

8展望

尽管海洋工程已经历了百余年的发展, 但海上风电工程有其特殊性, 且发展历程也较短, 基础数积累十分有限, 因而, 目前的相关基础理论还远不能满足工程的需求, 相关行业规范还难以有效指导海上风电工程的设计, 海洋工程的传统理论亟待发展和更新, 近期亟需在以下几方面加强研究.

(1) 海上风电系统主要位于浅水或中等水深海域, 必将遭遇复杂的近海海洋环境, 包括台风/飓风及与之相伴随的巨浪、内波、畸形波、海啸等极端海洋环境事件、破碎波等, 这些恶劣环境条件及其相互耦合效应的描述方法与模型亟待研究和发展. 特别是, 在全球气候变化的大环境下, 这类极端海洋环境事件的演化趋势值得关注.

(2) 海上风机及其支撑系统是海洋工程中的一种新型结构, 风、浪、流耦合环境下, 水下结构所受水动力载荷的描述方法与建模理论亟待发展, 包括中等Kc数下中等尺度结构的水动力载荷、强非线性波(特别是破碎波、畸形波)载荷、海冰载荷等.

(3) 气、水耦合环境与一体化结构(包括风机、塔架、水下结构、地基)相互作用的耦合建模方法与优化分析理论亟待研究与发展, 包括气动弹性效应、水动弹性效应、风与水上结构的相互作用、波流冰与水下结构的相互作用、流-固-土耦合理论等.

(4) 海上风电工程向深远海、漂浮式、大容量机组发展是必然的趋势,

安全、高效、经济的浮式结构新概念研究势在必行, 探索浮式结构新型式、抑制结构响应的新途径和新技术, 将为我国海洋工程的自主创新提供契机.

结语

我国正在大规模的开发海上风电产业,迫切需要开发出适合我国国情的海上风电机组基础结构。尽管国外现有的结构形式可借鉴适用,但由于国情不同(材料成本、制造成本和安装成本的比例不同),现有的结

构形式在我国并不是最经济的结构形式。为了我国海上风电产业的健康持续发展,必须开发出符合我国国情,且经济指标优良的海上风电机组基础结构。

风电新能源及其并网技术的发展现状

风电新能源及其并网技术的发展现状 为进一步响应国家可持续发展的号召,提倡低碳生活,大力发展风电资源是我国可持续发展道路上的重点之一,众所周知,煤炭资源属于不可再生资源,生成周期非常长,甚至需要上千年的生成周期。因此,风电新能源的开发与利用成为我国资源可持续发展的重要选择之一。风能是一种洁净能源,可以说是取之不竭、用之不尽,我国沿海地区、草原地区、山区以及高原地区等严重缺乏煤炭资源和水资源,但是这些地区的风能资源丰富,依据不同地区的优势资源来带动当地的发展,已经成为是我国可持续发展战略的重要组成部分之一。 标签:风电新能源;并网技术;发展探究 中图分类号:F726 文献标识码:A 引言 当今人类生存和发展急需解决的是能源和环境问题。进入21世纪以来,世界各国为了保证各自的能源安全并应对气候变化,纷纷调整能源战略,加大可再生能源的开发和建设力度,尤其是风能的开发和利用。风力发电作为一种可再生的绿色能源,以其无污染、储量丰富、成本低廉、使用前景广阔的优势倍受世界各国的重视。我国由于海域面积辽阔,风能储量很大且分布较广,开发潜力很大。近年来,在能源和环境危机日趋紧迫的情况下,我国政府实施了一系列新的能源战略,对能源结构进行了调整,风电产业及技术水平得到了飞速发展,但在风电并网技术方面还存在一些问题,总结并分析如何解决这些问题,对深入推进风电产业的健康、可持续发展意义非凡。 1风电新能源存在的问题 1.1风能不稳定、不可控 风能的能量密度低,具有不确定性和随机性,因此对风能的利用在调节和控制方面不易掌控,对风能的开发利用有一定的阻碍。 1.2风力发电厂的位置偏远 我国的风力资源较为丰富的地区都比较偏远,对于资源短缺地区的距离较远,风电的外送被电网的输电能力所限制,中国风能资源的大规模开发,需要加强电网的建设。 1.3风能的能量密度不大

风电行业事故案例

近期国内风电场事故报告 20PP年以来,我国一些风电公司在设备安装调试和运行过程中陆续发生了重大设备事故,造成风电机组完全损毁,并危及到调试人员的生命安全。通过分析这些事故,我们发现主要原因有三类:1、风电场管理不严,对风电设备的保护参数监督失控;2、风电机厂家管 理混乱,调试人员培训不到位,产品设计中也存在安全链漏洞;3、设备制造质量失控,存在不少隐患。 由于风电事故对厂家和风电开发商的负面影响较大,厂家和风电场业主往往严格保密,防止消息泄漏后有不良影响。我们只能通过互联网和各种渠道尽可能收集多的信息,供大家了解,引以为戒,避免今后发生类似事故。信息可能有失全面和准确,敬请谅解。 1、华锐风电机组火灾事故 20PP年5月,华能在通辽阜新风电场的一台华锐SL1500/77发生着火事故,机组完全烧毁,具体原因不明。 2、东汽风电机组火灾事故 20PP年7月14日上午10时,中广核位于内蒙古锡林浩特东45 公里的风电场,一台东汽FA 77的1.5兆瓦风电机组发生火灾。原因据说是维修过程中,在机舱烧电焊,引发机舱内的油脂起火。见附图。

3、东汽风电机组火灾事故 2opp年1月24日,位于通辽的华能宝龙山风电场30号机组, 1.5兆瓦的东汽F— 77机组发生飞车引发的火灾和倒塔事故。监控 人员当时发现监控系统报“发电机超速,转速为2700转/分”(正常运行时应小于1700转/分),高速轴刹车未能抱死刹车盘。华能值班人员随即将集电线路停电,在短暂停机后,风轮再次转动(原因不明),随着转速的不断增大,高速轴上的刹车盘摩擦产生大量热量,出现火花导致机舱着火。现场查看风机时,发现第三节塔筒也发生折断。见下图。 4、新誉风电机组倒塔事故

风电施工实用工艺手册簿风机基础部分

施工工艺手册风电工程风机基础篇 风电事业部

第1章土方工程 1吊装平台 施工工艺质量要求 1.1.1平整区域的坡度与设计要求相差不应超过0.1%(人工施工表面平整,不应偏陡;机械施工基本成型,不应偏陡),如有排水沟,排水沟坡度与设计要求相差不应超过0.05%。 1.1.2边坡坡度:人工施工表面平整,不应偏陡;机械施工基本成型,不应偏陡。 1.1.3表面标高:人工清理±30mm;机械清理±50mm。 1.1.4长度、宽度(由设计中心向两边量):人工+300、-100mm,机械+500、-150mm。 1.1.5表面平整度:人工施工≤20mm,机械施工≤50mm(用2m直尺检查)。 主要技术及管理措施 1.1.6平整场地前,在地形图上布设普通方格网,边长10m~40m,一般多用20m,根据设计标高确定挖填土方平衡量,以便土方调配。 1.1.7根据具体施工条件、运输距离以及填挖土层厚度、土壤类别选择适宜施工机械。 1.1.8土料质量如含水率、粒径等应严格按设计要求;土方回填应分层摊铺和夯实,每层铺土厚度和压实遍数应根据土质、压实系数、机械性能确定。 工艺图片示例 图1.1.1

地基处理工程 2基坑开挖与护坡 施工工艺质量要求 2.1.1符合基坑开挖图、符合设计要求。 2.1.2基坑上下口线规整、顺直。 2.1.3边坡坡度修整一致。 2.1.4坑底布设排水明沟和集水井,不积水,坡顶有截水明沟或泛水坡度作为挡水坝,能够有效截流地表雨水。 2.1.5满足局部不滑坡或不塌方要求。 主要技术及管理措施 2.1.6基坑开挖方案和开挖图设计应严格审批制度,须经审批后方可实施;土方开挖前,对所挖区域进行定位放线,根据作业指导书要求进行放坡。 2.1.7根据具体施工条件、运输距离以及挖土层厚度、土壤类别选择适宜施工机械。 工艺图片示例 图1.2.1

中国风电相关政策复习进程

中国风电相关政策

中国风电政策 一、宏观政策 中国自20世纪70年代开始尝试风电机组的开发,从1996年开始,启动了“乘风工程”、“双加工程”、“国债风电项目”、科技支撑计划等一系列的支持项目推动了风电的发展。 2006年1月1日开始实施的《可再生能源法》,国家鼓励和支持可再生能源并网发电。电网企业应当与依法取得行政许可或者报送备案的可再生能源发电企业签订并网协议,全额收购其电网覆盖范围内可再生能源并网发电项目的上网电量,并为可再生能源发电提供上网服务。 2007年9月1日起开始实施的《电网企业全额收购可再生能源电量监管办法》(电监会25号令)电网企业全额收购其电网覆盖范围内可再生能源并网发电项目上网电量,可再生能源发电企业应当协助、配合。 2010年4月1日起开始实施的《可再生能源法修正案》,国家实行可再生能源发电全额保障性收购制度。电网企业应当与按照可再生能源开发利用规划建设,依法取得行政许可或者报送备案的可再生能源发电企业签订并网协议,全额收购其电网覆盖范围内符合并网技术标准的可再生能源并网发电项目的上网电量。发电企业有义务配合电网企业保障电网安全。 2006 年,国家发改委、科技部、财政部等8 部门联合出台《“十一五”十大重点节能工程实施意见》,2010 年我国风电装机容量达到500万千瓦,2020 年全国风电装机容量达到3000 万千瓦。 2012年4月24日,科技部《风力发电科技发展“十二五”专项规划》到2015年风电并网装机达到1亿千瓦。当年发电量达到1900亿千瓦时,风电新增装机7000万千瓦。建设6个陆上和2个海上及沿海风电基地。 2012年5月30日,国务院《“十二五”国家战略性新兴产业发展规划》到2015年,风电累计并网风电装机超过1亿千瓦,年发电量达到1900亿千瓦时。 2012年7月,国家发改委《可再生能源发展“十二五”规划》“十二五”时期,可再生能源新增发电装机1.6亿千瓦,其中常规水电6100万千瓦,风电7000万千瓦,太阳能发电2000万千瓦,生物质发电750万千瓦,到2015年可再生能源发电量争取达到总发电量的20%以上。 2011年8月实施的《风电开发建设管理暂行办法》对风电项目建设实施的各个环节进行了规定。 二、电价政策

关于印发风电并网运行反事故措施要点的通知

国家电网公司文件 国家电网调〔2011〕974号 关于印发风电并网运行反事故措施要点的通知 各分部,华北电网有限公司,各省(自治区、直辖市)电力公司,中国电科院,国网电科院,国网经研院: 为落实《国家能源局关于加强风电场并网运行管理的通知》(国能新能〔2011〕182号),公司在总结分析风电并网运行故障原因和存在问题的基础上,组织制定了《风电并网运行反事故措施要点》,现予印发,请各单位严格执行。 风电机组低电压穿越能力缺失是当前风电大规模脱网故障频发的主要原因。为防止类似故障再次发生,各单位要督促网内风力发电企业对风电机组低电压穿越性能进行改造、调试,并通过国家有关部门授权的有资质的检测机构按《风电机组并网检测 管理暂行办法》(国能新能〔2010〕433号)要求进行的检测验证。对此,特别强调: 1. 新建风电机组必须满足《风电场接入电网技术规定》等相关技术标准要求,并通过按国家能源局《风电机组并网检测管理暂行办法》(国能新能〔2010〕433号)要求进行的并网检测,不符合要求的不予并网。 2. 对已并网且承诺具备合格低电压穿越能力的风电机组,风电场应在半年内完成调试和现场检测,并提交检测验证合格报告。同一型号的机组应至少检测一台。逾期未交者,场内同一型号的机组不予并网。 3. 对已并网但不具备合格低电压穿越能力的容量为1MW及以上的风电机组,风电场应在一年内完成改造和现场检测,并提交检测验证合格报告。报告提交前,场内同一型号的机组不予优先调度。逾期未交者,场内同一型号的机组不予并网。 附件:风电并网运行反事故措施要点

二○一一年七月六日 主题词:综合风电反事故措施通知 国家电网公司办公厅2011年7月6日印发

风力发电机机组基础预算

风力发电机机组基础预算

目录 引言 750KW风力发电机组基础土建工程 750KW风力发电机组基础电气工程 750KW风力发电机组基础预算书 750KW风力发电机组基础单位工程预表750KW风力发电机组基础单位工程费用表汇总表 总结

关键词: 施工图预算:施工图预算是指一般意义上的预算,指当工程项目的施工图设计完成后,在单位工程开工前,根据施工图纸和设计说明、预算定额、预算基价以及费用定额等,对工程项目所应发生费用的较详细的计算。它是确定单位工程、单项工程预算造价的依据;是确定招标工程标底和投标报价,签订工程承包合同价的依据;是建设单位与施工单位拨付工程款项和竣工决算的依据;也是施工企业编制施工组织设计、进行成本核算的不可缺少的文件。 单位工程:单位工程指具有独特的设计文件,独立的施工条件,但建成后不能够独立发挥生产能力和效益的工程。 直接工程费:直接工程费是指施工企业直接用与施工生产上的费用。它由直接费、其他直接费和现场经费组成。 间接费:间接费是指施工企业用与经营管理的费用,它由企业管理费、财务费用和其他费用组成。

风力发电机机组主要包括:机舱(主机)、叶轮、塔架、基础、控制系统等等。风力发电机机组基础是风力发电机重要组成成分之一,一般陆地风电场风力发电机机组基础占风力发电机总造价16%左右;海上风电场风力发电机机组基础占风力发电机总造价25%左右。 风力发电机机组基础的外型为正八边形,一般是依据地质报告和冻土层深度可分为三种基础:标准基础、深基础、加深基础。 风力发电机机组基础预算计算主要包括:挖基坑、回填土、自卸汽车运土、混凝土基础垫层、钢筋、现浇砼独立基础。 以新疆达坂城风电三场一期30MW项目工程750KW机组基础预算工程量计算为例:

风电并网技术标准(word版)

ICS 备案号: DL 中华人民共和国电力行业标准 P DL/Txxxx-200x 风电并网技术标准 Regulations for Wind Power Connecting to the System (征求意见稿) 200x-xx-xx发布200x-xx-xx实施中华人民共和国国家发展和改革委员会发布

DL/T —20 中华人民共和国电力行业标准 P DL/Txxxx-2QQx 风电并网技术标准 Regulations for Wind Power Connecting to the System 主编单位:中国电力工程顾问集团公司 批准部门:中华人民共和国国家能源局 批准文号:

前言 根据国家能源局文件国能电力「2009]167号《国家能源局关于委托开展风电并网技术标准编制工作的函》,编制风电并网技术标准。《风电场接入电力系统技术规定》GB/Z 19963- 2005于2005年发布实施,对接入我国电力系统的风电场提出了技术要求。该规定主要考虑了我国风电尚处于发展初期,风电机组制造产业处于起步阶段,风电在电力系统中所占的比例较小,接入比较分散的实际情况,对风电场的技术要求较低。根据我国风电发展的实际情况,各地区风电装机规模和建设进度不断加快,风电在电网中的比重不断提高,原有规定已不能适应需要。为解决大规模风电的并网问题,在风电大规模发展的情况下实现风电与电网的协调发展,特编制本标准。 本标准土要针对大规模风电场接入电网提出技术要求,由风电场技术规定、风电机组技术规定组成。 本标准由国家能源局提出并归口。 本标准主编单位:中国电力工程顾问集团公司 参编单位:中国电力科学研究院 本标准主要起草人:徐小东宋漩坤张琳郭佳李炜李冰寒韩晓琪饶建业佘晓平

风电并网对电力系统的影响分析开题报告

毕业设计(论文)开题报告书 课题名称风电并网对电力系统的影响分析 学生姓名黄志勇 学号0741227305 系、年级专业电气工程系、07电气工程及其自动化 指导教师袁旭龙副教授 2010年12 月20 日

一、课题的来源、目的意义(包括应用前景)、国内外现状及水平 课题来源: 风能作为一中清洁的能源受到了全世界普遍的青睐,但是风能发电也存在这一些难以解决的问题,如风电并网对系统的影响以及风力发电的规划是摆在眼前的现实问题。风力发电并网后会对电力系统产生不小的影响,会影响到电网的稳定性、电网电压,电能质量和继电保护装置,还会造成谐波污染。其中由风电并网所引起的电压波动和闪变是风电并网的主要负面影响。虽然现在风力发电机组大都采用软并网方式,但是启动时仍会产生较大的冲击电流,使得风电机组输出的功率不稳定,进而会导致电压的波动和闪变。电压的波动和闪变会使电灯闪烁,电视机画面不稳定,电动机转速变化严重影响到工业产品的质量,在某些特殊行业电压不稳会使一些精密的仪器出现测量错误,严重时还会引发重大事故。风能作为一种间歇性能源,加之风能资源的预测准确度并不能完全符合电力系统对电能质量的要求,所以寻求新途径新思路解决风电对系统的影响也自然成了许多电力行业工作人员的目标。 目的意义: 综合运用所学的理论知识,使理论与实践相结合,尽快适应生产实际;提高动手能力和分析问题、解决问题的能力;增强工程观念;提高查阅资料和阅读专业英语资料的能力。 随着世界能源日益紧缺和全球气候变暖趋势增强,新能源、可再生资源的开发利用成为了解决上述问题的主要手段之一。风力发电是目前可再生能源各种技术中发展最快、技术最为成熟、最具大规模和商业化前景的产业,是最有可能成为主流电源的可再生能源技术之一。所以采取措施改善风电并网对电力系统的一些负面影响,积极促进风电的开发利用,是优化能源结构,保障能源安全,缓解能源利用造成的环境污染,促进能源与经济、能源与环境协调发展的重要的选择,是建设资源节约型、环境友好型社会和实现可持续发展的重要途径。 国内现状及水平: 我国是世界上利用风能最早的国家之一,可以开发利用的风能资源仅次于前苏联和美国,为世界第三位。目前,我国已经拥有750kw以下各类风电设备的制造能力,兆瓦级风力发电机组正在研究试验阶段,风电机组正由定桨矩型向变桨矩型过渡。 国内风电场装机大多数为mw级以下的定桨距定速型风机。其中,600kw和750kw 的国内生产厂家超过数十家,而且占据了市场的80%以上,国产化率已达90%;mw

风力发电风机基础施工方案

. 一、编制依据: 1、根据图纸设计的要求进行施工。 2、建设部发放《混凝土结构工程施工质量验收规范》。 3、国家电力公司发放《电力施工质量检验及评定标准》 4、电力建设安全规程。 5、施工组织设计书 二、工程概况: 本工程B标段共11个风机基础,风机基础全部为钢筋混凝土基础,基础垫层混凝土设计强度为C15,基础混凝土设计强度为C35,基础采用定型钢质模板,以保证混凝土表面光洁度、平整度和整体性良好。 备机具名 TDJRE经纬12014.91 1 SETZ2水准2014.9 瑞全站3 1 2014.9

TRS-822 2014.1 5 50mm 台振捣棒4 2 2014.1 2 5 弯曲机GW40 台 2 2014.1 切割机6 GQ32 台2 2 资料. . 2014.1 1 电焊机ZXE1 台7 2 2014.1 根10

钢丝绳各种规格 2 2014.1 9 钢筋调直4-14 2 2014.2 HW-20A 10 打夯2 2014.发电30 111 2 2:工程车辆配置表退场时间数量规格机具名称序号进场时间 1 1 江铃皮卡2014.9 四驱 2 装载机5t 2014.10 2 3挖掘机1m 3 2014.11

施工流程:三、、测量放线1 根据设计蓝图及甲方提供的固定成果桩成果表进行测量放线,并在适当位置做控制点且设置保护措施,使控制桩不宜被破坏。在施工测量过程中认真审核图纸,施工测量完成并且经过公司三级检验确认无误后,请甲方及监理单位有关人员进行查验后,进行土方开挖工作。 资料. . 2、土方工程 (1)基坑开挖时,应对平面控制桩、水准点、基坑平面位置、水平标高、边坡坡度等经常复测检查。 (2)基坑开挖时,应遵循先深后浅或同时进行的施工程序。挖土应自上而下水平分段分层进行,每层0.3m左右,边挖边检查坑底宽度及坡度,不够时及时修整,每3m左右修一次坡,至设计标高,再统一进行一次修坡清底,检查坑底宽和标高,要求坑底凹凸不超过 2.0cm。 (3)雨季施工时,基坑槽应分段开挖,挖好一段浇筑一段垫层,并再基槽两侧围以土堤或挖排水沟,以防地面雨水流入基坑槽,同时应经常检查边坡和支撑情况,以防止坑壁受水浸泡造成塌方。 (4)挖掘发现地下管线(管道、电缆、通讯)等应及时通知有关部

风电大规模并网对电网的影响

由于风能具有随机性、间歇性、不稳 定性的特点,当风电装机容量占总电网容量的比例较大时会对电网的稳定和安全运行带来冲击。本文针对这一问题,阐述了大规模风电并网后对电力系统稳定性、电能质量、发电计划与调度、系统备用容量等方面的影响。并对风电的经济性进行了分析。 风电并网对电网影响主要表现为以下几方面: 1.电压闪变 风力发电机组大多采用软并网方式,但是在启动时仍然会产生较大的冲击电流。当风速超过切出风速时,风机会从额定出力状态自动退出运行。如果整个风电场所有风机几乎同时动作,这种冲击对配电网的影响十分明显。不但如此,风速的变化和风机的塔影效应都会导致风机出力的波动,而其波动正好处在能够产生电压闪变的频率范围之内(低于25Hz),因此,风机在正常运行时也会给电网带来闪变问题,影响电能质量。已有的研究成果表明,闪变对并网点的短路电流水平和电网的阻抗比(也有说是阻抗角)十分敏感。 2.谐波污染 风电给系统带来谐波的途径主要有两种:一种是风力发电机本身配备的电力电子装置,可能带来谐波问题。对于直接和电网相连的恒速风力发电机,软启动阶段要通过电力电子装置与电网相连,因此会产生一定的谐波,不过因为过程很短,发生的次数也不多,通常可以忽略。但是对于变速风力发电机则不然,因为变速风力发电机通过整流和逆变装置接入系统,如果电力电子装置的切换频率恰好在产生谐波的范围内,则会产生很严重的谐波问题,不过随着电力电子器件的不断改进,这一问题也在逐步得到解决。另一种是风力发电机的并联补偿电容器可能和线路电抗发生谐振,在实际运行中,曾经观测到在风电场出口变压器的低压侧产生大量谐波的现象。与电压闪变问题相比,风电并网带来的谐波问题不是很严重。 3.电压稳定性 大型风电场及其周围地区,常常会有电压波动大的情况。主要是因为以下三种情况。风力发电机组启动时仍然会产生较大的冲击电流。单台风力发电机组并网对电网电压的冲击相对较小,但并网过程至少持续一段时间后(约为几十秒)才基本消失,多台风力发电机组同时直接并网会造成电网电压骤降。 因此多台风力发电机组的并网需分组进行,且要有一定的间隔时间。当风速超过切出风速或发生故障时,风力发电机会从额定出力状态自动退出并网状态,风力发电机组的脱网会产生电网电压的突降,而机端较多的电容补偿由于抬高了脱网前风电场的运行电压,从而引起了更大的电网电压的下降。

有关风电新能源发展与并网技术的探讨

有关风电新能源发展与并网技术的探讨 发表时间:2018-07-31T12:46:23.827Z 来源:《建筑模拟》2018年第10期作者:乔健邓高 [导读] 能源紧张和环境污染问题现在已被世界公认为一大难题,可再生能源的开发和利用越来越受到各界人士的青睐。 国家电投集团河南新能源有限公司河南郑州 450000 摘要:风电新能源因其自身独特的优势和我国地理位置优越性,开发和利用风电新能源具有一定的优势,但由于风电难以储存、风能不稳定、风电场位置分布不均匀,在风电并网方面存在一定的难度,本文中通过探讨风电新能源发展与并网技术,为我国新能源风电的发展提供一定的理论依据。 关键词:风电新能源;发展;并网技术 能源紧张和环境污染问题现在已被世界公认为一大难题,可再生能源的开发和利用越来越受到各界人士的青睐。在可再生能源中,风力发电因技术相对其它新能源来说相对成熟,因此在我国也受到了更多的重视和关注,应用也越来越广泛。加之,风能资源实际上也是在间接利用太阳能,本身具有污染小、占地少、储量大的优点,我国具有较大的地理面积和较长的海岸线,因此,在我国推行风力发电具有一定的有利条件。本文中笔者通过探讨风电新能源与并网技术在新能源风力发电中的应用,重点突出并网技术对于风力发电的影响。 一制约我国风力发电机装机规模的因素 风力发电因其独特的优势,被越来越多的开发者所重视,得到了较好的发展,我国沿海地区和内部大陆风能资源比较丰富的地方,都逐步在加快风能资源的开发和利用,建立了一定数量的风电场,现在风力发电也形成一定的规模,逐步向产业化发展。这对于我国调整产业结构、转变经济结构、治理大气环境具有一定的优势和意义。 中国风电新装机容量在2016年达到了2337万kw,数量已经很大,远远超过世界发达国家,已成为世界第五大风电开发国之一。但是我国风电设备技术相对落后,而且在供电方面,我国的电力系统主要是恒温恒频异步风电系统,而风电比较依赖自燃资源,电源比较分散,这就造成了风电并网电网后,降低了电网的稳定性和质量,很多企业不愿意风电入网。因此,在我国要不断发展风电事业,就必须首要解决风电入网问题。 1.1 风能在储存方面较难 风电在存储过程中成本较高,风电相较于火力发电成本就较高,同时,相比较储电成本,发电成本更高,这就导致基本上不储电的现状。 1.2 不稳定的风能 对于风能来说,主要利用自然资源,风向和风速都是不确定因素,属于过程性能源,因此,随机性和不稳定性的特点,风力发电过程中也较难控制。因此,通过风力发电,电能波动性较大,也比较随机。 1.3 分布不均匀的风电场 我国地理位置大,风能资源分布不均匀,风能资源较丰富的地区与负荷中心距离较远,当需要开发大规模风电时,就需要相应配套的风电输送设备,同时配合强化电网建设。 二解决我国风电并网技术难题的有效途径 2.1 科学合理管理电力项目工程 风电工程是可持续发展的一个重要战略和举措,因此要不断深入和发展风力发电项目,在建设和使用过程中,一旦出现问题,要深度剖析原因,使得风力发电项目向着健康有序的方向发展。同时加大监督检查施工现场,若与设计存在偏差,要及时记录分析,综合考虑各方面因素,及时调整施工,减少工程变更,使后续工程有序开展进行。 2.2 合理规划建设、优化布局结构 闭环结构开环运行的方式应该为电网建设所使用,采用此方式,可以有效提高电网的稳定性。换言之,网络建设主要为环形状,出现故障时转变为辐射状,线路出现故障,技术人员就必须能够通过合理使用开关,选择其它线路供电,用来保证电路的稳定性。因此,在开发风力发电时,也要采取这种手段,这样有利于风力发电入网建设,这就需要结合具体实际情况,合理进行规划,形成自己的布局结构,以创造更大的经济效益。 2.3 通过降低功率损耗来降低电网压力 有功损耗和无功损耗是电网中的两种损耗形式。因此要通过功率计算来深化研究功率损耗,采用降低损耗的方式可以有效减少用电负荷,进一步延长了用电设备的使用寿命。换言之,我们在设计电路时,要合理选择导线的路径,减少电路中电阻的功率损耗,这个主要通过有功功率的计算来实现。 在考虑无功功率的损耗问题时,这就在于专业变压器的选择问题,这也是要求在我国建设和发展电网事业时,要不断实现电网资源的整合,采取静止无功补偿器、同步调相机、并联电容器等方法,来实现有针对性的无功补偿。对于我国来说,要结合自身电网特点,建设和选择设备时进行有针对性的选择,不断降低电网运行过程的负荷问题,这样有利于新能源风电事业的发展,从而创造出更大更多的经济效益。 2.4 不断提高风电设备技术,延长使用寿命 我国风能资源较丰富的地方与用电负荷距离较远,就存在必须进行输电,输电线路长,就不可避免得电能损耗,从而造成一定的资源浪费现象。与此同时,在输电线路上的电能损耗,电压就存在了偏低的现象,这就造成电力系统不能在正常负载下正常运行。电灯在使用的过程中,因为这一原因,低电压造成感应电机的温度上升,使得电灯没有达到使用寿命,就降低了其亮度。在采用风力发电的过程中,可以采用在变压器上设置开关的方法,有效避免电压过低,从而降低电能损耗。这就需要电力行业发展时,要不断为风力发电提供一定的技术、资金支持,完善电网基础设施建设。 2.5 多能互补政策的实施 风力发电不稳定,电速过快电压过高,就会停止设备运行。为了能够解决在风力发电并网后存在的技术问题,我国政府要不断为风力发电配套电力调度,完善市场机制,可以在条件允许的情况下,采取多种能源互补的运行模式,促进电网消耗风电的能力,探索我国自身

风电风机电气培训教材

培训教材 编制人:高军 时间:2013-11-10

风电场风场部分电气施工项目主要包括风机电气设备安装,场区电缆敷设接线,箱式变压器安装及风机箱变接地等。本章重点介绍一下风机塔筒电气设备安装。 一、施工范围 塔筒内动力、控制电缆的敷设及接线,塔筒内部所有电气设备的安装。二、施工流程

三、施工方法及要求 风机电气设备安装要求随风机生产厂家的不同而各异,本章将主要以华锐电气有限责任公司生产的3000kW型风电机组进行介绍。 1、电缆敷设 风机塔筒电气主通道也随风机生产厂家不同而不一样,最具代表性的主要有电缆跟导电轨两种。如图二 三一风机华锐风机 1.1 选一平坦地面,放上电缆盘支架,并把电缆盘架上。 1.2 用皮卷尺量好所要截断电缆的长度并在地上作好标记,并用叉车拖动电缆到相应位置。

1.3 截好的电缆要立即在头尾两端用黄、绿、红、黄绿这4种色带作上相应的相序标记。 1.4 所要截断的电缆长度和数量见下表 1.5 卸塔筒时要一定要注意把安装电缆夹的位置放置在水平方向,装上电缆夹。 1.6 敷设电缆时要注意第二节塔筒电缆上端要与塔筒的连接法兰齐平,下端要超出塔筒约0.5m .。 1.7 敷设电缆时要注意两节塔筒电缆相序位置要一一对应。

1.8 固定电缆夹时无需立即全部固定,但要保证上端要固定2个,底部要固定1个,中间至少也要固定1个。 1.9 机舱的电缆放到第三节塔筒时,有以下几个注意点: A)、第三节塔筒平台上需要两个人拖住电缆慢慢往下放。 B)、缆马鞍处需要一个人整理电缆,并指挥上面两人放电缆的速度。(要系好安全带) C)、第二节塔筒平台上需要一个人负责对其电缆,在电缆长度超出第三节塔筒长度0.5m时通知缆马鞍处的人停止往下放电缆,可以开始放扭缆了。 D)、第三节塔筒全部放好后就要装好塔筒电缆夹,把电缆按相应的位置在电缆夹中固定好。固定电缆需要两人轮流交替,一人拧螺栓,一人递交工具。(要系好安全带) E)、整理第一节和第二节塔筒里的电缆。整理电缆时从塔筒上端的第二个电缆夹开始。先把电缆夹松开,让电缆垂直往下,再理好固定。完毕后再如法炮制下面的电缆夹。 2、电缆接线 2.1 压接前,一般要求电缆端部绝缘的剥切长度应为接线端子接管部分的孔深加5mm;接续管长度的一半加5mm。而电缆最外端绝缘的剥切长度应在此基础上再加10mm。按连接需要长度剥除绝缘,清除导体表面油污或氧化膜。 2.2 电缆与压接端子连接应根据线芯截面选择相同型号的接续管或接线端子,特殊情况下接续管或接线端子有氧化层或油污的,必须擦拭干净。

风电并网对电网的影响及其策略

风电并网对电网的影响及其策略-机电论文 风电并网对电网的影响及其策略 李梦云 (武汉理工大学自动化学院,湖北武汉430070) 【摘要】目前,中国风电已超核电成为第三大主力电源。但风力电场等分布式电源对电力网络的日益渗透的同时,给现代电力系统带来了很多方面的影响,比如改变了电力网络中能量传递的单向性,对现有配电网的稳定性产生较大的影响(尤其是对电网电压稳定性的影响)。因此,对风电并入配电网后产生的影响及其应对策略进行相关的研究是非常具有现实意义的。介绍了风力发电目前的发展状况和风电接入电网后对电力系统带来的影响,尤其是针对风电场并网后对电网的稳态电压的稳定性,以风速和风电机组的功率因数作为影响因素,从原理上,分别分析其对含风电场的电网的稳态电压的影响。最后在此基础上,提出初步的应对策略。 关键词风力发电;电网;稳态电压;影响;策略 0 前言 随着日益增长的电力负荷、能源的短缺、环境恶化的愈发严重,以及用户要求电能质量的提高,大家越来越关注DG(分布式发电)。研究表明,分布式发电的发展可以反映能源的综合运用、电力行业的服务程度和环境保护的提升。尤其是其中的风力资源,因为其是可再生能源、开发潜力大、环境和经济效益好,因此得到了广泛的应用,使风力发电成为分布式发电中重要的发展方向,同时也使其成为一种当今新型能源中发展迅速的发电方式。 1 风电并网对电力系统的影响

风电场并入配电网,使输电网对部分地区的电力输送压力得到缓解和电力系统的网损得到改善的同时,也对电力系统产生了许多不好的影响如电压波动、闪变等。 同时由于风具有随机性,其输入电网的有功和无功有很大的波动性。风速的不可预测这一特性,使我们不能对风电进行准确而又可靠地出力预测,我们需要更加注重负荷跟踪、备用容量等,提高了风电场的运行成本。 风电并网增加电力系统调峰调频的难度,不仅需要风电场容量,而且需要风电场快速响应负荷变化;风电机组并网时,会不可避免的对电网有冲击电流。风电场与电网的联络线的潮流的双向性,使并网后的电网的继电保护的保护配置提高了要求。 2 风电并网对电网电压的影响 配电网的电压分布情况由电力系统的潮流所决定,当电力网络中电源功率和负荷发生变化时,将会引发电力网络各个母线的节点产生变化。对风电并网的配电网来说,风电场的功率的波动会影响电网电压出现偏移。由于风电场接入配电网后,风电场的接入点的变化、有功功率和无功功率的不平衡等,会导致无功功率从无功源流向负荷。风电场的电压偏移会影响风电场的接入容量和风电并网后电力系统的安全运行。 2.1 风速变化对配电网电压的影响 将接入风电场的配电网系统的供电线路作等值电路,则风电场并网点至无限大系统两端的电压降落为: U1-U2=I(R1+R2+jX1+ jX2) (1) 上式中,U1为风电场的输出电压,U2为电网电压,R1、X1表示风电场的电

风电并网稳定性开题报告

南京工程学院 毕业设计开题报告 课题名称:风力发电场并网运行稳定性研究 学生姓名:李金鹏 指导教师:陈刚 所在院部:电力工程学院 专业名称:电气工程及其自动化 南京工程学院 2012年3月5日

说明 1.根据南京工程学院《毕业设计(论文)工作管理规定》,学生必须撰写《毕业设计(论文)开题报告》,由指导教师签署意见、教研室审查,系教学主任批准后实施。 2.开题报告是毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。学生应当在毕业设计(论文)工作前期内完成,开题报告不合格者不得参加答辩。 3.毕业设计开题报告各项内容要实事求是,逐条认真填写。其中的文字表达要明确、严谨,语言通顺,外来语要同时用原文和中文表达。第一次出现缩写词,须注出全称。 4.本报告中,由学生本人撰写的对课题和研究工作的分析及描述,应不少于2000字,没有经过整理归纳,缺乏个人见解仅仅从网上下载材料拼凑而成的开题报告按不合格论。 5.开题报告检查原则上在第2~4周完成,各系完成毕业设计开题检查后,应写一份开题情况总结报告。

毕业设计(论文)开题报告 学生姓名李金鹏学号206080923 专业电气工程及其自动化指导教师姓名陈刚职称讲师所在院部电力工程学院课题来源自拟课题课题性质工程研究课题名称风力发电场并网运行稳定性研究 毕业设计的内容和意义 内容: 早期风电的单机容量较小,大多采用结构简单、并网方便的异步发电机,直接和配电网相连,对系统影响不大。但随着风电场的容量越来越大,对系统的影响也越来越明显,而风电场所在地区往往人口稀少,处于供电网络的末端,承受冲击的能力很弱,给配电网带来谐波污染、电压波动及闪变等问题。 因此以恒速恒频异步风力发电机组成的风电场为研究对象,建立风力发电系统的线性化状态方程。研究包含风电场的电力系统潮流算法,利用MATLAB及其仿真平台实现电力系统潮流计算以及机电暂态仿真。分析比较各种潮流算法的优缺点。建立简单系统的小干扰稳定分析线性化状态方程,得出了状态矩阵元素的参数表示形式。用特征值分析方法研究大型风电场接入电网后的系统小干扰稳定问题。分析风电场改变对系统小干扰稳定性的影响。采用时域仿真方法研究大型风电场接入电网后的系统暂态稳定问题。 意义: 据国际能源署统计,全球风力发电机总装机容量1999年的2000兆瓦增加到2005年的60000兆瓦,世界风能市场装机资金达450亿欧元,提供50万个就业岗位。风能这种清洁能源每年可以减少2.04亿吨的二氧化碳排放量。 随着风电装机容量的增加,在电网中所占比例的增大,风能的随机性、间隙性特点,和风电场采用异步发电机的一些特性,使稳态电压值上升、过电流、保护装置的动作误差,电压闪变、谐波、浪涌电流造成的电压降落,从而使得风电的并网运行对电网的安全,稳定运行带来重大的影响。其中最为突出的问题就是使风电系统的电能质量严重下降,甚至导致电压崩溃。风电场脱网事故频发,对电网安全运行构成威胁,所以进行风力发电并网运行稳定性研究是非常必要的。

风力发电现况以及未来发展趋势

风力发电现况以及未来发展趋势 风能作为一种清洁的可再生能源,越来越受到世界各国的重视。其蕴量巨大,全球的风能约为2.74×10^9MW,其中可利用的风能为2×10^7MW,比地球上可开发利用的水能总量还要大10倍。风很早就被人们利用--主要是通过风车来抽水、磨面等,而现在,人们感兴趣的是如何利用风来发电。 一、国外发展状况 目前,中、大型风力发电机组已在世界上40多个国家陆地和近海并网运行,风电增长率比其它电源增长率高的趋势仍然继续。如表1所示,截止2005年12月31日世界装机容量已达58,982MW,年装机容量为11,310MW,增长率为24%;风力发电量占全球电量的1%,部分国家及地区已达20%甚至更多。2005年世界风电累计装机容量最多的十个国家见表2,前十名合计51750.9MW,约占世界总装机容量的87.7%。2005年国际风电市场份额的分布多样化进程呈持续发展趋势:有11个国家的装机容量已高于1,000MW,其中7个欧洲国家(德国、西班牙、意大利、丹麦、英国、荷兰、葡萄牙),3个亚洲国家(印度、中国、日本),还有美国。亚洲正成为发展全球风电的新生力量,其增长率为48%[5]。2002年欧洲风能协会(EWEA)与绿色和平组织(Greenpeace International)发表了一份标题为“风力12(Wind Force 12)”的报告,勾画了风电在2020年达到世界电量12%的蓝图。报告声明这份文件不是预测,而是从世界风能资源、世界电力需求的增长和电网容量、风电市场发展趋势和潜在的增长率、与核电和大水电等其他电源技术发展历程的比较以及减排CO2等温室气体的要求,论证了风电达到世界电量12%的可能性。 二、国内发展现状 经过前几年的低谷期,国内的风电市场正在迎来新的发展期,特别是在节能减排、环境治理的趋势下,国家出台的一系列政策,使得风电产业站上了风口。 (一)我国风电发展进入新阶段

风电工程风机基础施工方案及工艺方法

风电工程风机基础施工方案及工艺方法 1、土方开挖 根据风机基础的设计深度、地质情况及总土石方量,本期工程采用机械挖土方,配备相应的机械为挖土机、推土机、铲运机、自卸汽车等。 (1)开挖前应要据附近的挖制点放出基坑的开挖边线,应充分考虑工作面和放坡系数,并撒灰线。 (2)在开挖时,用仪器(水平仪)随时进行监测防止超挖。并随时有人工跟班清理。在接近设计基底标高时,予留300mm厚的土层,用人工清挖,以防机械扰动基底以下的土层,在人工跟班清槽时,必须在机械臂作业半径1.5m以外施工,以防出现安全事故。 (3)夜间施工时,应有足够的照明设施;在危险地段应设置明显标志,并要合理安排开挖顺序,防止错挖或超挖。 (4)在开挖过程中,应随时检查基坑和边坡的状态。深度大于1.5m时,根据土质变化情况,应做好基坑(槽)或管沟的支撑准备,以防坍陷。 (5)施工中如发现有文物或古墓等,应妥善保护,并应及时报请当地有关部门处理,方可继续施工。如发现有测量用的永久性标桩或地质、地震部门设置的长期观测点等,应加以保护。在敷设有地上或地下管线、电缆的地段进行土方施工时,应事先取得有关管理部门的书面同意,施工中应采取措施,以防止损坏管线,造成严重事故。 (6)修帮和清底。在距槽底设计标高50cm槽帮处,抄出水平线,钉上小木撅,然后用人工将暂留土层挖走。同时由两端轴线(中心线)引桩拉通线(用小线或铅丝),检查距槽边尺寸,确定槽宽标准,以此修整槽边。最后清除槽底土方。 (7)设计及相关部门查验符合设计、地质等要求后,方可进行下道工序的施工。 2、风机基坑清理及检查 (1)基础检查处理,包括在开挖后对基础面尺寸和基础岩体质量的检查与处理。 (2)基础验收应由基础验收小组进行。基础验收小组之下,应有各有关方面的工作人员,代表验收小组进行日常的基础检查与验收工作。 (3)基础检查可分为施工单位自检、基础验收小组初检和终检三个阶段。 (4)对基础的检查处理和质量鉴定,必须以设计文件、施工图纸为准则。 (5)基础面如发现新的不良地质因素,以及前期地质勘探或试验中遗留的钻孔、 3、土方回填 (1)施工前应根据工程特点、填方土料种类、密实度要求、施工条件等来作出回填方

文献综述:风电并网存在问题分析

风电并网的不利影响及分析 一、风电并网的不利影响案例分析 1、加拿大阿尔塔特电力系统 截至2008 年,加拿大的阿尔伯塔电力系统(AIES)共有装机约280 台,总容量12 368 MW。其中,煤电5 893 MW,燃气发电4 895 MW(热电联产约3 000MW),水电869 MW,风电523 MW,生物质等其他可再生能源214 MW。阿尔伯塔的风电开发意向已达到11 000 MW,几乎与目前系统的装机容量相当,这在给AIES 带来巨大机遇的同时也带来了挑战。因为,大规模的风电接入会增加系统发电出力的不稳定性,降低系统维持供需平衡的能力。AIES 的装机以火电为主,且调节能力有限,系统备用容量也有限,电力市场的可调发电出力的灵活性不高,对外联络线的潮流交换能力相对有限。因此,系统需要增强调节及平衡能力和事故响应能力,否则难以应对风电出力变化给系统带来的巨大压力。 电力生产和使用必须同时完成的特点决定了系统运行必须维持每时每刻的供需平衡。供需失衡会引起发输电设备跳闸、负荷跳闸甚至系统崩溃等事故。因此,维持系统的实时平衡是一个非常艰巨的任务,而大规模的风电并网,会从以下4 个方面影响系统供需平衡:(1)能否准确预测供需走势。预测是实施供需平衡调节的基础。供需差可能来源于负荷、潮流交换、间歇性电源等的变化。供需走势的预测对于系统运行至关重要。预测越准确,相关的运行决策越准确,运行人员越容易维持系统稳定。而目前的风电预测,远不能达到系统运行对预测精度的要求,给大规模风电并网的系统运行带来很大隐患。 (2)需要足够的系统调节平衡资源来提升系统应对风电出力变化和不确定的能力。系统调节平衡资源是指能被随时调度的、能维持系统平衡的调节备用容量、负荷跟踪服务等运行备用。由于风电出力变化和不确定,导致系统必须维持很高的系统调节资源以作备用,降低了系统资源的利用率。否则,系统将无法应对风电出力变化和不确定性,影响系统的安全可靠运行。 (3)亟须建立相关的系统运行操作规程。为了保持系统的有效运行,必须提前研究并制定相关的系统运行操作规程,并纳入已有的运行规程以指导调度人员。由于人们对风电出力变化和不确定的了解还处于起步阶段,所以相关的运行规程还属空白。 (4)调度人员要学习并掌握应对风电出力变化和不确定影响的能力。拥有充足的系统调节平衡资源、建立相关的规程、具有可操作性的预测结果,加上操作人员多年的经验积累,在对系统特性有足够了解的基础上,才能准确地判断并作出正确决策,实现系统操作安全、可靠、及时。面对大规模的风电并网给系统运行带来的巨大挑战,调度人员需要学习如何应对风电出力变化和不确定给系统运行带来的复杂局势。 对于一个独立系统,供需不平衡可能导致系统出现频率偏差的情况,对于一个互联系统,供需不平衡可能导致系统从主网解列。特别是,阿尔伯塔系统的风电开发意向已远远大于其承受范围,所以面临的问题更加严峻。 胡明:阿尔伯塔风电并网对系统运行的影响和对策;电力技术经济;2009[4] 2、辽宁电网 预计在2010年底,辽宁电网的风电装机容量达到340万kW, 2015年风电装机容量达到787万kW。风电的大规模集中并网将给辽宁电网的调峰调频、联络线控制、系统暂态稳定、无功调压及电能质量等诸多方面带来直接影响,给电力系统的安全稳定运行带来新的挑战。 (1)导致系统调峰难度增加

风电新能源的发展现状及其并网技术的发展前景研究

龙源期刊网 https://www.doczj.com/doc/3f6299247.html, 风电新能源的发展现状及其并网技术的发展前景研究 作者:邹璐 来源:《无线互联科技》2019年第17期 摘 ; 要:风力发电以其资源丰富、成本低廉、开发方便、节能环保的优势成为可再生能源中发展最快的清洁能源,被世界各国大规模开发和应用,其发展前景十分广阔。文章首先对我国当前风力发电技术的现状进行了简要概括;其次,阐述了风电新能源的特点以及风电并网对传统电网的影响;最后,探讨了风电并网发电技术的发展趋势,希望能够推动风力发电技术的创新发展和应用。 关键词:风电;新能源;并网技术 当今人类生存和发展急需解决的是能源和环境问题。进入21世纪以来,世界各国为了保证各自的能源安全并应对气候变化,纷纷调整能源战略,加大可再生能源的开发和建设力度,尤其是风能的开发和利用。风力发电作为一种可再生的绿色能源,以其无污染、储量丰富、成本低廉、使用前景广阔的优势倍受世界各国的重视。我国由于海域面积辽阔,风能储量很大且分布较广,开发潜力很大。近年来,在能源和环境危机日趋紧迫的情况下,我国政府实施了一系列新的能源战略,对能源结构进行了调整,风电产业及技术水平得到了飞速发展,但在风电并网技术方面还存在一些问题,总结并分析如何解决这些问题,对深入推进风电产业的健康、可持续发展意义非凡。 1 ; ;我国风力发电技术现状 我国的风力发电起步较晚,20世纪80年代中期风力发电开始进入商业化运营阶段。虽然较之国外尚存在一定差距,但在国家利好政策的支持和推动下,风力发电事业得到了迅猛发展。从2005—2008年的4年时间里,全国风电装机容量由126 kW增长到1 221万kW,以每年一翻的惊人速度发展着,远远领先于世界风电发展的平均速度。2009年年底,我国以风电 总装机容量2 601万kW的数据位居世界第二,其中新增装机容量为1 300万kW,占世界新增装机容量的30%以上,居于世界首位。这一数据充分证明我国风电产业正在步入一个飞速发展的阶段,同时,在技术上,经历了从引进技术到消化吸收,再到自主创新,一系列改变之后正日益发展壮大起来。兆瓦级机组在国内风电市场的大量普及,标志着我国对风电技术自主研发能力的提升。此外,我国对海上风电也进行了积极的探索和实践,从2008—2015年的7年时间里,海上风电的装机容量有了大幅度的增长。2016年,仅海上风电新增装机就有154台, 容量高达59万kW,同比增长50%之多。由此看来,我国的风电产业发展是非常迅速的,潜力十分巨大。但是,我国的风电技术还存在很大的不足,主要体现在:并網型风机以进口为

相关主题
文本预览
相关文档 最新文档