当前位置:文档之家› 2021年海南大学841材料力学考研精品资料之孙训方《材料力学》复习提纲

2021年海南大学841材料力学考研精品资料之孙训方《材料力学》复习提纲

《材料力学》复习提纲

一、复习内容:

(一)材料力学概述:

变形体,各向同性与各向异性弹性体,弹性体受力与变形特征;基本假设;工程结构与构件,杆件受力与变形的几种主要形式;用截面法求指定截面内力。

(二)轴向拉伸与压缩:

轴向拉压杆的内力、轴力图,横截面和斜截面上的应力,轴向拉压的应力、变形,轴向拉压的强度计算,轴向拉压的超静定问题,装配应力和热应力问题;轴向拉压时材料的力学性质。

(三)剪切与扭转:

剪力和弯矩的计算与剪力图和弯矩图;载荷集度、剪力和弯矩间的微分关系及应用;连接件剪切面的判定,切应力的计算;切应力互等定理和剪切虎克定律;外力偶矩的计算、扭矩和扭矩图;圆轴扭转时任意截面的扭矩,扭转切应力,圆轴扭转时任意两截面的相对扭转角,开口与闭口薄壁杆件扭转切应力及切应力分布,剪力流的概念;矩形截面杆件最大扭转切应力及切应力分布;圆及环形截面的极惯性矩及抗扭截面模量的计算。

(四)弯曲内力:

剪力和弯矩的计算,剪力图和弯矩图,载荷集度、剪力和弯矩间的微分关系及应用。

(五)弯曲应力:

弯曲正应力及正应力强度的计算,直梁横截面上的正应力、切应力,开口薄壁杆件弯曲,弯曲中心的位置,截面上切应力分布,弯曲剪应力及剪应力强度计算,组合梁的弯曲强度,提高弯曲强度的措施。

(六)弯曲变形

挠曲线微分方程,用积分法求弯曲变形,用叠加法求弯曲变形,解简单静不定梁,梁的刚度条件。

(七)截面几何性质

静矩、形心、惯性矩、惯性半径、惯性积,简单截面惯性矩和惯性积计算;转轴和平行移轴公式;转轴公式、形心主轴和形心主惯性矩;组合截面的惯性矩和惯性积计算。

(八)应力和应变分析与强度理论

应力状态,主应力和主平面的概念,二向应力状态的解析法和图解法;计算斜截面上的应力、主应力和主平面的方位;三向应力状态的应力圆画法;掌握单元体最大剪应力计算方法;各向同性材料在一般应力状态下的应力一应变关系,广义胡克定律,各向同性材料各弹性常数之间的关系;一般应力状态下的应变能密度,体积改变能密度与畸变能密度;四种常用的强度理论,莫尔强度理论。

(九)组合变形

组合变形和叠加原理;拉压与弯曲组合变形杆的应力和强度计算;斜弯曲;偏心压缩;扭转与弯曲组合变形下,圆轴的应力和强度计算;组合变形的普遍情况。

(十)能量方法

掌握变形能(外力功)的普遍表达式,杆件变形能的计算;势能及其驻值原理;虚功原理、卡氏定理、莫尔定理、图形互乘法及其应用;用能量方法解超静定问题;功的互等定理和位移互等定理。

(十一)压杆稳定

压杆稳定的概念;常见约束下细长压杆的临界压力、欧拉公式;压杆临界应力以及临界应力总图;压杆失效与稳定性设计准则;压杆失效的不同类型,压杆稳定计算;中柔度杆临界应力的经验公式;提高压杆稳定的措施。

1

材料力学基本概念

变形固体的基本假设、内力、截面法、应力、位移、变形和应变的概念、杆件变形的基本形式;轴力和轴力图、直杆横截面上的应力和强度条件、斜截面上的应力、拉伸和压缩时杆件的变形、虎克定律、横向变形系数、应力集中;扭转的概念、纯剪切的概念、薄壁圆筒的扭转,剪切虎克定律、切应力互等定理;静矩、惯性矩、惯性积、惯性半径、平行移轴公式、组合图形的惯性矩和惯性积的计算、形心主轴和形心主惯性矩概念;应力状态的概念、主应力和主平面、平面应力状态分析—解析法、图解法(应力圆)、三向应力圆,最大切应力、广义胡克定律、三个弹性常数E 、G 、μ间的关系、应变能密度、体应变、畸变能密度;强度理论的概念、杆件破坏形式的分析、最大拉应力理论、最大拉应变理论、最大切应力理论、畸变能理论、相当应力的概念;疲劳破坏的概念、交变应力及其循环特征、持久极限及其影响因素。 第一章 a 绪论 变形固体的基本假设、内力、截面法、应力、位移、变形和应变的概念、杆件变形的基本形式 第一节 材料力学的任务与研究对象 1、 变形分为两类:外力解除后能消失的变形成为弹性变形;外力解除后不能消失的变形,称为塑性变形或 残余变形。 第二节 材料力学的基本假设 1、 连续性假设:材料无空隙地充满整个构件。 2、 均匀性假设:构件内每一处的力学性能都相同 3、 各向同性假设:构件某一处材料沿各个方向的力学性能相同。 第三节 内力与外力 截面法求内力的步骤:①用假想截面将杆件切开,得到分离体②对分离体建立平衡方程,求得内力 第四节 应力 1、 切应力互等定理:在微体的互垂截面上,垂直于截面交线的切应力数值相等,方向均指向或离开交线。 胡克定律 2、 E σε=,E 为(杨氏)弹性模量 3、 G τγ=,剪切胡克定律,G 为切变模量 第二章 轴向拉压应力与材料的力学性能 轴力和轴力图、直杆横截面上的应力和强度条件、斜截面上的应力、拉伸和压缩时杆件的变形、虎克定律、横向变形系数、应力集中 第一节 拉压杆的内力、应力分析 1、 拉压杆受力的平面假设:横截面仍保持为平面,且仍垂直于杆件轴线。即,横截面上没有切应变,正应

最新《材料力学》1答案

一、单选题(共 30 道试题,共 60 分。) 1. 厚壁玻璃杯倒入开水发生破裂时,裂纹起始于() A. 内壁 B. 外壁 C. 壁厚的中间 D. 整个壁厚 正确答案:B 满分:2 分 2. 图示结构中,AB杆将发生的变形为() A. 弯曲变形 B. 拉压变形 C. 弯曲与压缩的组合变形 D. 弯曲与拉伸的组合变形 正确答案:D 满分:2 分 3. 关于单元体的定义,下列提法中正确的是() A. 单元体的三维尺寸必须是微小的 B. 单元体是平行六面体 C. 单元体必须是正方体 D. 单元体必须有一对横截面 正确答案:A 满分:2 分 4. 梁在某一段内作用有向下的分布力时,则在该段内M图是一条 ( ) A. 上凸曲线; B. 下凸曲线;

C. 带有拐点的曲线; D. 斜直线 正确答案:A 满分:2 分 5. 在相同的交变载荷作用下,构件的横向尺寸增大,其()。 A. 工作应力减小,持久极限提高 B. 工作应力增大,持久极限降低; C. 工作应力增大,持久极限提高; D. 工作应力减小,持久极限降低。 正确答案:D 满分:2 分 6. 在以下措施中()将会降低构件的持久极限 A. 增加构件表面光洁度 B. 增加构件表面硬度 C. 加大构件的几何尺寸 D. 减缓构件的应力集中 正确答案:C 满分:2 分 7. 材料的持久极限与试件的()无关 A. 材料; B. 变形形式; C. 循环特征; D. 最大应力。 正确答案:D 满分:2 分 8. 梁在集中力作用的截面处,它的内力图为() A. Q图有突变, M图光滑连续; B. Q图有突变,M图有转折; C. M图有突变,Q图光滑连续; D. M图有突变,Q图有转折。 正确答案:B 满分:2 分 9.

《材料力学》课程考试大纲

铜仁学院《材料力学》课程考试大纲 课程编码050316 课程性质专业基础课 教学对象土工程专业 学时学分72学时,4学分 考核方式闭卷 编写单位 编写人 审定人 编写时间2016年07月 一、课程考核目的 期末考试是每学期课程学习结束对相关知识点的综合测试,是检测教学大纲执行情况以及评估教学质量的一种有效手段,是获取教学反馈信息的主要来源和改进教学工作的重要依据;其目的是客观、公正、准确地检测和评估学生对材料力学基本原理的掌握情况,尤其是轴向压缩与拉伸、剪切、扭转、弯曲内力与应力、弯曲变形、强度理论、偏心受压(拉)等重要知识点的掌握情况。 二、教材与主要参考书 教材:刘鸿文编著,材料力学,高等教育出版社,2003年04月 教学参考书 [1] 孙训芳,等主编,材料力学,高等教育出版社,2009年04月. [2] 武建华编著,材料力学,高等教育出版社,2002年04月. 三、考试命题的原则 (一)命题标准 命题要求达到全国普通高等学院校同专业、同课程的本科生学业水平,突出应用型人才培养的基本要求,试题侧重于体现知识的运用。 (二)考试依据和范围 以铜仁学院应用水利水电工程专业《人才培养方案》和《材料力学》教学大纲为依据。 (三)题型 期终考试成绩由笔试考试(闭卷)与平时成绩组成,其中,笔试部分主要对课程涉及的基本概念、基本方法、基本标准等掌握情况进行考核,以选择题、填空题、计算题等题型为主,平时成绩有考勤、课堂表现成绩和作业完成情况等实际情况决定。 四、考核知识点与考核要求

(一)绪论 考试内容 轴向拉、压的概念;外力、内力、应力、应变、变形、位移等概念;拉(压)杆的内力、内力图;应力和强度计算、材料的拉、压力学性能、杆件的变形计算;简单的超静定问题。 考试要求 1.能熟练运用截面法计算杆件的轴力,正确绘制轴力图; 2.掌握杆件拉、压时的强度计算;掌握杆件的变形计算; 3.了解材料的基本力学性能以及试件拉、压破坏时的现象和原因; 4.掌握求解简单超静定问题的方法 (二)剪切 考试内容 剪切和挤压的概念,剪切和挤压的应力计算;剪切胡克定律、切应力互等定理 考试要求 1.了解剪切和挤压的概念,会计算简单的连接件的强度问题; 2.了解剪切胡克定理,掌握切应力计算公式; (三)扭转 考试内容 功率、转速与外力偶矩的关系;扭矩和扭矩图、应力和变形的计算、强度条件和刚度条件;弹簧的应力和变形计算;简单扭转超静定问题的计算;非圆截面杆扭转的应力和变形简介。 考试要求 1.掌握扭矩计算与扭矩图绘制; 2.能熟练地应用扭转强度条件及刚度条件进行轴的计算。 (四)弯曲内力 考试内容 平面弯曲的概念;梁的计算简图;剪力、弯矩,剪力方程,弯矩方程,剪力图,弯矩图;弯矩、剪力与分布载荷集度之间的关系及其应用。 考试要求 1. 理解并掌握剪力、弯矩的概念及计算。 2. 能熟练求出梁任意截面的剪力和弯矩; 3. 能正确写出剪力方程,弯矩方程;熟练运用弯矩、剪力与分布载荷集度之间的关系绘制剪力图和弯矩图。 (五)弯曲应力 考试内容 纯弯曲和横力弯曲的概念;中性层,中性轴,抗弯截面系数,惯性矩,弯曲正应力、

金属材料力学性能最常用的几项指标

金属材料力学性能最常用的几项指标 硬度是评定金属材料力学性能最常用的指标之一。 对于金属材料的硬度,至今在国内外还没有一个包括所有试验方法的统一而明确的定义。就已经标准化的、被国内外普通采用的金属硬度试验方法而言,金属材料硬度的定义是:材料抵抗另一较硬材料压入的能力。硬度检测是评价金属力学性能最迅速、最经济、最简单的一种试验方法。硬度检测的主要目的就是测定材料的适用性,或材料为使用目的所进行的特殊硬化或软化处理的效果。对于被检测材料而言,硬度是代表着在一定压头和试验力作用下所反映出的弹性、塑性、强度、韧性及磨损抗力等多种物理量的综合性能。由于通过硬度试验可以反映金属材料在不同的化学成分、组织结构和热处理工艺条件下性能的差异,因此硬度试验广泛应用于金属性能的检验、监督热处理工艺质量和新材料的研制。金属硬度检测主要有两类试验方法。一类是静态试验方法,这类方法试验力的施加是缓慢而无冲击的。硬度的测定主要决定于压痕的深度、压痕投影面积或压痕凹印面积的大小。静态试验方法包括布氏、洛氏、维氏、努氏、韦氏、巴氏等。其中布、洛、维三种测试方法是最长用的,它们是金属硬度检测的主要测试方法。而洛氏硬度试验又是应用最多的,它被广泛用于产品的检测,据统计,目前应用中的硬度计70%是洛氏硬度计。另一类试验方法是动态试验法,这类方法试验力的施加是动态的和冲击性的。这里包括肖氏和里氏硬度试验法。动态试验法主要用于大型的及不可移动工件的硬度检测。 1.布氏硬度计原理 对直径为D的硬质合金压头施加规定的试验力,使压头压入试样表面,经规定的保持时间后,除去试验力,测量试样表面的压痕直径d,布氏硬度用试验

材料力学联系1答案

1、拉杆或压杆如图所示。试用截面法求各杆指定截面的轴力,并画出各杆的轴力图。 解: (1)分段计算轴力 杆件分为3段。用截面法取图示研究对象画受力图如图,列平衡方程分别求得: F N1=-5kN(压); F N2=10kN(拉); F N3=-10kN (压) (2)画轴力图。根据所求轴力画出轴力图如图所示。 2. 阶梯状直杆受力如图所示。已知AD段横截面面积A AD=1000mm2,DB段横截面面积A DB=500mm2, 材料的弹性模量E=200GPa。求该杆的总变形量Δl AB。 解:由截面法可以计算出AC,CB段轴力F NAC=-50kN(压),F NCB=30kN(拉)。

3、用绳索吊起重物如图所示。已知F=20kN,绳索横截面面积A=12.6cm2,许用应力[σ]=10MPa。试校核α=45°及α=60°两种情况下绳索的强度。

4、如图所示AC和BC两杆铰接于C,并吊重物G。已知杆BC许用应力[σ1]=160MPa,杆AC许用 应力[σ2]=100MPa,两杆横截面面积均为A=2cm2。求所吊重物的最大重量。 5、三角架结构如图所示。已知杆AB为钢杆,其横截面面积A1=600mm2,许用应力[σ1]=140MPa; 杆BC为木杆,横截面积A2=3×104mm2,许用应力[σ2]=3.5MPa。试求许用荷载[F]。

6、悬臂梁受力如图,试作出其剪力图与弯矩图。 1、解: 1)求支反力:0Y =∑, qa R c =, 0M c =∑,222 1 )2(qa a a qa qa M c -=+?-=。 2)截面内力: A 面:0Q A =,0M A =; B 面:qa Q B -=,2B qa 21M - =左,2B qa 2 1 M +=右 C 面:qa 21R Q c c -=-=, qa 2 1 M M c c -=?=。

2017年西北工业大学 841材料力学 硕士研究生考试大纲

题号:841 《材料力学》 考试大纲 一、考试内容 1.了解材料力学的任务,同相关学科的关系, 变形固体的基本假设。熟悉截面法和内力、 应力、变形、应变。 2.掌握轴力与轴力图,直杆横截面及斜截面的应力,圣维南定理,应力集中的概念;材料拉 伸和压缩时的力学性能, 应力-应变曲线;拉压杆强度条件和刚度条件, 安全因素及许用应力;拉压变形,胡克定律, 弹性模量,泊松比;拉压超静定问题, 温度及装配应力。 3.熟悉剪切及挤压的概念和实用计算。掌握切应力互等定律, 剪切胡克定律。 4.掌握扭矩及扭矩图, 圆轴扭转的应力和应变, 扭转强度及刚度条件。了解矩形截面及 薄壁杆件扭转。 5.掌握静矩与形心的概念, 组合截面的一次矩与形心计算, 截面二次矩,平行移轴公式。 6.熟悉平面弯曲内力概念,掌握剪力,弯矩方程,剪力图和弯矩图及 q-Q-M的微分关 系, 熟悉利用微分关系画梁的剪力和弯矩图。掌握平面刚架和曲杆的内力图。 7.掌握弯曲正应力公式,矩形截面弯曲切应力计算,弯曲强度条件。了解截面梁的弯曲切 应力,切应力强度条件;提高梁的弯曲刚度的措施。 8.熟悉挠曲轴及其近似微分方程,积分法求梁的位移, 叠加法求梁的位移, 梁的刚度校 核。了解提高梁的弯曲刚度的措施. 9.掌握应力状态的概念,平面应力状态下应力分析的解析法及图解法,广义胡克定律。了 解体积应变,三向应力状态下应变能、体积改变能、畸变能的概念. 10.熟悉强度理论的概念,破坏形式的分析,脆性断裂和塑性屈服。掌握最大拉应力理论, 最大拉应变理论,最大切应力理论, 畸变能密度理论。了解莫尔强度理论。 11.掌握组合变形下杆件的强度计算;斜弯曲,拉弯组合变形,弯扭组合变形。 12.掌握压杆稳定的概念,细长压杆临界载荷的欧拉公式,临界应力、经验公式、临界应力 总图, 压杆的稳定校核。了解安全因素法,提高稳定性的措施的概念。 13.掌握杆件变形位能计算,卡氏定律,莫尔定律,图形互乘法,用力法解超静定问题。 熟悉功的互等定律。了解位移互等定律。 14.熟悉变形比较法,力法的正则方程,对称条件的应用。 15.熟悉构件作等加速度运动和匀速转动的应力计算。掌握冲击应力和变形计算。了解 冲击韧度,提高构件抗冲击能力措施的概念。

常用材料力学性能.

常用材料性质参数 材料的性质与制造工艺、化学成份、内部缺陷、使用温度、受载历史、服役时间、试件尺寸等因素有关。本附录给出的材料性能参数只是典型范围值。用于实际工程分析或工程设计时,请咨询材料制造商或供应商。 除非特别说明,本附录给出的弹性模量、屈服强度均指拉伸时的值。 表 1 材料的弹性模量、泊松比、密度和热膨胀系数 材料名称弹性模量E GPa 泊松比V 密度 kg/m3 热膨胀系数a 1G6/C 铝合金-79 黄铜 青铜 铸铁 混凝土(压 普通增强轻质17-31 2300 2400 1100-1800

7-14 铜及其合金玻璃 镁合金镍合金( 蒙乃尔铜镍 塑料 尼龙聚乙烯 2.1-3.4 0.7-1.4 0.4 0.4 880-1100 960-1400 70-140 140-290 岩石(压 花岗岩、大理石、石英石石灰石、沙石40-100 20-70 0.2-0.3 0.2-0.3 2600-2900 2000-2900 5-9 橡胶130-200 沙、土壤、砂砾钢

高强钢不锈钢结构钢190-210 0.27-0.30 7850 10-18 14 17 12 钛合金钨木材(弯曲 杉木橡木松木11-13 11-12 11-14 480-560 640-720 560-640 1 表 2 材料的力学性能 材料名称/牌号屈服强度s CT MPa 抗拉强度b CT

MPa 伸长率 5 % 备注 铝合金LY12 35-500 274 100-550 412 1-45 19 硬铝 黄铜青铜 铸铁( 拉伸HT150 HT250 120-290 69-480 150 250 0-1 铸铁( 压缩混凝土(压缩铜及其合金 玻璃

大连理工大学2017年考试大纲829材料力学(土)

大连理工大学2017年硕士研究生入学考试大纲科目代码:829 科目名称:材料力学 试题分为简答题、绘图题和计算题,其中基础部分(简单计算题)占60%,中等 难度(绘图题、简单的推导与证明题)占40%,综合计算题占50%,具体复习大纲如下: 《材料力学》(I) 一、材料力学的基本概念 1、可变形固体的性质及其基本假设 2、杆件变形的基本形式 二、轴向拉伸和压缩 1、轴向拉伸与压缩的基本概念 2、轴向拉压杆横截面上的内力、轴力图 3、轴向拉压杆内一点的应力 4、轴向拉压杆的变形、胡克定律 5、材料在拉伸和压缩时的力学性质 6、强度条件、应力集中的概念 三、扭转 1、薄壁圆筒扭转时横截面上的切应力

2、传动轴的外力偶矩、扭矩、扭矩图 3、等直圆杆扭转时横截面上的应力、强度条件 4、等直圆杆扭转时的变形、刚度条件 5、等直圆杆扭转时的应变能 6、等直非圆杆自由扭转时的应力和变形 四、弯曲应力 1、对称弯曲的概念及梁的计算简图 2、梁的剪力和弯矩、剪力图和弯矩图 3、平面刚架和曲杆的内力图 4、梁横截面上的正应力、正应力强度条件 5、梁横截面上的切应力、切应力强度条件 6、梁的合理设计 五、梁弯曲时的位移 1、梁的位移、挠度和转角 2、梁的挠曲线近似微分方程及其积分 3、按叠加原理计算梁的挠度和转角 4、梁的刚度校核、提高梁刚度的措施

5、梁内的弯曲应变能 六、简单超静定问题 1、超静定问题及其解法 2、拉压超静定问题 3、扭转超静定问题 4、简单超静定梁 七、应力状态和强度理论 1、平面应力状态的应力分析、主应力 2、空间应力状态的概念 3、应力与应变间的关系 4、空间应力状态下应变能密度 5、强度理论及其相当应力 6、各种强度理论的应用 八、组合变形及连接部分的计算 1、两个互相垂直平面内的弯曲 2、拉伸(压缩)与弯曲 3、扭转与弯曲

材料力学基本概念及公式

第一章 绪论 第一节 材料力学的任务 1、组成机械与结构的各组成部分,统称为构件。 2、保证构件正常或安全工作的基本要求:a)强度,即抵抗破坏的能力;b)刚度,即抵抗变形的能力;c)稳定性,即保持原有平衡状态的能力。 3、材料力学的任务:研究构件在外力作用下的变形与破坏的规律,为合理设计构件提供强度、刚度和稳定性分析的基本理论与计算方法。 第二节 材料力学的基本假设 1、连续性假设:材料无空隙地充满整个构件。 2、均匀性假设:构件内每一处的力学性能都相同 3、各向同性假设:构件某一处材料沿各个方向的力学性能相同。木材是各向异性材料。 第三节 内力 1、内力:构件内部各部分之间因受力后变形而引起的相互作用力。 2、截面法:用假想的截面把构件分成两部分,以显示并确定内力的方法。 3、截面法求内力的步骤:①用假想截面将杆件切开,一分为二;②取一部分,得到分离体;③对分离体建立平衡方程,求得内力。 4、内力的分类:轴力N F ;剪力S F ;扭矩T ;弯矩M 第四节 应力 1、一点的应力: 一点处内力的集(中程)度。 全应力0lim A F p A ?→?=?;正应力σ;切应力τ;p =2、应力单位: (112,11×106 ,11×109 ) 第五节 变形与应变 1、变形:构件尺寸与形状的变化称为变形。除特别声明的以外,材料力学所研究的对象均为变形体。 2、弹性变形:外力解除后能消失的变形成为弹性变形。 3、塑性变形:外力解除后不能消失的变形,称为塑性变形或残余变形。 4、小变形条件:材料力学研究的问题限于小变形的情况,其变形和位移远小于构件的最小尺寸。对构件进行受力分析时可忽略其变形。 5、线应变:l l ?=ε。线应变是无量纲量,在同一点不同方向线应变一般不同。

材料力学精品课程培训心得体会doc

《材料力学》精品课程培训心得体会经过三天的材料力学精品课程培训,通过张少实教授等的讲座与在线交流,使我对材料力学有了更全面的认识和更深入的思索,对在材料力学理论教学与实践教学中遇到的一些问题有了新的观点和解决的思路。下面根据我这三天的培训所得总结如下。 经过与张少实教授等多名国家级材料力学精品课程骨干教师的交流和学习,我深深地感到21世纪对人才的需要已经发生了较大的变化。我国高等教育正在从以传授知识为主的知识教育向以培养能力为主的素质教育转型。在这一过程中,达到教学目标,体现教育思想都要通过教学方法来实现,而传统的教学模式已经不能适应育人要求,因此在材料力学理论教学中尝试多种教学方法以寻求科学合理的教学模式与经验已显得十分迫切。通常,人们对于客观世界的认知主要包括三个过程:同化过程,顺应过程和平衡过程。同化过程是学习者对刺激输入的过滤或改变过程;顺应过程是学习者调节自己的内部知识结构以适应特定刺激情境的过程;平衡过程是指学习者通过自我调节使其认知活动从平衡到不平衡再到新的平衡状态过渡的过程,并不断地发展和提升。材料力学是一门实践性很强的课程,其强调的是受教育者对知识主动性地建构自己的材料力学知识体系。因此,材料力学是一门特性鲜明的专业课程。

通过三天来对专家报告的聆听及与同行的交流,我对材料力学教学有了一些深入的思考。根据材料力学科的特点,我感到我们在新形势下,必须以一种新的视角来审视这个年轻的学科及其发展趋势。 材料力学作为主干课程,长期以来其教学思想是建立在辩证唯物主义认识论的基础上,强调认识的反映特性,也就是客观性,而对认识的主观能动性则没有足够地重视和深入地揭示。教师的教学过程一般为“阐述概念、定义、原则,揭示相关理论,提供有关策略与方法,实际运用”。学生的接受过程也基本如此。总的来说,这种方法对于传授知识和信息的效率是比较高,而且逻辑严密,系统性强,对于奠定坚实的材料力学理论基础无疑是有效的。但这与材料力学的实践活动却是基本矛盾的。但是,相当一部分老师在教学中将知识的传授定型为注入式,并且忽视了学生已经积累的知识经验和心理感受。另外,在材料力学理论教学过程中有将知识过于简化的趋势。然而,材料力学活动本身是一个系统的、开放的、动态的过程,影响因素往往呈现多元化并具有层次性。在理论教学过程中,要实现理论上的典型化相当困难。 针对这种学科特点,结合我多年来的实际教学工作经验与建构理念,以下提出我对材料力学课程建设的一点新思路。 (一)通过互动教学,使学生对专业知识深入理解

材料力学试题及答案[1]

浙江省2001年10月高等教育自学考试 一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在 题干的括号内。每小题2分, 共20分) 1.轴的扭转剪应力公式τρ=T I P ρ适用于如下截面轴( ) A.矩形截面轴 B.椭圆截面轴 C.圆形截面轴 D.任意形状截面轴 2.用同一材料制成的实心圆轴和空心圆轴,若长度和横截面面积均相同,则抗扭刚度较大的是哪个?( ) A.实心圆轴 B.空心圆轴 C.两者一样 D.无法判断 3.矩形截面梁当横截面的高度增加一倍、宽度减小一半时,从正应力强度考虑,该梁的承载能力的变化为( ) A.不变 B.增大一倍 C.减小一半 D.增大三倍 4.图示悬臂梁自由端B 的挠度为( ) A.ma a EI ()l -2 B. ma a EI 32()l - C.ma EI D. ma a EI 22()l - 5.图示微元体的最大剪应力τmax 为多大?( ) A. τmax =100MPa B. τmax =0 C. τmax =50MPa D. τmax =200MPa 6.用第三强度理论校核图示圆轴的强度时,所采用的强 度条件为( ) A. P A M W T W Z P ++()()242≤[σ] B.P A M W T W Z P ++≤[σ] C. ()()P A M W T W Z P ++22≤[σ] D. ()()P A M W T W Z P ++242≤[σ] 7.图示四根压杆的材料、截面均相同,它 们在纸面内失稳的先后次序为( ) A. (a),(b),(c),(d) B. (d),(a),(b),(c) C. (c),(d),(a),(b) D. (b),(c),(d),(a) 8.图示杆件的拉压刚度为EA , 在图示外力

《材料力学》

《材料力学》

沈阳建筑大学2011年硕士研究生入学考试 初试《材料力学》科目考试大纲 一、考查目标 明确材料力学的研究对象、基本假设,掌握分析、研究问题的基本方法,并熟练应用材料力学问题的基本方法分析、解决工程实际简单问题的综合能力。 二、考试形式与试卷结构 (一)试卷满分及考试时间 满分为150分,考试时间为3小时。 (二)答题方式 答题方式为闭卷、笔试。 (三)试卷内容结构 客观题,包括判断题、选择填空题。主观计算题。 (四)试卷题型结构 客观题40分,计算题110分。 三、考查范围 (一)材料力学概述: 变形体,各向同性与各向异性弹性体,弹性体受力与变形特征;工程结构与构件,杆件受力与变形的几种主要形式;用截面法求指定截面内力。 (二)轴向拉伸与压缩: 轴向拉压杆的内力、轴力图,横截面和斜截面上的应力,轴向拉压的应力、变形,轴向拉压的强度计算,轴向拉压的超静定问题,轴向拉压时材料的力学性质。 (三)剪切与扭转: 连接件剪切面的判定,切应力和挤压应力的计算;切应力互等定理和剪切虎克定律;外力偶矩的计算、扭矩和扭矩图;圆轴扭转时任意截面的扭矩,扭转切应力,圆轴扭转时任意两截面的相对扭转角,圆截面的极惯性矩及抗扭截面模量的计算。

(四)弯曲内力: 剪力和弯矩的计算,根据载荷集度、剪力和弯矩间的微分关系画出剪力图和弯矩图。 (五)弯曲应力: 弯曲正应力及正应力强度的计算,直梁横截面上的正应力、切应力,提高弯曲强度的措施;弯曲惯性矩和抗弯截面系数的计算。 (六)弯曲变形 挠曲线微分方程,用积分法求弯曲变形,用叠加法求弯曲变形,解简单静不定梁,梁的刚度条件。 (七)应力和应变分析与强度理论 应力状态,主应力和主平面的概念,二向应力状态的解析法和图解法;计算斜截面上的应力、主应力和主平面的方位;三向应力状态的应力圆画法;掌握单元体最大剪应力计算方法;各向同性材料在一般应力状态下的应力一应变关系,广义胡克定律,各向同性材料各弹性常数之间的关系;一般应力状态下的应变能密度,体积改变能密度与畸变能密度;四种常用的强度理论。 (八)组合变形 组合变形和叠加原理;拉压与弯曲组合变形杆的应力和强度计算;偏心压缩;扭转与弯曲组合变形下,圆轴的应力和强度计算;组合变形的普遍情况。 (九)压杆稳定 压杆稳定的概念;常见约束下细长压杆的临界压力、欧拉公式;压杆临界应力以及临界应力总图;压杆失效与稳定性设计准则;压杆失效的不同类型,压杆稳定计算;中柔度杆临界应力的经验公式;提高压杆稳定的措施。 (十)动载荷

材料力学1(规范标准答案)

材料力学 请在以下五组题目中任选一组作答,满分 100分 第一组: 计算题(每小题25分,共100分) 1. 梁的受力情况如下图,材料的a 。 若截面为圆柱形,试设计此圆截面直径。 q 10kN/m 2. 求图示单元体的: (1)图示斜截面上的应力; 2 主方向和主应力,画出主单元体; 3 主切应力作用平面的位置及该平面上的正应力,并画出该单元体 y 100MPa 60MPa -——-X 50MPa n 60MPa ,|100MPa 解: (1)、斜截面上的正应力和切应力: 30o 64.5MPa, 300 34.95MPa (2) 、主方向及主应力:最大主应力在第一象限中,对应的角度为 0 7O.67 , 则主应力为:1 121.0(MPa ), 3 71.0MPa (3) 、主切应力作用面的法线方向:1 25.670 , 2 115.67

4m x O 7 19.33° 71.0MPa 图3-1 25.0MPa 、卡-八 96.4MPa ? v* 25.0MPa 「 \X ' 25.67° 」 O 25.0MPa 5 鼻 25.0MPa 96.04MPa 图3-2 3. 图中所示传动轴的转速n=400rpm ,主动轮2输入功率P2=60kW 从动轮1, 3, 4和5的输出功率分别为 P 仁18kW,P3=12kW,P4=22kW,P5=8kW 。试绘制该轴的 扭矩图。 1 2 3 4 此两截面上的正应力为: / 1 / 2 25.0(MPa),主单元体如图3-2所示。 主切应力为:/ i 96.04MPa / 2 5CMPa O 30 ° 121.0MP a 70.67°

《材料力学》硕士研究生入学考试大纲

《材料力学》硕士研究生入学考试大纲 一、考核要求 《材料力学》研究生入学考试主要考察考生对材料力学基本概念和分析方法的理解与掌握,以及对简单构件的强度、刚度、稳定性以及简单超静定结构问题的分析和计算方法的熟练掌握情况。要求考生既要掌握材料力学的基本理论,又应具备一定的综合分析、计算和解决问题的能力。 二、考核主要内容 1. 材料力学的任务和研究对象、基本假设,应力、应变等概念,杆件变形的基本形式。 2. 杆件轴向拉伸和压缩问题(轴力图、应力和变形分析和计算、强度条件的应用),材料拉伸和压缩时的力学性能,简单超静定问题的分析,剪切和挤压的实用计算。 3. 圆杆扭转(包括薄壁圆筒的扭转)的切应力和变形分析,强度条件和刚度条件,矩形横截面杆扭转的主要结果。 4. 梁的平面弯曲问题,剪力图和弯矩图,剪力和弯矩与分布载荷集度之间关系的应用;梁纯弯曲时的基本假设,弯曲时正应力的计算,矩形截面梁和工字形截面梁的切应力计算,强度校核,提高粱弯曲强度的措施;梁的挠度曲线及其近似微分方程,求解梁的挠度和转角,梁的刚度校核,提高粱弯曲刚度的措施,简单超静定梁的分析。 5. 应力状态、主应力和主平面的概念,平面应力状态下的应力分析(解析法和图解法),三向应力状态及最大切应力,广义胡克定律,四种常用强度理论及应用。 6. 拉(压)与弯曲组合变形,扭转与弯曲组合变形。 7. 压杆稳定性的概念,细长压杆临界载荷的欧拉公式,欧拉公式的适用范围、经验公式,压杆的稳定校核。 8. 用静动法求应力和变形,杆件受冲击时的应力和变形,动荷系数。 9. 杆件应变能的计算,应变能的一般表达式,互等定理,卡氏定理及应用,虚功原理,单位载荷法及应用,简单超静定系统。 武汉工大2016考研材料力学考试大纲 本材料力学考试大纲适用于武汉工程大学机械类的硕士研究生入学考试。材料力学是力学类各专业的一门重要基础理论课,本科目的考试内容包括材料力学的基本概念,轴向拉伸与压缩,剪切与扭转,弯曲内力,弯曲应力,弯曲变形,截面几何性质,应力和应变分析与强度理

《材料力学》考试大纲

《材料力学》考试大纲 一、考核目的与基本要求 《材料力学》是专业必修课,为考试课程。根据教学大纲安排,该考试主要考查学生对力学知识的理解。要求学生掌握轴向拉伸和压缩、剪切、扭转和弯曲四种基本变形问题的内力、应力和变形求解;以及应力状态分析、压杆稳定等内容。通过该考试,能判别学生是否通过本课程的学习,达到了本课程培养目标的要求。 二、命题的指导思想和原则 1、命题的指导思想 全面考查学生对本课程的基本原理、基本概念和主要知识点学习、理解和掌握的情况,以及解决工程实际简单问题的综合能力。 2、命题的原则 题型尽可能多样化,题目数量多、份量小,范围广,最基本的知识一般占60%左右,稍微灵活一点的题目要占25%左右,较难的题目要占15%左右。其中绝大多数是中小题目,即使大题目也不应占分太多,应适当压缩大题目在总的考分中所占的比例。客观性的题目应占比较重的份量。 三、考核知识点及要求 1、绪论、轴向拉压内力、应力和变形计算(25%左右) (1)识记:材料在拉伸(压缩)时的力学性能;轴向拉伸与压缩时截面上的内力计算;横截面上正应力计算。 (2)理解:轴向拉压变形计算;剪切和挤压的实用计算。 (3)应用:轴向拉压杆的强度问题计算;利用静力平衡和变形协调条件解答简单拉压超静定问题。 2、圆轴扭转应力及变形计算(10%左右) (1)识记:外力偶矩的计算;圆轴扭转时的应力和应变计算。 (2)理解:扭矩和扭矩图的求解。 (3)应用:圆轴扭转时的强度计算和刚度计算。 3、弯曲内力、变形和应力计算(30%左右) (1)识记:弯矩和剪力的定义,弯矩和剪力正负号的判断;截面上剪力和弯矩的计算;弯曲正应力和剪应力的计算。 (2)理解:剪力图和弯矩图的绘制;载荷集度、剪力和弯矩间的关系;提高梁弯曲强度和弯曲刚度的措施。 (3)应用:利用微分方程、叠加法和载荷集度、剪力和弯矩间的关系等方法绘制复杂受力梁弯矩图和剪力图;利用积分法和叠加法求解梁的挠度;梁的强度校核。 4、应力状态分析和压杆稳定计算(10%左右) (1)识记:四种常用强度理论。 (2)理解:用解析法分析和图解法分析二向应力状态。

材料力学答案单辉祖版全部答案

第二章 轴向拉压应力与材料的力学性能 2-1 试画图示各杆的轴力图。 题2-1图 解:各杆的轴力图如图2-1所示。 图2-1 2-2试画图示各杆的轴力图,并指出轴力的最大值。图a 与b 所示分布载荷 均沿杆轴均匀分布,集度为q 。 题2-2图 (a)解:由图2-2a(1)可知, qx qa x F -=2)(N 轴力图如图2-2a(2)所示, qa F 2m ax ,N = 图2-2a (b)解:由图2-2b(2)可知, qa F =R qa F x F ==R 1N )( 22R 2N 2)()(qx qa a x q F x F -=--=

轴力图如图2-2b(2)所示, qa F =m ax N, 图2-2b 2-3 图示轴向受拉等截面杆,横截面面积A =500mm 2 ,载荷F =50kN 。试求图 示斜截面m -m 上的正应力与切应力,以及杆的最大正应力与最大切应力。 题2-3图 解:该拉杆横截面上的正应力为 100MPa Pa 1000.1m 10500N 10508 2 63 =?=??== -A F σ 斜截面m -m 的方位角, 50-=α故有 MPa 3.41)50(cos MPa 100cos 22=-?== ασσα MPa 2.49)100sin(MPa 502sin 2 -=-?== ασ τα 杆的最大正应力与最大切应力分别为 MPa 100max ==σσ MPa 502 max == σ τ 2-5 某材料的应力-应变曲线如图所示,图中还同时画出了低应变区的详图。 试确定材料的弹性模量E 、比例极限p σ、屈服极限s σ、强度极限b σ与伸长率δ,并判断该材料属于何种类型(塑性或脆性材料)。 题2-5 解:由题图可以近似确定所求各量。 220GPa Pa 102200.001 Pa 10220ΔΔ96=?=?≈=εσE MPa 220p ≈σ, MPa 240s ≈σ MPa 440b ≈σ, %7.29≈δ

北京理工大学2018年《材料力学》考研大纲

北京理工大学2018年《材料力学》考研大纲(1)考试要求 ①了解:材料力学的连续性假设、均匀性假设、各向同性假设和小变形假设的含义及作用,结构强度、刚度及稳定性的分析方法,常温静载下测定材料力学性能的常规实验方法。 ②理解:材料一点处的应力状态和一点处应变状态,应力应变关系(材料的本构方程);圆截面扭转与非圆截面扭转的差别;平面弯曲与非平面弯曲的差别;第一~第四强度理论的内容及计算公式;静定结构与静不定结构的区别;压杆失稳的原因;结构在冲击载荷作用下的应力与位移的计算;结构等强度、等稳定性的概念。 ③掌握:受力结构中内力的分析方法并绘制其内力图;根据强度理论,确定结构中危险截面的内力及其上应力分布规律并判断危险点所在位置;分析危险点的应力状态(有时需结合应力应变关系)计算结构的强度问题;根据结构的基本变形及组合变形形式,用叠加法或单位载荷法计算结构指定点的位移并求解结构的刚度问题;根据结构的约束情况,确定结构的静不定次数,用力法求解静不定结构问题;根据压杆的柔度范围求其临界应力,计算压杆的稳定性问题;利用动荷因数的概念计算结构在受到铅垂冲击或水平冲击时的动应力、动位移以解决结构在动载下的响应问题。 (2)考试内容 ①杆件基本变形(轴向拉压、扭转、弯曲)的内力和内力图,利用载荷集度、剪力和弯矩间的微分关系绘制直梁(悬臂梁、简支梁、外伸梁)的剪力图和弯矩图、组合梁的剪力图和弯矩图,并能绘制刚架的内力图,杆件基本变形时横截面上的应力分布规律,材料轴向拉、压时的力学性能。②一点处的应力状态和应变状态,平面应力状态或简单三向应力状态(一个主应力及其方向已知)的解析法和图解法(应力圆),求给定应力状态的主应力、主方向、最大切应力、最大切应变、体积应变,与平面应力状态相对应的应变状态的解析法,广义胡克定律。③组合变形结构的内力分析、危险截面确定、常用的四个强度理论和对应的强度计算。④杆件的应变能,功能原理,功互等定理和位移互等定理,利用叠加法或单位载荷法(莫尔积分或图乘法)计算结构的指定截面的位移(线位移和角位移)。⑤用力法求解静不定结构的支座约束力,并能绘制其内力图,会利用对称结构在对称载荷或反对称载荷作用下的特征简化静不定问题的计算。⑥压杆的柔度计算,细长压杆的临界压力和欧拉公式,中柔度杆的直线经验公式,利用稳定性条件计算结构的稳定性问题。⑦结构在垂直或水平冲击载荷作用下的动荷因数、最大动应力和指定截面的动挠度和动转角

材料力学性能考试答案

《工程材料力学性能》课后答案 机械工业出版社 2008第2版 第一章 单向静拉伸力学性能 1、 试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么? 2、 决定金属屈服强度的因素有哪些?【P12】 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。 外在因素:温度、应变速率和应力状态。 3、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 4、 剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同?【P23】 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 5、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 6、 论述格雷菲斯裂纹理论分析问题的思路,推导格雷菲斯方程,并指出该理论的局限性。 【P32】 答: 212?? ? ??=a E s c πγσ,只适用于脆性固体,也就是只适用于那些裂纹尖端塑性变形可以忽略的情况。 第二章 金属在其他静载荷下的力学性能 一、解释下列名词: (1)应力状态软性系数—— 材料或工件所承受的最大切应力τmax 和最大正应力σmax 比值,即: () 32131max max 5.02σσσσσστα+--== 【新书P39 旧书P46】 (2)缺口效应—— 绝大多数机件的横截面都不是均匀而无变化的光滑体,往往存在截面的急剧变化,如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等,这种截面变化的部分可视为“缺口”,由于缺口的存在,在载荷作用下缺口截面上的应力状态将发生变化,产生所谓的缺口效应。【P44 P53】 (3)缺口敏感度——缺口试样的抗拉强度σbn 的与等截面尺寸光滑试样的抗拉强度σb 的比值,称为缺口敏感度,即: 【P47 P55 】 (4)布氏硬度——用钢球或硬质合金球作为压头,采用单位面积所承受的试验力计算而得的硬度。【P49 P58】 (5)洛氏硬度——采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度所表示的硬度【P51 P60】。 (6)维氏硬度——以两相对面夹角为136。的金刚石四棱锥作压头,采用单位面积所承

《材料力学 》

材料力学 一、1-5 CCACA 6-10 DDBAD 二、1-5 ABABB 6-10 ABABA 11-15 ABAAA 16-20 ABBBA 21-25 BBAAA 26-30 BABAA 31-35 BBAAB 36-40 ABAAA 一、单选题(共 10 道试题,共 20 分。) V 1. 在以下措施中()将会降低构件的持久极限 A. 增加构件表面光洁度; B. 增加构件表面硬度; C. 加大构件的几何尺寸; D. 减缓构件的应力集中 满分:2 分 2. 如图: A. A

C. C D. D 满分:2 分 3. 截面上的切应力的方向() A. 平行于截面 B. 垂直于截面 C. 可以与截面任意夹角 D. 与截面无关 满分:2 分 4. 如图1:

B. B C. C D. D 满分:2 分 5. 如图2: A. A B. B C. C D. D 满分:2 分 6. 在相同的交变载荷作用下,构件的横向尺寸增大,其()。 A. 工作应力减小,持久极限提高; B. 工作应力增大,持久极限降低; C.

工作应力增大,持久极限提高; D. 工作应力减小,持久极限降低。 满分:2 分 7. 脆性材料的破坏应力是() A. 比例极限 B. 弹性极限 C. 屈服极限 D. 强度极限 满分:2 分 8. 圆截面杆受扭转作用,横截面任意一点(除圆心)的切应力方向() A. 平行于该点与圆心连线 B. 垂直于该点与圆心连线 C.

不平行于该点与圆心连线 D. 不垂直于该点与圆心连线满分:2 分 9. 如图3: A. A B. B C. C D. D 满分:2 分 10. 材料的持久极限与试件的()无关 A. 材料 B. 变形形式 C.

《材料力学》1答案

《材料力学》1答案

一、单选题(共 30 道试题,共 60 分。) 1. 厚壁玻璃杯倒入开水发生破裂时,裂纹起始于() A. 内壁 B. 外壁 C. 壁厚的中间 D. 整个壁厚 正确答案:B 满分:2 分 2. 图示结构中,AB杆将发生的变形为() A. 弯曲变形 B. 拉压变形 C. 弯曲与压缩的组合变形 D. 弯曲与拉伸的组合变形 正确答案:D 满分:2 分 3. 关于单元体的定义,下列提法中正确的是() A. 单元体的三维尺寸必须是微小的 B. 单元体是平行六面体 C. 单元体必须是正方体 D. 单元体必须有一对横截面 正确答案:A 满分:2 分 4. 梁在某一段内作用有向下的分布力时,则在该段内M图是一条 ( ) A. 上凸曲线; B. 下凸曲线;

C. 带有拐点的曲线; D. 斜直线 正确答案:A 满分:2 分 5. 在相同的交变载荷作用下,构件的横向尺寸增大,其()。 A. 工作应力减小,持久极限提高 B. 工作应力增大,持久极限降低; C. 工作应力增大,持久极限提高; D. 工作应力减小,持久极限降低。 正确答案:D 满分:2 分 6. 在以下措施中()将会降低构件的持久极限 A. 增加构件表面光洁度 B. 增加构件表面硬度 C. 加大构件的几何尺寸 D. 减缓构件的应力集中 正确答案:C 满分:2 分 7. 材料的持久极限与试件的()无关 A. 材料; B. 变形形式; C. 循环特征; D. 最大应力。 正确答案:D 满分:2 分 8. 梁在集中力作用的截面处,它的内力图为() A. Q图有突变, M图光滑连续; B. Q图有突变,M图有转折; C. M图有突变,Q图光滑连续; D. M图有突变,Q图有转折。 正确答案:B 满分:2 分 9.

中南大学材料力学大纲

中南大学土木工程学院948《材料力学》考试大纲 本考试大纲由土木工程学院教授委员会于2012年7月7日通过。 I.考试性质 材料力学是工科院校土木建筑、交通运输、采矿地质、机电机械、材料和力学等各专业的一门重要技术基础课。材料力学考试是为高等院校和科研院所招收硕士研究生而设置的具有选拔性质的全国统一入学考试科目,其目的是科学、公平、有效地测试学生掌握大学本科阶段材料力学理论课的基本知识、基本理论,要求考生能熟练掌握材料力学的基本理论,具有分析和处理一些基本问题的能力,保证被录取者具有较好的分析和解决工程问题的基本素质,以有利于各高等院校和科研院所在专业的择优选拔。 II.考查目标 要求考生明确材料力学的研究对象、基本假设,掌握分析、研究问题的基本方法,并熟练应用材料力学问题的基本方法分析、解决工程实际简单问题的综合能力。具体要求考生: 1、对材料力学的基本概念和基本分析方法有明确的认识。 2、能熟练地作出杆件在基本变形下的内力图,并进行应力和位移、强度和刚度计算。 3、掌握应力状态理论,掌握组合变形下杆件的强度的计算。 4、掌握简单一次超静定问题的求解方法。 5、了解能量法的基本原理,掌握计算位移的能量方法。 6、了解压杆的稳定性概念,掌握轴向受压杆的临界力与临界应力的计算方法。 7、掌握构件作等加速运动、匀速转动及受冲击作用时的应力和变形计算方法。 8、了解疲劳破坏的特点和基本概念,疲劳极限与影响构件疲劳极限的主要因素。 Ⅲ.考试形式和试卷结构 1、试卷满分及考试时间 本试卷满分为150 分,考试时间为180 分钟

2、答题方式 答题方式为闭卷,笔试。 3、试卷内容结构 轴向拉伸与压缩、剪切与扭转、交变应力约15 % 截面几何性质约 5 % 弯曲内力、弯曲应力、弯曲变形约30 % 组合变形、应力和应变状态分析、强度理论约20 % 能量方法、静不定结构约10 % 动载荷约10 % 压杆稳定约10 % Ⅳ.试卷题型结构 选择题、填空题、证明题、计算题 Ⅴ.考查内容 (一)材料力学概述 材料力学的任务与该课程同相关学科的关系,变形固体的基本假设,截面法和内力,应力、变形、应变的概念。 (二)轴向拉伸、压缩与剪切 轴力与轴力图,直杆横截面及斜截面的应力,圣维南原理,应力集中的概念;轴向拉压杆的强度条件,安全因数及许用应力;轴向拉压杆的变形,纵向变形与横向变形,胡克定律,弹性模量,泊松比,节点位移计算方法;拉压超静定问题,温度应力及装配应力;结构优化设计的概念;剪切与挤压的实用计算。 (三)扭转 扭转概念,扭矩及扭矩图,纯剪切,剪应力互等定理,剪切胡克定律,圆轴扭转的应力与应变,扭转强度及刚度条件,简单扭转超静定问题,矩形截面杆的扭转,开口、闭口薄壁杆件的自由扭转简介。 (四)弯曲内力 平面弯曲的内力,剪力、弯矩方程,剪力图与弯矩图,剪力、弯矩与载荷集度间的关系,利用微分关系画梁的剪力、弯矩图,画曲杆、刚架内力图。 (五)弯曲应力

相关主题
文本预览
相关文档 最新文档