当前位置:文档之家› 各种加工方法的特点及比较

各种加工方法的特点及比较

各种加工方法的特点及比较
各种加工方法的特点及比较

各种加工方法的特点分析及比较

学号:XXX 姓名:XXX

【摘要】随着机械加工工艺不断发展,企业间竞争的扩大,要求产品既节省成本又有可靠的性能。如何选择加工方法关系到竞争的胜败。本文从经济方面、质量方面、生产周期方面各种加工方法的特点总结,力求对“如何选择加工方法”有所用处。

【关键字】性能;生产周期;精度;加工;铸造;锻造;焊接;切削;钳工;数控加工

1.前言

希望本文通过对各种加工方法的分析能对制定工艺流程、降低机械加工的产品成本、提高产品质量等方面有帮助。灵活运用各种加工方法,才能在竞争中立于不败之地。

2.正文

2.1铸造、锻造、焊接、切削、钳工和数控加工的主要特点分别分析:

2.1.1铸造工艺

由于铸造采用液态下一次成形,所以对材料种类及零件形状、尺寸大小和生产批量的适应性非常广,特别适合复杂形状铸件的生产,且生产成本较低,在机械制造中具有重要的地位。铸造可直接利用成本低廉的废机件和切屑,设备费用较低。同时铸件加工余量小,节省金属,减少机械加工余量,从而降低制造成本。但液态成形的特点也使铸造工序多、铸件质量控制难度大、铸件力学性能差。

铸造车间一般工作环境差,容易对工人的健康有危害,而且对环境污染较严重。

铸造的应用范围:生产毛坯。如机床床身、内燃机等

2.1.2锻造工艺

由于金属材料经过锻造后,其内部组织更加致密、均匀,使同一种金属的锻件比铸件有更好的力学性能。

因此,各种承受重载荷及冲击载荷的重要零件,多以锻件作为毛坯,但由于锻造固态塑性成形的特点,无法获得形状(特别是内腔)复杂的锻件。

2.1.3焊接工艺

焊接是通过加热加压或加压或两者并用的方法,使金属达到原子结合的一种加工方法。与其它方法相比,焊接具有节省材料、接头密封性好、经济性好、生产周期短等优。但对工人的技术要求比较高。

焊接的应用范围在造船、电力设备生产、航天工业中广泛应用。

2.1.4车削工艺

车削加工是指在车床上应用刀具与工件作相对切削运动,用以改变毛坯的尺寸和形状等,使之成为零件的加工过程。车工在切削加工中是最常用的一种加工方法。车床占机床总数的一半左右,故在机械加工中具有重要的地位和作用。

车床应用范围:用来加工各种回转表面,如:内、外圆柱面;内、外圆锥面;端面;内、外沟槽;内、外螺纹;内、外成形表面;丝杆、钻孔、扩孔、铰孔、镗孔、攻丝、套丝、滚花等。

2.1.5铣削工艺

由于铣削的主运动是铣刀的旋转,铣刀又是多齿刀具,故铣削的生产效率高,刀具的耐用度高

铣床及其附件的通用性广,铣刀的种类很多,铣削的工艺灵活。

铣削的加工范围较广,铣削两样适用小批与大批量的生产。

2.1.6刨削工艺

在刨车上用刨刀加工工件的方法叫刨削。

常见的刨床有牛头刨、龙门刨。

刨削的适用范围主要有:加工平面、加工沟槽(如直槽、T形槽、燕尾槽)、母线为直线的成形面。

2.1.7磨削工艺

加工精度高,常用的磨削经济精度为IT6到IT5,表面粗糙度为0.8到0.2μm。同时适合于粗加工与精加工。磨削温度高,必须使用切削液。

适应范围广,不仅适用于一般的金属材料,而且适用于碳钢、铸铁、合金钢、淬火钢、合金。

2.1.8钳工工艺

钳工工作劳动强度大,生产效率低、对工人技术要求高,但所用工具简单,操作灵活简便。

因此,适应范围较为广泛。主要的操作包括:划线、锯削、锉削、錾削、钻孔、铰孔、攻丝、套扣、刮削、研磨、装配及修理。

2.1.9数控

数控加工方法与传统加工方法相比具有许多优点。

1、自动化程度高

在数控机床上加工零件时,除了手工装夹毛坯外,全部加工过程都由机床自动完成,这样减轻了操作者的劳动强度,改善了工作条件。

2、对加工对象的适应性强

数控加工实现自动加工的控制信息由纸带提供,或以手工方式通过键盘输入控制机。当加工对象改变时,除了相应更换刀具和解决毛坯装夹方式外,只要重新编制程序,便可加工出新零件。

3、加工精度高,加工质量稳定

数控加工的尺寸精度通常在0.005到0.1mm之间,不受零件复杂程度的影响,加工中消除了操作者的人为误差,提高了同批零件尺寸的一致性,使产品质量保持稳定。提高了产品的装配质量,同时零件废品率大为降低。

4、具有高生产效率

由于数据机床具有高自动化程度,加工过程省去了划线、多次装夹定位、检测等工序,有效地提高了生产效率。

5、易于建立计算机通信网络

由于数控机床是使用数字信息,易于与计算机辅助设计系统连接,形成计算机辅助设计与制造的一体化系统。

不过,数控机床价格昂贵、技术复杂、对机床维护与编程技术要求较高。

数控机床最适用于多种品种小批量生产的零件以及结构比较复杂、精度要求高的零件。

2.2加工精度的比较

图1 各种加工工艺加工精度IT等级比较

以上只是最基本的加工方法,除了上述加工方法之外,还有很多加工工艺值得我们在加工的时候考虑。在同一种方法中精度也不是固定的,不同的机床有不同的精度,不同的加工工人生产出的产品精度也是不一样的,图中深色部分表示加工精度范围。

如果通过一种加工方法不能达到要求的精度,可以先进行粗加工再进行精加工,如果要加工一个光滑的平面,可以先刨削,再磨削。

3.结论

各种加工方法都有它的优点,一个零件的生产也很少只经过一道工序,所以在保证加工质量的前提下,应该结合实际条件灵活运用各种加工方法的优点。

4.致谢

5.参考文献

【1】黄如林.金工实习教程.上海.上海交通大学出版社,2003 【2】杨叔子.机械加工工艺师手册.北京.机械工业出版社,2001

各种加工方法能达到的表面粗糙度

ID加工方法表面粗糙度Ra(μm)ID加工方法表面粗糙度Ra(μm) 1自动气割、带锯或圆盘锯割断50~12.526锪倒角(孔的) 3.2~1.6 2切断(车)50~12.527带导向的锪平面 6.3~3.2 3切断(铣)25~12.528镗孔(粗镗)12.5~6.3 4切断(砂轮) 3.2~1.629镗孔(半精镗金属) 6.3~3.2 5车削外圆(粗车)12.5~3.230镗孔(半精镗非金属) 6.3~1.6 6车削外圆(半精车金属) 6.3~3.231镗孔(精密镗或金刚石镗金属)0.8~0.2 7车削外圆(半精车非金属) 3.2~1.632镗孔(精密镗或金刚石镗非金属)0.4~0.2 8车削外圆(精车金属) 3.2~0.833高速镗0.8~0.2 9车削外圆(精车非金属) 1.6~0.434铰孔(半精铰一次铰)钢 6.3~3.2 10车削外圆(精密车或金刚石车金属)0.8~0.235铰孔(半精铰一次铰)黄铜 6.3~1.6 11车削外圆(精密车或金刚石车非金属)0.4~0.136铰孔(半精铰二次铰)铸铁 3.2~0.8 12车削端面(粗车)12.5~6.337铰孔(半精铰二次铰)钢、轻合金 1.6~0.8 13车削端面(半精车金属) 6.3~3.238铰孔(半精铰二次铰)黄铜、青铜0.8~0.4 14车削端面(半精车非金属) 6.3~1.639铰孔(精密铰)钢0.8~0.2 15车削端面(精车金属) 6.3~1.640铰孔(精密铰)轻合金0.8~0.4 16车削端面(精车非金属 6.3~1.641铰孔(精密铰)黄铜、青铜0.2~0.1 17车削端面(精密车金属)0.8~0.442圆柱铣刀铣削(粗)12.5~3.2 18车削端面(精密车非金属)0.8~0.243圆柱铣刀铣削(精) 3.2~0.8 19切槽(一次行程)12.544圆柱铣刀铣削(精密)0.8~0.4 20切槽(二次行程) 6.3~3.245端铣刀铣削(粗)12.5~3.2 21高速车削0.8~0.246端铣刀铣削(精) 3.2~0.4 22钻(≤φ15mm) 6.3~3.247端铣刀铣削(精密)0.8~0.2 23钻(>φ15mm)25~6.348高速铣削(粗) 1.6~0.8 24扩孔、粗(有表皮)12.5~6.349高速铣削(精)0.4~0.2 25扩孔、精 6.3~1.650刨削(粗)12.5~6.3

常用机械加工材料金属类

常用机械加工材料(金属类) 1、45号钢 最常用中碳调质钢,号钢的一种,数字“45”代表的是该钢材的平均含碳量为0.45%,综合力学性能良好,淬透性低,水淬时易生裂纹。小型件宜采用调质处理,大型件宜采用正火处理。 主要用于制造强度高的运动件,如透平机叶轮、压缩机活塞。轴、齿轮、齿条、蜗杆等。焊接件注意焊前预热,焊后消除应力退火。 2、Q235A 最常用的碳素结构钢,又称为A3钢。具有高的塑性、韧性和焊接性能、冷冲压性能,以及一定的强度、好的冷弯性能。“Q”是“屈”的拼音首字母,代表屈服极限的意思,“235”代表该钢材的屈服值,在235MPa左右,后面的字母代表质量等级,质量等级共分为A、B、C、D四个等级,Q235A钢的质量等级为A级。 广泛用于一般要求的零件和焊接结构。如受力不大的拉杆、连杆、销、轴、螺钉、螺母、套圈、支架、机座、建筑结构、桥梁等。 3、40Cr 使用最广泛的钢种之一,属合金结构钢。经调质处理后,具有良好的综合力学性能、低温冲击韧度及低的缺口敏感性,淬透性良好,油冷时可得到较高的疲劳强度,水冷时复杂形状的零件易产生裂纹,冷弯塑性中等,回火或调质后切削加工性好,但焊接性不好,易产生裂纹,焊前应预热到100~150℃,一般在调质状态下使用,还可以进行碳氮共渗和高频表面淬火处理。 调质处理后用于制造中速、中载的零件,如机床齿轮、轴、蜗杆、花键轴、顶针套等,调质并高频表面淬火后用于制造表面高硬度、耐磨的零件,如齿轮、轴、主轴、曲轴、心轴、套筒、销子、连杆、螺钉螺母、进气阀等,经淬火及中温回火后用于制造重载、中速冲击的零件,如油泵转子、滑块、齿轮、主轴、套环等,经淬火及低温回火后用于制造重载、低冲击、耐磨的零件,如蜗杆、主轴、轴、套环等,碳氮共渗处即后制造尺寸较大、低温冲击韧度较高的传动零件,如

第一节 磨削的应用及工艺特点

教师姓名 授课形式讲授授课时数1授课日期年月日授课班级 授课项目及任务名称 第九章磨削 第一节磨削的应用及工艺特点 教学目标知识目 标 掌握磨削的应用及其工艺特点等基础知识。 技能目 标 学会应用磨削的基础知识加工工件。 教学重点磨削的工艺特点及应用教学难点磨削的工艺特点 教学方法教学手段 借助于多媒体课件和相关动画及视频,详细教授磨削的工艺特点及应用等基础知识。教师先通过PPT课件进行理论知识讲解,再利用相关动画和视频进行演示,让学生能够将理论知识转化成实践经验。同时学生根据所学内容,完成知识的积累,为以后的实践实训打下基础。 学时安排1.磨削的应用约10分钟; 2.磨削的工艺特点约35分钟; 教学条件多媒体设备、多媒体课件。 课外作业查阅、收集磨削的相关资料。检查方法随堂提问,按效果计平时成绩。 教学后记

授课主要内容 第一节磨削的应用及工艺特点 近年来,磨削正朝着两个方向发展:一是高精度、低粗糙度磨削;另一个是高效磨削。 高精度、低粗糙度磨削包括精密磨削、超精密磨削和镜面磨削,可以代替研麿加工,以便节省工时和减轻劳动强度。 高效磨削包括高速磨削、强力磨削和砂带磨削,主要目标是提高生产效率。 一、磨削的应用 磨削可以加工的零件材料范围很广,既可以加工铸铁、碳钢、合金钢等一般结构材料,也能够加工高硬度的淬硬钢、硬质合金、陶瓷和玻璃等难切的材料,但是,磨削不宜精加工塑性较大的有色金属零件。 磨削可以加工外圆、内圆、平面、螺纹和齿轮等各种的表面,还常用于各种刀具的刃麿。 二、磨削的工艺特点 磨削是机器零件精密加工的主要方法之一,去除的加工余量很小。磨削的工艺特点有: 1.精度高 比一般切削加工机床精度高,刚度及稳定性较好,并有微量进给机构。 2.表面粗糙度小 一般磨削表面粗糙度值为0.8μm~0.2μm,当采用小粗糙度磨削时,表面粗糙度值可达0.1μm~0.08μm。 3.背向磨削力较大 麿外圆时总麿削力F也可以分解为三个互相垂直的力,其中:FX称为进给磨削力,很小,一般可忽略不计。 F称为背向磨削力,不消耗功率,一般作用在工艺系统刚度较差的方向上,因此容易使工艺系统变形,影响零件加工精度。 F称为磨削力,决定磨削时消耗功率的大小。 .残余应力和表面变形强化严重 与普通刀具切削相比,磨削的残余应力层比表面变形强化层要浅得多,但对零件的加工精度、加工工艺和使用性能均有一定的影响。 5.砂轮有自锐作用 在磨削过程中,砂轮存在着自锐作用,正由于砂轮本身的自锐性,使得磨粒能够以较锋利的刃口对零件进行切削。 6.磨削温度高 磨削时切削速度为一般切削加工的10~20倍,在高的切削速度下,磨削时所消耗的能量绝大部分转化为热量。

常用的传统机械加工方法(可编辑修改word版)

教案 课题:2.1 零件常用的传统机械加工方法 教学目的: 1.了解常用机械加工法的特点 2.掌握常用机械加工法的运用范围和能达到的精度 3.了解常用机械加工的机床 教学重点:掌握常用机械加工法的运用范围和能达到的精度 教学难点:掌握常用机械加工法的运用范围和能达到的精度 教学方法:讲授 教具:多媒体 课时:2 学时 2.1 零件常用的传统机械加工方法 机械加工方法广泛运用于模具制造。模具的机械加工大致有以下几种情况: (1)用车、铣、刨、钻、磨等通用机床加工模具零件,然后进行必要的钳工 修配,装配成各种模具。 (2)精度要求高的模具零件,只用普通机床加工难以保证高的加工精度,因 而需要采用精密机床进行加工。 (3)为了使模具零件特别是形状复杂的凸模、凹模型孔和型腔的加工更趋自动化,减少钳工修配的工作量,需采用数控机床(如三坐标数控铣床、加工中心、数控磨床等设备)加工模具零件。 2.1.1车削加工 1.车削加工的特点及应用 车削加工是在车床上利用车刀对工件的旋转表面进行切削加工的方法。它主要用来加工各种轴类、套筒类及盘类零件上的旋转表面和螺旋面,其中包括:内外圆柱面、内外圆锥面、内外螺纹、成型回转面、端面、沟槽以及滚花等。此外,还可以钻孔、扩孔、铰孔、攻螺纹等。车削加工精度一般为IT8~IT7,表面粗糙度为Ra6.3~1.6μm;精车时,加工精度可达IT6~IT5,粗糙度可达

Ra0.4~0.1μm。 车削加工的特点是: 加工范围广,适应性强,不但可以加工钢、铸铁及其合金, 还可以加工铜、铝等有色金属和某些非金属材料,不但可以加工单一轴线的零件,也可以加工曲轴、偏心轮或盘形凸轮等多轴线的零件;生产率高;刀具简单, 其制造、刃磨和安装都比较方便。 由于上述特点,车削加工无论在单件、小批,还是大批大量生产以及在机械 的维护修理方面,都占有重要的地位。 2.车床 车床(Lathe)的种类很多,按结构和用途可分为卧式车床、立式车床、仿形及多刀车床、自动和半自动车床、仪表车床和数控车床等。其中卧式车床应用最广,是其 他各类车床的基础。常用的卧式车床有C6132A,C6136,C6140 等几种。 2.1.2铣削加工 1.铣削加工的范围及其特点 1)铣削加工的范围 铣削主要用来对各种平面、各类沟槽等进行粗加工和半精加工,用成型铣 刀也可以加工出固定的曲面。其加工精度一般可达IT9~IT7,表面粗糙度为 Ra6.3~1.6μm。 概括而言,可以铣削平面、台阶面、成型曲面、螺旋面、键槽、T 形槽、燕 尾槽、螺纹、齿形等。 2)铣削加工的特点 铣削加工的特点具体如下: (1)生产率较高 (2)铣削过程不平稳 (3)刀齿散热较好 因此,铣削时,若采用切削液对刀具进行冷却,则必须连续浇注,以免产生较 大的热应力。 2.铣床 1)卧式铣床 卧式铣床的主轴是水平的, 2)立式铣床 立式铣床的主轴与工作台台面垂直。 2.1.3刨削加工 1.刨削加工的范围及其特点 刨削是使用刨刀在刨床上进行切削加工的方法,主要用来加工各种平面、沟 槽和齿条、直齿轮、花键等母线是直线的成型面。刨削比铣削平稳,但加工精

第五节 磨削的工艺特点及其应用

第五节磨削的工艺特点及其应用 用砂轮或其他磨具加工工件,称为磨削。本节主要讨论用砂轮在磨床上加工工件的特点及其应用,磨床的种类很多,较常见的有外圆磨床、内圆磨床和平面磨床等。 作为切削工具的砂轮,是由磨料加结合剂用烧结的方法而制成的多孔物体。由于磨料、结合剂及制造工艺等的不同,砂轮特性可能差别很大,对磨削的加工质量、生产效率和经济性有着重要影响。砂轮的特性包括磨料、粒度、硬度、结合剂、组织以及形状和尺寸等。 一.磨削过程 磨削可以加工外圆面、内孔、平面、成形面、螺纹、齿轮等 1.外圆磨削 1、在外圆磨床上进行 磨法:纵磨法横磨法综合磨深磨法 2、无心外圆磨 圆面必须连续,不能有较长键槽等孔的磨削 2.平面磨削 周磨质量较高,但较慢 端磨较快,但质量不高 特点:主运动是砂轮的旋转运动; 磨削过程:实际上是磨粒对工件表面的切削、刻削和滑擦三种作用的综合效应; 砂轮的“自锐性” :磨削中,磨粒本身也会由尖锐逐渐磨钝,使切削能力变差,切削力变大,当切削力超过粘结剂强度时,磨钝的磨粒会脱落,露出一层新的磨粒,这就是砂轮的“自锐性”。

磨削往往作为最终加工工序。 砂轮的修整 由于砂轮的“自锐性”以及切屑和碎磨粒会阻塞砂轮,在磨削一定时间后,需用金刚石车刀等对砂轮进行修整。 二.磨削的工艺特点 磨床的特点: a.使用磨料、磨具(如砂轮、砂带、油石、研磨料等)为工具,进行切削加工。 b.用来加工硬度较高的材料。 c.加工精度高、光洁度高。 d.一般加工余量较小。 工业发达国家,磨床比例高(约30%左右),磨床用于粗、精加工,发展了新型强力磨和高速磨。

三.磨削的应用和发展 (一)外圆磨床 磨床中所占比例较大的一种,包括万能外圆磨床、外圆磨床、无心外圆磨床。 1.万能外圆磨床 万能性好,常用于加工以下几种典型表面。 <1>磨外圆 加工所需的运动 砂轮主运动 n 工件的圆周进给运动 f1 工件的纵向进给运动 f2 砂轮的横向切入运动 c <2>磨长圆锥面 外圆磨床工作台分两层,上工作台相对下工作台调整至一定的角度位置(不超过±7°)机床运动与(1)相同,但工件回转中心线与工作台纵向进给方向不平行,故磨削出来的是圆锥面。 <3>磨短圆锥面 圆锥面的宽度小于砂轮宽度。砂轮架在水平面内转角度,工件不作往复运动。 <4>磨内锥孔(包括圆柱孔) 工件卡盘装在头架主轴上,头架可在水平面内转角度,此时大砂轮不转,内圆磨具支架翻下,小砂轮磨削。 由上可知:万能外圆磨床万能性高,但是机床的层次多,刚性差,加工精度低。 2.普通外圆磨床 与万能外圆磨床的区别~头架、砂轮架、头架主轴都固定不可转动,并且没有内圆磨具。主要加工外圆柱表面和锥度不大的圆锥表面。 特点:结构简单,刚性好,加工精度高,但万能性较差。 3.无心外圆磨 工件很短(如销钉)无法用顶针顶起,是以工件的外圆面作定位面的外圆磨床。 无心磨的两种方法: 1.贯穿磨法~工件中心高出e=(15~25%)D工件,导轮用橡胶和树脂作磨粒粘结剂,摩擦系数大,工件随导轮转,速度相同,且磨粒粒度细不产生磨削。 砂轮转速快,与工件有相对运动,产生磨削。导轮中心线倾斜α角,导轮与工件接触处的线速

表面粗糙度和光洁度对照表

光洁度和粗糙度都是一回事,只不过一个老标准,一个是新标准。 零件加工后的表面粗糙度。过去称为表面光洁度。 在原有的国家标准中,表面光洁度分为14级,其代号为1、2……14。后的数字越大,表面光洁度就越高,即表面粗糙度数值越小。 表面粗糙度基本概念 经过机械加工的零件表面,总会出现一些宏观和微观上几何形状误差,零件表面上的微观几何形状误差,是由零件表面上一系列微小间距的峰谷所形成的,这些微小峰谷高低起伏的程度就叫零件的表面粗糙度。 表面粗糙度是衡量零件表面加工精度的一项重要指标,零件表面粗糙度的高低将影响到两配合零件有接触表面的摩擦、运动面的磨损、贴合面的密封、配面的工作精度、旋转件的疲劳强度、零件的美观等等,甚至对零件表面的抗腐蚀性都有影响。 1级 Ra值不大于\μm=100 表面状况=明显可见的刀痕 加工方法=粗车、镗、刨、钻 应用举例=粗加工的表面,如粗车、粗刨、切断等表面,用粗镗刀和粗砂轮等加工的表面,一般很少采用 2级 Ra值不大于\μm=25、50 表面状况=明显可见的刀痕 加工方法=粗车、镗、刨、钻 应用举例=粗加工后的表面,焊接前的焊缝、粗钻孔壁等 3级

Ra值不大于\μm=12.5 表面状况=可见刀痕 加工方法=粗车、刨、铣、钻 应用举例=一般非结合表面,如轴的端面、倒角、齿轮及皮带轮的侧面、键槽的非工作表面,减重孔眼表面 4级 Ra值不大于\μm=6.3 表面状况=可见加工痕迹 加工方法=车、镗、刨、钻、铣、锉、磨、粗铰、铣齿 应用举例=不重要零件的配合表面,如支柱、支架、外壳、衬套、轴、盖等的端面。紧固件的自由表面,紧固件通孔的表面,内、外花键的非定心表面,不作为计量基准的齿轮顶圈圆表面等 5级 Ra值不大于\μm=3.2 表面状况=微见加工痕迹 加工方法=车、镗、刨、铣、刮1~2点/cm^2、拉、磨、锉、滚压、铣齿 应用举例=和其他零件连接不形成配合的表面,如箱体、外壳、端盖等零件的端面。要求有定心及配合特性的固定支承面如定心的轴间,键和键槽的工作表面。不重要的紧固螺纹的表面。需要滚花或氧化处理的表面 6级 Ra值不大于\μm=1.6 表面状况=看不清加工痕迹 加工方法=车、镗、刨、铣、铰、拉、磨、滚压、刮1~2点/cm^2铣齿

表面粗糙度选择原则及其机加工方法

表面粗糙度选择很详细的 37.表面粗糙度如何选择? 答:表面粗糙度的选择既要满足零件表面的使用功能要求,又要考虑加工的经济性。 38.用类比法确定表面粗糙度时,对高度参数一般按哪些原则选择? 答:同一零件上,工作表面的表面粗糙度值应小于非工作表面。 摩擦表面的表面粗糙度值应小于非摩擦表面;滚动摩擦表面的表面粗糙度值应小于滑动摩擦表面;运动速度高、单位压力大的表面粗糙度值应小。 受循环载荷的表面及易引起应力集中的部位(如圆角、沟槽)表面粗糙度值应选得小些。 配合性质要求高的结合表面,配合间隙小的配合表面以及要求连接可靠,受重载的过盈配合表面等都应取较小的表面粗糙度值。 配合性质相同,零件尺寸越小,其表面粗糙度值应越小。同一精度等级,小尺寸比大尺寸、轴比孔的表面粗糙度值要小。 对于配合表面,其尺寸公差、形状公差、表面粗糙度应当协凋,一般情况下有一定的对应关系。 39.表面粗糙度Ra为50-100μm时,表面形状什么特征,如何应用? 答:表面形状特征为明显可见刀痕,应用于粗造的加工面,一般很少采用。铸、锻、气割毛坯可达此要求。 40.表面粗糙度Ra为25μm时,表面形状什么特征,如何应用? 答:表面形状特征为可见刀痕,应用于粗造的加工面,一般很少采用。铸、锻、气割毛坯可达此要求。 41.表面粗糙度Ra为12.5μm时,表面形状什么特征,如何应用? 答:表面形状特征为微见刀痕, 应用于粗加工表面比较精确的一级,应用范围较广,如轴端面、倒角、螺钉孔和铆钉孔的表面、垫圈的接触面等。 42.表面粗糙度Ra为6.3μm时,表面形状什么特征,如何应用? 答:表面形状特征为可见加工痕迹,应用于半粗加工面,支架、箱体、离合器、皮带轮侧面、凸轮侧面等非接触的自由表面,与螺栓头和铆钉头相接触的表面,所有轴和孔的退刀槽,一般遮板的结合面等。 43.表面粗糙度Ra为3.2μm时,表面形状什么特征,如何应用? 答:表面形状特征为微见加工痕迹,应用于半精加工面,箱体、支架、盖面、套筒等和其他零件连接而没有配合要求的表面,需要发蓝的表面,需要滚花的预先加工面,主轴非接触的全部外表面等。是车削等基本切削加工方法较为经济地达到的表面粗糙度值。 44.表面粗糙度Ra为1.6μm时,表面形状什么特征,如何应用? 答:表面形状特征为看不清加工痕迹,应用于表面质量要求较高的表面,中型机床工作台面(普通精度),组合机床主轴箱和盖面的结合面,中等尺寸平皮带轮和三角皮带轮的工作表面,衬套滑动轴承的压入孔,一般低速转动的轴颈。航空、航天产品的某些重要零件的非配合表面。 45.表面粗糙度Ra为0.8μm时,表面形状什么特征,如何应用? 答:表面形状特征为可辨加工痕迹的方向,应用于中型机床(普通精度)滑动导轨面,导轨压板,圆柱销和圆锥销的表面,一般精度的刻度盘,需镀铬抛光的外表面,中速转动的轴颈,定位销压入孔等。是配合表面常用数值,中、重型设备的重要配合处,磨削加工经济。

机械加工方法(各种加工方法)

机械加工方法 一:车削 车削中工件旋转,形成主切削运动。刀具沿平行旋转轴线运动时,就形成内、外园柱面。刀具沿与轴线相交的斜线运动,就形成锥面。仿形车床或数控车床上,可以控制刀具沿着一条曲线进给,则形成一特定的旋转曲面。采用成型车刀,横向进给时,也可加工出旋转曲面来。车削还可以加工螺纹面、端平面及偏心轴等。车削加工精度一般为IT8—IT7,表面粗糙度为6.3—1.6μm。精车时,可达IT6—IT5,粗糙度可达0.4—0.1μm。车削的生产率较高,切削过程比较平稳,刀具较简单。 二:铣削 主切削运动是刀具的旋转。卧铣时,平面的形成是由铣刀的外园面上的刃形成的。立铣时,平面是由铣刀的端面刃形成的。提高铣刀的转速可以获得较高的切削速度,因此生产率较高。但由于铣刀刀齿的切入、切出,形成冲击,切削过程容易产生振动,因而限制了表面质量的提高。这种冲击,也加剧了刀具的磨损和破损,往往导致硬质合金刀片的碎裂。在切离工件的一般时间内,可以得到一定冷却,因此散热条件较好。按照铣削时主运动速度方向与工件进给方向的相同或相反,又分为顺铣和逆铣。 顺铣 铣削力的水平分力与工件的进给方向相同,工件台进给丝杠与固定螺母之间一般有间隙存在,因此切削力容易引起工件和工作台一起向前窜动,使进给量突然增大,引起打刀。在铣削铸件或锻件等表面有硬度的工件时,顺铣刀齿首先接触工件硬皮,加剧了铣刀的磨损。 逆铣 可以避免顺铣时发生的窜动现象。逆铣时,切削厚度从零开始逐渐增大,因而刀刃开始经历了一段在切削硬化的已加工表面上挤压滑行的阶段,加速了刀具的磨损。同时,逆铣时,铣削力将工件上抬,易引起振动,这是逆铣的不利之处。 铣削的加工精度一般可达IT8—IT7,表面粗糙度为6.3—1.6μm。 普通铣削一般只能加工平面,用成形铣刀也可以加工出固定的曲面。数控铣床可以用软件通过数控系统控制几个轴按一定关系联动,铣出复杂曲面来,这时一般采用球头铣刀。数控铣床对加工叶轮机械的叶片、模具的模芯和型腔等形状复杂的工件,具有特别重要的意义。 三:刨削 刨削时,刀具的往复直线运动为切削主运动。因此,刨削速度不可能太高,生产率较低。刨削比铣削平稳,其加工精度一般可达IT8—IT7,表面粗糙度为Ra6.3—1.6μm,精刨平面度可达 0.02/1000,表面粗糙度为0.8—0.4μm。 四:磨削 磨削以砂轮或其它磨具对工件进行加工,其主运动是砂轮的旋转。砂轮的磨削过程实际上是磨粒

各种加工方法对应表面粗糙度值.doc

用普通材料和一般生产过程所能得到的典型粗糙度数值 方法粗糙度数值 Ra(μm) 光洁 25 12.5 6.3 3.2 1.6 0.8 0.4 0.2 0.1 0.05 0.025 度值 50 火焰切割 粗磨 锯 刨和插 钻削 化学铣电火花加工 铣削 拉削 铰孔镗、车削滚筒光整电解磨削滚压抛光 磨削 珩磨 抛光 研磨 超精加工砂型铸造 热滚轧 煅 永久模铸造熔模铸造 挤压 冷轧冷拔 压铸 2 ~ 3 2 ~ 4 2 ~ 5 2 ~7 4 ~ 6 4 ~ 6 5 ~ 6 4 ~7 5 ~7 5 ~7 4 ~8 7 ~9 7 ~9 8 ~9 6 ~10 7 ~10 8 ~10 8 ~11 9 ~11 2 ~ 3 2 ~ 3 3 ~ 5 5 ~ 6 5 ~ 6 5 ~7 5 ~7 注 :粗实线为平均适用 ,虚线为不常适用 . 6 ~7 机械加工表面的特征 粗糙度等级Ra 50(▽1) 25(▽2) 12.5(▽ 3) 6.3( ▽4) 3.2( ▽5) 1.6( ▽6) 0.8( ▽7) 0.4( ▽8) 0.2( ▽9) 0.1(▽ 10) 0.05(▽ 11) 0.025(▽12) 0.0125(▽13) 0.006(▽14) 表面状况 粗 明显可见的刀痕 可见的刀痕 面 微见的刀痕 可见加工痕迹 半 光 微见加工痕迹 面 看不见加工痕迹 光 可辩加工痕迹方向 微辩加工痕迹方向 面 不可辩加工痕迹方向 暗光泽面 最 亮光泽面 光镜状光泽面 面 雾状光泽面 镜面 加工方法举例应用举例 粗 锯断、粗车、粗铣、粗刨、钻不接触表面或不重要的接触 加 工孔及用粗锉刀、粗砂轮加工面。如螺栓孔、机座底面等 半精车、精铣、粗铰、粗拉、精 不产生相对运动的接触面或 相对运动速度不高的接触面。 精 刨、扩孔、粗镗、粗磨、精锉、 加 如键和键槽的工作面机盖与机 工粗刮。 体的结合面 精金刚石车刀的精车、精镗、精相对运动速度较高的接触面, 加磨、精刮、粗研、精铰、精拉削、要求很好密合的接触面。如齿 工 挤压、粗珩轮的工作面轴承的重要表面。 光 抛光、细磨、精研、精珩、超 极重要的摩擦表面。如发动机 加气缸内表面、精密量具的工作 精加工。 工 表面。

粗糙度与加工方法

粗糙度与加工方法 表面粗糙度选用与加工方法 表面粗糙度选用 序号=1 Ra值不大于\μm=100 表面状况=明显可见的刀痕 加工方法=粗车、镗、刨、钻 应用举例=粗加工的表面,如粗车、粗刨、切断等表面,用粗镗刀和粗砂轮等加工的表面,一般很少采用 序号=2 Ra值不大于\μm=25、50 表面状况=明显可见的刀痕 加工方法=粗车、镗、刨、钻 应用举例=粗加工后的表面,焊接前的焊缝、粗钻孔壁等 序号=3 Ra值不大于\μm=12.5 表面状况=可见刀痕 加工方法=粗车、刨、铣、钻 应用举例=一般非结合表面,如轴的端面、倒角、齿轮及皮带轮的侧面、键槽的非工作表面,减重孔眼表面 序号=4 Ra值不大于\μm=6.3 表面状况=可见加工痕迹 加工方法=车、镗、刨、钻、铣、锉、磨、粗铰、铣齿 应用举例=不重要零件的配合表面,如支柱、支架、外壳、衬套、轴、盖等的端面。紧固件的自由表面,紧固件通孔的表面,内、外花键的非定心表面,不作为计量基准的齿轮顶圈圆表面等 序号=5 Ra值不大于\μm=3.2 表面状况=微见加工痕迹 加工方法=车、镗、刨、铣、刮1~2点/cm^2、拉、磨、锉、滚压、铣齿 应用举例=和其他零件连接不形成配合的表面,如箱体、外壳、端盖等零件的端面。要求有定心及配合特性的固定支承面如定心的轴间,键和键槽的工作表面。不重要的紧固螺纹的表面。需要滚花或氧化处理的表面 序号=6 Ra值不大于\μm=1.6 表面状况=看不清加工痕迹 加工方法=车、镗、刨、铣、铰、拉、磨、滚压、刮1~2点/cm^2铣齿 应用举例=安装直径超过80mm的G级轴承的外壳孔,普通精度齿轮的齿面,定位销孔,V型带轮的表面,外径定心的内花键外径,轴承盖的定中心凸肩表面

常用机械加工英语

第1章切削加工基础知识 1.1切削加工概述 切削cutting; 加工 machining; 金属切削 metal cutting (metal removal); 金属切削工艺 metal-removal process; 金属工艺学 technology of metals; 机器制造machine-building; 机械加工 machining; 冷加工 cold machining; 热加工 hot working; 工件 workpiece; 切屑chip; 常见的加工方法universal machining method; 钻削drilling; 镗削 boring; 车削 turning; 磨削 grinding; 铣削 milling; 刨削 planning; 插削slotting ; 锉filing ; 划线lineation; 錾切carving; 锯sawing; 刮削facing; 钻孔boring; 攻丝 tap; 1.2零件表面构成及成形方法 变形力 deforming force; 变形 deformation; 几何形状 geometrical; 尺寸dimension ; 精度 precision; 表面光洁度surface finish; 共轭曲线 conjugate curve; 范成法 generation method; 轴 shaft; 1.3机床的切削运动及切削要素 主运动 main movement; 主运动方向direction of main movement; 进给方向 direction of feed; 进给运动feed movement; 合成进给运动resultant movement of feed; 合成切削运动resultant movement of cutting; 合成切削运动方向direction of resultant movement of cutting ; 切削速度 cutting speed; 传动drive/transmission; 切削用量 cutting parameters; 切削速度 cutting speed; 切削深度 depth of cut; 进给速度 feed force; 切削功率 cutting power; 1.4金属切削刀具 合金工具钢alloy tool steel; 高速钢 high-speed steel; 硬质合金 hard alloy; 易加工 ease of manufacturing ; 切削刀具 cutting tool;

磨削加工

磨削加工 一、磨削特点 磨削是在磨床上用砂轮作为切削刀具对工件进行切削加工的方法。该方法的特点是: 1.由于砂轮磨粒本身具有很高的硬度和耐热性,因此磨削能加工硬度很高的材料,如淬硬的钢、硬质合金等。 2.砂轮和磨床特性决定了磨削工艺系统能作均匀的微量切削,一般 ap=0.001~0.005mm;磨削速度很高,一般可达v=30~50m/s;磨床刚度好;采用液压传动,因此磨削能经济地获得高的加工精度(IT6~IT5)和小的表面粗糙度(Ra=0.8~0.2μm)。磨削是零件精加工的主要方法之一。 3.由于剧烈的磨擦,而使磨削区温度很高。这会造成工件产生应力和变形,甚至造成工件表面烧伤。因此磨削时必须注入大量冷却液,以降低磨削温度。冷却液还可起排屑和润滑作用。 4.磨削时的径向力很大。这会造成机床—砂轮—工件系统的弹性退让,使实际切深小于名义切深。因此磨削将要完成时,应不进刀进行光磨,以消除误差。 5.磨粒磨钝后,磨削力也随之增大、致使磨粒破碎或脱落,重新露出锋利的刃口,此特性称为“自锐性”。自锐性使磨削在一定时间内能正常进行,但超过一定工作时间后,应进行人工修整,以免磨削力增大引起振动、噪声及损伤工件表面质量。二、砂轮 砂轮是磨削的切削工具,它由许多细小而坚硬的磨粒和结合剂粘而成的多孔物体。磨粒直接担负着切削工作,必须锋利并具有高的硬度,耐热性和一定的韧性。常用的磨料有氧化铝(又称刚玉)和碳化硅两种。氧化铝类磨料硬度高、韧性好,适合磨削钢料。碳化硅类磨料硬度更高、更锋利、导热性好,但较脆,适合磨削铸铁和硬质合金。

同样磨料的砂轮,由于其粗细不同,工件加工后的表面粗糙度和加工效率就不相同,磨粒粗大的用于粗磨,磨粒细小的适合精磨、磨料愈粗,粒度号愈小。 结合剂起粘结磨料的作用。常用的是陶瓷结合剂,其次是树脂结合剂。结合剂选料不同,影响砂轮的耐蚀性、强度、耐热性和韧性等。 磨粒粘结愈牢,就愈不容易从砂轮上掉下来,就称砂轮的硬度,即砂轮的硬度是指砂轮表面的磨粒在外力作用下脱落的难易程度。容易脱落称为软,反之称为硬。砂轮的硬度与磨料的硬度是两个不同的概念。被磨削工件的表面较软,磨粒的刃口(棱角)就不易磨损,这样磨粒使用的时间可以长些,也就是说可选粘接牢固些的砂轮(硬度较高的砂轮)。反之,硬度低的砂轮适合磨削硬度高的工件。 砂轮在高速条件下工作,为了保证安全,在安装前应进行检查,不应有裂纹等缺陷;为了使砂轮工作平稳,使用前应进行动平衡试验。 砂轮工作一定时间后,其表面空隙会被磨屑堵塞,磨料的锐角会磨钝,原有的几何形状会失真。因此必须修整以恢复切削能力和正确的几何形状。砂轮需用金刚石笔进行修整。 三、平面磨床的结构与磨削运动 磨床的种类很多,主要有平面磨床、外圆磨床、内圆磨床、万能外圆磨床(也可磨内孔)、齿轮磨床、螺纹磨床,导轨磨床、无心磨床(磨外圆)和工具磨床(磨刀具)等。这里介绍平面磨床及其运动。 1.平面磨床的结构(以M7120A为例,其中:M——磨床类机床;71——卧轴矩台式平面磨床;20——工作台面宽度为200mm;A——第一次重大改进。) 1)砂轮架——安装砂轮并带动砂轮作高速旋转,砂轮架可沿滑座的燕尾导轨作手动或液动的横向间隙运动。 2)滑座——安装砂轮架并带动砂轮架沿立柱导轨作上下运动。 3)立柱——支承滑座及砂轮架。

机加工表面粗糙度

基本概念 4.1.1 表面粗糙度的定义 表面粗糙度(Surface roughness)是指加工表面上具有的较小间距和峰谷所组成的微观几何形状特性性它是一种微观几何形状误差,也称为微观不平度。表面粗糙度应与形状误差(宏观几何形状误差)和表面波度区别开。通常,波距小于1mm 的属于表面粗糙度,波距在1~10mm 的属于表面波度,波距大于10mm 的属于形状误差,如图4-1 所示。 4.1.2 表面粗糙度对机械零件使用性能的影响 表面粗糙度的大小对零件的使用性能和使用寿命有很大影响。 1. 影响零件的耐磨性 表面越粗糙,摩擦系数就越大,相对运动的表面磨损得越快。然而,表面过于光滑,由于润滑油被挤出或分子间的吸附作用等原因,也会使摩擦阻力增大和加速磨损。 2. 影响配合性质的稳定性 零件表面的粗糙度对各类配合均有较大的影响。对于间隙配合,两个表面粗糙的零件在相对运动时会迅速磨损,造成间隙增大,影响配合性质;对于过盈配合,在装配时表面上微观凸峰极易被挤平,产生塑性变形,使装配后的实际有效过盈减小,降低联接强度;对于过渡配合,因多用压力及锤敲装配,表面粗糙度也会使配合变松。 ! 3. 影响疲劳强度 承受交变载荷作用的零件的失效多数是由于表面产生疲劳裂纹造成的。疲劳裂纹主要是由于表面微观峰谷的波谷所造成的应力集中引起的。零件表面越粗糙,波谷越深,应力集中就越严重。因此,表面粗糙度影响零件的抗疲劳强度。 4. 影响抗腐蚀性 粗糙表面的微观凹谷处易存积腐蚀性物质,久而久之,这些腐蚀性物质就会渗入到金属内层,造成表面锈蚀。 此外,表面粗糙度对接触刚度、密封性、产品外观、表面光学性能、导电导热性能以及表面结合的胶合强度等都有很大影响。所以,在设计零件的几何参数精度时,必须对其提出合理的表面粗糙度要求,以保证机械零件的使用性能。 表面粗糙度的选用 4.3.1 评定参数的选用 、 1. 幅度参数的选用

表面粗糙度的符号和画法

.表面粗糙度代号 GB/T131-93规定,表面粗糙度代号是由规定的符号和有关参数组成,表面粗糙度符号的画法和意义如下表所示 表13-3 表面粗糙度的符号和画法 序号符号意义 1 基本符号,表示表面可用任何方法获得。当不加注粗糙度参数值或有关说明时,仅适用于简化代号标注。 2 表示表面是用去除材料的方法获得,如车、铣、钻、磨等。 3 表示表面是用不去除材料的方法获得,如铸、锻、冲压、冷轧等。 4 在上述三个符号的长边上可加一横线,用于标注有关参数或说明。 5 在上述三个符号的长边上可加一小圆,表示所有表面具有相同的表面粗糙度要求。 6 当参数值的数字或大写字母的高度为2.5mm时,粗糙度符号的高度取8mm,三角形高度取3.5mm,三角形是等边三角形。当参数值不是2.5时,粗糙度符号和三角形符号的高度也将发生变化。 4.常用表面粗糙度Ra的数值与加工方法 表面特征表面粗糙度(Ra)数值加工方法举例 明显可见刀痕粗车、粗刨、粗铣、钻孔 微见刀痕精车、精刨、精铣、粗铰、粗磨 看不见加工痕迹,微辩加 工方向 精车、精磨、精铰、研磨 暗光泽面研磨、珩磨、超精磨 5.表面粗糙度的选择 表面粗糙度的选择,既要考虑零件表面的功能要求,又要考虑经济性,还要考虑现有的加工设备。一般应遵从以下原则: (1) 同一零件上工作表面比非工作表面的参数值要小; (2) 摩擦表面要比非摩擦表面的参数小。有相对运动的工作表面,运动速度越高,其参数值越小;

(3) 配合精度越高,参数值越小。间隙配合比过盈配合的参数值小; (4) 配合性质相同时,零件尺寸越小,参数值越小; (5) 要求密封、耐腐蚀或具有装饰性的表面,参数值要小。

机械加工工艺基础知识点知识讲解

机械加工工艺基础知识点 0总体要求 掌握常用量具的正确使用、维护及保养,了解机械零件几何精度的国家标准,理解极限与配合、形状和位置公差的含义及标注方法;金属切削和刀具的一般知识、常用夹具知识;能正确选用常用金属材料,了解一般机械加工的工艺路线与热处理工序。 一、机械零件的精度 1.了解极限与配合的术语、定义和相关标准。理解配合制、公差等级及配合种类。掌握极限尺寸、偏差、公差的简单计算和配合性质的判断。 1.1基本术语:尺寸、基本尺寸、实际尺寸、极限尺寸、尺寸偏差、上偏差、下偏差、(尺寸)公差、标准公差及等级(20个公差等级,IT01精度最高;IT18最低)、公差带位置(基本偏差,了解孔、轴各28个基本偏差代号)。 1.2配合制: (1)基孔制、基轴制;配合制选用;会区分孔、轴基本偏差代号。 (2)了解配合制的选用方法。 (3)配合类型:间隙、过渡、过盈配合 (4)会根据给定的孔、轴配合制或尺寸公差带,判断配合类型。 1.3公差与配合的标注 (1)零件尺寸标注 (2)配合尺寸标注 2.了解形状、位置公差、表面粗糙度的基本概念。理解形位公差及公差带。 2.1几何公差概念: 1)形状公差:直线度、平面度、圆度、圆柱度、线轮廓度、面轮廓度。 2)位置公差:位置度、同心度、同轴度。作用:控制形状、位置、方向误差。3)方向公差:平行度、垂直度、倾斜度、线轮廓度、面轮廓度。 4)跳动公差:圆跳动、全跳动。

2.2几何公差带: 1)几何公差带 2)几何公差形状 3)识读 3.正确选择和熟练使用常用通用量具(如钢直尺、游标卡尺、千分尺、量缸表、直角尺、刀口尺、万能角尺等)及专用量具(如螺纹规、平面样板等),并能对零件进行准确测量。 3.1常用量具: (1)种类:钢直尺、游标卡尺、千分尺、量缸表、直角尺、刀口尺、万能角尺。(2)识读:刻度,示值大小判断。 (3)调整与使用及注意事项:校对零点,测量力控制。 3.2专用量具: (1)种类:螺纹规、平面角度样板。 (2)调整与使用及注意事项 3.3量具的保养 (1)使用前擦拭干净 (2)精密量具不能量毛坯或运动着的工伯 (3)用力适度,不测高温工件 (4)摆放,不能当工具使用 (5)干量具清理 (6)量具使用后,擦洗干净涂清洁防锈油并放入专用的量具盒内。 二、金属材料及热处理 1.理解强度、塑性、硬度的概念。 2.了解工程用金属材料的分类,能正确识读常用金属材料的牌号。 2.1金属材料分类及牌号的识读: 2.1.1黑色金属: (1)定义:通常把以铁及以铁碳为主的合金(钢铁)称为黑色金属。

各种加工方法的特点及比较

各种加工方法的特点分析及比较 学号:XXX 姓名:XXX 【摘要】随着机械加工工艺不断发展,企业间竞争的扩大,要求产品既节省成本又有可靠的性能。如何选择加工方法关系到竞争的胜败。本文从经济方面、质量方面、生产周期方面各种加工方法的特点总结,力求对“如何选择加工方法”有所用处。 【关键字】性能;生产周期;精度;加工;铸造;锻造;焊接;切削;钳工;数控加工 1.前言 希望本文通过对各种加工方法的分析能对制定工艺流程、降低机械加工的产品成本、提高产品质量等方面有帮助。灵活运用各种加工方法,才能在竞争中立于不败之地。 2.正文 2.1铸造、锻造、焊接、切削、钳工和数控加工的主要特点分别分析: 2.1.1铸造工艺 由于铸造采用液态下一次成形,所以对材料种类及零件形状、尺寸大小和生产批量的适应性非常广,特别适合复杂形状铸件的生产,且生产成本较低,在机械制造中具有重要的地位。铸造可直接利用成本低廉的废机件和切屑,设备费用较低。同时铸件加工余量小,节省金属,减少机械加工余量,从而降低制造成本。但液态成形的特点也使铸造工序多、铸件质量控制难度大、铸件力学性能差。 铸造车间一般工作环境差,容易对工人的健康有危害,而且对环境污染较严重。 铸造的应用范围:生产毛坯。如机床床身、内燃机等 2.1.2锻造工艺 由于金属材料经过锻造后,其内部组织更加致密、均匀,使同一种金属的锻件比铸件有更好的力学性能。

因此,各种承受重载荷及冲击载荷的重要零件,多以锻件作为毛坯,但由于锻造固态塑性成形的特点,无法获得形状(特别是内腔)复杂的锻件。 2.1.3焊接工艺 焊接是通过加热加压或加压或两者并用的方法,使金属达到原子结合的一种加工方法。与其它方法相比,焊接具有节省材料、接头密封性好、经济性好、生产周期短等优。但对工人的技术要求比较高。 焊接的应用范围在造船、电力设备生产、航天工业中广泛应用。 2.1.4车削工艺 车削加工是指在车床上应用刀具与工件作相对切削运动,用以改变毛坯的尺寸和形状等,使之成为零件的加工过程。车工在切削加工中是最常用的一种加工方法。车床占机床总数的一半左右,故在机械加工中具有重要的地位和作用。 车床应用范围:用来加工各种回转表面,如:内、外圆柱面;内、外圆锥面;端面;内、外沟槽;内、外螺纹;内、外成形表面;丝杆、钻孔、扩孔、铰孔、镗孔、攻丝、套丝、滚花等。 2.1.5铣削工艺 由于铣削的主运动是铣刀的旋转,铣刀又是多齿刀具,故铣削的生产效率高,刀具的耐用度高 铣床及其附件的通用性广,铣刀的种类很多,铣削的工艺灵活。 铣削的加工范围较广,铣削两样适用小批与大批量的生产。 2.1.6刨削工艺 在刨车上用刨刀加工工件的方法叫刨削。 常见的刨床有牛头刨、龙门刨。 刨削的适用范围主要有:加工平面、加工沟槽(如直槽、T形槽、燕尾槽)、母线为直线的成形面。 2.1.7磨削工艺 加工精度高,常用的磨削经济精度为IT6到IT5,表面粗糙度为0.8到0.2μm。同时适合于粗加工与精加工。磨削温度高,必须使用切削液。 适应范围广,不仅适用于一般的金属材料,而且适用于碳钢、铸铁、合金钢、淬火钢、合金。 2.1.8钳工工艺 钳工工作劳动强度大,生产效率低、对工人技术要求高,但所用工具简单,操作灵活简便。 因此,适应范围较为广泛。主要的操作包括:划线、锯削、锉削、錾削、钻孔、铰孔、攻丝、套扣、刮削、研磨、装配及修理。 2.1.9数控

表面粗糙度及表面粗糙度的标注方法

一.表面粗糙度的符号 注意:极限值表示参数的实测值中允许少于总数的16%的实测值超过规定值,高度参数常用Ra,在图中标注时常省略。无max min则表示是上极限或下极限,如果有则表示最大值和最小值,单位为微米 基本符号,表示可使用任何方法获得 基本符号加一短划,表示表面用去除材料的方法获得 表示用不去除材料方法获得(铸锻冲压等) 表示所有表面具有相同的表面粗糙度要求 二.表面粗糙度的代号 1. d' =h/10;H=1.4h;h为字体高度 a1、a2--粗糙度高度参数的允许值(mm); b加工方法、镀涂或其他表面处理; c取样长度(mm); d加工纹理方向符号; e加工余量(mm); f粗糙度间距参数值(mm)或轮廊支承长度率。 2.零件的加工表面的粗糙度要求由指定的加工方法获得,用文字标注在符号上边的横线,加工方法也可在图样的技术要求中说明 3.加工纹理方向: = 纹理平行于标注符号的视图的投影面 ⊥纹理垂直于标注符号的视图的投影面 x 纹理呈两相交的方向 M 纹理呈多方向 c 纹理呈近似同心圆 R 纹理呈近似的放射状 p 纹理无方向或凸起的细粒状 4.加工余量:注在符号的左侧,标注时数值要加上括号,单位为毫米 5.参数S Sm Tp l的标注,应标注在符号长边的横线下面,并且必须在参数值前注写参数的符号 三。表面粗糙度符号、代号在图样上的标注 一般标注在可见轮廓线、尺寸界线、引出线或它们的延长线上,符号的尖端必须从材料外指向表面,代号中数字及符号的注写方向必须与尺寸数字方向一致

标准规定在同一图样上,每一表面一般只标注一次。当零件的大部分表面具有相同的表面粗糙度要求时,对其中使用最多的一种代号可以统一注在图样的右上角,并加注“其余”两字当零件所有表面具有相同的表面粗糙度要求时,其代号可在图样的右上角统一标注序号标注规定及说明图例 1当零件的大部分表面具有相同的表由粗糙度要求时,对其中使用最多的一种代(符)号可统一注在图样的右上角,并加注‘其余”两字,且应是图样上其它代(符)号高度的1.4倍 2 代号中数字注写方向应与尺寸数字方向一致;倾斜表面的代号及数字标控方向应符合图右规定 3 带有横线的表面粗糙度应按右图方式标注

各种加工方法能达到的表面粗糙度分析

各种加工方法能达到的表面粗糙度 ID 加工方法表面粗糙度Ra(μm) 1 自动气割、带锯或圆盘锯割断 50~12.5 2 切断(车) 50~12.5 3 切断(铣) 25~12.5 4 切断(砂轮) 3.2~1.6

5 车削外圆(粗车) 12.5~3.2 6 车削外圆(半精车金属) 6.3~3.2 7 车削外圆(半精车非金属) 3.2~1.6 8 车削外圆(精车金属) 3.2~0.8 9 车削外圆(精车非金属) 1.6~0.4 10 车削外圆(精密车或金刚石车金属)

0.8~0.2 11 车削外圆(精密车或金刚石车非金属)0.4~0.1 12 车削端面(粗车) 12.5~6.3 13 车削端面(半精车金属) 6.3~3.2 14 车削端面(半精车非金属) 6.3~1.6 15 车削端面(精车金属) 6.3~1.6

16 车削端面(精车非金属 6.3~1.6 17 车削端面(精密车金属)0.8~0.4 18 车削端面(精密车非金属)0.8~0.2 19 切槽(一次行程) 12.5 20 切槽(二次行程) 6.3~3.2 21 高速车削

0.8~0.2 22 钻(≤φ15mm)6.3~3.2 23 钻(>φ15mm)25~6.3 24 扩孔、粗(有表皮)12.5~6.3 25 扩孔、精 6.3~1.6 26 锪倒角(孔的) 3.2~1.6

27 带导向的锪平面 6.3~3.2 28 镗孔(粗镗) 12.5~6.3 29 镗孔(半精镗金属) 6.3~3.2 30 镗孔(半精镗非金属) 6.3~1.6 31 镗孔(精密镗或金刚石镗金属)0.8~0.2 32 镗孔(精密镗或金刚石镗非金属)

相关主题
文本预览
相关文档 最新文档