当前位置:文档之家› 碱性锌锰知识

碱性锌锰知识

碱性锌锰知识
碱性锌锰知识

锌锰电池

以锌为负极,二氧化锰为正极,氢氧化钾溶液为电解液的原电池。简称碱锰电池,俗称碱性电池。其产品系列都用字母“LR”表示,其后的数字表示电池的型号。

碱性电池的负极活件物质是金属锌,由其提供电子,产生电流。锌皮或锌箔在碱液中,但其比表面较小,含电解液性能差,低温和重负荷下使用极易钝化。而锌粉具有足够大的比表面,在碱性电液中也不易钝化。

而使用汞齐锌对电极性能有很大的作用,它能提高锌的析氢过电位,并使电池的防漏性能提高。同时碱性电池的锌粉必须严格控制重金属杂质,尤其是铁,因为铁不易汞齐,从而控制杂质含量。

电池内活性物质的典型配方(质量):正极为电解二氧化锰90~92%,石墨粉8~9%,乙炔炭黑0.5~1%;负极为汞齐锌粉88~90%,氧化锌5~7%,CMC钠盐3~4%,KOH 溶液(外加)适量。电解液为8~12N KOH溶液,其中溶入适量氧化锌。

碱性介质中的锌-锰电池(碱锰电池)的电池反应

(-)Zn∣KOH∣MnO 2 (+)

负极反应:Zn-2 e+2OH-→Zn(OH)2? ZnO+H2O

正极反应:2MnO2+2H2O+2e→2MnOOH+2OH-

电池反应:Zn+2MnO2+H2O→2MnOOH+ZnO

或Zn+2MnO2+H2O→2MnOOH+Zn(OH)2?ZnO +H2O

特点:比普通锌锰电池性能好,电流大,储存时间长

电解二氧化锰分为普通型,碱锰型及无汞碱锰型,普通型适用于锌锰电池类;碱锰型适用于碱性锌锰电池类,无汞碱锰型适用于碱性锌一二氧化锰电池。主要用途:电解二氧化锰是优良的电池的去极化剂,它与天然放电二氧化锰生产的干电池相比,具有放电容量大、活性强、体积小、寿命长等特点,掺用20-30%EMD 做成的干电池比全用天然MnO2做成的干电池其放电容量可提高50-100% ,在高性能氯化锌电池中掺用50-70%EMD ,其放电容量可提高2-3 倍,全部用EMD 做成的碱锰电池,其放电容量可提高5-7 倍,因此电解二氧化锰成为电池工业的一种非常重要的原料。

锌锰电池二氧化锰电极(阴极)还原工作过程

MnO2阴极还原过程MnO2是锌—锰电池的正极,电池放电寸被还原。由于Mn02是一种半导体,导电性不良,阴极还原过程不同于金属电极。MnO2电化学还原分为二步。

第一步反应:MnO2还原为MnOOH。

第二步反应:MnOOH还原为Mn(OH)2。

MnOOH还原为Mn(OH)2,由三个连串的步骤构成。

①Mn3+自MnOOH以Mn(OH)4-配离子形式溶解于电解液中;

MnOOH+H20+OH-→ Mn(OH)4-

②Mn(OH)4-在碳表面还原;

③从饱和溶液中沉淀出Mn(OH)2。

第一步反应是一个固相均相过程。反应由MnO2固态结构转化为另一种固态结构MnOOH,反应过程只有电子和质子进入晶格,但不改变晶体结构,即晶格中Mn3+与OH-浓度增加,仍保持均相,使MnO2转变为MnOOH。

第二步反应是一个多相反应,由固相MnOOH转变为另一固相Mn(OH)2,电化学反应是通过溶解了的离子进行的。碱性锌—锰电池及中性锌—锰电池主要是利用第一步反应放电。

碱性溶液中的MnO2电极的放电机理中,MnO2的放电曲线表示,在低电流密度下,Mn02的电化学还原分为二步,在高电流密度下,第二步不明显。第一步反应是MnO2还原为MnOOH,电位连续下降,形成S形曲线。第二步反应是MnOOH还原为Mn(OH)2,曲线平坦。碱性锌—锰电池的有效容量主要在放电的第一步。

同相还原机理

当γ-MnO2被阴极还原时,电子通过导电物质传递到γ-MnO2晶体表面,使表面的Mn4+还原成Mn3+,继而表面的Mn3+与晶体内的Mn4+进行电子交换,内部的Mn4+转化为Mn3+,而表面的Mn3+失去电子又形成Mn4+,这样一Mn3+为桥梁,一步一步地向晶体内部传递;与此同时,水分子在MnO2表面分解生成的质子与界面晶格中的O2-结合成OH-,晶体中生成的OH-又因旋转和振动而使O-H键断裂,H+被传递到临近的O2-位置,这样H+在晶体内以O2-为桥梁从一个O2-位置跳到临近的另一个O2-位置,渐渐从电解质溶液扩撒代γ-MnO2晶体内部。随着还原的进行,晶体中的Mn3+、OH-浓度增大,这些物种均相的分布在γ-MnO2晶体内,晶体中的Mn3+、Mn4+浓度比决定了不同还原度下得电极电位。由于离子半径OH-(1.53A)大于O2-(1.4A),Mn3+(0.62A)大于Mn4+(0.52A),当还原到大约MnO1.7时,晶格参数(相邻的O2-间距离和相邻的Mn4+间距离)就不允许质子和电子以上述方式自由运动。这一过程值发生晶格膨胀,而不形成新的物相。当放电超过这一阶段是就在起初的Mn4+、Mn3+、O2-、OH-体系表面形成低氧化态的新物相γ-Mn2O3(或γ-MnOOH),此时的电极电位就主要有这些低氧化态物质决定。

锌锰电池阴极还原中MnO2还原的初级过程和次级过程

MnO2电极的反应机理尚未完全清楚,但大多数学者倾向于电子—质子理论,从电子—质子机理出发可认为MnO2还原分为初级过程和次级过程。

①初级过程:MnO2是粉状电极,电极反应在MnO2颗粒表面进行。首先是四价锰还原为低价氧化物,称初级反应。电子—质子理论认为MnO2晶格是由Mn4+与O2-交错排列而成。反应过程是液相中的质子(H+)通过两相界面进入MnO2晶格与O2-结合为OH—,电子也进入锰原子外围。原来O2-晶格点阵被OH-取代,Mn4+被Mn3+取代,形成MnOOH(水锰石)。

②次级过程:MnO2还原生成的水锰石与电解液进一步发生化学反应或以其它方式离开电极表面的过程,称次级反应。次级反应使水锰石发生转移。水锰石转移有两种方式,即歧化反应和固相质子扩散。歧化反应:pH较低.固相质子扩散:MnO2属半导体,自由电子很少,大部分电子束缚在正离子的吸引范围内,称作束缚电子。MnO2还原时,从外线路来的自由电子进入MnO2晶格后变为束缚电子,它们能在正离子之间跳跃,依次跳到邻近OH-

的Mn4+,使Mn4+还原为Mn3+。质子(H+)也能从一个O2-位置跳到邻近另一个O2-的位置上,

称作固相质子扩散。扩散的推动力是质子浓度差。首先在电极上发生的电化学反应是:

Mn4++ e- →Mn3+生成MnOOH分子,故电极表面质子浓度很高,O2-浓度不断降低,而晶格深处仍有大量O2-,相当于质子浓度很低。即表面层中H+浓度大于内层H+浓度,或表面层中O2-浓度小于内层O2-浓度,引起电极表面层与电极内部H+和O2-的浓度梯度,从而引起表面层中质子不断向内层扩散,并与内层O2-结合成OH-。由于H+和电子不断向MnO2电极内部转移,从而可使MnO2表面上的水锰石不断向固相深处转移,MnO2表面不断更新。实际上,歧化反应和固相质子扩散是同时进行的。

锌锰电池阴极还原的控制步骤

MnO2阴极还原反应中,电化学反应速率比较快,电极表面MnOOH转移的次级过程比较慢,是控制步骤。研究结果指出,在酸性溶液中,歧化反应2MOOH+2H+=

MnO2+Mn2++2H20是速率控制步骤;而在碱性溶液中,固相内H+扩散过程是速率控制步骤;在中性电解液中,两个过程同时起作用。

可充电碱锰电池MnO2电极在充放电时的工作表现

放电开始时,Mn02晶格表面的O2-接受溶液的H2O给出的H+变成OH-,邻近的Mn4+接受一个电子还原成Mn3+。因此,MnO2晶格表面生成MnOOH。

质子H+可以从一个O2-位置跳跃到另一个O2-的位置,跳跃方向是从OH-浓度大的区域到OH-浓度小的区域。电子在电场力作用下从一个Mn4+离子的吸引范围跳到邻近的Mn4+离子的吸引范围,即相当于MnOOH由界面向晶格深处扩散。第一步反应的电化学反应速率大,MnOOH转移的次级过程慢,是反应的控制步骤。

充电过程:MnO2电极表面的OH-把质子H+给予吸附在固相表面的OH-离子生成H2O,附近的Mn3+失去电子氧化成Mn4+。因而表面的MnOOH变成MnO2。在浓差作用下,H+由本体向界面扩散。在电场力作用下,Mn3+失去电子氧化成Mn4+。

正极Mn02在碱性溶液中的放电分两步进行

第一电子放电步骤是一个涉及固相传质的均相反应过程,质子和电子在MnO2晶格中移动使MnO2逐步还原为Mn00H。在这一步骤的初期,Mn02固相基本晶体结构没发生变化,而只有晶格的膨胀,若在此时停止放电而进行充电,则MnO2具有良好的可逆性。

第二电子放电步骤按“溶解一沉积机理”进行,这是一个不完全可逆的过程。原因是

Mn00H放电时有Mn3O4、生成,而放电产物Mn(OH)2充电时又有一部分氧化成Mn304。生成的Mn304、既不能被氧化,也不能被还原,它在充放过程中积累,一方面消耗了活性材料,另一方面使电池内阻迅速增大,造成了MnO2电极容量的衰退。其负极的放电行为在宏观上的顺序为:从靠近正极部位逐渐进行到负极集流体附近,这是由于多孔电极各部分放电时极化不同造成的。增大正负极对应面积可以大幅度提高碱性锌锰电池的放电性能,特别是大电流放电性能。而负极钝化的快慢受锌粉粗细的影响。

锌膏放电在宏观上的反应顺序是由液固两相多孔电极决定的。金属锌的比电导远远高于KOH 电解液的比电导, 且由于负极反应需要消耗OH- 造成了浓度梯度, 从而导致了放电时锌膏各部位的极化不同, 且极化电流密度越大, 电解液电导及电极的真实表面积越小, 则极化越不均匀。在LR20 电池LR20恒阻连续放电至0.75V 时仍然存在部分锌膏与未放电的锌膏

极为相似, 而在10欧姆间歇放电( 4h/ d) 至1.24V 时已不存在这样的锌膏, 这是极化电流密度不同造成的。在放电过程中锌膏部分反应层厚度增长速度远大于锌膏完全反应层厚度增长速度, 其可能的机理是: 尽管由于极化不同造成靠近完全反应层以内的锌膏反应速度慢, 但由于放电过程中锌粒表面氧化锌的生成使锌粒间接触电阻增大, 从而造成极化更趋向均匀, 使反应层向内部推进。圆柱型碱性锌锰电池大电流放电时, 整个负极圆柱反应面在宏观上极化不均匀, 导致了靠近电池正极部位的锌膏优先反应。

从废旧锌锰电池中回收锌和锰的工艺研究

NON-FERROUS METALS RECYCLING AND UTILIZA TION,2006-7 19 从废旧锌锰电池中回收锌和锰的工艺研究 江苏科技大学材料学院化学与环境实验室 高玉华 摘 要:废旧锌锰干电池经过剖开、焙烧处理,去除汞和碳粉,再用硫酸浸取,滤液采用沉淀法分离锌和锰。锌和锰的回收率分别为94.5%和93.6%。 关键词:废旧锌锰电池;锌;锰;回收 Study on manufacture manganese and zinc using waste Zn-Mn batter GAO Yu-hua (School of Materials Science and Eng.,Jiangsu University of Scienec and Technology,Zhenjiang Jiangsu212003,China)Abstuact:Zn—M n Waste Battery is disposed by separation and incineration,remove Hg element andcarbon element.The picking with sulphuric acid is second process.With sediment zinc and Manganese areseparated in the filtrate.The recovery of zinc Is 94.5%.The recovery of manganese is 93.6%. Keywords:Zn-Mn Waste Battery;zinc;manganese;recovery我国是干电池的生产和消费大国,年产量达150亿只,居世界第一位,占世界总量的1/3左右[1],其中70%是锌锰干电池。以每年生产100亿只干电池计算,全年将要消耗15.6万吨锌,22.6万吨氧化锰,2 080 吨铜,2.7万吨氯化锌,7.9万吨氯化铵,4.3万吨碳棒[2],相当于三四个大冶炼厂的年产锌、锰量。目前国内外都很重视对废干电池资源化的研究[3、4] ,废旧锌锰干电池尚无较好的处理方法[5],用固化法处理废干电池[6]填埋后的废锌锰干电池中的锌、锰等有用物质不能回收,也不利于土地资源的开发与利用[7]。作者对废旧锌锰干电池中锌锰回收工艺进行了探索,找到了锌、锰回收的工艺条件。 一、实验部分 实验仪器 电池破解设备、马弗炉、1 000W电炉、AA370原子吸收分光光度计、雷磁25酸度计、汞回收装置等。 实验药品 硫酸、硫化钠、氨水等。 实验方法 用自制的电池破解设备将废锌锰干电池剖开,使碳棒、金属帽、锌皮、铁片、碳包得到分离。将碳包中内含物置于瓷坩埚内,送入马弗炉在750℃焙烧1h ( 烟气排放处设回收汞装置 ), 作者简介:高玉华(1964—),男,高级工程师,化学与环境实验室主任,从事固体废弃物处理方面的科研教学工作。 Science&Technology  科技园地

普通锌锰干电池

普通锌锰干电池 11.普通干电池中装有MnO2和其它物质,MnO2的作用是()。 A.和正极作用把碳氧化为CO2B.把正极附近生成的H2氧化成水 C.电池中发生化学反应的催化剂D.和负极作用,将锌变成锌离子 12.干电池的负极反应为:Zn-2e-=Zn2+,现以它为电源电解32.4g34%的KNO3溶液,一段时间后测得溶液的质量分数为36%,问这段时间内,干电池中消耗的Zn 的物质的量为()。 A.0.05mol B.0.1mol C.0.2mol D.0.3mol 49.锌锰干电池在放电时,电池总反应方程式可以表示为: Zn+2MnO2+2NH4+=Zn2++Mn2O3+2NH3+H2O 在此电池放电时,正极(碳棒)上发生反应的物质是()。 A.Zn B.碳棒C.MnO2和NH4+D.Zn2+和NH4+ 49.解析:干电池放电时,正极得到电子发生还原反应。答案:C 13.某干电池的电极分别为碳棒(上面由铜帽)和锌(皮),以糊状NH4Cl和ZnCl2做为电解质(其中加入MnO2吸收H2,ZnCl2吸收NH3),电极反应可简化为:Zn-2e-=Zn2+,2NH4++2e-=2NH3+H2。根据以上所述判断下列结论正确的是()。 A.Zn为正极,碳为负极B.工作时电子由碳极经外电路流向Zn极 C.Zn为负极,碳为正极D.长时间使用内装糊状物可能流出,腐蚀用电器14.常用的锌锰干电池在放电时总反应可表为:Zn(s)+2MnO2(s)+2NH4+=Zn2++Mn2O3+2NH3+H2O,放电时正极区发生反应的物质或微粒是()。 A.Zn B.MnO2和NH4+C.MnO2D.Zn2+和NH3 23.(6分)手电筒中使用的干电池一般是普通锌锰干电池, 其结构如右图所示。在放电时的总反应可表示为: Zn+2MnO2+2NH4+=Zn2++Mn2O3+2NH3+H2O 试回答下列问题: (1)该电池的正极是____________。 (2)写出该电池的极反应式: 负极反应式:______________________________; 正极反应式:______________________________。 23.(1)碳棒 (2)Zn-2e-=Zn2+ 2MnO2+2NH4++2e-=Mn2O3+2NH3+H2O(每空2分,共6分) 20.小刚为了解生活中常见的锌锰干电池,做了以下探究. 他打开一节废电池,观察到如下现象:○1黑色碳棒完好无损;○2电极周 围充满黑色粉末;○3里面有少量无色晶体;○4金属外壳明显破损.

废旧锌锰电池的回收利用技术的研究进展

Advances in Environmental Protection 环境保护前沿, 2017, 7(1), 1-8 Published Online February 2017 in Hans. https://www.doczj.com/doc/3f2046380.html,/journal/aep https://https://www.doczj.com/doc/3f2046380.html,/10.12677/aep.2017.71001 文章引用: 张景欣, 马雅琳, 陈爱良, 熊子璇. 废旧锌锰电池的回收利用技术的研究进展[J]. 环境保护前沿, 2017, 7(1): Progress in the Recycle of Waste Zinc Manganese Battery Jingxin Zhang, Yalin Ma, Ailiang Chen, Zixuan Xiong School of Metallurgy and Environment, Central South University, Changsha Hunan Received: Jan. 20th , 2017; accepted: Feb. 7th , 2017; published: Feb. 10th , 2017 Abstract More and more attention of the recycling of the waste battery has been attracted with the increase of the battery usage. There are many kinds of metal and heavy metal in zinc manganese battery; its recycling technology is constantly developing. This paper describes the technological progress in the recovery and utilization of Waste Zinc Manganese Batteries in recent years, and analyzes the relation among various processing methods and their advantages and disadvantages. The de-velopment prospects of the recovery and utilization of Waste Zinc Manganese Batteries was also discussed. Keywords Waste Zinc Manganese Battery, Zinc, Manganese, Recycle 废旧锌锰电池的回收利用技术的研究进展 张景欣,马雅琳,陈爱良,熊子璇 中南大学冶金与环境学院,湖南 长沙 收稿日期:2017年1月20日;录用日期:2017年2月7日;发布日期:2017年2月10日 摘 要 随着电池使用量的增加,越来越多的人开始关注废旧电池的回收利用。锌锰电池中含有多种金属及重金属,其回收利用技术也在不断地发展进步。本文综述了近几年来废旧锌锰电池的回收利用技术方面的技术进展,分析了各种方法之间的联系以及各自的优缺点,并对废旧锌锰电池的回收利用的发展前景作了更深层次的探讨。

碱性锌锰知识

锌锰电池 以锌为负极,二氧化锰为正极,氢氧化钾溶液为电解液的原电池。简称碱锰电池,俗称碱性电池。其产品系列都用字母“LR”表示,其后的数字表示电池的型号。 碱性电池的负极活件物质是金属锌,由其提供电子,产生电流。锌皮或锌箔在碱液中,但其比表面较小,含电解液性能差,低温和重负荷下使用极易钝化。而锌粉具有足够大的比表面,在碱性电液中也不易钝化。 而使用汞齐锌对电极性能有很大的作用,它能提高锌的析氢过电位,并使电池的防漏性能提高。同时碱性电池的锌粉必须严格控制重金属杂质,尤其是铁,因为铁不易汞齐,从而控制杂质含量。 电池内活性物质的典型配方(质量):正极为电解二氧化锰90~92%,石墨粉8~9%,乙炔炭黑0.5~1%;负极为汞齐锌粉88~90%,氧化锌5~7%,CMC钠盐3~4%,KOH 溶液(外加)适量。电解液为8~12N KOH溶液,其中溶入适量氧化锌。 碱性介质中的锌-锰电池(碱锰电池)的电池反应 (-)Zn∣KOH∣MnO 2 (+) 负极反应:Zn-2 e+2OH-→Zn(OH)2? ZnO+H2O 正极反应:2MnO2+2H2O+2e→2MnOOH+2OH- 电池反应:Zn+2MnO2+H2O→2MnOOH+ZnO 或Zn+2MnO2+H2O→2MnOOH+Zn(OH)2?ZnO +H2O 特点:比普通锌锰电池性能好,电流大,储存时间长 电解二氧化锰分为普通型,碱锰型及无汞碱锰型,普通型适用于锌锰电池类;碱锰型适用于碱性锌锰电池类,无汞碱锰型适用于碱性锌一二氧化锰电池。主要用途:电解二氧化锰是优良的电池的去极化剂,它与天然放电二氧化锰生产的干电池相比,具有放电容量大、活性强、体积小、寿命长等特点,掺用20-30%EMD 做成的干电池比全用天然MnO2做成的干电池其放电容量可提高50-100% ,在高性能氯化锌电池中掺用50-70%EMD ,其放电容量可提高2-3 倍,全部用EMD 做成的碱锰电池,其放电容量可提高5-7 倍,因此电解二氧化锰成为电池工业的一种非常重要的原料。 锌锰电池二氧化锰电极(阴极)还原工作过程 MnO2阴极还原过程MnO2是锌—锰电池的正极,电池放电寸被还原。由于Mn02是一种半导体,导电性不良,阴极还原过程不同于金属电极。MnO2电化学还原分为二步。 第一步反应:MnO2还原为MnOOH。 第二步反应:MnOOH还原为Mn(OH)2。 MnOOH还原为Mn(OH)2,由三个连串的步骤构成。 ①Mn3+自MnOOH以Mn(OH)4-配离子形式溶解于电解液中; MnOOH+H20+OH-→ Mn(OH)4-

碱性锌锰干电池

碱性锌锰干电池以氢氧化钾水溶液等碱性物质作电解质的锌锰电池,是中性锌锰电池的改良型。使用电解二氧化锰作正极活性物质,与导电石墨粉等材料混和后压成环状, 锌粉作负极活性物质,与电解液和凝胶剂混和制成膏状。它是普通干电池的升级换代的 高性能电池产品。 目录 碱性锌锰干电池的结构 碱性锌锰干电池的原理 碱性锌锰干电池的性能 碱性锌锰干电池对隔膜的要求 碱性锌锰干电池的特点 碱性锌锰干电池的应用 碱性锌锰干电池的选购 碱性锌锰干电池的市场前景 碱性锌锰干电池的选用注意事项 碱性锌锰干电池的结构 1--金属顶帽;2--塑料套简;3--锌膏;4--钢壳;5--金属外套;6--隔膜 7--二氧化锰环;8--锌极集流柱;9--塑料底;10--金属底盖绝缘垫圈 碱性锌锰干电池的原理 正极为阴极反应: MnO2+H2O+e→MnO(OH)+OH- MnO(OH)在碱性溶液中有一定的溶解度

MnO(OH)+H2O+OH-→Mn(OH)4- Mn(OH)4-+e→Mn(OH)42- 负极为阳极反应: Zn+2OH-→Zn(OH)2+2e Zn(OH)2+2OH-→Zn(OH)42- 总的电池反应: Zn+MnO2+2H2O+4OH-→Mn(OH)42-+Zn(OH)42- 碱性锌锰干电池的性能 碱性锌锰干电池在结构上采用与普通锌锰电池相反的电极结构,增大了正负极间的相对面积,采用高导电性的碱性电解液,正负极采用高能电极材料,所以,碱锰电池的容量和放电时间是同等型号普通电池的3~7倍,低温性能两者差距更大,碱锰电池更耐低温,而且更适合于大电流放电和要求工作电压比较稳定的用电场合。 碱性锌锰干电池对隔膜的要求 1、外观要均匀、平整,无机械杂质 2、有良好的耐化学腐蚀能力 3、有良好的机械强度 4、有良好的电解液吸收能力和保持电解液的能力 5、在电解液中需要有良好的尺寸稳定性 6、具有良好的离子导电能力 7、金属杂质的含量要低 8、规格要求 碱性锌锰干电池的特点 1、开路电压为1.5V; 2、工作温度范围宽在-20℃~60℃之间,适于高寒地区使用; 3、大电流连续放电其容量是酸性锌锰电池的5倍左右; 4、低温放电性能好。 碱性锌锰干电池的应用 碱性锌锰干电池广泛应用于电剃刀、矿灯、鞋灯、手电筒、闪光产品、蓝牙无线产品、PDA、电子匙、IC卡、数码产品、钟表、机芯、电脑主板、电动工具、音像设备、仪器、仪表、遥控器、防盗器、计算器、玩具及小型电子设备、军用和民用的控制电源。 碱性锌锰干电池的选购 1、选购有“国家免检”、“中国名牌”标志的电池产品和地方名牌电池产品,这些产品质量有保障。 2、根据电器的要求,选择适用的电池类型和规格尺寸,并根据电器耗电的大小和特点,购买适合电器的电池。

废旧锌锰干电池回收利用

废旧锌锰干电池回收利用 倪志刚 (南京大学化学化工学院,南京 210089) 摘要本文简述了利用废旧电池制取MnCO3的实验过程,并对反应过程中关键的一步——将+4价锰还原为+2价锰进行了讨论,比较了各种还原方法的优缺点。这个研究式实验的开展,培养了同学们查阅资料、自行设计实验方案、分析实验结果的能力,更重要的是加强了同学们的环保意识和责任意识。 关键字废旧电池回收利用锰还原 随着各种各样小型电器的普及,电池的使用量与日俱增。在各种电池当中,锌锰干电池的使用量占了很大的比例。使用完的锌锰干电池若随意丢弃,会对环境造成很大的危害。相反,对废旧电池进行适当的处理,会得到很多有用的物质。例如,从废旧锌锰干电池中可回收得到MnCO3,其用途有:电讯器材用作铁氧体生产的原料,陶瓷颜料、清漆催干剂、肥料、医药、机械零件、磷化处理、锰盐制造的原料等。本文着重讨论利用废旧干电池制取MnCO3的实验。(还可再概述几种制取的方法) 1、实验过程(实验与结果,包括2) 1.1 MnO2的制备 取5号干电池两节,剥去外包装、锌皮、铜帽、纸层,除去碳棒,将剩下的黑色混合物研碎,加水溶解,用酸调节pH约为2,加热、搅拌、冷却、过滤,用蒸馏水洗至无 Cl,将黑色沉淀转移至蒸发皿中在空气中灼烧,并用玻璃棒搅拌,至无火星时停止加热,得到的黑色固体即为MnO2粗产品。 1.2 锰元素的还原 称取以上制备的MnO2固体5g,连接好固液加热型气体发生装置,准备好具有防倒吸功能的尾气吸收装置,将MnO2加入锥形瓶,加入20mL 12mol/L浓盐酸,打开磁力加热搅拌器,使其反应。反应过程中会看到有大量黄绿色的气体生成。待锥形瓶中黄绿色全部褪去,再加热5min。将所得混合物过滤,所得滤液即为MnCl2溶液。 1.3 MnCO3的制备 将所得的溶液转移至烧杯中,取一滴溶液用NH4SCN溶液检测得其中含有Fe3+,向溶液中先加NaOH溶液,后加氨水,调节pH=5,使Fe3+完全生成Fe(OH)3沉淀并过滤除去。

普通锌锰干电池

一、普通锌锰干电池 化学电池分不可充电(一次性电池)与可充电(二次性电池)两种,锌锰干电池是一次性电池中使用历史最长、产量最大、价格最低的品种,使用最为普遍。 目前干电池已经在世界范围内统一了规格尺寸,按国际电工委员会IEC标准和我国GBT112- 86标准,主要有R20、R14、R6和R03几种,其它几种国内外电池的标称方法的等效代换举例如表12-1所示。根据生产工艺和所用原材料的差异,普通干电池分成糊式(又称S 型)、高容量型(C型)和高功率型(P型)。 糊式电池历史最长,目前国内外均已不多见,这种电池性能最差,只适合于中,小电流间歇放电时使用,主要用于晶体管收音机、手电筒、电子钟、计算器等。它有两个致命的缺点:一是容量小,高电压维持时间短,无论用在何种电器中,有效使用时间都比较短;二是容易发生漏液,无论在大电流连续使用时,还是在小电流使用及本身质量不好自放电时,都可能发生漏液的情况,从而腐蚀损坏用电器具,所以S型电池用毕最好立即从器具中取出。目前5号7号型电池使用糊式的已很少见,但由于生产成本低,还有1号、2号的产品供应。 为了更有效地利用电池内的空间,用一层特殊的纸代替原来浆糊层,构成了纸板型电池。电池的电解质仍采用糊式电池所用的氯化铵。由于纸层比浆糊层薄,电池正极材料的充电填量有所增加,所以提高了电池的容量,构成了高容量(C型)电池。对于小型电池,如5号电池,容量约可提高1/2倍。这种电池在大电流放电时使用,性能不佳,

而且同样有漏液的可能。因此仅适于用S型电池的场合,但比S型电池的使用寿命长。我国绝大多数电池厂已完成了纸板化电池技术的改造,在产量上这种电池已占有绝对优势。 近年来消耗电流大和连续使用的电器产品越来越多,如单放机、闪光灯等等,使用上述S型、c型电池巳难满足需要,比如,用S型或c型电池供电的照相机闪光灯,在闪光十余次后,充电时间就变得很长了,使用极为不便。为了适应这种大电流放电器具的需要,又开发出了高功率P型电池。它与C型电池比较,虽然容量没有增加,但电解质用氯化锌代替了原来的氯化铵,在大电流使用情况下,可以充分释放电能,输出功率大,连续使用性能蜒,特别适合于中、高耗电的电器产品。一般来说,二节质量合格的5号高功率电池,用于目前流行的自动卷片照相机中,其中一部分照片使用闪光灯拍摄时,大约可以持续拍完1卷(36张)胶卷;用于单放机中,可以收听2-4盘60分钟的录音磁带,比S型和c型电池使用时间约提高1-2倍,虽然售价稍高于S型和C型电池,却带来很大方便,避免反复更换电池。P 型电池用于原来S型和C型电池的场合,虽然使用寿命并不能改善,但由于高电压放电持续时间长,可使手电筒照明度高、电子钟走时准确的时间长,半导体收音机和单放机持续放音时间长,放音宏亮。另外,最重要的一点是,高功率电池在防漏液方面采取了许多可靠的新措施,保证了电池在用尽时,不渗漏液体。高功率电池的生产技术要求高于S型和C型电池,目前国内能生产高功率电池的厂家不多,主要有苏州的汇南牌、上海的天鹅脾、北京天坛牌、杭州的长命牌和河

废电池具体有哪些危害

废电池具体有哪些危害? 长期以来,我国生产的锌锰干电池,不论是酸性抑或是碱性锌锰干电池,锌筒作负极均经汞化工艺处理,防腐剂则入汞的化合物。科学研究结果表明,汞是严重污染环境的元素,具有明显的神经毒性,对内分沁系统,免疫系统等都有严重影响。 我国的锌锰碱性干电池中汞含量达1%至5%,中性干电池为0.025%,已严重超标,全国每年用于生产干电池的汞仅一次性污染含量每年达100t汞之多。数字巨大,污染惊人。 日常生活中的电池,由于低值高耗、体积小,无直观危害和直接的环境污染等原因,常不易引起人们的关注。而且电池用完后,人们又习以为常随手抛弃,结果造成废旧电池撒落在每个角落。殊不知,这些看起来并不起眼的电池由于含汞污染的物质,当其撒落在自然界后,日积月累,随着时间推移外层金属的锈蚀,汞等有害物质就会慢慢地从电池中溢出,进入土壤或经过雨水的冲洗进入河流,进入地下水。假若焚烧垃圾时,垃圾中废电池内所含汞便会以汞蒸气形式进入大气圈。据测试,一节一号干电池所含汞,可使1m2的土地失去使用价值。进入环境中的汞,可通过植物的吸收作用,通过动物的呼吸作用,通过饮水,通过食物链,间接或直接进入人体,并在人体内长期蓄积难以排出,损害神经,造血功能、免疫能力下降,肾脏和骨骼受害等。因此,废旧电池的随意乱扔将给环境留下长期的、潜在的危害,所以电池业对环境危害的特点归纳为六句话;"电池虽小,污染挺大,集中生产,分散污染,短期使用,长期危害。" 电池中含有大量的重金属--锌、铅、镉、汞、锰等。据专家测试,一节钮扣电池能污染60万升水;一节一号电池烂在地里,能使一平方米的土地失去利用价值。 我国电池生产的主要产品是锌锰电池和镉镍电池。有些电池如镉镍电池和含汞电池等含有有害物质,进入环境后,就会污染环境,长期作用,可能直接或间接危及人们健康;因此,对废电池应采取分类的有区别处理、处置方式。其中的含汞、含镉、含铅废电池是应该加以回收的电池类别。

碱性锌锰电池的发展及应用

原创性声明 本人声明,所呈交的毕业论文是本人在导师指导下完成的研究开发的成果。论文写作中不包含其他人已经发表或撰写过的研究内容。如参考他人或集体的科研成果,均在论文中以明确的方式说明。 本人的毕业论文若有不实或抄袭,愿意承担一切相关的后果和责任。 目录

摘要 文章介绍了碱性锌锰电池的发展现状及应用,通过特点、结构、工作原理、综合阐述了碱性锌锰电池的研究现状,存在的问题和应用。 关键词碱锰电池正负极材料发展趋势 第一章绪论 锌锰电池发展至今经历了漫长的演变,早在1868年法国工程师乔治-勒克兰社采用二氧化锰和炭粉作正极粉料,将它压入多孔陶瓷的圆筒体中,并插上一根炭棒集流器作正极,用一根锌棒部分插入溶液中作负极,电解液是用20%的氯化铵水溶液,电池的容器是用玻璃瓶,做成第一个锌锰湿电池。1886年盖斯将氯化铵水溶液改用氯化铵,氯化锌,石膏和水合成的糊状物,并将锌片作成圆筒形作电池的容器,同时用石蜡封口,从而做成原电池的雏形。此后不久,又将面粉和淀粉作为电解质溶液的凝胶剂,是锌锰电池的便携性大大提高,为这种电池的工业化生产和广泛地使用打下了良好的基础。 1890年前后这种电池在全世界范围内投入工业化生产。1870年前后采用了汞齐化锌阳极,以减轻锌的自放电。1877年对碳棒采用浸蜡处理,以防止炭棒爬液,减轻对金属集流体的腐蚀。 做正极,KOH或NaOH做电解液,在早在100多年前就有人提出过用锌做负极,MnO 2 漫长的研究过程中主要围绕四个问题进行:一是用粉状多孔锌电极代替片状电极,降低 的填放电电流密度和解决锌片在碱液中易于钝化的缺点;二是采用反极结构,提高MnO 2 充量,使正负极容量相匹配;三是对锌粉汞齐化处理和碱液中加ZnO,解决锌在碱液中的腐蚀;四是密封结构和密封材料的改进,解决爬碱现象。 直到1950代前后在锌锰干电池的基础上成功研制出碱性锌锰电池。它以锌粉为负极,电解二氧化锰为正极,电解液采用NaOH或KOH,使电池性能成倍的提高。它不仅容量高,还适合于大电流连续放电。还具备优良的低温性能,储存性能和防漏性能。 但在前期的碱锰电池中要控制负极锌粉在碱液中的气量,当时电池的用汞量非常大,用汞量在2%~6%,八十年代末随着人们环保意识的加强,掀起了无汞碱锰电池的研究热潮,寻找有机或无机代汞缓蚀剂和锌粉中合金元素(主要是Al,Bi,In,Pb)成为主要的研究方向。到九十年代中旬,无汞碱锰电池进入市场。 同时,从60年代开始,对可充的碱性锌锰二次电池开展了广泛的研究,经过30多年的研究已取得突破性的进展,但由于其放电深度浅,循环寿命短,还未能实现商品化。

为什么碱性锌锰电池中含有汞

汞在碱性锌锰电池中的作用 碱性电池的负极活件物质是金属锌,由其提供电子,产生电流。锌皮或锌箔在碱液中,但其比表面较小,含电解液性能差,低温和重负荷下使用极易钝化。而锌粉具有足够大的比表面,在碱性电液中也不易钝化。而使用汞齐锌对电极性能有很大的作用,它能提高锌的析氢过电位,并使电池的防漏性能提高。同时碱性电池的锌粉必须严格控制重金属杂质,尤其是铁,因为铁不易汞齐,从而控制杂质含量。汞由于其高毒性及污染性现在都在寻求其合适的替代物,包括各种氧化物、氢氧化物或金属盐等无机物以及聚乙烯氧化物,聚乙二醇类,芳烃类多元醇等各种有机物。我们可以从他的反应式中来加以了解碳极: 2NH4+ + 2e- = 2NH3 + H2 +)H2 + 2MnO2 = 2MnO(OH) (“+)”指将两个反应加在一起) 锌极: Zn - 2e- = Zn2+ 总反应: Zn + 2MnO2 + 2NH4+ = 2MnO(OH) + 2NH3 + Zn2+ 从反应式看出:加MnO2是因为碳极上NH4+ 离子获得电子产生H2,妨碍碳棒与NH4+ 的接触,使电池的内阻增大,即产生“极化作用”。添加MnO2就能与H2反应生成MnO(OH)。这样就能消除电极

上氢气的集积现象,使电池畅通。所以MnO2起到消除极化的作用,叫做去极剂。 此外,普通碱性干电池也是用锌和MnO2或HgO做反应物,但在KOH碱性条件下工作。例如汞电池是最早应用的微型电池,有Zn(负极)和HgO(正极)组成,电解质为KOH浓溶液,电极反应为负极: Zn(s) + 2OH- —— ZnO(s) + H2O + 2e- 正极: HgO(s) + H2O + 2e- —— Hg(l) + 2OH- 总反应: Zn(s) + HgO(s) ——ZnO(s) + Hg (l) 电动势为1.35V,特点是在有效使用期内电势稳定。另有一种氧化银电池由Zn和Ag2O组成,电解质为碱性溶液,电动势为1.5V。 无机物可以在电池液中加入In2O3或In(OH)3至于有机类含聚氧乙烯基的较为被重视,这种基团表面活性剂在水中不电离,化工不受酸碱影响而且成本低,能够改善电池放电性能。

废旧锌锰电池的回收与利用

从废电池中回收锌皮制备硫酸锌 (苏翠翠 F0611004 5061109110) 一、实验目的 1、以废干电池为原料设计回收废干电池的锌; 2、了解由废锌皮制备硫酸锌的方法, 3、了解控制pH 进行沉淀分离除杂质的方法,熟悉无机制备中的一些基本操作。 二、实验原理 1、拆开的旧电池大致可分为:①电池外包装纸;②锌筒;③铜帽;④石墨碳棒;⑤黑色粉末;⑥少量白色糊状物。 电池中的锌皮既是电池的负极,又是电他的壳体。当电池报废后,锌皮一般仍大部分留存,将其回收利用,既能节约资源,又能减少对环境的污染。 锌是两性金属,能溶于酸或碱,在常温下,锌片和碱的反应较慢,而锌与酸的反应则快得多。因此,本实验采用稀硫酸溶解回收的锌皮以制取硫酸锌: Zn 十H 2SO 4===ZnSO 4十H 2 此时,锌皮中含有的少量杂质铁也同时溶解,生成硫酸亚铁: Fe 十H 2S04===FeS04十H 2 因此,所得的硫酸锌溶液中,需先用过氧化氢将Fe 2+氧化为Fe 3+: 2 FeS04十H 202十H 2S04===Fe 2(S04)3十2 H 20 然后用氢氧化钠溶液调节溶液的pH =8,使Zn 2+、Fe 3+生成氢氧化物沉淀: ZnS04十2NaOH===Zn(OH)2十Na 2S04 Fe 2(S04)3十6NaOH===2Fe(OH)3十3Na 2S04 再加入稀硫酸,控制溶液pH =4,(过量碱不行吗?)此时氢氧化锌溶解而氢氧化铁不溶,可过滤除去氢氧化铁,最后将滤液酸化、蒸发浓缩、结晶,即得ZnS04·7 类,并了解电池的构造。基本原理图如 下: 拆①③色物

H20。 2、对制得的晶体进行定性检验,证实产品中是否含有?以及Fe3+、Cl-以及Cu2+。 a、Fe3+离子的鉴定 常见的有亚铁氰化钾法,即Fe3+与[Fe(CN)6]4-在酸性溶液中反应,生成蓝色的普鲁士蓝沉淀。 4Fe3++3[Fe(CN)6]4-===Fe4[Fe(CN)6]3(s) 或硫氰酸铵法,即Fe3+与SCN-在酸性溶液中反应生成血红色的Fe(SCN)63-。 b、Cl-的鉴定 利用生成不溶于硝酸的AgCl沉淀来检验。 c、Cu2+的鉴定 常用亚铁氰化钾法,即Cu2+与[Fe(CN)6]4-在酸性溶液中反应,生成红棕色沉淀: 2Cu2++ [Fe(CN)6]4-=== Cu 2[Fe(CN)6] (红棕色沉淀)。 三、实验步骤 1、锌皮的回收与处理 拆下废电池的锌皮,锌皮表面可能粘有氯化锌、氯化铵、二氧化锰等杂质,应先用水刷洗除去。锌皮上还可能粘有石蜡、沥青等有机物,用水难以洗干净,但它们不溶于酸,可在锌皮溶于酸后过滤除去。将锌皮剪成细条状,备用。 2、锌皮的溶解 称取出利好的锌皮5g,加入2mol/LH2SO4(比理论量的多25%),加热,待反应较快时,停止加热。不断搅拌,使锌皮溶解完全,冷却,过滤,滤液盛在烧杯中。 3、Zn(OH)2的生成 往滤液中加入3%H2O2溶液10滴,不断搅拌,然后将滤液加热煮沸,并在

将废旧锌锰干电池“分子料理”为全新干电池

将废旧锌锰干电池“分子料理”为全新干电池 摘要:锌锰干电池作为生活中最常用的一次性电池,使用方便、成本低廉,但 锌锰干电池的回收一直存在效率低、成本高等问题。本文以废旧锌锰干电池为原料,利用酸浸法分解其中的活性材料,再用电化学方法将失活的活性材料重组激活,组装为全新的干电池,实现锌锰干电池的“分子料理”。本文的回收方法效率高、所需设备小,为家用式干电池回收装置提供了一种思路。 关键词:废旧干电池、活性材料、回收、再利用 1. 引言 我国是锌锰干电池的生产与消耗大国,锌锰干电池的生产量世界第一。[1]但我国的锌锰 干电池回收率却非常低,大多数的废旧干电池得不到回收。暴露在外的废旧干电池不仅污染 环境、影响人类健康,也是一种资源浪费。废旧干电池的工业回收方法,主要有人工分选法、干法(高温热解法)、湿法、干湿法共四种方法。[2]这些回收方法都致力于大批量的处理废 旧干电池,以降低成本。使得他们回收的活性材料,比如锌和锰,只能分别运输到加工锌的 车间和加工锰的车间,进行后续加工。 就像“分子料理”将食物分解为分子,再重组为食物,使其获得全新的味道一样。本文将 利用湿法酸浸回收的方法,同时分解干电池中的活性材料,再利用电沉积原理,直接制取全 新的活性材料,“复活”废旧干电池的活性材料锌锰。做到了先分解废旧干电池再重组为新的 干电池,实现锌锰干电池的“分子料理”。 本研究用到的锌锰干电池回收方法,不仅回收效率高、回收纯度高,而且能够在回收的 同时直接制取新的活性材料,用于组装全新的干电池。不仅回收制取过程快捷,而且用作回 收并制取活性材料的设备体积小,可以离开工厂车间,进行小规模、私人化的干电池回收, 有家用干电池回收的应用前景。 本文用稀硫酸溶解拆得的锌锰干电池活性材料,过滤后在溶液中分别将锌和二氧化锰电 沉积在电极上,再在锌和二氧化锰中间夹入浸润氢氧化钾的电池隔膜,封装后即可得到全新 的锌锰干电池。 2. 实验结果与讨论 2.1 酸浸法回收氧化锌与氢氧化氧锰 先用斜口钳剥开废旧锌锰干电池负极附近的金属外皮,取出负极外壳及其附带的碳棒。 再继续用斜口钳一点一点剥开金属外皮,每剥开一点都用牙签将里边黑色的正极活性材料捣 出来收集起来。直到金属外皮被剥开到一半左右,轻轻扯出里边的电池隔膜和负极。用牙签 捣出外壳中剩下的活性材料,再把电池隔膜表面粘着的活性材料刮下来,完成正极活性材料 的收集。 轻轻展开电池隔膜,刮下里边包裹的负极活性材料,完成负极活性材料的收集。 2.2 电化学法沉积二氧化锰和锌

化学反应原理知识点归纳

专题一:化学反应与能量变化 一、反应热、焓变 1.反应热:化学反应过程中放出或吸收的热量,叫反应热。包括燃烧热和中和热。 电离 : 注意: 水解 : 吸热反应的发生不一定需要 常见的吸热反应: 铵盐与碱的反应:如NH 4Cl 与Ba(OH)2?8H 2O 加热才能进行。 大多数的分解反应:CaCO 3== CaO + CO 2 生产水煤气:C + H 2O == CO+H 2 碳和二氧化碳的反应:C+CO 2=2CO 燃烧反应 金属与酸(或水)的反应 常见的放热反应: 酸碱中和反应 自发的氧化还原反应 CaO(Na 2O 、Na 2O 2)与水的反应 浓酸与强碱溶于水 2、焓变:在恒温恒压的条件下,化学反应过程中吸收或放出的热量称为反应的焓变。 符号:用ΔH 表示 单位:kJ/mol 放热反应:ΔH= —QkJ/mol ;或ΔH<0 吸热反应:ΔH= +QkJ/mol ;或ΔH>0 3、反应热产生的原因: 宏观:反应物和生成物所具有的能量不同,ΔH=_____________________________ 微观:化学反应过程中化学键断裂吸收的能量与新化学键生成所放出的能量不同,ΔH=____________ 二、热化学方程式 1.热化学方程式的概念:能表示反应热的化学方程式,叫做热化学方程式。热化学方程式不仅表示了化学反应中的物质变化,也表明了化学反应中的能量变化。 2.书写热化学方程式时的注意点 (1)需注明ΔH 的“+”与“—”,“+”表示 ,“—”表示 ;比较ΔH 的大小时,要考虑ΔH 的正负。 (3)要注明反应物和生成物的状态:g 、 l 、s 、aq (3)各物质前的化学计量数表示物质的量,不表示分子个数,因此,可以是整数也可以是分数,但系数与ΔH 的值一定要相对应。 (4)要注明反应温度和压强,但中学化学中所用ΔH 的数据一般都是在101kPa 和25℃时的数据,因此可不特别注明; (5)对于可逆反应,其ΔH 同样要与系数相对应,但若按系数投料反应,则由于可逆反应不能进行完全,其反应热的数值会比ΔH 的数值要小。 三、燃烧热、热值与中和热: 注意: 放热反应不一定常温下就自发进行,可能需要加热或点燃条件。

废旧锌锰干电池的回收与利用

废旧锌锰干电池的回收与利用 ——碱式碳酸锌、柠檬酸锌、葡萄糖酸锌与高锰酸钾的联合制备 化学学院 应用化学 张明程 33160818

实验目的 1. 掌握锌与锰相应化合物的制备。 2. 通过废旧电池回收了解电池的工作原理与构造,体会环境保护的重要性。 3. 进一步练习各类实验操作流程。 基本原理 电池内容物中的二氧化锰不溶于水。将其浸泡后可以得到粗制的二氧化锰,而再经过灼烧,又可以除去其中的碳,得到较为纯净的二氧化锰。 使用得到的二氧化锰与熔融的氯酸钾与氢氧化钾反应,可以得到锰酸钾。而锰酸钾进一步在弱酸性(醋酸或者二氧化碳)条件下歧化生成高锰酸钾。 3MnO 2+6KOH+KClO 3===3K 2MnO 4+KCl+3H 2O 2+2H 2O 电池的锌皮经过提纯以后,使用硫酸溶解,同时加入双氧水并加热以使二价铁离子转化为三价铁离子。再通过调整pH 达到除去铁的目的。 Fe + H 2SO 4 === FeSO 4 + H 2↑ Zn + H 2SO 4 === ZnSO 4+ H 2↑ 32O === ZnCO 3·2Zn(OH)2·H 2O ↓3随后将其分别与葡萄糖酸与柠檬酸混合,就能够得到葡萄糖酸锌与柠檬酸锌。至于葡萄糖酸,则使用葡萄糖与较高浓度的双氧水水浴加热条件下得到。

2NH3+ ZnCO3·2Zn(OH)2·H2O +H2O===3Zn(OH)2↓ +(NH4)2CO3 H2O2+CH2OH(CHOH)4CHO===H2O+CH2OH(CHOH)4COOH ZnCO3·2Zn(OH)2·H2O + 6CH2OH(CHOH)4COOH=== 3(CH2OH(CHOH)4COO)2Zn+6H2O+CO2 ZnCO 3·2Zn(OH)2·H2O + 2 C6H8O7=== (C6H5O7)2Zn3+6H2O+CO2另附柠檬酸锌结构式: 实验步骤 一、基本原料的制备 将废旧电池小心破拆,取出废旧干电池的炭棒,用水洗去表面的碳粉和Mn02粉末,晾干,可用作电极。取出电池中的黑色内容物置于烧杯中,加入蒸馏水(一节一号电池加入50ml)。充分搅拌数分钟,过滤并多次重复上述过程。 对滤渣进行清洗,置于坩埚中加热。待样品用钢制药匙舀出时火星持续时间少于一秒钟时停止加热,得到粗制的Mn02粉末。 对粉末先后使用适量水洗涤。抽滤, 蒸发水分,得到精制Mn02粉末。产物 如图一。 将电池外壳的锌皮清洗干净,使用 剪刀剪成碎片并置于烧杯中备用。 以上产物如有剩余,应让老师检查 并于实验彻底结束后回收。

碱性锌锰电池的发展及应用

碱性锌锰电池的发展及应 用 The latest revision on November 22, 2020

原创性声明 本人声明,所呈交的毕业论文是本人在导师指导下完成的研究开发的成果。论文写作中不包含其他人已经发表或撰写过的研究内容。如参考他人或集体的科研成果,均在论文中以明确的方式说明。 本人的毕业论文若有不实或抄袭,愿意承担一切相关的后果和责任。 目录

摘要 文章介绍了碱性锌锰电池的发展现状及应用,通过特点、结构、工作原理、综合阐述了碱性锌锰电池的研究现状,存在的问题和应用。 关键词碱锰电池正负极材料发展趋势 第一章绪论 锌锰电池发展至今经历了漫长的演变,早在1868年法国工程师乔治-勒克兰社采用二氧化锰和炭粉作正极粉料,将它压入多孔陶瓷的圆筒体中,并插上一根炭棒集流器作正极,用一根锌棒部分插入溶液中作负极,电解液是用20%的氯化铵水溶液,电池的容器是用玻璃瓶,做成第一个锌锰湿电池。1886年盖斯将氯化铵水溶液改用氯化铵,氯化锌,石膏和水合成的糊状物,并将锌片作成圆筒形作电池的容器,同时用石蜡封口,从而做成原电池的雏形。此后不久,又将面粉和淀粉作为电解质溶液的凝胶剂,是锌锰电池的便携性大大提高,为这种电池的工业化生产和广泛地使用打下了良好的基础。 1890年前后这种电池在全世界范围内投入工业化生产。1870年前后采用了汞齐化锌阳极,以减轻锌的自放电。1877年对碳棒采用浸蜡处理,以防止炭棒爬液,减轻对金属集流体的腐蚀。 早在100多年前就有人提出过用锌做负极,MnO 做正极,KOH或NaOH做电解液, 2 在漫长的研究过程中主要围绕四个问题进行:一是用粉状多孔锌电极代替片状电极,降 低放电电流密度和解决锌片在碱液中易于钝化的缺点;二是采用反极结构,提高MnO 2的填充量,使正负极容量相匹配;三是对锌粉汞齐化处理和碱液中加ZnO,解决锌在碱液中的腐蚀;四是密封结构和密封材料的改进,解决爬碱现象。 直到1950代前后在锌锰干电池的基础上成功研制出碱性锌锰电池。它以锌粉为负极,电解二氧化锰为正极,电解液采用NaOH或KOH,使电池性能成倍的提高。它不仅容量高,还适合于大电流连续放电。还具备优良的低温性能,储存性能和防漏性能。 但在前期的碱锰电池中要控制负极锌粉在碱液中的气量,当时电池的用汞量非常大,用汞量在2%~6%,八十年代末随着人们环保意识的加强,掀起了无汞碱锰电池的研究热潮,寻找有机或无机代汞缓蚀剂和锌粉中合金元素(主要是Al,Bi,In,Pb)成为主要的研究方向。到九十年代中旬,无汞碱锰电池进入市场。

废旧锌锰电池中锰的回收方法研究

第26卷 第1期2007年2月兰州交通大学学报(自然科学版) J ou rnal of Lanzh ou J iaotong University(Natural S ciences) V ol.26N o.1 Feb.2007 文章编号:1001 4373(2007)01 0098 03 废旧锌锰电池中锰的回收方法研究* 张翠玲, 郝火凡 (兰州交通大学环境与市政工程学院,甘肃兰州 730070) 摘 要:比较了国内废旧锌锰电池中锰的回收处理技术,给出了各种回收处理技术的优缺点;在此基础上提出了以草酸为还原剂,还原废旧锌锰电池中锰的化合物从而回收废旧锌锰电池中锰的新技术.研究结果表明:新技术既能减少废电池对环境的污染,又能实现废电池的资源化利用,金属锰的回收率可达96%以上. 关键词:废旧锌锰电池;回收;草酸;硫酸锰 中图分类号:X781 文献标识码:A 我国是一次性锌锰电池的生产大国和出口大国,同时也是消费大国.据统计,2001年我国一次性电池的产量达到了175亿只,国内电池消费量大约80亿只[1],其中约70%是一次性锌锰电池.据推算,每生产10亿只锌锰电池将消耗金属锌1.6万t, MnO22.3万t,铜208t,氯化锌2700t,炭棒4300t,氯化铵7900t.电池使用后,其主要成分锌、锰、炭棒、铜等仍存在于电池中,假定国内消费的电池能达到50%的回收率,则每年从废电池中就可以大约回收金属锌6万t,锰(以MnO2计)8万t,铜800t,同时还可以回收炭棒、氯化铵等.相反,如果不对废电池回收和处理,不但废电池中的锰、锌等工业原料无法被回收和利用,而且大量的废电池随生活垃圾埋入地下会造成重金属对土壤和地下水的污染.有关资料显示,一只一号电池烂在地里,能使一平方米的土壤永久失去利用价值;一粒纽扣电池可污染600t水,相当于一个人一生的用水量.因此回收废电池具有非常重要的现实意义.特别是随着我国经济的发展和社会的进步,人们环保意识和资源意识日益增强,近年来对废电池中各种有用成份回收利用方法的研究也越来越多,本文以回收、利用废电池中的锰元素为目的,通过对废电池成份及现有的锰的回收处理方法的分析、研究,提出以草酸为还原剂,还原电池材料中的锰化合物从而回收废电池中锰的新方法,并得到了纯度较高的硫酸锰. 1 废旧锌锰电池的组成 各种型号废旧锌锰干电池组成包括:锌皮、锰粉、乙炔黑、氯化铵、电糊、沥青、塑料、铜帽、铁壳、纸、M nOOH等.常用1号、5号电池成份见表1[2]. 表1 废旧锌锰电池中各组分的百分比 Tab.1 Percent of components in waste Zn/Mn batteries 品牌取样个数锰粉碳棒锌皮铜帽塑料铁片沥青纸浆糊 1号电池金钟756.67.523.40.360.76 1.7 4.6 5.2-中华663.37.816.20.35 1.0 1.9 3.5 5.7-混合1062.68.516.20.3010.0 1.5 5.6 4.4- 5号电池金钟1068.010.713.20.58---- 6.9 5551069.29.612.00.52----8.6光明864.38.615.20.53----11.3 由表1可以看出废电池中锰粉含量65%左右,由此可见,废电池回收处理过程中锰元素是否得到合理有效的处置至关重要.2 现有的锰的回收方法2.1 回收无水氯化锰 *收稿日期:2006 10 09 作者简介:张翠玲(1973 ),女,山东梁山人,讲师.

干电池中含有哪些物质

干电池中含有哪些物质 电池的组成:干电池、充电电池的组成成分:锌皮(铁皮)、 碳棒、汞、硫酸化物、铜帽;蓄电池以铅的化合物为主。举例:1 号废旧锌锰电池的组成,重量70克左右,其中碳棒5.2克,锌皮 7.0克,锰粉25克,铜帽0.5克,其他32克。 电池的种类:专家介绍,电池通常分为普通干电池、可充电电 池和铅酸蓄电池三大类。在这三类电池中,有害物质主要是普通干 电池中的汞、镉镍电池中的镉和铅酸蓄电池中的铅。电池主要有一 次性电池、二次电池和汽车电池。一次性电池包括纽扣电池、普通 锌锰电池和碱电池,一次性电池多含汞。二次电池主要指充电电池,其中含有重金属镉。汽车废电池中含有酸和重金属铅。 电池主要含铁、锌、锰等,此外还含有微量的汞。 过量的锰蓄积于体内引起神经性功能障碍,早期表现为综合性功能 紊乱。较重者出现两腿发沉,语言单调,表情呆板,感情冷漠,常 伴有精神症状。 锌锌的盐类能使蛋白质沉淀,对皮膜粘膜有刺激作用。当在 水中浓度超过10-50毫史/升时有致癌危险,可能引起化学性肺炎。铅:铅主要作用于神经系统、活血系统、消化系统和肝、肾等器官 能抑制血红蛋白的合成代谢过程,还能直接作用于成熟红细胞,对 婴幼儿影响甚大,它将导致儿童体格发育迟缓,慢性铅中毒可导致 儿童的智力低下。 镍镍粉溶解于血液,参加体内循环,有较强的毒性,能损害 中枢神经,引起血管变异,严重者导致癌症。 汞它在这些重金属污染物中是最值得一提的,这种重金属, 对人类的危害,确实不浅,长期以来,我国在生产干电池时,要加 入一种有毒的物质——汞或汞的化合物,我国的碱性干电池中的汞 的含量达到1-5%,中性干电池为0.025%,全国每年用于生产干电池的 汞具有明显的神经毒性,此外对内分泌系统、免疫系统等也有不良影响,1953年,发生在日本九州岛的震惊世界的水俣病事件,给人类 敲响了汞污染的警钟。 汞的挥发温度低,是一种毒性较大的重金属。很多地方的土 壤中也含有微量的汞,汞矿所在地土壤的背景值较高。在汞矿开采、提炼、含汞产品加工过程中,如密闭措施不够完备,释放到空气中 的汞(蒸气)对操作人员健康影响很大。此外,汞法烧碱、汞法醋

相关主题
文本预览
相关文档 最新文档