当前位置:文档之家› 稳压电路和放大滤波电路

稳压电路和放大滤波电路

稳压电路和放大滤波电路
稳压电路和放大滤波电路

实验题目:稳压电路

一.实验目的

(1)掌握直流稳压电源主要参数的测试方法;

(2)掌握直流稳压电源的工作原理;

(3) 在实验中结合具体的电子电路测试学会使用常规仪器对电路

进行测量、调试;

(4) 培养学生检查与排除电路故障;

二.实验要求

(1)输入电压V i:9.5V~20V(动态范围);

(2)输出电压:V o =5V;

(3)输出电流:I o尽量大,使带载能力强;

三.实验设计思路

利用开关性电压转换模块仿真一个稳压电源:

(1)输出电压与参考电压分别进入差分放大器的两端,差分放大器的输出则作为buck-boost转换器的控制输出;

(2) Buck-boost的输入电压由一个直流电压源和一个交流电压源串联组成;

四.实验设计

五.实验结果与输出波形(一)波形图:

结论:

经过滤波后输出电压为接近5V的稳定电压

不足之处:

1.电流输出较小,电路危险系数高;

2.输出电压稳定性较高,但对设备要求精确;

(三)输出电流:

结论:

电压趋于5V稳定时,此时电流取得较大值。

六.实验心得体会

首先看到这个电路设计题目时,首先想到稳压管,于是搭了一个简单的稳压管电路的却能实现输出5V的电压,但其他要求无法满足;然后经过了认真的思考和查阅资料后,对电路进行了全面的设计与更改,在设计过程中遇到了很多的问题。如发现直流稳压电源效率低,无法实现升压控制的缺点,所以设计了一个具有升压降压功能模块的三端子转换器电路。

设计中使得输出电压与参考电压分别进入差分放大器的两端,差分放大器的输出则作为buck-boost转换器的控制输出;Buck-boost 的输入电压由一个直流电压源和一个交流电压源串联组成;

经过这次实验让我深刻体会到开放式实验的灵活,可以用好多方

法来实现但得考虑选择哪中更能既能完成指标,也要设计简单易行。同时让我对实验课更加感兴趣。希望在以后的实验中能够学到更多的知识来运用自己在电子技术方面的理论知识,做到学以致用。

实验题目:放大器设计

一、实验要求

1.频率范围20H Z-20KH Z。

2.R in=200k,R L=300Ω.

3.动态放大系数为3。

4.负载功率50mW以下

优秀要求:①单管电路结构;

② 总功耗30mW以下;

③ 其它有突出特点或创新结构。

二.实验设计思路

采用共射极电路可实现动态放大系数为3的要求,考虑到共集电极电路的特性,即输入电阻大,电压增益近似为1,利用他们的优势互补,用两级电路来实现电压放大三倍输入电阻200KΩ的要求。

二、实验步骤:

1.根据放大电路原理及特性,先设计出能实现实验要求的电路图如下:

2.在Multisim里搭建电路,进行调试,做初步仿真。仿真结果:

放大已完成指标:频率范围20H Z-200KH Z,负载功率不超过50 mw,输入电阻200K.

未完成指标:动态系数是2.5左右,但没达到3,波形出现失真,且负载功率比较大。

分析及改进:波形出现削顶和削底失真,通过调整Rb1和Rb2的大小,来改变R b来消除波形失真,同时调整Rb3的值,微调其他的电阻以实现电压增益3,及较小的负载功率。

改进后的电路仿真结果如下:

示波器测试结果:A为基极电压,B为负载电压

负载功率如下:

电路波特图如下:

; Ie=; Rbe=200+(1+); Rin=Rb1//Rb2//Rbe; 令=150; 代值入式得Rin=203K。

3.通过在电路板上搭建实际电路,并通过示波器观察结果发现与仿真结果几乎一致。

最终完成指标:频率范围20H Z-200KH Z,负载功率20.3

能够14mw,输入电阻203K.动态系数是2.923,波形无失

真。

三实验心得体会先采用共射极电路可实现动态放大系数为3的要求,但是考虑到实际β一般小于100,在负载已知的条件下的,为了实现输入较大的电阻必须使β很大,故采用复合管来实现,采用复合管可以提高β,于是按照思路搭建了电路图仿真后有问题,同时想到复合管的匹配问题不容忽视,尤其在实际电路中,还是采用单管好实现,结合共射极电路增大电压和共集电极电路输入电阻大,电压增益近似为1的特性,利用两级电路来实现,初步基本可以实现要求,但存在失真,且动态放大系数是2i.5左右,但没达到3,负载功率比较大,通过理论分析并反复修改相关阻值,最终完成所有实验要求指标。通过此次实验,使我认识深刻,有些想法理论上是可以的,但是实际操作中往往可能出现问题,或者很难实现,因此在设计时要统筹兼顾,既要实现要求又要简单易行。

实验三滤波器设计

一.实验目的

(1)加深学生对电子电路基本概念、基本原理及基本技能的理解;

(2)培养学生独立设计电路,调试电路的能力;

(3)在实验中结合具体的电子电路测试学会使用常规仪器对电路

进行测量、调试;

(4)培养学生检查与排除电路故障;

二.实验要求:

1.主频要求在3KHZ—400HZ~3KHZ+400HZ;主频电压0.5V。

2.三个信源干扰:主频信源电压

4.3 KHZ 1V

7KHZ 1.5V

15KHZ 3V

3.提取主频信号并整形成0~5V数字信号脉冲。

4.在电路中需加施密特触发器。

三.试验设计思路

采用RC低通和CR高通可组合成一个带通滤波器。通过施密特触发器可实现数字信号脉冲输出。加主频信号设置主频,通过带通滤波器后经过施密特触发器可输出数字信号脉冲。

四.实验设计

五.实验结果与输出波形

1.不加信源干扰的输出

2.加频率为4.3 KHZ电压为1V的干扰信号,其输出如下:

3.加频率为

4.3 KHZ电压为1V和频率为7KHZ 电压为1.5V的两个干扰信源。

4.三个信号干扰都加上的输出如下:

电路波特图如下

结论:从滤波器输出信号经过施密特触发器后被整形成0~5V数字脉冲信号。

不足之处:从滤波器经过施密特触发器输出的波形不是规整的数字脉冲信号,滤波器的设计存在问题,使得输出高低电平不等距。

六.心得与体会

在这次实验中发现了自己的不足,在设计中没有达到要求指标,设计时没有真正弄清各个环节,照搬书上设计图,结果聪明反被聪明误,导致没能完成要求,这使明白学习切不可耍小聪明,以后也应该记住,任何东西都要一丝不苟,全盘考虑,可以套用,但不可照搬,在今后的学习中一定注意培养开放式思维,多锻炼设计动手能力。

实验5 整流、滤波和稳压电路

实验三 整流、滤波和稳压电路 一、实验目的 1、学会用示波器观察半波整流电路,全波整流电路的整流作用,及滤波电路的滤波作用和效果。 2、学会测量半波整流电路,会波整流电路输入电压值与输出电压值的方法。 二、实验器材 示波器一台,可调交流电压源一台,万用表一只,直流毫安表一只,整流二极管四只,电阻和电容。 三、实验原理 单相半波整流电路,单相桥式整流电路及滤波和稳压电路的原理,参看教材第五章。 四、实验内容及步骤 一)、半波整流电路的测量与观察。 1、按线路图1接好电路,将RW 调至最大。 2、置可调交流电压源电压~10V 左右。 3、将输入电压和输出电压分别接到示波器 输入端CH1和CH2上。 4、接通电源,在示波器上观察到输入和输出电压 波形,调节垂直偏转因数。使波形高度适宜, 便于观察。 5、用万用表测出输入电压(交流档)Ui= 测出输出电压平均值(直流档)Uo= 6、将输入电压和输出电压的波形画在图上。

二)、观察滤波电路的滤波作用。 在图1的A 、B 两点间分别接入电容C1=1μF , C2=10μF ,C3=47μF ,(注意电容的接法)。 测量接入电容后的输出电压平均值U01= V U02= V U03= V 并将输出电压波形画在图上。 三)、单相桥式整流电路的测量与观察。 1、按图2接电路,并将输出端电压接到示波器CH2上,(输入交流电压源电压不要接到示波器上)。 2、调正输入交流电压源电压~10V 左右,测出输入 交流电压有效值Ui= V ,测出输出电压平均值(直流档)Uo= V 。 3、将输出电压的波形画在图上。 4、按图3接好电路,并在示波器上观察输出电压波形,同时用万用表测出输出电压平均值Uo= V 。 5、调节RW ,观察输出电压大小如何变化? 图 3 图2

7 集成运放组成的有源滤波电路

集成运放组成的有源滤波电路 有源滤波电路 1.低通滤波电路 1)同相输入一阶低通电路(康P416页,图9.2.1(a )) 2)反相输入一阶低通电路 3)同相输入二阶低通电路 o v i SRC A SRC R R S V S V S A f i +=++==111)()()(010SRC A SRC R R S V S V S A f i +=+-==11)()()(010 o v i 13)(13)(1)()()( 20210++=+++==SRC SRC A SRC SRC R R S V S V S A f i o v i

4)同相输入二阶低通电路(压控电压源二阶LPF )(康P418页,图9.3.1) 5)反相输入二阶低通电路 6)反相输入二阶滤波电路(无限增益多路反馈二阶低通滤波电路) o v i 1)3()(1)3()(1)()()(0200210+-+=+-++==sRC A sRC A sRC A sRC R R S V S V s A f i o v i o v i 1)111(1)111()()()(2122212202122212210++++=++++-==f f f f f f f i R R R R C sR C C R R s A R R R R C sR C C R R s R S V S V s A

2.高通滤波电路 1)同相输入一阶高通电路 2)反相输入一阶高通电路(康P472页,图题9.3.4) 3 4)同相输入二阶低通电路(压控电压源二阶LPF )(康P424页,图9.3.7) C SR C SR S V S V S A f i 101)()()(+-==o v i o v i o v i 。 o v i 。

一些经典的滤波电路

有源滤波电路 滤波器的用途 滤波器是一种能使有用信号通过,滤除信号中无用频率,即抑制无用信号的电子装置。 例如,有一个较低频率的信号,其中包含一些较高频率成分的干扰。

有源滤波器实际上是一种具有特定频率响应的放大器。它是在运算放大器的基础上增加一些R 、C 等无源元件而构成的。 低通滤波器(LPF ) 高通滤波器(HPF ) 带通滤波器(BPF ) 带阻滤波器(BEF )有源滤波电路的分类

低通滤波器的主要技术指标 (1)通带增益A v p 通带增益是指滤波器在通频带内的电压放大倍数,性能良好的LPF通带内的幅频特性曲线是平坦的,阻带内的电压放大倍数基本为零。(2)通带截止频率f p 其定义与放大电路的上限截止频率相同。通带与阻带之间称为过渡带,过渡带越窄,说明滤波器的选择性越好。

一阶有源滤波器 电路特点是电路简单,阻 带衰减太慢,选择性较差。 1 01R R A A f VF + == ) (11)(s V SRC s V i P ?? +=∴SRC A s V s V s A VF +==11 )()()(0S A =02.传递函数 当 f = 0时,电容视为开路,通带内的增益为1.通带增益

3. 幅频响应 一阶LPF 的幅频特性曲线 ) (1)()()(0 0n i j A j V j V j A ωωωωω+= =n i S A s V s V s A ω+= =1)()()(0 02 0) (1) () ()(n i A j V j V j A ωωωωω+= =

简单二阶低通有源滤波器 为了使输出电压在高频段以更快的速率下降,以改善滤波效果,再加一节RC低通滤波环节,称为二阶有源滤波电路。它比一阶低通滤波器的滤波效果更好。 二阶LPF二阶LPF的幅频特性曲线

运算放大器构成的18种功能电路(带multisim仿真)

(1)反相比例放大器: 将输入加至反相端,同时将正相端子接地,由运放的虚短和虚断V U U 0==+-,又有102R U U R U U i -=---,得输出为:i U R R U 2 10-= 仿真电路为: 取:Ω==k R R 2221,tV U sin 21=,得到输出结果为:tV U sin 40-=输出波形为: (2)电压跟随器:

当同相比例放大器的增益为1时,可得到电压跟随器,其在两个电路的级联中具有隔离缓冲作用。可消除两级电路间的相互影响。 其仿真波形为: 取输入为4V,频率为1kHz的方波,得到输出结果为:

(3)同相比例放大器: 将INA133的2,5和1,3端子分别并联,以此运放作为基本放大器,反馈网络串联在输入回路中,且反馈电压正比于输入电压,引入串联电压负反馈。反馈电压1211U R R R U f += 由运放的虚短和虚断,有输出电压为:11 20)1(U R R U + = 其仿真电路为: 取tV U sin 21=,Ω==k R R 2212,得到结果为:tV U sin 60= 其输出波形为:

当方向比例放大器增益为1时可得到反相器电路,其仿真电路为: 取:tV U sin 21=,输出结果为:tV U U sin 210-=-= 仿真输出波形为:

将输入信号引至同相端,得到同相相加器 由INA133内置电阻设计如下电路,得到输出结果为:210U U U += 仿真电路为: 取tV U sin 21=,tV U sin 32=,由公式得到结果为:tV U sin 50= 仿真输出波形为:

超低频信号滤波放大整形电路的设计

沈阳航空航天大学 课程设计 (说明书) 超低频信号滤波放大整形电路的设计 班级 / 学号 04070202-2069 学生姓名杨贺 指导教师赵鑫

沈阳航空航天大学 课程设计任务书 课程名称电子技术综合课程设计 院(系)自动化学院专业自动化 班级04070202 学号2010040702069 姓名杨贺 课程设计题目超频信号滤波放大整形电路的设计 课程设计时间: 2012 年12 月24 日至2013 年01 月06 日课程设计的内容及要求: 一、设计说明 设计一个低通滤波放大电路和一个整形电路。实际工作中输入信号一般由传感器产生,本次设计采用函数发生器给出。输出信号要求整形为是方波信号,以便CPU的后续信号采集和处理,本次设计不要求对输出信号做处理。滤波放大电路建议采用TI公司的FilterPro,这是一款很好的滤波器设计软件。整形电路建议采用施密特触发器。 二、技术指标 1.滤波放大电路参数:通带增益Ao=20db,通带频率fc=10Hz,通带增益纹波Rp=1db,截止带频率fs=40 Hz,截止带衰减-30dB。 2.输出信号要求是同频率的标准方波信号。 3.设计一个电源,输入直流5V,输出直流±5V,用于该设计电路供电。 三、设计要求 1.设计建议采用TI公司的FilterPro滤波器设计软件。 2.设计方案给出后,要求使用仿真软件multism进行仿真测试。 3.画出电路原理图(元器件标准化,电路图规范化)。 4.书写课设报告。

四、实验要求 1.根据设计方案制定实验方案。 2.设计方案给出后,要求使用multism进行仿真测试,并且给出测试数据。 3.对比设计参数和仿真参数,进行实验数据处理和分析,给出结论。 五、推荐参考资料 1.姚福安. 电子电路设计与实践[M]济南:山东科学技术出版社,2001年 2.阎石. 数字电子技术基础. [M]北京:高等教育出版社,2006年 3.刘贵栋主编.电子电路的Multisim仿真实践[M].哈尔滨:哈尔滨工业大学出版社,2008年 4.童诗白、华成英主编.模拟电子技术基础,[M]北京:高等教育出版社,2007年. 六、按照要求撰写课程设计报告 指导教师年月日 负责教师年月日 学生签字年月日 成绩评定表

整流滤波电路

第一节整流电路 电力网供给用户的是交流电,而各种无线电装置需要用直流电。整流,就是把交流电变为直流电的过程。利用具有单向导电特性的器件,可以把方向和大小交变的电流变换为直流电。下面介绍利用晶体二极管组成的各种整流电路。 一、半波整流电路 图5-1、是一种最简单的整流电路。它由电源变压器B 、整流二极管D 和 负载电阻R fz ,组成。变压器把市电电压(多为220伏)变换为所需要的交变 电压e2,D 再把交流电变换为脉动直流电。 下面从图5-2的波形图上看着二极管是怎样整流的。

变压器次级电压e2,是一个方向和大小都随时间变化的正弦波电压,它的 波形如图5-2(a)所示。在0~π时间内,e2为正半周即变压器上端为正下端为负。此时二极管承受正向电压面导通,e2通过它加在负载电阻R fz上,在π~2π时间内,e2为负半周,变压器次级下端为正,上端为负。这时D承受反向电压,不导通,R fz,上无电压。在2π~3π时间内,重复0~π 时间的过 程,而在3π~4π时间内,又重复π~2π时间的过程…这样反复下去,交流电的负半周就被"削"掉了,只有正半周通过R fz,在R fz上获得了一个单一右向(上正下负)的电压,如图5-2(b)所示,达到了整流的目的,但是,负载电 压U sc。以及负载电流的大小还随时间而变化,因此,通常称它为脉动直流。 这种除去半周、图下半周的整流方法,叫半波整流。不难看出,半波整说是以"牺牲"一半交流为代价而换取整流效果的,电流利用率很低(计算表明,整流 得出的半波电压在整个周期内的平均值,即负载上的直流电压U sc=0.45e2 )因此常用在高电压、小电流的场合,而在一般无线电装置中很少采用。 二、全波整流电路 如果把整流电路的结构作一些调整,可以得到一种能充分利用电能的全波整流电路。图5-3 是全波整流电路的电原理图。 全波整流电路,可以看作是由两个半波整流电路组合成的。变压器次级线圈中间需要引出一个抽头,把次组线圈分成两个对称的绕组,从而引出大小相等但 极性相反的两个电压e2a 、e2b ,构成e2a 、D1、R fz与e2b 、D2、R fz ,两个通电回路。

设计压电传感器的电荷放大、滤波、电压放大电路的

压电传感器前置放大电路的设计 姓名:陈贤波 学号:SX1201139 一:电荷放大电路 电荷放大器原理:电荷变换是该电荷放大器的核心部分,是一个具有电容负反馈的,输入阻抗极高的高增益运算放大器。它与压电式传感器及其电缆构成的等效电路如图-1所示。 图-1压电式传感器及其电缆构成的等效电路 其中:a C 为压电传感器的等效电容,a R 为压电式传感器的等效绝缘漏电阻,Cc 为电缆等效电容,i C 为放大器的输入电容,i R 为放大器的输入阻抗,f C 为反馈电容,n U 是等效输入噪声电压,off U 是等效输入失调电压。如将f C 折算到输入端,其等效电容为(1+K ) f C ,K 为运放的开环增益。由于反馈电容、传感器电容、电缆电容及放大器电容并联,不 计算噪声和失调电压的影响,电荷放大器的输出电压为 () 运算放大器的开环增益K 很大(约为104 ~106 ),故f R K /)1(+远大于+,f C K )1(+远 大于,此时, , , 和都可以忽略不计,即压电传感器本身的电容大小和电缆长短对电荷放大器输出的影响可以忽略。 (1)o f KQ U C K C =- ++ () 式中C=a C +Cc +i C 因为放大器是高增益的,K >>1,所以一般情况下(1+K )f C >>C,则有 o f Q U C ≈- ()

上式表明,当反馈电容f C 一定时,电荷放大器的输出电压与传感器产生电荷成正比,在实际电路中,考虑到电压灵敏度和量程的问题,一般f C 的值在100~10000pF 范围内选择。 ,本设计选定10000pF ,即10nF 。 当开环增益A 很大,f R K /)1(+远大于+,f C K )1(+远大于不能忽略,(2..19)式可表示为: jw G C Q C K jw R K jwKQ U f f f +-= +++-= f 0)1(1 () 当频率够低时,jw G f 就不能忽略。因此式()是表示电荷放大器的低频响应。F 越 低,f f C w G =时,其输出电压幅值为: 可以看出,这是截止频率点电压值电压输出值,即相对应的下限截止频率为 f f H C R f π21 = 若忽略运放的输入电容和输入电导,同时忽f G ,则上限频率为: ) (21 c S C L C C R f += π () 其中C R 为输入电缆直流电阻,本设计设为30Ω。 本设计选用f R 为1000MEG,经计算z L H f 016.0=。 传感器参数:压电传感器PZT 压电常数 d 33=450PC/N, d 31=-265PC/N, 相对介电常数2100 ,故压电传感器固有电容为: nF S C r s 717.30== δ εε 若传感器输入电缆分布电容为m pF 100,设有100m ,则nF C c 10=。=H f ×5 10z H 。 要测的信号频率范围:1Hz~5KHz ,故满足要求。

压电式压力传感器(带信号放大解调滤波电路)

题目:压电式压力传感器的设计 姓名:刘福班级:3 学号:1003030321 专业:测控技术与仪器 目录 引言 第一章传感器基本原理 第二章传感器的基本要求 第三章传感器的结构设计 第四章传感器的参数计算 第五章测量电路信号处理电路 总结 参考文献

一、引言 此次压电式力传感器主要阐述了压电式力传感器的具体设计过程。 设计过程主要包括设计格式、设计要求及设计过程中有关压电式力传感器的设计,还有在整个设计过程中的有关计算、与传感器相连的测试电路。 本压电式传感器采用压缩型单项里传感器结构,利用纵向压电效应进行工作,在设计中压电材料采用石英晶体。由于安装中需施加预紧力,以保证该传感器的线性度良好,故留出一定的过载量,本设计中重点考虑了各部分的面积、刚度等参数,未讨论预紧力的选用范围,可能还存在一些其他因素,如安装误差等可以影响设计传感器的性能,属于正常范围内,使用中可忽略。 压电式传感器的设计,主要是让同学们了解传感器的设计过程,知道如何计算一些参数,如何设计尺寸,如何选择材料,把自己学到的知识熟练灵活的运用起来,活学活用,加深对传感器这门课程的认知。

第一章传感器基本原理 1、基本原理:压电效应 压电式传感器是基于压电效应的传感器。是一种自发电式和机电转换式传感器。它的敏感元件由压电材料制成。压电材料受力后表面产生电荷。此电荷经电荷放大器和测量电路放大和变换阻抗后就成为正比于所受外力的电量输出。常见有以下几种压电效应模型(见图1) 图1 压电效应可分正压电效应和逆压电效应。正压电效应是指:当晶体受到某固定方向外力的作用,内部就产生电极化,同时在某两个表面上产生符号相 反的电荷;当外力撤去后,晶体又恢复到不带电的状态;当外力作用方向改变时,电荷的极性也随之改变;晶体受力所产生的电荷量与外力的大小成正比。压电式传感器大多是利用正压电效应制成的。逆压电效应是指对晶体施加交变电场引起晶体机械变形的现象,又称电致伸缩效应。用逆压电效应制造的变送器可用于电声和超声工程。压电敏感元件的受力变形有厚度变形型、长度变形型、体积变形型、厚度切变型、面切变型5种形式。

整流电路、滤波电路及稳压电路

第七章整流电路、滤波电路及稳压电路 知识目标 1.掌握单相桥式整流电路的结构和工作原理。 2.了解电容滤波电路和电感滤波电路的作用。 3.了解稳压电路的工作原理和特点。 4.了解集成稳压器的使用方法。 技能目标 1.掌握单相桥式整流电路。 2.掌握集成稳压器的基本使用方法和连接方法。 3.能够使用万用表测量电压,能够使用双踪示波器观察测试波形。 4.能够根据直流稳压电源框架组装直流稳压电源。 第一节整流电路 一、整流与整流电路 利用二极管的单向导电性可以将交流电转换为直流电,这一过程称为整流,这种电路就称为整流电路。 常见的整流电路有半波整流电路和全波整流电路。 二、单相桥式整流电路的结构和特点 单相桥式整流电路利用整流二极管的单向导电性,将交流电变成单向脉动直流电,其组成结构如图7-1所示。 图7-1单相桥式整流电路 图7-1中,T r表示电源变压器,作用是将交流电网电压u1变成整流电路要求的交流电压;R L是直流供电的负载电阻;4只整流二极管VD1~VD4依次接成电桥的形式,故称桥式整流电路。 桥式整流电路的特点是:输出电压的直流成分得到提高,脉冲成分被降低,每只整流二极管承受的最大反向电压较小,变压器的利用效率高,因此被广泛使用。 单相桥式整流电路的实现 在实际应用中,单相桥式整流电路可以用四个独立的整流二极管实现,也可以用集成器件“桥堆”来实现。

图7-2所示为单相桥式整流电路的习惯简化画法。 图7-2单相桥式整流电路的习惯简化画法 三、单相桥式整流电路的工作原理 图7-3单相桥式整流电路波形 在图7-3单相桥式整流电路波形中,在u的正半周时,u2>0时,VD1、VD4导通,VD2、VD3截止,故有图示i D1(i D4)的波形; 同样,在u1的负半周时,u2<0时,VD1、VD4截止VD2、VD3导通,故有电流i D2(i D3)。 可见在u的正、负半周均有电流流过负载电阻R L,且电流方向一致,综合得到u o(i o)的波形。 低音炮音箱 如图7-4所示,日常生活中使用的低音炮音箱,有些采用了专业的桥式整流技术,通过内置的桥式整流电路,使得低频带通电路的信号顺畅与稳定,可以使声音更加纯净。 图7-4低音炮音箱 第二节滤波电路 经过整流电路后的输出电压已经是单相的直流电压,但是其中含有直流和交流的成分,电压的大小仍有变化,这种直流电称为脉动直流电。对于某些工作(如蓄电池充电),脉动电流已经可以满足要求,但是对于大多数电子设备,需要平滑的直流电,故整流电路后面都要接滤波电路,尽量减小交流成分,以减小整流电压的脉动程度,适合稳压电路的需要,这就

实验十一整流滤波与并联稳压电路

实验十一 整流滤波与并联稳压电路 一、实验目的 1.熟悉单相半波、全波、桥式整流电路。 2.观察了解电容滤波作用。 3.了解并联稳压电路。 二、实验仪器及材料 1.示波器 2.数字万用表 三、实验内容 1.半波整流、桥式整流电路实验电路分别如图13.1,图13.2所示。 分别接二种电路,用示波器观察V 2及V L 的波形。并测量V 2、V D 、V L 。 图13.1 图13.2 图13.1是二极管半波整流,如果忽略二极管导通电压,输出应是半波波形。如果输入交流信号有效值为1U ,输出信号平均值为 11 45.02U U ≈π ,有效值为 2 1U 。图13.2是二极管 桥式整流电路,如果忽略二极管导通电压,输出应是全波波形。输出信号平均值为 11 9.022U U ≈π ,有效值为1U 。 2.电容滤波电路 实验电路如图13.3 (1)分别用不同电容接入电路,R L 先不接,用示波器观察波形,用电压表测V L 并记录。 (2)接上R L ,先用R L =1K Ω,重复上述实验并记录。 (3)将R L 改为150Ω,重复上述实验。 电容滤波电路是利用电容对电荷的存储作用来抑制纹波。在不加入负载电阻时,理论上应输出无纹波的稳定电压,但实际上考虑到二极管反向电流和电容的漏电流,所以仍然可以看到纹波,由于大电容的漏电流较大,所以接入470μF 时观察到的纹波比接入10μF 时的大。接入负载后,在示波器中可看到明显的纹波。纹波中电压处于上升部分时,二极管导通,通

过电流一部分经过负载,一部分给电容充电,其时间常数为L R r R C R =//(,r 为输入电路内阻);下降部分时,二极管截止,负载上的电流由电容提供,其放电时间常数为C R L 。一般有r R r R L L >>>,因此滤波的效果主要取决于放电时间常数, 其数值越大滤波后输出纹波越小、电压波形越平滑,平均值也越大。平均值)41(21C R T U U L Om - =。 图13.3 电容滤波电路 图13.4 并联稳压电路 稳压管稳压电路由稳压二极管和限流电阻组成,利用稳压管的电流调节作用通过限流电阻上电流和电压来进行补偿,达到稳压目的,因而限流电阻必不可少。对于稳压电路,一般用稳压系数r S 和输出电阻O R 来描述稳压特性, r S 表明输入电压波动的影响,O R 表明负载电阻对稳压特性的影响。 不变 L R i i O O r U U U U S ??= ,不变 i U O O O I U R ??- =。分析电路,设稳压管两端电压为Z U ,流过稳 压管的电流为Z I ,则稳压管交流等效电阻Z Z Z I U r ??=。根据交流等效电路可知: L Z L Z O i i O O i r R r R R r U U U U U U S +?=???= ,Z O r R R =。 3.并联稳压电路

信号放大滤波电路设计

中北大学 课程设计说明书 学生姓名:罗再兵学号: 0906044151 学院: 电子与计算机科学技术学院 专业: 电子科学与技术 题目: 信号放大滤波电路设计 指导教师:孟令军职称: 副教授 2011 年 12 月 30日

目录 1、设计任务 (2) 2、设计目的 (2) 3、设计方案 (2) 4、参考电路设计与分析 (3) 4.1、同相比例放大器 (3) 4.2、二阶压控电压源低通滤波器 (3) 4.3、二阶压控电压源高通滤波器 (4) 5、信号放大滤波电路 (5) 5.1信号放大滤波电路设计 (5) 5.2信号放大滤波电路仿真 (6) 5.3信号放大滤波电路性能评估 (8) 5.4信号放大滤波电路PCB板图 (8) 6、设计仪器设备 (9) 7、设计心得 (9)

一. 设计任务 1、查阅熟悉相关芯片资料; 2、选择合适的运算放大器,实现信号的3级放大;总放大倍数为12; 3、并通过高通、低通滤波电路滤波; 4、利用PROTEL 绘制电路原理图和印刷板图,并利用multisim 软件仿真。 二. 设计目的 1、掌握电子电路的一般设计方法和设计流程。 2、学习使用PROTEL 软件绘制电路原理图和印刷版图。 3、掌握应用multisim 对设计的电路进行仿真,通过仿真结果验证设计的 正确性。 三.设计方案 由设计题目和设计要求可知,设计此电路需要用到集成运算放大器和高 低通滤波电路,首先信号放大12倍,我们选用同相比例放大器放大,该电路结构简单,性能良好;滤波电路部分我们选用典型的二阶压控电压源低通滤波器和二 阶压控电压源高通滤波器,该电路具有电路元件少,增益稳定,频率范围宽等优点。设计框架图如下: 信号输入 信号输出 图1 信号放大滤波电路设计方案 图1为信号放大滤波电路设计方案。在这一方案中,系统主要由同相比例放大器、二阶压控电压源低通滤波器、二阶压控电压源高通滤波器组成。 由于要求实现信号的3级放大,总放大倍数为12,信号经过同相比例放大器 后放大12倍,再经过二阶压控电压源低通滤波器(在通频带内增益等于1)过滤掉高频信号而留下所需频率信号,然后再经二阶高通滤波器(在通频带内增益等于1)后就可以得到我们所需频段的信号。 同相比例放大器 二阶压控电压源低通滤波器 二阶压控电压源高通滤波器

整流滤波稳压电路看不懂你砍我

整流、滤波、稳压电路看不懂你砍我 好久的电路原理说明,终于能够看懂整流滤波稳压电路了,分享一下。 一、整流与滤波电路 整流电路的任务是利用二极管的单向导电性,把正、负交变的50Hz电网电压变成单方向脉动的直流电压。 整流电路只是将交流电变换为单方向的脉动电压和电流,由于后者含有较大的交流成分,通常还需在整流电路的输出端接入滤波电路,以滤除交流分量,从而得到平滑的直流电压。

由波形可知: 1.开关S打开时,电容两端电压为变压器付边的最大值。 2 .开关S闭合,即为电容滤波电阻负载,当变压器付边电压大于电容上电压时 ,电容充电,输出电压升高,当时电容放电,输出下降。如此充电快,放电慢的不断反复,在负载上将得到比较平滑的输出电压。当负载电阻越大时,放电越慢,纹波电压越小,负载电阻小时,放电快,纹波大,而且输出电压低。 为此有三种情况下的输出电压估算值: 1)电容滤波,负载开路时。 2)无电容滤波,电阻负载时,输出电压平均值为: 。

3)电容滤波,电阻负载时通常用下式进行估算,通常按 估算。 为确保二极管安全工作,要求:不同电子设备要求其电源电压的平滑程度不同,为此可采用不同的滤波电路。常见的有电容滤波、电感滤波和复式滤波电路(两个或两个以上滤波元件组成)。 二、线性串联型稳压电路 整流滤波后的电压是不稳压的,在电网电压或负载变化时,该电压都会产生变化,而且纹波电压又大。所以,整流滤波后,还须经过稳压电路,才能使输出电压在一定的范围内稳定不变。

1.稳压电路(电源)的主要性能指标 输出的稳定电压值Vo,最大输出电流Imax,输出纹波电压V~,稳压系数(电压调整率),该值越小,稳定性越好。 输出电阻(内阻),,内阻越小越好。 2.串联型稳压电路的基本结构基本思路: 串联型:

医学信号检测前置放大及滤波电路设计其他信号word文档

课程设计任务书 (指导教师填写) 课程设计名称生物医学电子学课程设计Ⅰ学生姓名专业班级 设计题目医学信号检测前置放大及滤波电路设计(信号) 一、课程设计目的 通过设计和调试医学信号检测前置放大及滤波电路,深入了解医学信号放大器的特点,并掌握放大及滤波电路的有关指标。 二、设计内容、技术条件和要求 1、选择要设计的常用医学信号(如肌电、细胞膜电位、动脉压等)检测电路,将名称填入题目中的空白中。查阅相关资料,根据信号特点,确定对检测放大电路输入阻抗、差模增益、共模抑制比、等效输入噪声等特性参数的要求;并根据信号特点,确定滤波器的相关特性参数。 2、计算和设计检测电路,绘制前置放大及滤波电路系统电路图;设计50Hz 工频滤波器,可以根据需要方便地加入电路中或者从电路中移除。 3、在EWB仿真系统中模拟测试设计电路,进行电路连接与调试; 4、测试和计算电路的放大倍数,截止频率、共模抑制比,等效输入噪声以及等效输入阻抗等参数,保存测试的波形文件,并对上述参数进行分析。使安装和调试后的生物医学信号前置放大及滤波电路,满足指标要求。 5、在仿真系统中,使用含有干扰信号的模拟信号作为输入信号进行观察。 6、思考分析: ①设计的放大器,其共模抑制比主要受哪些元器件的影响?应如何选择这些元件才能保证具有较高的共模抑制比? ②如何进一步提高其抗干扰,尤其是抗工频干扰(50Hz)的能力。 三、时间进度安排 1、收集资料;(11月28日~11月29日) 2、熟悉EWB(/Multisim)设计软件,设计及调试;(11月30日~12月4日) 3、撰写和修改论文;(12月5日~12月7日) 4、演示与现场答辩。(12月8日~12月9日) 四、主要参考书目 1.余学飞.医学电子仪器原理与设计.广州:华南理工大学出版社 2.王保华.生物医学测量与仪器.上海:复旦大学出版社 3.蔡建新.生物医学电子学.北京:北京大学出版社 4.周希贤.生物医学电子学及实验.兰州:兰州大学出版社 5.张唯真.生物医学电子学.北京:清华大学出版社 6.康华光.电子技术基础.北京:高等教育出版社

运算放大器16个基本运算电路概论

一、 电路原理分析与计算 1. 反相比例运算电路 输入信号从反相输入端引入的运算,便是反相运算。反馈电阻R F 跨接在输出端和反相输入端之间。根据运算放大器工作在线性区时的虚开路原则可知:i -=0,因此i 1=i f 。电路如图1所示, 图1 根据运算放大器工作在线性区时的虚短路原则可知:u -=u +=0。 由此可得: 01 f i R u u R =- 因此闭环电压放大倍数为: 1 o f uo i u R A u R = =- 2. 同相比例运算电路 输入信号从同相输入端引入的运算,便是同相运算。电路如图2所示,

图2 根据运算放大器工作在线性区时的分析依据:虚短路和虚开路原则 因此得: 1 (1)f o i R u u R =+ 开环电压放大倍数 1 1o f uf i u R A u R = =+ 3. 反相输入加法运算电路 在反相输入端增加若干输入电路,称为反向输入加法运算电路。电路如图3 所示, 图3 计算公式如下, 12 12 ( )o f u u u R R R =-+ 平衡电阻213////f R R R R =,当13f R R R ==时,输出电压012()u u u =-+ 4. 减法运算电路 减法运算电路如图4所示,输入信号1i u 、2i u 分别加至反相输入端和同相

输入端,这种形式的电路也称为差分运算电路。 图4 输出电压为: 2211231 (1)f f o i i R R R u u u R R R R =+ -+ 当123f R R R R ===时,输出电压21o i i u u u =- 5. 微分运算电路 微分运算电路如图5所示, 图5 电路的输出电压为o u 为: 21 i o du u R C dt =- 式中,21R C 为微分电路的时间常数。若选用集成运放的最大输出电压为OM U ,则21R C 的值必须满足: 21max ()OM i U R C du dt <= 6. 积分运算电路 积分运算电路如图6所示,

单电源运算放大器滤波电路

单电源运算放大器电路应用图集(三):滤波电路(上) 这节非常深入地介绍了用运放组成的有源滤波器。在很多情况中,为了阻挡由于虚地引起的直流电平,在运放的输入端串入了电容。这个电容实际上是一个高通滤波器,在某种意义上说,像这样的单电源运放电路都有这样的电容。设计者必须确定这个电容的容量必须要比电路中的其他电容器的容量大100 倍以上。这样才可以保证电路的幅频特性不会受到这个输入电容的影响。如果这个滤波器同时还有放大作用,这个电容的容量最好是电路中其他电容容量的1000 倍以上。如果输入的信号早就包含了VCC/2 的直流偏置,这个电容就可以省略。 这些电路的输出都包含了VCC/2 的直流偏置,如果电路是最后一级,那么就必须串入输出电容。 这里有一个有关滤波器设计的协定,这里的滤波器均采用单电源供电的运放组成。滤波器的实现很简单,但是以下几点设计者必须注意: 1. 滤波器的拐点(中心)频率 2. 滤波器电路的增益 3. 带通滤波器和带阻滤波器的的Q值 4. 低通和高通滤波器的类型(Butterworth 、Chebyshev、Bessell) 不幸的是要得到一个完全理想的滤波器是无法用一个运放组成的。即使可能,由于各个元件之间的负杂互感而导致设计者要用非常复杂的计算才能完成滤波器的设计。通常对波形的控制要求越复杂就意味者需要更多的运放,这将根据设计者可以接受的最大畸变来决定。或者可以通过几次实验而最终确定下来。如果设计者希望用最少的元件来实现滤波器,那么就别无选择,只能使用传统的滤波器,通过计算就可以得到了。 3.1 一阶滤波器 一阶滤波器是最简单的电路,他们有20dB 每倍频的幅频特性 3.1.1 低通滤波器 典型的低通滤波器如图十三所示。

稳压电路和放大滤波电路

实验题目:稳压电路 一.实验目的 (1)掌握直流稳压电源主要参数的测试方法; (2)掌握直流稳压电源的工作原理; (3) 在实验中结合具体的电子电路测试学会使用常规仪器对电路 进行测量、调试; (4) 培养学生检查与排除电路故障; 二.实验要求 (1)输入电压V i:9.5V~20V(动态范围); (2)输出电压:V o =5V; (3)输出电流:I o尽量大,使带载能力强; 三.实验设计思路 利用开关性电压转换模块仿真一个稳压电源: (1)输出电压与参考电压分别进入差分放大器的两端,差分放大器的输出则作为buck-boost转换器的控制输出; (2) Buck-boost的输入电压由一个直流电压源和一个交流电压源串联组成; 四.实验设计

五.实验结果与输出波形(一)波形图:

结论: 经过滤波后输出电压为接近5V的稳定电压 不足之处: 1.电流输出较小,电路危险系数高; 2.输出电压稳定性较高,但对设备要求精确; (三)输出电流: 结论: 电压趋于5V稳定时,此时电流取得较大值。 六.实验心得体会 首先看到这个电路设计题目时,首先想到稳压管,于是搭了一个简单的稳压管电路的却能实现输出5V的电压,但其他要求无法满足;然后经过了认真的思考和查阅资料后,对电路进行了全面的设计与更改,在设计过程中遇到了很多的问题。如发现直流稳压电源效率低,无法实现升压控制的缺点,所以设计了一个具有升压降压功能模块的三端子转换器电路。 设计中使得输出电压与参考电压分别进入差分放大器的两端,差分放大器的输出则作为buck-boost转换器的控制输出;Buck-boost 的输入电压由一个直流电压源和一个交流电压源串联组成; 经过这次实验让我深刻体会到开放式实验的灵活,可以用好多方

整流滤波与并联稳压电路

实验2.5 整流、滤波与稳压电路 一、实验目的 1、掌握单相半波、全波、桥式整流电路的工作原理及测量方法。 2、观察了解电容滤波作用及测量方法。 3、了解稳压二极管的稳压作用。 二、实验原理 整流是把交流电变成单向脉动直流电的过程,整流的基本器件是整流二极管。利用其单向导电性即可把交流电转换成直流电。半波整流和桥式整流电路分别如 图2.5.1和图2.5.2所示。 在图2.5.1中,经过半波整流后负载上得的直流电压为(K打开时) U L =0.45U 2 (其中U 2 为副边电压的有效值)。 在图2.5.2中,经过桥式整流后负载(R + R L )上的得到的直流电压为(K 1 、 K 2同时打开时)U 34 =0.9U 2 。 在图2.5.2中,滤波作用则是降低输出电压中的脉动成分,得到较为理想的 直流电源,常用的滤波电路有C型、π型和T型。对于桥式整流C型滤波(合上 开关K 1),结构简单,其输出电压为 U 34 ≈1.2U 2 。 R L 220V 图9-1 220V 图9-2 R L 1K ③④⑤ ⑥ U L 图2.5.1 半波整流电路图图2.5.2 桥式整流电路图 141

在图2.5.1中,半波整流C型滤波(合上开关K)其输出电压 U L U 2 。 经电容滤波后,输出电压的纹波减小,直流分量得到提高。 在图2.5.2中R为限流电阻,其作用是通过调节自身的压降来保持输出电压的基本不变。Dw为稳压二极管,它是利用其反向击穿的伏安特性来实现稳压的(可 参考教材中有关内容)。若合上K 1、K 2 时,U L =U Z (U Z 为稳压二极管的稳压值)。 三、实验设备 1、模拟电路实验箱一套 2、示波器一台 3、数字万用表一块 四、实验任务及步骤 按表2.5.1所规定的顺序及内容,用万用表电压档(AC或DC)测量有关电压,并用双踪示波器观察有关波形,按实验电路图2.5.2连线。 142

运算放大器应用电路的设计与制作

运算放大器应用电路的设计与制作 一.实验目的 1.掌握运算放大器和滤波电路的基本工作原理; 2.掌握运用运算放大器实现滤波电路的原理方法; 3.会用Multisim10对电路进行仿真分析; 二.实验内容 1.讲解运算放大器和滤波电路的基本工作原理; 2.讲解用运算放大器实现滤波电路的原理方法; 3.用Multisim10对二阶有源低通滤波电路进行仿真分析; 三.实验仪器 1.支持Win2000/2003/Me/XP/vista的PC机; 2.Multisim10软件; 四.实验原理 (一)运算放大器 1.原理 运算放大器是目前应用最广泛的一种器件,当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 运算放大器一般由4个部分组成,偏置电路,输入级,中间级,输出级。 图1运算放大器的特性曲线图2运算放大器输入输出端图示

图1是运算放大器的特性曲线,一般用到的只是曲线中的线性部分。如图2所示。U -对应的端子为“-”,当输入U -单独加于该端子时,输出电压与输入电压U -反相,故称它为反相输入端。U +对应的端子为“+”,当输入U +单独由该端加入时,输出电压与U +同相,故称它为同相输入端。 输出:U 0= A(U +-U -) ; A 称为运算放大器的开环增益(开环电压放大倍数)。 在实际运用经常将运放理想化,这是由于一般说来,运放的输入电阻很大,开环增益也很大,输出电阻很小,可以将之视为理想化的,这样就能得到:开环电压增益A ud =∞;输入阻抗r i =∞;输出阻抗r o =0;带宽f BW =∞;失调与漂移均为零等理想化参数。 2.理想运放在线性应用时的两个重要特性 输出电压U O 与输入电压之间满足关系式:U O =A ud (U +-U -),由于A ud =∞,而U O 为有限值,因此,U +-U -≈0。即U +≈U -,称为“虚短”。 由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”,这说明运放对其前级吸取电流极小。 上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 3. 运算放大器的应用 (1)比例电路 所谓的比例电路就是将输入信号按比例放大的电路,比例电路又分为反向比例电路、同相比例电路、差动比例电路。 (a) 反向比例电路 反向比例电路如图3所示,输入信号加入反相输入端: 图3反向比例电路电路图 对于理想运放,该电路的输出电压与输入电压之间的关系为: i 1 f O U R R U -=

运算放大器详细的应用电路(很详细)

§8.1 比 例运算电 路 8.1.1 反相比例电路 1. 基本电路 电压并联负反馈输入端虚短、虚断 特点: 反相端为虚地,所以共模输入可视为0,对运放共模抑制比要求低 输出电阻小,带负载能力强 要求放大倍数较大时,反馈电阻阻值高,稳定性差。 如果要求放大倍数100,R1=100K,Rf=10M 2. T型反馈网络(T型反馈网络的优点是什么?) 虚短、虚断

8.1.2 同相比例电路 1. 基本电路:电压串联负反馈 输入端虚短、虚断 特点: 输入电阻高,输出电阻小,带负载能力强 V-=V+=V i,所以共模输入等于输入信号,对运放的共模抑制比要求高 2. 电压跟随器 输入电阻大输出电阻小,能真实地将输入信号传给负载而从信号源取流很小§8.2 加减运算电路 8.2.1 求和电路 1.反相求和电路 2.

虚短、虚断 特点:调节某一路信号的输入电阻不影响其他路输入与输出的比例关系 3.同相求和电路 4. 虚短、虚断 8.2.2 单运放和差电路

8.2.3 双运放和差电路 例1:设计一加减运算电路 设计一加减运算电路,使 V o=2Vi1+5Vi2-10Vi3 解:用双运放实现

如果选Rf1=Rf2=100K,且R4= 100K 则:R1=50K R2=20K R5=10K 平衡电阻 R3= R1// R2// Rf1=12.5K R6=R4//R5//Rf2= 8.3K 例2:如图电路,求A vf,Ri 解: §8.3 积分电路和微分电路 8.3.1 积分电路 电容两端电压与电流的关系:

积分实验电路 积分电路的用途 将方波变为三角波(Vi:方波,频率500Hz,幅度1V)

滤波和稳压电路

滤波和稳压电路 稳压电源 图5一27是一个可供实际应用的串联型稳压电源电路。其输出电压Usc=6~12伏连续可调,输出电流Isc=500毫安。各部分的电路工作原理已在前面各节作了分析,下面再就电路设计中的一些参数的选取问题,作些补充分析。 一、变压;整流滤波部分

调整管为了保征工作在放大区,需要有一定的管压降Uce,一般取: 。Uce选得大,可调整范围宽,适应性好,但调整管的功率损耗Uce Ie较大。根据上述原则可得: 式中Uscmax为稳压电源输出电压的最

大值,它由Usc的可调范围决定,可取: 则: 整流电路的输出电流,包括电源的负载电流(已定为500毫安)、取样电阻R1、W、R2的电流、稳压管限流电阻R2的电流、保护电路偏置电阻R4、R5的电流,所以整流输出电流要大于电源负载电流。现取550毫安。

根据表5-3在电容滤波电路中带负载时的输出电压为 由此可以得出变压器次级电压为 取E2=18伏

整流二极管承受的最大反向电压为 二极管通过的是大电流为 因此可这用2CP21A型整流管(最高反向工作电压50伏,额定整定电流300毫安)。 根据表5-2,选取滤波电容C1为1000微法;根据电容耐压值为1. 5×√2E2=27伏,可选耐压值为50伏。 稳压电路部分,可分为取样和调压、基准电压、比较放大、调整放大、保护电路五个部分(见图5一27)。下面分别加以叙述: 二、基准电压部分 所选稳压管的基准电压Uw,应低于输出电压Usc最小值2伏,但不能太低。这里选取2Cw7B型稳压管,其稳定电压4~4.5伏,稳定电流10毫安,最大稳

集成电路实验报告(信号的放大,滤波,AD采样电路)

Multisim实验报告内容 姓名:胡俊超学号:200805010615 一、题目:基于Multisim信号采集处理系统 在multisim软件基础上,主要是实现信号的放大,滤波,AD采样电路。 二、设计要求: 1.系统的电源输入为正负15V,系统各个电源都由集成电路产生的稳压电压供给。 2. 输入信号的为100Hz或者500Hz或者1kHz,幅度为10mv。 3. 放大电路要求:考虑提高输入阻抗;考虑放大后的信号是否超过的AD的输入范围;放大倍数由信号与AD的输入决定。可以考虑集成仪表运放。 4. 滤波电路:四阶巴特沃思低通滤波器,截止频率为500Hz。计算各个电阻和电容的取值。5.AD采样;可以使用8位和16位AD,并设定AD的电压范围为0-5v。考虑采样定理的约束。 6.DA输出;AD的数字信号直接输出给DA模块 7.对比原始信号和DA输出信号。 三,各个部分详细的设计方法和思路。 电源部分: 原理分析: 由于题目给出了直流15V的条件,考虑到整个系统中所采用的741运放以及AD,DA的采样参考电压,所以选取5V和-5V供电电压。 集成电路中78系列的线性稳压器件7812以及7805可以构成两级稳压达到要求的5V电源,78系列压差在3V以上的范围,也满足我们的设计要求,同理,采用7912和7905即可以得到-5的电压。 电路原理图: 构成5V电源电压电路图

构成-5V电源电压原理图 信号输入和放大部分 原理分析:信号的幅度为10mV,频率可以选择,此时选择500Hz,放大倍数放大30倍。为了提高输入阻抗,考虑采用集成运放741作为输入,用反向放大,便于计算放大倍数,再用741做一次同比列的方向放大,这样信号的相位和输入信号无相移,构成了线性无相移的放大环节。 原理电路图(放大部分) 放大部分仿真结果

相关主题
文本预览
相关文档 最新文档