当前位置:文档之家› 高考数学定比分点与向量中常见的结论

高考数学定比分点与向量中常见的结论

高考数学定比分点与向量中常见的结论
高考数学定比分点与向量中常见的结论

教案5:定比分点与向量中常见的结论

一、课前检测

1.(丰台一模理6)在平面直角坐标系xOy 中作矩形OABC ,已知

3,4==AB OA ,则AC → ·OB →

的值为( D )

(A )0 (B )7 (C )25 (D )7-

2.(宣武一模理4)已知两个向量a =(1,2),b =(x ,1),若(a+2b )//(2a —2b ),则x 的值是( C )

A.1

B.2

C.2

1

D.3

1

3.设向量(1,1)a x =-,(3,1)b x =+,则“2x =”是“a b ⊥”的( A ) (A )充分但不必要条件 (B )必要但不充分条件 (C )充要条件 (D )既不充分也不必要条件

二、知识梳理

1.线段定比分点公式:如图,设→

--→--λ=21PP P P . (注:终分,分起→→)

1)则定比分点向量式:→

--→--→

--+++=

21111OP OP OP λ

λλ 2)定比分点坐标式:设P (x,y )(分点),P 1(x 1,y 1)(起点),P 2

(x 2,y 2)(终点)。

则???

???

?

λ+λ+=λ+λ+=1y y y 1x x x 2121

特例:当λ=1时,就得到中点公式:

)OP OP (21OP 21→

--→--→--+=,???

???

?

+=+=2y y y 2

x x x 2

11211

实际上,对于起点相同,终点共线三个向量→--OP ,1OP →--,2OP →

--(O 与P 1P 2不共线),总有→

--OP =u 1OP →

--+v 2OP →

--,u+v=1,即总可以用其中两个向量的线性组合表示第三个向量,且系数和为1。

???

???

?+=+=.2,2

2121y y y x x x ?(三角形内角平分线定理) 解读:

2.设OA 、OB 不共线,点P 在AB 上,则OP =λOA +μOB 且λ

+μ=1,

λ、μ∈R.

①OA ,OB 不共线,若OP =λOA +μOB ,且λ

+μ=1,λ∈R ,μ

∈R ,求证:A 、B 、P 三点共线.

提示:证明AP 与AB 共线.

②当λ=μ=2

1时,OP =2

1(OA +OB ),此时P 为AB 的中点,这是

向量的中点公式. 解读:

3.已知向量起点与终点坐标,求向量的坐标:向量坐标与点坐标的关系:当向量起点在原点时,定义向量坐标为终点坐标,即若A(x ,y),则→--OA =(x,y );当向量起点不在原点时,向量→

--AB 坐标为终点坐标减去起点坐标,即若A (x 1,y 1)、B (x 2,y 2),则→

--AB =(x 2-x 1,y 2-y 1) 解读:

4.向量模的坐标形式:︱︱22

11a a x y ?+解读:

5.求向量的夹角:cos θ=

a b a b

??1

22

x x y ?+

注:,a b ??为锐角0a b ??>,,a b 不同向;,a b ??为直角0a b ??=;,a b ??为钝角0a b ??<,,a b

不反向. 解读:

6.平面两点间的距离公式:已知A (x 1,y 1)、B (x 2,y 2)

,A B d =||AB AB AB =?

=解读:

7.与向量→a 同向的单位向量:→

=

a

a e ;与向量→a 平行的单位向量:→

±

=a

a e 。

与向量y)(x,a =→

平行的单位向量为:)y x y ,

y x x (2

2

2

2

++±

与向量y)(x,a =→

垂直的单位向量为:)y

x x ,

y

x y (-2

22

2

++±。

解读:

8.三角形的五个“心”: 重心:三角形三条中线交点.

外心:三角形三边垂直平分线相交于一点. 内心:三角形三内角的平分线相交于一点. 垂心:三角形三边上的高相交于一点.

旁心:三角形一内角的平分线与另两条内角的外角平分线相交一点. 解读:

9.三角形中向量性质:

① 1)AB AC +过BC 边的中点.2)||

||

||

||

(

)(

)AB AC AB AC AB AC AB AC +

⊥-

②13

()0PG PA PB PC GA GB GC G =++?++=?为ABC ?的重心;

高考数学平面向量试题汇编

高考数学平面向量试题汇编 已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0u u u r u u u r u u u r ,那么 ( A ) A.AO OD =u u u r u u u r B.2AO OD =u u u r u u u r C.3AO OD =u u u r u u u r D.2AO OD =u u u r u u u r (辽宁3) 若向量a 与b 不共线,0≠g a b ,且?? ??? g g a a c =a -b a b ,则向量a 与c 的夹角为( D ) A .0 B . π6 C . π3 D . π2 (辽宁6) 若函数()y f x =的图象按向量a 平移后,得到函数(1)2y f x =+-的图象,则向量a =( A ) A .(12)--, B .(12)-, C .(12)-, D .(12), (宁夏,海南4) 已知平面向量(11) (11)==-,,,a b ,则向量13 22 -=a b ( D ) A.(21)--, B.(21)-, C.(10)-, D.(12), (福建4) 对于向量,,a b c 和实数λ,下列命题中真命题是( B ) A .若=0g a b ,则0a =或0b = B .若λ0a =,则0λ=或=0a C .若2 2 =a b ,则=a b 或-a =b D .若g g a b =a c ,则b =c (湖北2)

将π2cos 36x y ??=+ ???的图象按向量π24?? =-- ??? ,a 平移,则平移后所得图象的解析式为 ( A ) A.π2cos 234x y ?? =+- ??? B.π2cos 234x y ?? =-+ ??? C.π2cos 2312x y ?? =-- ??? D.π2cos 2312x y ?? =++ ??? (湖北文9) 设(43)=,a , a 在 b 上的投影为2 ,b 在x 轴上的投影为2,且||14≤b ,则b 为( B ) A .(214), B .227? ?- ???, C .227??- ??? , D .(28), (湖南4) 设,a b 是非零向量,若函数()()()f x x x =+-g a b a b 的图象是一条直线,则必有( A ) A .⊥a b B .∥a b C .||||=a b D .||||≠a b (湖南文2) 若O E F ,,是不共线的任意三点,则以下各式中成立的是( B ) A .EF OF OE =+u u u r u u u r u u u r B .EF OF OE =-u u u r u u u r u u u r C .EF OF OE =-+u u u r u u u r u u u r D .EF OF O E =--u u u r u u u r u u u r (四川7) 设A {a ,1},B {2,b },C {4,5},为坐标平面上三点,O 为坐标原点,若方向 在与→ →→OC OB OA 上的投影相同,则a 与b 满足的关系式为 ( A ) (A)354=-b a (B)345=-b a (C)1454=+b a (D)1445=+b a (天津10) 设两个向量22 (2cos )λλα=+-,a 和sin 2 m m α? ?=+ ?? ? ,b ,其中m λα,,为实数.若2=a b ,则 m λ 的取值范围是( A ) A.[-6,1] B.[48], C.(-6,1] D.[-1,6] (浙江7)

三角形的定比分点公式及应用

三角形的定比分点公式及应用 河南驻马店 郭新华 本文从有向面积的定义推导出三角形的定比分点公式及其推论,并揭示该公式和梅涅劳斯定理,塞瓦定理,凡·奥贝尔公式以及调和点列公式的内在关系,同时举例说明其应用。 1. 预备知识 定义 三角形的有向面积是指通常所知的面积大小加上正负号。当三个顶点逆时针排列时有向面积为正,反之为负,三点共线时为零。 为简化叙述,约定AB 表示有向线段AB 的数量,ABC ?表示△ABC 的有向面积。 由定义,△ABC 的有向面积表达式有下列关系: ABC ?=BCA ?=CAB ?=BAC ?-=ACB ?-=CBA ?-. 对于△ABC 所在平面上任意点P ,AP 的连线交边BC 所在直线于D ,如图1-1,图1-2所示,有 PCA PBC PAB ABC ?+?+?=? . 及 AD PD ABC PBC =?? 2. 三角形的定比分点公式

设点P 在△ABC 所在平面上,直线AP ,BP ,CP 分别交边BC ,CA ,AB 所在直线于D ,E ,F ,如图2-1,图2-2所示,则 111 11113 21=+++++λλλ (1) 其中PD AP =1λ,PE BP =2λ,PF CP =3λ. 证明:因为 AD PD ABC PBC =??PD AP PD +=1 11 λ+= 类似地 BCA PCA ??211λ+=,CAB PAB ??3 11 λ+=. 所以321111111λλλ+++++=ABC PBC ??+BCA PCA ??+CAB PAB ??=1 变形1 21113 32211=+++++λλλλ λλ (2) 变形2 3213212λλλλλλ=+++ (3) 式(1)展开既得式(3) 3 三角形的定比分点公式的推论 如图2-1所示,当点P 在△ABC 内时,321λλλ,,均为正数, 记 321λλλ++=U , 313221λλλλλλ++=V , 321λλλ=W .

3平面向量的坐标表示及线段的定比分点公式

5.3平面向量的坐标表示及线段的定比分点公式 要点透视: 1.要清楚向量的坐标与表示该向量的有向线段的起点、终点的具体位置无关,只与其相对位置有关. 2.遇到共线向量与平行有关问题,一般应考虑运用向量平行的充要条件. 3.线段的定比分点公式,要注意求定比分点A 的值,以便顺利求出分点坐标. 活题解析: 例1.(2002年天津卷)平面直角坐标系中, O 是坐标原点,已知两点A (3, 1),B (-1,3),若点C 满足OC OA OB αβ=+ ,其中α,β∈R ,且α+β=1,则点C 的轨迹方程是( ) A .3x +2y -11=0 B .(x -1)2+(y -2)2=25 C .2x -y =0 D .x +2 y -5=0 要点精析:I 设OC =(x ,y ),OA =(3,1),OB =(-1,3), α· OA =(3α,α),βOB =(-β,3β),又αOA +βOB =(3α-β,α+3β), ∴ (x ,y )=(3α-β,α+3β),∴ 33x y αβαβ=-??=+? , 又α+β=1,因此得x +2y =5,所以选D . 思维延伸:本题主要考查向量法和坐标法的相互关系及转换方法. 例2.(2003年江苏卷)已知常数a >0,向量c =(0,a ),i =(1,0),经过原点O 以c +λi 为方向向量的直线与经过定点A (0,a )以i -2λc 为方向向量的直线相交于点P ,其中λ∈R ,试问是否存在两个定点E ,F ,使得|PE |+|PF |为定值?若存在,求出E ,F 的坐标;若不存在,说明理由. 要点精析:本题考查平面向量的概念和计算、求轨迹的方法、椭圆的方程和性质、利用方程判定曲线的性质、曲线与方程的关系等解析几何的基本思想和综合解题能力. 解:根据题没条件,首先求出点P 满足的方程,据此再判断是否存在两定点,使得P 到两定点的距离之和为定值. 因为i =(1,0),c =(0,a ), 所以c +λi =(λ,a ),i -2λc =(1,-2λa ). 因此直线OP 和AP 的方程分别为λy =ax 和y -a =-2λax , 消去参数λ,得点P (x ,y )的坐标满足y (y -a )=-2a 2x 2, 整理得222 ()211()82 a y x a -+= ① 因为a >0,所以得 (1)当a =2 2时,方程①表示圆,故不存在合乎题意的定点E 和F ; (2)当0

(完整版)《平面向量》测试题及答案

《平面向量》测试题 一、选择题 1.若三点P (1,1),A (2,-4),B (x,-9)共线,则( ) A.x=-1 B.x=3 C.x= 2 9 D.x=51 2.与向量a=(-5,4)平行的向量是( ) A.(-5k,4k ) B.(-k 5,-k 4) C.(-10,2) D.(5k,4k) 3.若点P 分所成的比为4 3 ,则A 分所成的比是( ) A.73 B. 37 C.- 37 D.-7 3 4.已知向量a 、b ,a ·b=-40,|a|=10,|b|=8,则向量a 与b 的夹角为( ) A.60° B.-60° C.120° D.-120° 5.若|a-b|=32041-,|a|=4,|b|=5,则向量a ·b=( ) A.103 B.-103 C.102 D.10 6.(浙江)已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c =( ) A.? ????79,73 B.? ????-73,-79 C.? ????73,79 D.? ????-7 9 ,-73 7.已知向量a=(3,4),b=(2,-1),如果向量(a+x )·b 与b 垂直,则x 的值为( ) A. 3 23 B. 23 3 C.2 D.- 5 2 8.设点P 分有向线段21P P 的比是λ,且点P 在有向线段21P P 的延长线上,则λ的取值范围是( ) A.(-∞,-1) B.(-1,0) C.(-∞,0) D.(-∞,- 2 1 ) 9.设四边形ABCD 中,有DC = 2 1 ,且||=|BC |,则这个四边形是( ) A.平行四边形 B.矩形 C.等腰梯形 D.菱形 10.将y=x+2的图像C 按a=(6,-2)平移后得C ′的解析式为( ) A.y=x+10 B.y=x-6 C.y=x+6 D.y=x-10 11.将函数y=x 2+4x+5的图像按向量a 经过一次平移后,得到y=x 2 的图像,则a 等于( ) A.(2,-1) B.(-2,1) C.(-2,-1) D.(2,1) 12.已知平行四边形的3个顶点为A(a,b),B(-b,a),C(0,0),则它的第4个顶点D 的坐标是( ) A.(2a,b) B.(a-b,a+b) C.(a+b,b-a) D.(a-b,b-a) 二、填空题 13.设向量a=(2,-1),向量b 与a 共线且b 与a 同向,b 的模为25,则b= 。 14.已知:|a|=2,|b|=2,a 与b 的夹角为45°,要使λb-a 垂直,则λ= 。 15.已知|a|=3,|b|=5,如果a ∥b ,则a ·b= 。 16.在菱形ABCD 中,(AB +AD )·(AB -AD )= 。

定比、定比分点公式

8.1(3)定比、定比分点公式 一、教学内容分析 本节是8.1的第三节课,是学习向量坐标表示及运算、向量的模与平行之后的又一个新的知识点.它既是对前两节内容复习与巩固,又是对向量知识的进一步深化与拓展,如式子 12PP PP λ=u u u r u u u r 中的λ由实 数推广到定比.同时,经历定比分点公式的推导过程,让学生领悟定比分点的多元化表示方法. 本节的教学重点是定比分点公式的形成、深化、拓展与应用.难点是定比λ的理解、确定及定比分点公式中分点、始点、终点坐标位置的识别. 根据本节特点,教师采取启发、提问为主的教学方法;学生则进行自主学习.即课前进行主动预习,课中进行讨论与交流,课后进行探索研究. 二、教学目标设计 1理解定比的概念,掌握定比分点公式; 2通过定比分点公式的推导过程,巩固向量的运算方法; 感悟定比分点的几种表达方式; 3通过本节的学习,提升发现能力、推理能力,渗透数形结合 思想. 三、教学重点及难点 定比的概念,定比分点公式的推导和应用. 四、教学流程设计

五、教学过程设计 一、 情景引入 观察思考,引入新课 问题1:设)1,2(A ,)1,2(--B ,)2,4(C 三点共线,可知BA u u u r ∥AC u u u r ,即存 在实数λ,使BA u u u r = λAC u u u r ,那么实数λ= . 而若 BC CA λ=u u u r u u u r ,则λ= . [说明](1)本问题由共线三点坐标求实数λ,它既是对前一节向量平行的复习与巩固,同时又为定比λ的产生作好铺垫(2)通过本题可以看出使两向量平行的实数λ的取值可正可负. 问题2:设1P (1,1),2P (4,4), λ=1.当12PP PP λ=u u u r u u u r 时, 你能求出点P 的坐标吗?(引出课题) [说明]问题2是由共线三点中的两点坐标和定比λ的值求第三点坐

(完整版)高中数学平面向量测试题及答案

平面向量测试题 一、选择题: 1。已知ABCD 为矩形,E 是DC 的中点,且?→?AB =→a ,?→?AD =→b ,则?→ ?BE =( ) (A ) →b +→a 2 1 (B ) →b -→a 2 1 (C ) →a +→b 2 1 (D ) →a -→ b 2 1 2.已知B 是线段AC 的中点,则下列各式正确的是( ) (A ) ?→?AB =-?→?BC (B ) ?→?AC =?→?BC 2 1 (C ) ?→?BA =?→?BC (D ) ?→?BC =?→ ?AC 2 1 3.已知ABCDEF 是正六边形,且?→?AB =→a ,?→?AE =→b ,则?→ ?BC =( ) (A ) )(2 1→→-b a (B ) )(2 1 →→-a b (C ) →a +→b 2 1 (D ) )(2 1→ →+b a 4.设→a ,→b 为不共线向量,?→?AB =→a +2→b ,?→?BC =-4→a -→b ,?→ ?CD = -5→ a -3→ b ,则下列关系式中正确的是 ( ) (A )?→?AD =?→?BC (B )?→?AD =2?→ ?BC (C )?→?AD =-?→ ?BC (D )?→?AD =-2?→ ?BC 5.将图形F 按→ a =(h,k )(其中h>0,k>0)平移,就是将图形F ( ) (A ) 向x 轴正方向平移h 个单位,同时向y 轴正方向平移k 个单位。 (B ) 向x 轴负方向平移h 个单位,同时向y 轴正方向平移k 个单位。 (C ) 向x 轴负方向平移h 个单位,同时向y 轴负方向平移k 个单位。 (D ) 向x 轴正方向平移h 个单位,同时向y 轴负方向平移k 个单位。 6.已知→a =()1,2 1,→ b =(), 2 22 3- ,下列各式正确的是( ) (A ) 2 2?? ? ??=??? ??→ →b a (B ) →a ·→b =1 (C ) →a =→b (D ) →a 与→b 平行 7.设→ 1e 与→ 2e 是不共线的非零向量,且k → 1e +→ 2e 与→ 1e +k → 2e 共线,则k 的值是( ) (A ) 1 (B ) -1 (C ) 1± (D ) 任意不为零的实数 8.在四边形ABCD 中,?→?AB =?→?DC ,且?→?AC ·?→ ?BD =0,则四边形ABCD 是( ) (A ) 矩形 (B ) 菱形 (C ) 直角梯形 (D ) 等腰梯形 9.已知M (-2,7)、N (10,-2),点P 是线段MN 上的点,且?→ ?PN =-2?→ ?PM ,则P 点的坐标为( ) (A ) (-14,16)(B ) (22,-11)(C ) (6,1) (D ) (2,4)

3平面向量的坐标表示及线段的定比分点公式

5. 3平面向量的坐标表示及线段的定比分点公式要点透视: 1?要清楚向量的坐标与表示该向量的有向线段的起点、终点的具体位置无关,只与其相对位置有关. 2?遇到共线向量与平行有关问题,一般应考虑运用向量平行的充要条件. 3?线段的定比分点公式,要注意求定比分点A的值,以便顺利求出分点坐 标. 活题解析: 例1. (2002年天津卷)平面直角坐标系中, O是坐标原点,已知两点A(3, 1),B( — 1, 3),若点 C 满足 OC =aOA+POB,其中 a 氏 R 且 a+3=1,则点 C的 轨迹方程是() 2 2 A. 3x+ 2y— 11 = 0 B. (x— 1) + (y—2)=25 C. 2x— y= 0 T D士+ 2 y— 5=0^ 要点精析:I 设OC =(x, y),OA = (3, 1),OB =(— 1,3), T T T T a OA=(3 a a, 3OB =( — 3, 3 3,又 aOA+ 3OB =(3 a— 3, a+3 3, I X =3*^ — P 二(x, y)= (3a— 3 a+ 33,;$ n , [y =a +3卩 又a+ 3= 1,因此得x+ 2y= 5,所以选D . 思维延伸:本题主要考查向量法和坐标法的相互关系及转换方法. I I 例2. (2003年江苏卷)已知常数a>0,向量c=(0, a),i = (1, 0),经过原点 O以 c+Xi为方向向量的直线与经过定点 A(0, a)以i — 2Xc为方向向量的直线相交于 点P,其中疋R,试问是否存在两个定点E, F,使得|PE| + |PF|为定值?若存在, 求出E, F的坐标;若不存在,说明理由. 要点精析:本题考查平面向量的概念和计算、求轨迹的方法、椭圆的方程和性质、利用方程判定曲线的性质、曲线与方程的关系等解析几何的基本思想和综合解题能力. 解:根据题没条件,首先求出点P满足的方程,据此再判断是否存在两定点,使得P到两定点的距离之和为定值. 因为1=(° 0), c = (0, a), 所以 c + xi =( X, a), i — 2 入c = (1, — 2 Xa). 因此直线OP和AP的方程分别为?y=ax和y— a= — 2 Xx,

2020年高考数学试题分类汇编 平面向量

九、平面向量 一、选择题 1.(四川理4)如图,正六边形ABCDEF 中,BA CD EF ++u u u r u u u r u u u r = A .0 B .BE u u u r C .AD u u u r D .CF uuu r 【答案】D 【解析】BA CD EF BA AF EF BF EF C E E F CF ++=++=+=+=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 2.(山东理12)设1A ,2A ,3A ,4A 是平面直角坐标系中两两不同的四点,若1312A A A A λ=u u u u v u u u u v (λ∈R ),1412A A A A μ=u u u u v u u u u v (μ∈R ),且112λμ+=,则称3A ,4A 调和分割1A ,2A ,已知平面上的点C ,D 调和分割点A , B 则下面说法正确的是 A .C 可能是线段A B 的中点 B .D 可能是线段AB 的中点 C .C , D 可能同时在线段AB 上 D .C ,D 不可能同时在线段AB 的延长线上 【答案】D 3.(全国新课标理10)已知a ,b 均为单位向量,其夹角为θ,有下列四个命题 12:||1[0,)3p a b πθ+>?∈ 22:||1(,]3p a b πθπ+>?∈ 13:||1[0,)3p a b πθ->?∈ 4:||1(,]3p a b πθπ->?∈ 其中真命题是 (A ) 14,p p (B ) 13,p p (C ) 23,p p (D ) 24,p p 【答案】A 4.(全国大纲理12)设向量a ,b ,c 满足a =b =1,a b g =12- ,,a c b c --=060,则c 的最大值等于 A .2 B .3 C .2 D .1 【答案】A 5.(辽宁理10)若a ,b ,c 均为单位向量,且0=?b a ,0)()(≤-?-c b c a ,则||c b a -+的 最大值为 (A )12- (B )1 (C )2 (D )2 【答案】B 6.(湖北理8)已知向量a=(x +z,3),b=(2,y-z ),且a ⊥ b .若x ,y 满足不等式 1x y +≤, 则z 的取值范围为 A .[-2,2] B .[-2,3] C .[-3,2] D .[-3,3] 【答案】D 7.(广东理3)若向量a,b,c满足a∥b且a⊥b,则(2)c a b ?+= A .4 B .3 C .2 D .0 【答案】D

高考数学理试题分类汇编:平面向量

2016年高考数学理试题分类汇编 平面向量 一、选择题 1、(2016年北京高考)设a ,b 是向量,则“||||a b =”是“||||a b a b +=-”的() A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 【答案】D 2、(2016年山东高考)已知非零向量m ,n 满足4│m │=3│n │,cos= 13.若n ⊥(t m +n ),则实数t 的值为 (A )4 (B )–4 (C )94 (D )–94 【答案】B 3、(2016年四川高考)在平面内,定点A ,B ,C ,D 满足DA =DB =DC ,DA ﹒DB =DB ﹒DC =DC ﹒DA =-2,动点P ,M 满足AP =1,PM =MC ,则2BM 的最大值是 (A )434(B )494 (C D 【答案】B

4、(2016年天津高考)已知△ABC 是边长为1的等边三角形,点E D ,分别是边BC AB ,的中点, 连接DE 并延长到点F ,使得EF DE 2=,则AF BC 的值为() (A )85- (B )81 (C )41 (D )811 【答案】B 5、(2016年全国II 高考)已知向量(1,)(3,2)a m a =-, =,且()a b b ⊥+,则m =() (A )-8(B )-6(C )6(D )8 【答案】D 6、(2016年全国III 高考)已知向量13(, )2BA =,31(,),2 BC =则∠ABC= (A)300(B)450(C)600(D)1200 【答案】A 二、填空题 1、(2016年上海高考)在平面直角坐标系中,已知A (1,0),B (0,-1),P 是曲线21x y -=上一个动点,则BA BP ?的取值范围是 . 【答案】[0,12]+ 2、(2016年上海高考)如图,在平面直角坐标系xOy 中,O 为正八边形821A A A 的中心,()0,11A .任取不同的两点j i A A ,,点P 满足=++j i OA ,则点P 落在第一象限的概率是.

定比分点的向量公式及应用

定比分点的向量公式及应用 浙江省永康市古山中学(321307) 吴汝龙 定比分点的向量公式:在平面上任取一点O ,设OP =1,OP =2,若21PP P λ=,则b a OP λ λ λ+++= 111。 特别地,当1=λ时,即P 为线段21P P 的中点,则有b a OP 2 1 21+= 。 用定比分点的向量公式,可使有些问题的解决更简洁。下面举几例说明。 一、求定比λ的值: 例1:已知A (1,2),B (1,3-)及直线l :54-=x y ,直线AB 与l 相交于P 点,求P 点分AB 的比λ。 解:设),(y x P ,则由λ=,得 )11,131()1,3(1)1,2(11),(λ λ λλλλλ+-++=-+++= y x , 又∵P 点在直线l 上, ∴51)31(411-++=+-λ λλλ, ∴31=λ。 例2:如图所示,在ABC ?中,D 为边BC 上的点,且k =,E 为AD 上的一点,且l =,延长BE 交AC 于F ,求F 分有向线段所成的比λ。 解:∵λ=,∴λλλ+++= 111, 又EA l DE =,∴BA l l BD l BE +++=111, 而BC k k DC k BD +==1, ∴BA l l BC k l k BE ++++= 1)1)(1(, ∵B 、E 、F 共线,∴设BF t BE =,而BA t BC t BF t λ λλ+++=11 ∴ BA t BC t BA l l BC k l k λ λλ+++=++++111)1)(1( F E D C B A

∴???????+=+++=+l l t k l k t 11) 1)(1(1λλλ,解得k k l )1(+=λ。 二、求直线上点的坐标 例3:已知点)1,1(--A ,)5,2(B ,点C 为直线AB 上一点,且5-=,求C 点的坐标。 分析:先求出C 点分的λ的值,再利用定比分点的向量公式求出点C 的坐标。 解:∵5-=,∴5==CB λ, 利用定比分点的坐标公式有 )4,2 3 ()5,2(65)1,1(616561=+--=+=OB OA OC 。 ∴C 点的坐标为)4,2 3 (。 例4:已知)3,2(A ,)5,1(-B ,且AB AC 3 1 =,3=,求点C ,D 的坐标。 分析:由题设,运用定比分点的向量公式,可以求得点C ,D 的坐标。 解:设),(11y x C ,),(22y x D , ∵AB AC 31 = ,∴2 11== λ, ∴根据定比分点的向量公式有OB OA OC 2 11111 λλλ+++= , ∴)311 ,1()5,1(31)3,2(32)5,1(2 1121 )3,2(2111),(11=-?+?=-?++?+=y x 同理由AB AD 3=得2 3 2- == λ, ∴根据定比分点的向量公式有OB OA OC 2 11111 λλλ+++= , ∴)9,7()5,1(3)3,2(2)5,1(2 3123 )3,2(2311 ),(22-=-?+?-=-?+- +?-=y x

线段的定比分点公式的应用(精品绝对好)

线段的定比分点公式的应用 一、难点知识剖析 (一)、在运用线段的定比分点坐标公式时,要注意(x 1,y 1)是起点的坐标,(x 2,y 2)是终点的坐标,(x ,y)表示分点的坐标,在每个等式中涉及到四个不同的量,它们分别表示三个坐标和定比λ,只要知道其中任意三个量,便可求第四个量. (二)、如何确定定比分点坐标公式中的λ 1、由坐标确定:分点坐标 终点坐标起点坐标 分点坐标--=--=--= y y y y x x x x 2121λ 2、由12 PP PP λ= 确定:先求||||21PP =λ2 1PP =λP 1与2PP 的方向决定λ的符号. 例:设点P 1(),11y x ,),(222y x P ,点P 是直线 21P P 上任意一点,且满足 1 2PP PP λ= ,求点P 的坐标. (三)、特殊情况的分析 1、λ=0时,分点P 与起点P 1重合 2、λ=1时,分点P 为线段P 1P 2的中点 3、λ不可能等于-1(若λ=-1,则P 1、P 2重合,与P 1P 2为线段矛盾) ∴λ∈(-∞,-1)∪(-1,+∞) 4、无论λ取何实数(当然λ≠-1)分点P 不可能与终点P 2重合 二、例题讲解 例1、已知点A 分有向线段的比为2,求下列定比λ:(1)A 分的比;(2)B 分的比;(3)C 分的比.

分析:本题直接用公式计算不太方便,若画出图表就一目了然. 解答:因为A分的比为2,所以A在BC之间,且|BA|=2|AC|(如图所示) 例2、已知P分所成的比为λ,O为平面上任意一点,. 求证:线段定比分点向量公式 证明:∵P分所成比为λ, 例3、已知三点A(x1,y1),B(x2,y2),C(x3,y3),D点内分的比为,E在BC上,且使△BDE的面积是△ABC面积的一半,求向量的坐标.(提示:三角形面积等于两边与其夹角正弦乘积的一半) 分析:要求的坐标,就要求D点的坐标,也要求E点的坐标.由于E点在线段BC上,且已知B、C两点的坐标,因此我们只要能确定E分有向线段的比,应用定比分点公式就能求出E点的坐标,将E点坐标减去D点的坐标就可得到向量. 解答:如图所示,

高中高考数学专题复习平面向量含试题与详细解答

高中高考数学专题复习平面向量含试题与详细解答 1.平面上有一个△ABC 和一点O ,设OA a =,OB b =,OC c =,又OA 、BC 的中点分别为D 、E ,则向量DE 等于( ) A. () 12a b c ++ B. () 1 2a b c -++ C. ( ) 12a b c -+ D. () 1 2 a b c +- 2.在平行四边形ABCD 中,E 、F 分别是CD 和BC 的中点,若AF AE AC μλ+=,其中R ∈μλ,,则μλ+的值是 A . 34 B .1 C . 32 D. 3 1 3.若四边形ABCD 是正方形,E 是CD 的中点,且AB a =,AD b =,则BE = A.12b a + B.12a b + C.12b a - D.1 2 a b - 4.在平面内,已知31==,0=?OB OA , 30=∠AOC ,设 n m +=, (,R m n ∈),则n m 等于 A . B .3± C .1 3± D .3 ± 5.在等腰Rt ABC △中,90A ∠=,(1,2),(,)(0)AB AC m n n ==>,则BC = ( ) A .(-3,-1) B .(-3,1) C .(3,1)- D .(3,1) 6.已知,,A B C 三点共线,且(3,6)A -,(5,2)B -,若C 点横坐标为6,则C 点 的纵坐标为( ). A .13- B .9 C .9- D .13 7.设a 、b 、c 是非零向量,则下列说法中正确..是 A .()()a b c c b a ??=?? B. a b a b -≤+ C .若a b a c ?=?,则b c = D .若//,//a b a c ,则//b c 8.设四边形ABCD 中,有DC =2 1 ,且||=|BC |,则这个四边形是 A.平行四边形 B.等腰梯形 C. 矩形 D.菱形 9.已知()()0,1,2,3-=-=,向量+λ与2-垂直,则实数λ的值为( ). A.17- B.17 C.1 6 - D.16

定比、定比分点公式

(3)定比、定比分点公式 一、教学内容分析 本节是的第三节课,是学习向量坐标表示及运算、向量的模与平行之后的又一个新的知识点.它既是对前两节内容复习与巩固,又是对向量知识的进一步深化与拓展,如式子 12PP PP λ=中的λ由实数推广到定比.同时,经历定比分点公式的推导过程,让学生领悟定比分点的多元化表示方法. 本节的教学重点是定比分点公式的形成、深化、拓展与应用.难点是定比λ的理解、确定及定比分点公式中分点、始点、终点坐标位置的识别. 根据本节特点,教师采取启发、提问为主的教学方法;学生则进行自主学习.即课前进行主动预习,课中进行讨论与交流,课后进行探索研究. 二、教学目标设计 1理解定比的概念,掌握定比分点公式; 2通过定比分点公式的推导过程,巩固向量的运算方法; 感悟定比分点的几种表达方式; 3通过本节的学习,提升发现能力、推理能力,渗透数形结合 思想. 三、教学重点及难点 定比的概念,定比分点公式的推导和应用. 四、教学流程设计

五、教学过程设计 一、 情景引入 观察思考,引入新课 问题1:设)1,2(A ,)1,2(--B ,)2,4(C 三点共线,可知BA ∥AC ,即存在实数λ,使BA = λAC ??,那么实数λ= . 而若?BC CA λ=,则λ= . [说明](1)本问题由共线三点坐标求实数λ,它既是对前一节向量平行的复习与巩固,同时又为定比λ的产生作好铺垫(2)通过本题可以看出使两向量平行的实数λ的取值可正可负. 问题2:设1P (1,1),2P (4,4), λ=1.当12PP PP λ=时,你能求出点P 的坐标吗(引出课题) [说明]问题2是由共线三点中的两点坐标和定比λ的值求第三点坐标,本题给出的点具有一定的特殊性,这样便于学生利用数形结合思想猜出结果,尝试成功的快乐. 二、学习新课 1.定比分点公式

高中数学平面向量测试题

平面向量板块测试 第Ⅰ卷 (选择题 共60分) 一、选择题(12×5′=60′) 1.下列五个命题:①|a 2|=2a ;②a b a b a =?2;③222)(b a b a ?=?;④2222)(b b a a b a +?-=-; ⑤若a ·b =0,则a =0或b =0. 其中正确命题的序号是 ( ) A.①②③ B.①④ C.①③④ D.②⑤ 2.若AB =3e ,=-5e 且|AD |=|,则四边形ABCD 是 ( ) A.平行四边形 B.菱形 C.等腰梯形 D.非等腰梯形 3.将函数y =sin x 按向量a =(1,-1)平移后,所得函数的解析式是 ( ) A.y ′=sin(x ′-1)-1 B.y ′=sin(x ′+1)-1 C.y ′=sin(x ′+1)+1 D.y ′=sin(x ′-1)+1 4.若有点1M (4,3)和2M (2,-1),点M 分有向线段21M M 的比λ=-2,则点M 的坐标为 ( ) A.(0,-35) B.(6,7) C.(-2,-3 7 ) D.(0,-5) 5.若|a +b |=|a -b |,则向量a 与b 的关系是 ( ) A.a =0或b =0 B.|a |=|b | C.ab =0 D.以上都不对 6.若|a |=1,|b |=2,|a +b |=7,则a 与b 的夹角θ的余弦值为 ( ) A.-21 B.21 C.3 1 D.以上都不对 7.已知a =31e -42e ,b =(1-n )1e +3n 2e ,若a ∥b 则n 的值为 ( ) A.- 54 B.5 4 C.4 D.2 8.平面上三个非零向量a 、b 、c 两两夹角相等,|a |=1,|b |=3,|c |=7,则|a +b +c |等于 ( ) A.11 B.27 C.4 D.11或27 9.等边△ABC 中,边长为2,则·BC 的值为 ( ) A.4 B.-4 C.2 D.-2 10.已知△ABC 中,)(2222444b a c c b a +=++,则∠C 等于 ( ) A.30° B.60° C.45°或135° D.120° 11.将函数y =f (x )cos x 的图象按向量a =( 4 π ,1)平移,得到函数x y 2sin 2=的图象,那么函数f (x )可以是 ( ) A.cos x B.2cos x C.sin x D.2sin x

立体几何(向量法)—找点难(定比分点公式)

立体几何(向量法)—找点难(定比分点公式) 例1(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))如图, 四棱柱 ABCD -A 1B 1C 1D 1中, 侧棱A 1A ⊥底面ABCD , AB (Ⅰ) 证明B 1C 1⊥CE ; (Ⅱ) 求二面角B 1-CE -C 1的正弦值. (Ⅲ) 设点M 在线段C 1E 上, 且直线AM 与平面ADD 1A 1所成角的正弦值为6 , 求线段AM 的长. 【答案】解:方法一:如图,以点A 为原点建立空间直角坐标系,依题意得A (0,0,0),B (0,0,2),C (1,0,1),B 1(0,2,2),C 1(1,2,1),E (0,1,0). (1)证明:易得B 1C 1→=(1,0,-1),CE →=(-1,1,-1),于是B 1C 1→·CE → =0,所以B 1C 1⊥CE . (2)B 1C → =(1,-2,-1), 设平面B 1CE 的法向量=(x ,y ,z ),

则?????·B 1C →=0,m · CE →=0,即?????x -2y -z =0,-x +y -z =0,消去x ,得y +2z =0,不妨令z =1,可得一个法向量 为=(-3,-2,1). 由(1),B 1C 1⊥CE ,又CC 1⊥B 1C 1,可得B 1C 1⊥平面CEC 1,故B 1C 1→ =(1,0,-1)为平面CEC 1 的一个法向量. 于是cos 〈,B 1C 1→〉=m ·B 1C 1→ |m |·|B 1C 1→|=-414×2=-2 77,从而sin 〈,B 1C 1→ 〉=217. 所以二面角B 1-CE -C 1的正弦值为217. (3)AE →=(0,1,0),EC 1→=(1,1,1).设EM →=λEC 1→=(λ,λ,λ),0≤λ≤1,有AM →=AE →+EM →=(λ,λ+1,λ).可取AB → =(0,0,2)为平面ADD 1A 1的一个法向量. 设θ为直线AM 与平面ADD 1A 1所成的角,则 sin θ=|cos 〈AM →,AB → 〉|=|AM →·AB →||AM →|·|AB →|= 2λ λ2+(λ+1)2+λ2×2=λ3λ2+2λ+1. 于是 λ3λ2+2λ+1=26 ,解得λ=1 3(负值舍去),所以AM = 2. 方法二:(1)证明:因为侧棱CC 1⊥平面A 1B 1C 1D 1, B 1 C 1?平面A 1B 1C 1 D 1,所以CC 1⊥B 1C 1.经计算可得B 1 E =5,B 1C 1=2,EC 1=3,从而 B 1E 2=B 1 C 21+EC 21,所以在△B 1EC 1中,B 1C 1⊥C 1E .又CC 1,C 1E ? 平面CC 1E ,CC 1∩C 1E =C 1,所以B 1C 1⊥平面CC 1E ,又CE ?平面CC 1E ,故B 1C 1⊥CE . (2)过B 1 作B 1G ⊥CE 于点G ,联结C 1G .由(1),B 1C 1⊥CE .故CE ⊥平面B 1C 1G ,得CE ⊥C 1G ,

2014年高考数学(理)试题分项版解析:专题05 平面向量(分类汇编)Word版含解析

1. 【2014高考福建卷第8题】在下列向量组中,可以把向量()2,3=a 表示出来的是( ) A.)2,1(),0,0(21==e e B .)2,5(),2,1(21-=-=e e C.)10,6(),5,3(21==e e D.)3,2(),3,2(21-=-=e e 2. 【2014高考广东卷理第5题】已知向量()1,0,1a =-,则下列向量中与a 成60的是( ) A.()1,1,0- B. ()1,1,0- C.()0,1,1- D.()1,0,1- 3. 【2014高考湖南卷第16题】在平面直角坐标系中,O 为原点,()),0,3(),3,0(,0,1C B A -动点D 满足 CD =1,则OA OB OD ++的最大值是_________. 【答案】17+ 【解析】因为C 坐标为()3,0且1CD =,所以动点D 的轨迹为以C 为圆心的单位圆,则D 满足参数方程

4. 【2014高考江苏卷第12题】如图在平行四边形ABCD 中,已知8,5AB AD ==, 3,2CP PD AP BP =?=,则AB AD ?的值是 . 5. 【2014陕西高考理第13题】设2 0π θ< <,向量()()1cos cos 2sin ,,,θθθb a =,若b a //,则 =θtan _______.

6. 【2014高考安徽卷理第10题】在平面直角坐标系xOy 中,已知向量,,1,0,a b a b a b ==?=点Q 满足 2()OQ a b =+.曲线{cos sin ,02}C P OP a b θθθπ==+≤≤,区域{0,}P r PQ R r R Ω=<≤≤<. 若C Ω为两段分离的曲线,则( ) A. 13r R <<< B.13r R <<≤ C.13r R ≤<< D.13r R <<< 考点:1.平面向量的应用;2.线性规划. 7. 【2014高考北京版理第10题】已知向量a 、b 满足1||=a ,)1,2(=b ,且0b a =+λ(R λ∈),则 ||λ= .

高考数学试题分类汇编 平面向量

高考数学试题分类汇编 平面向量 一、选择题 1.(四川理4)如图,正六边形ABCDEF 中,BA CD EF ++= A .0 B .BE C .AD D .CF 【答案】D 【解析】BA CD EF BA AF EF BF EF CE EF CF ++=++=+=+= 2.(山东理12)设 1A ,2A ,3A ,4A 是平面直角坐标系中两两不同的四点,若1312 A A A A λ=(λ∈R ),1412A A A A μ=(μ∈R ),且1 1 2 λ μ + =,则称 3A ,4A 调和分割1A ,2A ,已知 平面上的点C ,D 调和分割点A ,B 则下面说法正确的是 A .C 可能是线段AB 的中点 B .D 可能是线段AB 的中点 C .C , D 可能同时在线段AB 上 D .C ,D 不可能同时在线段AB 的延长线上 【答案】D 3.(全国新课标理10)已知a ,b 均为单位向量,其夹角为θ,有下列四个命题 12:||1[0, )3p a b πθ+>?∈ 22:||1(,]3p a b πθπ+>?∈ 13:||1[0,)3p a b πθ->?∈ 4:||1(,]3p a b π θπ->?∈ 其中真命题是 (A ) 14,p p (B ) 13,p p (C ) 23,p p (D ) 24,p p 【答案】A 4.(全国大纲理12)设向量a ,b ,c 满足a =b =1,a b =1 2- ,,a c b c --=0 60,则c 的 最大值等于 A .2 B .3 C .2 D .1 【答案】A 5.(辽宁理10)若a ,b ,c 均为单位向量,且0=?b a ,0)()(≤-?-c b c a ,则||c b a -+的 最大值为 (A )12- (B )1 (C )2 (D )2 【答案】B 6.(湖北理8)已知向量a=(x +z,3),b=(2,y-z ),且a ⊥ b .若x ,y 满足不等式 1 x y +≤, 则z 的取值范围为 A .[-2,2] B .[-2,3] C .[-3,2] D .[-3,3] 【答案】D 7.(广东理3)若向量a,b,c满足a∥b且a⊥b,则(2)c a b ?+= A .4 B .3 C .2 D .0 【答案】D

定比、定比分点公式讲解学习

定比、定比分点公式

8.1(3)定比、定比分点公式 一、教学内容分析 本节是8.1的第三节课,是学习向量坐标表示及运算、向量的模与平行之后的又一个新的知识点.它既是对前两节内容复习与巩固,又是对向量知识的进一步深化与拓展,如式子 12PP PP λ=u u u r u u u r 中的λ由实数推广到定比.同时,经历定比分点公式的推导过程,让学生领悟定比分点的多元化表示方法. 本节的教学重点是定比分点公式的形成、深化、拓展与应用.难点是定比λ的理解、确定及定比分点公式中分点、始点、终点坐标位置的识别. 根据本节特点,教师采取启发、提问为主的教学方法;学生则进行自主学习.即课前进行主动预习,课中进行讨论与交流,课后进行探索研究. 二、教学目标设计 1理解定比的概念,掌握定比分点公式; 2通过定比分点公式的推导过程,巩固向量的运算方法; 感悟定比分点的几种表达方式; 3通过本节的学习,提升发现能力、推理能力,渗透数形结 合思想. 三、教学重点及难点 定比的概念,定比分点公式的推导和应用. 四、教学流程设计

五、教学过程设计 一、 情景引入 观察思考,引入新课 问题1:设)1,2(A ,)1,2(--B ,)2,4(C 三点共线,可知BA u u u r ∥AC u u u r ,即存在实数λ,使BA u u u r = λAC u u u r ,那么实数λ= . 而若 BC CA λ=u u u r u u u r ,则λ= . [说明](1)本问题由共线三点坐标求实数λ,它既是对前一节向量平行的复习与巩固,同时又为定比λ的产生作好铺垫(2)通过本题可以看出使两向量平行的实数λ的取值可正可负. 问题2:设1P (1,1),2P (4,4), λ=1.当12PP PP λ=u u u r u u u r 时,你能求出点 P 的坐标吗?(引出课题) [说明]问题2是由共线三点中的两点坐标和定比λ的值求第三点坐标,本题给出的点具有一定的特殊性,这样便于学生利用数形结合思想猜出结果,尝试成功的快乐. 二、学习新课

相关主题
文本预览
相关文档 最新文档