当前位置:文档之家› 试验一同步发电机励磁控制试验

试验一同步发电机励磁控制试验

试验一同步发电机励磁控制试验
试验一同步发电机励磁控制试验

实验一同步发电机励磁控制实验

一、实验目的

1.加深理解同步发电机励磁调节原理和励磁控制系统的基本任务。

2.了解微机励磁调节装置的基本控制方式。

3.了解几种常用励磁限制器的作用。

4.掌握励磁调节装置的基本使用方法。

二、原理与说明

同步发电机励磁系统由励磁功率单元和励磁调节装置两部分组成,它们和同步发电机结合在一起构成一个闭环反馈控制系统,称为发电机励磁控制系统。励磁控制系统的三大基本任务是:稳定电压、合理分配无功功率和提高电力系统稳定性。

实验用的励磁控制系统示意图1-1如下所示,交流励磁电源取自380V市电,构成他励励磁系统,励磁系统的可控整流模块由TQLC-III微机自动励磁装置控制。

图1-1 励磁控制系统示意图

TQLC-III型微机自动励磁装置的控制方式有四种:恒U g(恒机端电压方式,保持机端电压稳定)、恒I L(恒励磁电流方式,保持励磁电流稳定)、恒Q(恒无功方式,保持发电机输出的无功功率稳定)和恒α(恒控制角方式,保持控制角稳定),可以任选一种方式运行。恒Q和恒α方式一般在抢发无功的时候才投入。大多数情况下应选择恒电压方式运行,这样能满足发电机并网后调差要求,恒励流方式下并网的发电机不具备调差特性。

同步发电机并入电力系统之前,励磁调节装置能维持机端电压在给定水平。当操作励磁调节装置的增减磁按钮,可以升高或降低发电机电压;当发电机并网运行时,操作励磁调节装置的增减磁按钮,可以增加或减少发电机的无功输出。

无论是在“手动”还是“自动”方式下,都可以操作增减磁按钮,所不同的

是调节的参数不同。在“自动”方式下,调节是的机端电压,也就是上下平移特性曲线,在“手动”方式下,改变的是励磁电流的大小,此时即使在并网的情况下,也不具备调差特性。

三、实验项目与方法

3.1 不同α角对应的励磁电压测试

本实验机组不并网。

1) 参照“同步发电机准同期并列实验”完成实验接线。

2) 检查机组控制屏上各指示仪表的指针是否指在0位置,如不在则应调到0位置。

3) 合上机组控制屏上的“220V电源”开关,检查开关状态:控制屏一次系统图上1QF处信号灯应绿灯亮,红灯熄灭。

4) 合上“调速励磁电源”开关(380V)。注意,一定要先合“220V电源”开关,再合“调速励磁电源”开关,否则,励磁或调速输出的功率模块可能处于失控状态!

5) 根据液晶显示屏显示和面板指示灯状态检查调速、励磁、同期装置是否正常;通过菜单检查各项参数是否设置正确。

6) 将调速装置“方式选择”开关选择为“自动”或“手动”方式,“远方/就地”选择为“就地”(选择为“远方”时,就地控制失效)。“启动/停止”开关选择为“启动”,此时,调速装置开始输出控制信号。

通过“增速”按钮逐渐升高电动机转速,当按住“增速”按钮不动时,转速将快速升高。接近额定转速时,采用“点动”的方式操作按钮,使电动机达到需要的转速。

7) 将励磁装置“方式选择”开关拨到中间位置(“恒Q/恒α”),10秒后,将“恒Q/恒α”开关选择为“恒α”(此时的增磁、减磁按钮控制导通角α的减小和增大),“远方/就地”开关选择为“就地”。当机组转速升到额定附近时,“启动/停止”开关选择为“启动”,此时,调节器开始输出控制信号。

通过“增磁”按钮逐渐升高发电机电压,当按住“增磁”按钮不动时,电压将快速升高。接近额定电压时,采用“点动”的方式操作按钮,使发电机达到需要的电压。

实验时,调节励磁电流为表1-1规定的若干值,记下对应的α角,对应的励磁电压,观察其变化规律。(励磁电流、α角及励磁电压在励磁装置液晶显示屏上读取)

实验完毕后停机,应严格按照“同步发电机准同期并列实验”中的停机步骤

执行。

表1-1 不同控制角下的状态参数

3.2 同步发电机起励

同步发电机的起励方式有两种:恒机端电压方式起励,恒励磁电流方式起励。恒机端电压方式起励,起励后的发电机电压稳定在手动设定的电压水平上;恒励磁电流方式起励,起励后的发电机励磁电流稳定在手动设定的电流水平上。

本实验机组不并网。

A. 恒α励磁电流方式起励

1) 将调速装置“方式选择”开关选择为“自动”或“手动”方式,“远方/就地”选择为“就地”。“启动/停止”开关选择为“启动”。按增速按钮,使发电机组频率达到表2-4所示数值。

2) 将励磁调节装置“方式选择”开关选择为“恒I L”方式,“远方/就地”选择为“就地”。当机组转速升到额定附近时,“启动/停止”开关选择为“启动”,按“增磁”按钮,使发电机电压达到接近需要电压。

说明:

在恒I L方式下,按“增磁”按钮表示增加发电机励磁电流给定值,进而改变发电机电压。

每次实验完毕后停机,应严格按照“同步发电机准同期并列实验”中的停机步骤执行。

改变起动时机组转速,重复步骤1)~3),将记录数据填入表1-2。

表1-2 恒α方式起励测试

B. 恒机端电压方式起励

1) 将调速装置“方式选择”开关选择为“自动”或“手动”方式,“远方/就地”选择为“就地”。“启动/停止”开关选择为“启动”。按增速按钮,使发电机组频率达到表1-4所示数值。

2) 将励磁装置“方式选择”开关选择为“恒Ug”方式,“远方/就地”选择为“就地”。当机组转速升到额定附近时,“启动/停止”开关选择为“启动”。按“增磁”按钮,使发电机电压达到接近需要电压。

说明:

在恒Ug方式下,按“增磁”按钮表示增加发电机机端电压给定值。

3) 观测在起励时励磁电流和励磁电压的变化,并记录起励后的发电机稳态电压、励磁电流、励磁电压和控制角α。

每次实验完毕后停机,应严格按照“同步发电机准同期并列实验”中的停机步骤执行。

改变起动时机组转速,重复步骤1)~3),将记录数据填入表1-3。

表1-3 恒Ug方式起励测试

实验报告要求

1. 在同步发电机励磁控制实验中,当励磁装置以“恒(触发)控制角α”方式运行时,那么发电机电压与机组转速(频率)呈何种关系变化,为什么?

2. 在同步发电机励磁控制实验中,当励磁装置以“恒Ug”方式运行时,如果改变机组(频率)转速,那么发电机电压相对)呈何种关系变化,为什么?

实验二 调差系数的测定

在励磁装置中,使用的调差公式为(按标么值计算):Q K U U q g B *±=,它是将无功功率的一部分叠加到电压给定值上,其中Ug 为电压给定值,Q 为无功功率,Kq 为调差系数。

一、 实验步骤:

1)启动机组,满足条件后并网运行,并退出同期装置,并网步骤见“同步发电机准同期并列实验”。

2)调速装置设置为“自动”方式,励磁装置设置为“恒Ug ”方式。 3)用降低系统电压的方法(调节调压器)以增加发电机无功输出,记录一系列机端电压和无功功率的数据,将数据填入表2-1。(如果记录数据时,励磁调节装置上的数值显示有波动,则可以参考实验台上方的电压表和无功表,计算时额定无功功率为KVar ,额定电压220V )

4)作出调节特性曲线,并计算出调差系数。比较计算得出的调差系数与设置的调差系数是否大致相同。(设置的“调差系数”可在励磁装置的主界面下按“OK ”键,进入主菜单,进入“参数设置”选项查看) A. 零调差实验

设置调差系数=0,在励磁装置的主界面下按“OK ”键,进入主菜单,进入“参数设置”选项,将调差系数设为“00.0%”。退出保存设置。实验步骤同A 。

用降低系统电压的方法增加发电机无功输出,记录一系列机端电压、和无功功率的数据,作出调节特性曲线。

图2-1 调节特性曲线

B. 正调差实验

设置调差系数=5%,在励磁装置主界面下按“OK ”键,进入主菜单,进入“参数设置”选项,将“调差系数”设为“05.0%”。将“调差极性”设为“+”。退出保存设置。实验步骤同A 。

用降低系统电压的方法增加发电机无功输出,记录一系列机端电压、和无功功率的数据,作出调节特性曲线。 C. 负调差实验

设置调差系数=-5%,在励磁装置主界面下按“OK ”键,进入主菜单,进入“参数设置”选项,将“调差系数”设为“05.0%”。将“调差极性”设为“-”。退出保存设置。实验步骤同A 。

用降低系统电压的方法增加发电机无功输出,记录一系列机端电压、和无功功率的数据,作出调节特性曲线。

表2-2 不同调差系数下机端电压与无功关系表

D. 低励限制实验

欠励限制器的作用是用来防止发电机因励磁电流过度减小而引起失步或因机组过度进相引起定子端部过热。欠励限制器的任务是:确保机组在并网运行时,将发电机的功率运行点(P 、Q)限制在欠励限制曲线上方。

欠励限制器的工作原理:根据给定的欠励限制方程和当前有功功率P 计算出对应的无功功率下限:min (/)()Q A B P B =?-。将min Q 与当前Q 比较,若:min Q Q >,欠励限制器不动作;min Q Q <,欠励限制器动作,自动增加无功输出,使min Q Q >。(均为绝对值计算)。

实验步骤:

1) 启动机组,满足条件后并网运行,调速装置设置为“自动”方式,励磁调节装置设置为“恒Ug ”方式。

2) 在励磁装置主界面下按“OK ”键,进入主菜单。进入“参数设置”选项,设置“欠励限制”A (如A=2)和B(如B =1)的值。退出并保存设置。

3) 进入“保护投退”选项,将“欠励限制”选为“投”,其他两项设为“退”。退出并保存设置。

注意:此功能若未投入,实验所要求的功能将无法实现。

4) 调节有功功率和无功功率输出分别为0,用增大系统电压的方法使发电机

进相运行,直到欠励限制器动作(励磁装置的欠励限制指示灯亮),记下此时的有功P和无功Q,此时再升高系统电压或按“减磁”按钮励磁调节均不起作用。如果系统电压上升到450V左右时,仍不能使欠励限制器动作,则可以进一步按励磁装置的减磁按钮,使发电机进相程度更深,从而使欠励限制器动作。

5) 恢复系统电压为正常值(380V),使发电机恢复运行在非欠励区,调节有功、无功输出均为0。

6) 调节50%、100%额定有功,重复上面的实验,并记录欠励限制时的无功值,填入表2-3。

表2-3 不同有功下欠励限制动作时的无功值

7) 根据试验数据作出欠励限制曲线P=f(Q),并计算出该直线的斜率。

8) 停机

调节有功输出和无功输出分别为零,在不带负载的情况下跳开同期开关1QF,使同步发电机与系统解列。在发电机与系统解列之后,将励磁调节装置“启动/停止”选择为“停止”,使发电机端电压降为零,将调速装置“启动/停止”选择为“停止”,使电动机转速降为零。待机组停稳后断开机组控制屏上的“调速励磁电源开关”“220V电源”开关、实验台上的开关1QF、2QF、3QF、4QF、5QF、6QF开关,断开机组控制屏和实验台的“总电源”开关,最后断开市电总电源开关。

二、实验要求:

比较设定调差与实际调差的误差并分析原因。

三、实验报告要求

1) 整理各项实数据

2) 分析各项负载实验的测试结果

四、思考题

比较恒机端电压和恒α的运行方式特点,说说他们各适合在何种场合应用?对电力系统运行而言,哪一种运行方式最好?

直流伺服电机实验报告

实验六 直流伺服电机实验 一、实验设备及仪器 被测电机铭牌参数: P N =185W ,U N =220V ,I N =1.1A , 使用设备规格(编号): 1.MEL 系列电机系统教学实验台主控制屏(MEL-I 、MEL-IIA 、B ); 2.电机导轨及测功机、转速转矩测量(MEL-13); 3.直流并励电动机M03(作直流伺服电机); 4.220V 直流可调稳压电源(位于实验台主控制屏的下部); 5.三相可调电阻900Ω(MEL-03); 6.三相可调电阻90Ω(MEL-04); 7.直流电压、毫安、安培表(MEL-06); 二、实验目的 1.通过实验测出直流伺服电动机的参数r a 、e κ、T κ。 2.掌握直流伺服电动机的机械特性和调节特性的测量方法。 三、实验项目 1.用伏安法测出直流伺服电动机的电枢绕组电阻r a 。

2.保持U f=U fN=220V,分别测取U a =220V及U a=110V的机械特性n=f(T)。3.保持U f=U fN=220V,分别测取T2=0.8N.m及T2=0的调节特性n=f(Ua)。4.测直流伺服电动机的机电时间常数。 四、实验说明及操作步骤 1.用伏安法测电枢的直流电阻Ra

表中Ra=(R a1+R a2+R a3)/3; R aref=Ra*a ref θ θ + + 235 235 (3)计算基准工作温度时的电枢电阻 由实验测得电枢绕组电阻值,此值为实际冷态电阻值,冷态温度为室温。按下式换算到基准工作温度时的电枢绕组电阻值: R aref=Ra a ref θ θ + + 235 235

同步发电机励磁系统实验研究

摘要 同步发电机励磁系统对电力系统的可靠性和稳定性起着重要作用,在我国,励磁系统的可靠性和技术性能指标还不能令人满意。除了制作水平的提高外,利用特殊的动态测试设备在设计、生产、运行、维护等各个阶段对励磁系统进行设计验证和动态性能测试,是提高励磁系统可靠性和技术性能指标的重要手段。随着计算机技术的发展,数字仿真测试技术在电力系统研究领域正起着越来越重要的作用。因此研究采用数字仿真测试技术对同步发电机励磁系统进行动态性能测试,对提高励磁系统的可靠性和技术指标有着重要意义。 关键词:同步发电机,励磁系统 Abstract The excitation system of synchronous generator plays an important role in reliability and stability of power system. However, the reliability of current excitation system in China is not very satisfactory. To improve the reliability and performance of excitation system, in addition to enhancing the fabrication technology, it is critical to conduct design verifying and dynamic performance testing at the stages of design, manufacture, run and maintenance with special dynamic testing devices. With the rapid development of computer science and technology, digital simulation testing is becoming more and mo re important in Power System research field. Adopting digital simulation testing technology in the dynamic performance testing of synchronous generator excitation systems has a great significance in improving the reliability and performance of an excitation system. Keyword: Synchronous Generator, Excitation System

浅谈同步发电机的励磁系统

浅谈同步发电机的励磁系统 技术分类:电机与运动控制作者:赵宇发表时间:2006-11-10 1 概述 向同步发电机的转子励磁绕组供给励磁电流的整套装置叫做励磁系统。励磁系统是同步发电机的重要组成部分,它的可靠性对于发电机的安全运行和电网的稳定有很大影响。发电机事故统计表明发电机事故中约1/3为励磁系统事故,这不但影响发电机组的正常运行而且也影响了电力系统的稳定,因此必须要提高励磁系统的可靠性,而根据实际情况选择正确的励磁方式是保证励磁系统可靠性的前提和关键。我国电力系统同步发电机的励磁系统主要有两大类,一类是直流励磁机励磁系统,另一类是半导体励磁系统。 2 直流励磁机励磁系统 直流励磁机励磁系统是采用直流发电机作为励磁电源,供给发电机转子回路的励磁电流。其中直流发电机称为直流励磁机。直流励磁机一般与发电机同轴,励磁电流通过换向器和电刷供给发电机转子励磁电流,形成有碳刷励磁。直流励磁机励磁系统又可分为自励式和它励式。自励与他励的区别是对主励磁机的励磁方式而言的,他励直流励磁机励磁系统比自励励磁机励磁系统多用了一台副励磁机,因此所用设备增多,占用空间大,投资大,但是提高了励磁机的电压增长速度,因而减小了励磁机的时间常数,他励直流励磁机励磁系统一般只用在水轮发电机组上。 图1 自励直流励磁机励磁系统原理接线图 上图中 LH——电流互感器 YH——电压互感器 F ——同步发电机 FLQ——同步发电机的励磁线圈 L——直流励磁机 LLQ——直流励磁机的励磁线圈 Rc——可调电阻

采用直流励磁机供电的励磁系统,在过去的十几年间,是同步发电机的主要励磁系统。目前大多数中小型同步发电机仍采用这种励磁系统。长期的运行经验证明,这种励磁系统的优点是:具有独立的不受外系统干扰的励磁电源,调节方便,设备投资及运行费用也比较少。缺点是:运行时整流子与电刷之间火花严重,事故多,性能差,运行维护困难,换向器和电刷的维护工作量大且检修励磁机时必须停主机,很不方便。近年来,随着电力生产的发展,同步发电机的容量愈来愈大,要求励磁功率也相应增大,而大容量的直流励磁机无论在换向问题或电机的结构上都受到限制。因此,直流励磁机励磁系统愈来愈不能满足要求。目前,在100MW及以上发电机上很少采用。 3 半导体励磁系统 半导体励磁系统是把交流电经过硅元件或可控硅整流后,作为供给同步发电机励磁电流的直流电源。半导体励磁系统分为静止式和旋转式两种。 3.1 静止式半导体励磁系统 静止式半导体励磁系统又分为自励式和它励式两种。 3.1.1自励式半导体励磁系统 自励式半导体励磁系统中发电机的励磁电源直接由发电机端电压获得,经过控制整流后,送至发电机转子回路,作为发电机的励磁电流,以维持发电机端电压恒定的励磁系统,是无励磁机的发电机自励系统。最简单的发电机自励系统是直接使用发电机的端电压作励磁电流的电源,由自动励磁调节器控制励磁电流的大小,称为自并励可控硅励磁系统,简称自并励系统。自并励系统中,除去转子本体极其滑环这些属于发电机的部件外,没有因供应励磁电流而采用的机械转动或机械接触类元件,所以又称为全静止式励磁系统。下图为无励磁机发电机自并励系统框图,其中发电机转子励磁电流电源由接于发电机机端的整流变压器ZB提供,经可控硅整流向发电机转子提供励磁电流,可控硅元件SCR由自动励磁调节器控制。系统起励时需要另加一个起励电源。 图2 无励磁机发电机自并励系统原理接线图

直流他励电动机实验报告记录

直流他励电动机实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

电机学实验报告——直流他励电动机实验 姓名:张春 学号:2100401332

实验三直流他励电动机实验 一、实验目的 1.掌握用实验方法测取直流他励电动机的工作特性和机械特性。 2.掌握直流他励电动机的调速方法。 二、实验内容 1.工作特性和固有机械特性 保持和不变,时,测取工作特性、、及 固有机械特性。 2.调速特性 (1)改变电枢电压调速 保持电动机不变,常数,测取。 (2)改变励磁电流调速 保持,常数,时,测取。 3.观察能耗制动过程 三、实验说明及操作步骤 1.他励直流电动机的工作特性和固有机械特性 按图3-4接线,电阻选用挂箱上的阻值为、电流为 的可调电阻,作为直流并励电动机的起动电阻,电阻选用挂箱上的阻值为的可调电阻. 并接上励磁电流表(mA)和电枢电流表(A)。

(1)打开设备开关和设置好各个按钮状态,将电动机励磁回路电阻调至阻值最 小,电枢回路起动电阻调至阻值最大。 (2)调节直流稳压电源上的“电压调节”旋钮,使电动机输入电压为,电动机电枢回路起动电阻调至最小值,增加电动机磁场调节电阻,使电动机转速达额定值。 (3)调出电动机的额定运行点,确定电动机的额定励磁电流。 (4)在保持,不变的条件下,逐次减小电动机的负载,在额定负载到 空载范围内,测取电动机电枢电流,转速和输出转矩,共取组数据,记录于表3-1中。 表中:电动机输入功率P1=U a I a+U f I fn,输出功率P2=0.105nT2 效率 表3-1 工作特性和固有机械特性实验数据 实 验 数 据 1.10 1.0 0.9 0.8 0.4 0.3 0. 2 16 638 169 3 171 17 34 1.18 1.08 0.9 7 0.8 6 0.4 0.2 8 0. 15 计 算 数 260 .96 238 .96 216 .96 194 .96 106 .96 84. 96 62.9 6 19818216514771.50.27.3

同步发电机励磁控制实验

同步发电机励磁控制实验 一、实验目的 1.加深理解同步发电机励磁调节原理和励磁控制系统的基本任务; 2.了解自并励励磁方式和它励励磁方式的特点; 3.熟悉三相全控桥整流、逆变的工作波形;观察触发脉冲及其相位移动; 4.了解微机励磁调节器的基本控制方式; 5.了解电力系统稳定器的作用;观察强励现象及其对稳定的影响; 6.了解几种常用励磁限制器的作用; 7.掌握励磁调节器的基本使用方法。 二、原理与说明 同步发电机的励磁系统由励磁功率单元和励磁调节器两部分组成,它们和同步发电机结合在一起就构成一个闭环反馈控制系统,称为励磁控制系统。励磁控制系统的三大基本任务是:稳定电压,合理分配无功功率和提高电力系统稳定性。 实验用的励磁控制系统示意图如图1所示。可供选择的励磁方式有两种:自并励和它励。当三相全控桥的交流励磁电源取自发电机机端时,构成自并励励磁系统。而当交流励磁电源取自380V 市电时,构成它励励磁系统。两种励磁方式的可控整流桥均是由微机自动励磁调节器控制的,触发脉冲为双脉冲,具有最大最小α角限制。 微机励磁调节器的控制方式有四种:恒U F (保持机端电压稳定)、恒I L (保持励磁电流稳定)、恒Q (保持发电机输出无功功率稳定)和恒α(保持控制角稳定)。其中,恒α方式是一种开环控制方式,只限于它励方式下使用。 同步发电机并入电力系统之前,励磁调节装置能维持机端电压在给定水平。当操作励磁调节器的增减磁按钮,可以升高或降低发电机电压;当发电机并网运行时,操作励磁调节器的增减磁按钮,可以增加或减少发电机的无功输出,其机端电压按调差特性曲线变化。 图1 励磁控制系统示意图

同步发电机怎么励磁

无刷励磁发电机的轴端头是一台交流发电机,其转子是发电绕组,发出的电流通过固定在发电机轴上的导线引导固定在轴上的硅整流管,整流后的直流直接进入转子绕组,其中没有整流刷这个东西,所以成为无刷励磁。 无刷励磁发电机的轴端头是一台交流发电机,其转子是发电绕组,发出的电流通过固定在发电机轴上的导线引导固定在轴上的硅整流管,整流后的直流直接进入转子绕组,其中没有整流刷这个东西,所以成为无刷励磁。曾经风靡过一段时间,但是由于整流管坏了就得停机,所以现在已经用的很少了,基本都采用自复励系统。 同步发电机励磁方式分为两大类:一类是用直流发电机作为励磁电源的直流励磁系统;另一类是用硅整流装置将交流转化成直流后供给励磁的整流器励磁系统。现说明如下: 1.直流励磁机励磁 直流励磁机通常与同步发电机同轴,采用并励或他励接法。采用他励接法时,励磁机的励磁电流由另一台被称为副励磁机的同轴的直流发电机供给。 2.静止励磁器励磁 同一轴上有3台发电机,即主发电机、交流主励磁机和交流副励磁机。副励磁机的励磁电流开始时由外部直流电源提供,待电压建立起来后再转为自励(有时采用永磁发电机)。副励磁机的输出电流经过静止晶闸管整流器整流后供给主励磁机,而主励磁机的交流输出电流经过静止的三相桥式硅整流器整流后供给主发电机的励磁绕组。 3.旋转整流器励磁 静止整流器的直流输出必须经过电刷和集电环才能输送到旋转的励磁绕组,对于大容量的同步发电机,其励磁电流达到了数千安培,使得集电环严重过热。因此,在大容量的同步发电机中,常采用不需要电刷和集电环的旋转整流器励磁系统。主励磁机是旋转电枢式三相同步发电机,旋转电枢的交流电流经与主轴一起旋转的硅整流器整流后,直接送到主发电机的转子励磁绕组。交流主励磁机的励磁电流由同轴的交流副励磁机经静止的晶闸管整流器整流后供给。用于这种励磁系统取消了集电环和集电装置,故又称为无刷励磁系统。

直流伺服电机实验报告

直流电机的特性测试 一、实验要求 在实验台上测试直流电机机械特性、工作特性、调速特性(空载)和动态特性,其中测试机械特性时分别测试电压、电流、转速和扭矩四个参数,根据测试结果拟合转速—转矩特性(机械特性),并以X 轴为电流,拟合电流—电压特性、电流—转速特性、电流—转矩特性,绘制电机输入功率、输出功率和效率曲线,即绘制电机综合特性曲线。然后在空载情况下测试电机的调速特性,即最低稳定转速和额定电压下的最高转速,即调速特性;最后测试不同负载和不同转速阶跃下电机的动态特性。 二、实验原理 1、直流电机的机械特性 直流电机在稳态运行下,有下列方程式: 电枢电动势 e E C n =Φ (1-1) 电磁转矩 e m T C I =Φ (1-2) 电压平衡方程 U E I R =+ (1-3) 联立求解上述方程式,可以得到以下方程: 2e e e m U R n T C C C = -ΦΦ (1-4) 式中 R ——电枢回路总电阻 Φ——励磁磁通 e C ——电动势常数 m C ——转矩常数 U ——电枢电压 e T ——电磁转矩 n ——电机转速

在式(1-4)中,当输入电枢电压U 保持不变时,电机的转速n 随电磁转矩e T 变化而变化的规律,称为直流电机的机械特性。 2、直流电机的工作特性 因为直流电机的励磁恒定,由式(1-2)知,电枢电流正比于电磁转矩。另外,将式(1-2)代入式(1-4)后得到以下方程: e e U R n I C C = -ΦΦ (1-5) 由上式知,当输入电枢电压一定时,转速是随电枢电流的变化而线性变化的。 3、直流电机的调速特性 直流电机的调速方法有三种:调节电枢电压、调节励磁磁通和改变电枢附加 电阻。 本实验采取调节电枢电压的方法来实现直流电机的调速。当电磁转矩一定 时,电机的稳态转速会随电枢电压的变化而线性变化,如式(1-4)中所示。 4、直流电机的动态特性 直流电机的启动存在一个过渡过程,在此过程中,电机的转速、电流及转矩 等物理量随时间变化的规律,叫做直流电机的动态特性。本实验主要测量的是转速随时间的变化规律,如下式所示: s m dn n n T dt =- (1-6) 其中,s n ——稳态转速 m T ——机械时间常数 本实验中,要求测试在不同负载和不同输入电枢电压(阶跃信号)下电机的 动态特性。 5、传感器类型 本实验中,测量电机转速使用的是角位移传感器中的光电编码器;测量电磁 转矩使用的是扭矩传感器。

最新发电机励磁系统

发电机励磁系统

发电机励磁系统 一、简介: 励磁系统是同步发电机的重要组成部分,它是供给同步发电机励磁电源的一套系统,励磁系统是一种直流电源装置。励磁系统一般由两部分组成:(如图一所示)一部分用于向发电机的磁场绕组提供直流电流,以建立直流磁场,通常称作励磁功率输出部分(或称励磁功率单元)。另一部分用于在正常运行或发生故障时调节励磁电流,以满足安全运行的需要,通常称作励磁控制部分(或称励磁控制单元或励磁调节器)。 励磁功率单元向同步发电机转子提供直流电流,即励磁电流,以建立直流磁场。励磁功率单元有足够的可靠性并具有一定的调节容量。在电力系统运行中,发电机依靠电流的变化进行系统电压和本身无功功率的控制因此,励磁功率单元应具备足够的调节容量以适应电力系统中各种运行工况的要求。而且它有足够的励磁顶值电压和电压上升速度具有较大的强励能力和快速的响应能力。 励磁调节器根据输入信号和给定的调节准则控制励磁功率单元的输出,是整个励磁系统中较为重要的组成部分。励磁调节器的主要任务是检测和综合系统运行状态的信息,以产生相应的控制信号,经放大后控制励磁功率单元以得到所要求的发电机励磁电流。系统正常运行时,励磁调节器就能反映发电机电压高低以维持发电机电压在给定水平。应能迅速反应系统故障,具备强行励磁等控制功能以提高暂态稳定和改善系统运行条件。

在电力系统的运行中,同步发电机的励磁控制系统起着重要的作用,它不仅控制发电机的端电压,而且还控制发电机无功功率、功率因数和电流等参数。 图一 二、励磁系统必须满足以下要求: 1、正常运行时,能按负荷电流和电压的变化调节(自动或手动)励磁电流,以维持电压在稳定值水平,并能稳定地分配机组间的无功负荷。 2、整流装置提供的励磁容量应有一定的裕度,应有足够的功率输出,在电力系统发生故障,电压降低时,能迅速地将发电机地励磁电流加大至最大值(即顶值),以实现发动机安全、稳定运行。 3、调节器应设有相互独立的手动和自动调节通道; 4、励磁系统应装设过电压和过电流保护及转子回路过电压保护装置。 三、励磁系统方式: 励磁方式,就是指励磁电源的不同类型。 一般分为三种:直流励磁机方式、交流励磁机方式、静止励磁方式。 静止励磁系统。由机端励磁变压器供给整流器电源,经三相全控整流桥控制发电机的励磁电流。

同步发电机的励磁建模

2.1同步电机模型 同步电机是电力系统的主要元件,电磁暂态和机电互动现象十分丰富,模型的建立和求解往往决定着仿真的精度和能够反映实际系统动态过程的程度,因此,很多专家在同步发电机建模方面展开研究并取得多项成果。 同步电机是励磁控制系统的控制对象,又和励磁控制系统密切相关系。研究励磁系统的动态特性,离不开对同步电机动态特性的分析。同步电机的过渡过程比较复杂,通过以d,q 坐标系统推导出来的派克(Park)方程作为同步电机的基本方程,求出完整的动态模型;在某些特定的条件下,可由完整的动态模型得到简化模型。在小干扰情况下,可以将非线性的完整模型在工作点附近线性化,得出线性化模型:同样,在某些特定的条件下,还可以求得简化的线性模型。 同步电机dqO 坐标下的暂态方程称为派克方程,它是一组非线性的微分方 程组。由于dqO 三轴之间的解耦以及aqO 坐标下的电感参数是常数,因此派克变换及同步电机的派克方程在实用分析中得到广泛的使用。 同步电机具有三个定子绕组、一个转子绕组、两个阻尼绕组。六个绕组间 都有磁的耦合,加上转子位置不断变化,绕组间的耦合又必然是转子的位置函 数。要正确反映上述情况就需要七个非线性微分方程。 2.1.1同步电机基本方程 由同步电机在d,q 轴的park 微分方程组出发,电压和磁链方程(以标幺值形式)如(2.1)-(2.10)所示: 电压方程: 定子绕组:d q d d ri p U --=ωψψ (2.1) q d q q ri p U --=ωψψ (2.2) 励磁绕组: f f f f p r i U ψ-= (2.3) 阻尼绕组: d d d p i r 1110ψ-= (2.4) q q q p i r 1110ψ-= (2.5) 磁链方程: 定子绕组:d ad f ad d d d i X i X i X 1++-=ψ (2.6) q aq q q q i X i X 1+-=ψ (2.7) 励磁绕组:d ad f f d ad f i X i X i X 1++-=ψ (2.8) 阻尼绕组:d d f ad d ad d i X i X i X 111++-=ψ (2.9) q q q aq q i X i X 111+-=ψ (2.10) 其中,dt d p θθω==。式中各物理量的定义为:d i -负载电流d 轴分量;q i -负载电流q 轴分量;f i -励磁电流;d U -机端电压d 轴分量;q U —机端电压q 轴分量;f U -

发电机励磁系统建模及参数测试现场试验方案

发电机励磁系统建模及参数测试现场试验方案 1.概述 电网“四大参数”中发电机励磁系统模型和参数是电力系统稳定分析的重要组成部分,要获得准确、可信度较高的模型和参数,现场测试是重要的环节。根据发电机励磁系统现场交接试验的一般习惯和行业标准规定的试验内容,本文选择了时域法进行发电机励磁系统的参数辨识及模型确认试验。这种试验方法的优点在于可充分利用现有设备,在常规性试验中获取参数且物理概念清晰明了容易掌握。发电机励磁参数测试确认试验的内容包括:1)发电机空载、励磁机空载及负载试验;2)发电机、励磁机时间常数测试;3)发电机空载时励磁系统阶跃响应试验;4)发电机负载时动态扰动试验等。现场试验结束后,有关部门要根据测试结果,对测试数据进行整理和计算,针对制造厂提供的AVR等模型参数,采用仿真程序或其他手段,验证原始模型的正确性,在此基础上转换为符合电力系统稳定分析程序格式要求的数学模型。为电力系统计算部门提供励磁系统参数。2.试验措施编制的依据及试验标准 1)《发电机励磁系统试验》 2)《励磁调节器技术说明书》及《励磁调节器调试大纲》 3)GB/T7409.3-1997同步电机励磁系统大、中型同步发电机励磁系统技术要求 4)DL/T650-1998大型汽轮发电机自并励静止励磁系统技术条件 3试验中使用的仪器设备 便携式电量记录分析仪,8840录波仪,动态信号分析仪以及一些常规仪表。4试验中需录制和测量的电气参数 1)发电机三相电压UA、UB、UC(录波器录制); 2)发电机三相电流IA、IB、IC(录波器录制); 3)发电机转子电压和转子电流Ulf、Ilf(录波器录制); 对于三机常规励磁还应测量: 1)交流励磁机定子电压(单相)Ue(标准仪表监视) 2)交流励磁机转子电压和转子电流Uef、Ief(录波器录制); 3)永磁机端电压Upmg(录波器录制和中频电压表监视); 4)发电机端电压给定值Vref(由数字AVR直读); 5)励磁机用可控硅触发角(由数字AVR自读); 对于无刷励磁系统除发电机电压电流外,仅需测量励磁机励磁电压电流;但需制造厂家提供励磁机空载饱和特性曲线及相关参数。 5.试验的组织和分工

三相同步发电机实验解读

1.同步发电机运行实验指导书2.发电机励磁调节装置实验指导书3.静态稳定实验(提纲,供参考) 4.发电机保护实验提示 5. 广西大学电气工程学院

同步发电机运行实验指导书 目录 一、实验目的 二、实验装置及接线 三、实验内容 实验一发电机组的起动和同步电抗Xd测定 实验二发电机同期并网实验 实验三发电机的正常运行 实验四发电机的特殊运行方式 实验五发电机的起励实验 四、实验报告 五、参考资料 六、附录 1.不饱和Xd的求法 2.用简化矢量图求Eq和δ 3.同期表及同期电压矢量分析

一、实验目的 同步发电机是电力系统最重要又最复杂的电气设备,在电力系统运行中起着十分重要的作用。通过实验,使学生掌握和巩固同步发电机及其运行的基本概念和基本原理,培养学生的实践能力、分析能力和创新能力,加强工程实线训练,提高学生的综合素质。 二、实验装置及接线 实验在电力系统监控实验室进行,每套实验装置以4KW直流电动机与同轴的1.5KW同步发电机为被控对象,配置常规仪表测量控制屏(常规控制)和自动控制屏(微机监控)。可实现对发电机组的测量、控制、信号、保护、调节、并列等功能,本次同步发电机运行实验,仅采用常规控制方式。 直流电动机-同步发电机组的参数如下: 直流电动机: 型号Z2-42,凸极机 额定功率4KW 额定电压DC220V 额定电流22A 额定转速1500r/min 额定励磁电压DC220V 额定励磁电流0.81A 同步发电机 型号STC-1.5 额定功率 1.5KW 额定电压AC400V(星接) 额定电流 2.7A 额定功率因数0.8 空载励磁电流1A 额定励磁电流2A 同步发电机接线如图电-01所示。发电机通过接触器1KM、转换开关1QS、

浅谈同步发电机的励磁系统

浅谈同步发电机的励磁系统 1 概述 向同步发电机的转子励磁绕组供给励磁电流的整套装置叫做励磁系统。励磁系统是同步发电机的重要组成部分,它的可靠性对于发电机的安全运行和电网的稳定有很大影响。发电机事故统计表明发电机事故中约1/3为励磁系统事故,这不但影响发电机组的正常运行而且也影响了电力系统的稳定,因此必须要提高励磁系统的可靠性,而根据实际情况选择正确的励磁方式是保证励磁系统可靠性的前提和关键。我国电力系统同步发电机的励磁系统主要有两大类,一类是直流励磁机励磁系统,另一类是半导体励磁系统。 2 直流励磁机励磁系统 直流励磁机励磁系统是采用直流发电机作为励磁电源,供给发电机转子回路的励磁电流。其中直流发电机称为直流励磁机。直流励磁机一般与发电机同轴,励磁电流通过换向器和电刷供给发电机转子励磁电流,形成有碳刷励磁。直流励磁机励磁系统又可分为自励式和它励式。自励与他励的区别是对主励磁机的励磁方式而言的,他励直流励磁机励磁系统比自励励磁机励磁系统多用了一台副励磁机,因此所用设备增多,占用空间大,投资大,但是提高了励磁机的电压增长速度,因而减小了励磁机的时间常数,他励直流励磁机励磁系统一般只用在水轮发电机组上。

图1 自励直流励磁机励磁系统原理接线图 上图中LH——电流互感器 YH——电压互感器 F ——同步发电机 FLQ——同步发电机的励磁线圈 L——直流励磁机 LLQ——直流励磁机的励磁线圈 Rc——可调电阻 采用直流励磁机供电的励磁系统,在过去的十几年间,是同步发电机的主要励磁系统。目前大多数中小型同步发电机仍采用这种励磁系统。长期的运行经验证明,这种励磁系统的优点是:具有独立的不受外系统干扰的励磁电源,调节方便,设备投资及运行费用也比较少。缺点是:运行时整流子与电刷之间火花严重,事故多,性能差,运行维护困难,换向器和电刷的维护工作量大且检修励磁机时必须停主机,很不方便。近年来,随着电力生产的发展,同步发电机的容量愈来愈大,要求励磁功率也相应增大,而大容量的直流励磁机无论在

励磁系统试验方案(DOC)

#3发电机励磁系统调试方案 习水电厂#3发电机励磁调节系统改造投运 试验方案 批准: 审定 审核: 编制: 二〇一三年十一月七日

一、概况 习水电厂#3发电机励磁调节系统运行多年,元器件老化严重,故障频繁,运行不可靠,给机组及电网安全运行带来严重威胁,经厂部批准决定进行改造,将原ABB公司生产的ABB UNITROL-F励磁调节设备改造为南瑞科技公司生产的NES-5100励磁调节设备,该工程于2013年11月3日开工,现已安装结束,准备进入调试阶段,为保证调试工作的顺利开展,特编制本调试方案。二、编制依据 试验遵循以下规范但不限于: 发电机励磁系统调度管理规程DL 279-2012-T。 发电机励磁系统及装置安装、验收规程DLT 490-2011。 大型汽轮发电机励磁系统技术条件DLT 843-2010。 三、组织措施 1、领导小组: 组长:邓先进 副组长:刘志刚雷涛 成员:丁明奎邹彬美韦金鹏杨廷模班平胡猛 职责:负责#3发电机励磁调节系统调试工作的整体协调及指

导。 2、试验实施组 组长:雷涛 副组长:杨廷模 成员:李时国杨恩华宋力刘杰运行当班值长 职责:负责#3发电机励磁调节系统的整体调试操作、记录等工作。 3、安全保障组 组长:杨冬 成员:胡猛李晓伶谭刚 职责:负责检查#3发电机励磁调节系统调试期间安全措施的执行情况。 四、调试步骤 ㈠静态试验 1.外围回路检查 励磁调节装置及可控硅整流柜等装置接线无误,符合设计要求。2.设备通电前检查 通电前,励磁调节装置及其它设备作外观、机械结构、插件、

元件检查。无任何异常,应符合通电条件。 3.小电流试验 如图: 1)用调压器在可控硅整流桥交流开关处加电压(100V),在直流开关处加滑动变阻器作为负载,使得流过负载的电流大于2A。2)投入调节器电源,按就地开机按钮,通过增、减磁,观察工控机显示触发角度、转子电压、转子电流与示波器是否一致。4.模拟量测量校验 ⑴用三相保护校验仪输出电压电流,模拟发电机励磁PT 、保护及测量用PT 、发电机定子CT 、发电机转子CT 、同步变压器二次侧输入,观察工控机和信息窗定子电流,转子电流是否各为100%。

上海交大运动控制直流无刷电机实验报告

直流无刷电机实验报告 一、硬件电路原理简述 1、总体硬件电路图 图总体硬件电路原理图 单片机通过霍尔传感器获得转子的位置,并以此为依据控制PWM波的通断。

2、霍尔元件测量值与PWM波通断的关系 图霍尔元件测量值与PWM波通断的关系 二、软件架构 1、Components与变量定义 图 Components列表 PWMMC是用来产生控制电机的PWM波的。添加PWMMC时会同时加入一个eFlexPWM。

PWM_Out对应的是GPIO B2口,这个口电位为高时,电压才会被加到电机上。 GPIO B3控制着一个继电器,用于防止启动时过大的冲击电流。程序开始后不久就应把B3置高。 Halla、Hallb、Hallc对应于3个霍尔传感器。依次为GPIOC3、C4、C6。 TimerInt是用于测速的。根据2次霍尔元件的中断间的时间间隔来计算转速。 2、电机旋转控制代码 for(;;) { Hall_Sensor = 0b00000000; Halla = Halla_GetVal(); Hallb = Hallb_GetVal(); Hallc = Hallc_GetVal(); if(Halla) Hall_Sensor |= 0b00000100; if(Hallb) Hall_Sensor |= 0b00000010; if(Hallc)

Hall_Sensor |= 0b00000001; switch(Hall_Sensor) { case 0b0000011: PESL(eFPWM1_DEVICE, PWM_OUTPUT_A, PWM_SM1_ENABLE); PESL(eFPWM1_DEVICE, PWM_OUTPUT_B, PWM_SM2_ENABLE); break; case 0b0000001: PESL(eFPWM1_DEVICE, PWM_OUTPUT_A, PWM_SM1_ENABLE); PESL(eFPWM1_DEVICE, PWM_OUTPUT_B, PWM_SM0_ENABLE); break; case 0b0000101: PESL(eFPWM1_DEVICE, PWM_OUTPUT_A, PWM_SM2_ENABLE); PESL(eFPWM1_DEVICE, PWM_OUTPUT_B, PWM_SM0_ENABLE); break;

同步发电机准同期并列实验步骤

同步发电机准同期并列实验 一、实验目的 1.加深理解同步发电机准同期并列原理,掌握准同期并列条件; 2.掌握微机准同期控制器及模拟式综合整步表的使用方法; 3.熟悉同步发电机准同期并列过程; 4.观察相关参数。 二、实验项目和方法 (一)机组启动与建压 1.检查调速器上“模拟调节”电位器指针是否指在0位置,如不在则应调到0位置; 2.合上操作电源开关,检查实验台上各开关状态:各开关信号灯应绿灯亮、红灯熄。调速器面板上数码管显示发电机频率,调速器上“微机正常”灯和“电源正常”灯亮; 3.按调速器上的“微机方式自动/手动”按钮使“微机自动”灯亮; 4.励磁调节器选择它励、恒UF运行方式,合上励磁开关; 5.把实验台上“同期方式”开关置“断开”位置; 6.合上系统电压开关和线路开关QF1,QF3,检查系统电压接近额定值380V; 7.合上原动机开关,按“停机/开机”按钮使“开机”灯亮,调速器将自动启动电动机到额定转速; 8.当机组转速升到95%以上时,微机励磁调节器自动将发电机电压建压到与系统电压相等。 (二)手动准同期 将“同期方式”转换开关置“手动”位置。在这种情况下,要满足并列条件,需要手动调节发电机电压、频率,直至电压差、频差在允许范围内,相角差在零度前某一合适位置时,手动操作合闸按钮进行合闸。 观察微机准同期控制器上显示的发电机电压和系统电压,相应操作微机励磁调节器上的增磁或减磁按钮进行调压,直至“压差闭锁”灯熄灭。 观察微机准同期控制器上显示的发电机频率和系统频率,相应操作微机调速器上的增速或减速按钮进行调速,直至“频差闭锁”灯熄灭。 此时表示压差、频差均满足条件,观察整步表上旋转灯位置,当旋转至0o位置前某一合适时刻时,即可合闸。观察并记录合闸时的冲击电流。 具体实验步骤如下: (1)检查调速器上“模拟调节”电位器指针是否指在0位置,如不在则应调到0位置; (2)合上操作电源开关,检查实验台上各开关状态:各开关信号灯应绿灯亮、红灯熄。调速器面板上数码管显示发电机频率,调速器上“微机正常”灯和“电源正常”灯亮; (3)按调速器上的“模拟方式”按钮按下,使“模拟方式”灯亮。合上原动机开关,按下“停机/开机”按钮,开机指示灯亮;

同步发电机励磁系统

四川大学 电力系统自动装置 题目同步发电机励磁系统 学院电气信息学院 专业电气工程及其自动化

同步发电机励磁系统及励磁调节器工作原理 一励磁系统的结构 励磁系统,一般来讲,就是与同步发电机励磁回路电压建立,调整以及必要时使其电压消失的有关元件和设备的总称。 同步发电机的自动励磁调节通常分为两部分: 第一部分是励磁功率单元,用于向发电机的磁场绕组提供直流电流,已建立直流磁场。 第二部分是励磁调节器,用于在正常运行或发生事故时调节励磁电流或自动灭磁等以满足运行的需要。 二自动励磁调节系统的作用: 1。电力系统正常运行时,维持发电机或系统某点电压水平。当发电机无功负荷变化时,一般情况下机端电压要发生相应的变化,此时自动励磁调节装置应能供给要求的励磁功率,满足不同负荷情况下励磁

电流的自动调节,维持机端或系统某点电压水平。 负荷波动—功率变化—电压变化 负荷增大—电压降低—励磁电流增大 同步发电机的励磁系统就是通过不断调节励磁电流来维持给定的电压。 2。合理分配发电机间的无功功率。发电机的无功负荷与励磁电流有着密切的关系,励磁电流的自动调节,要影响发电机间无功负荷的分配,所以对励磁系统的调节特征有一定的要求。

励磁电流的变化只是改变了机组的无功功率和功率角的大小。 与无限大母线并列运行的机组,调节励磁电流可以改变发电机无功功率的数值即控制无功分配。 3。提高电力系统稳定性 电力系统在运行中随时可能受到各种干扰,受到干扰后,电力系统稳定性的要求能够恢复到原来的状态或者过渡到一个新的运行状态。其主要标志是暂态过程结束后,同步发电机能维持或恢复同步运行。励磁调节系统对静态稳定和暂态稳定的影响 (1)对改善静态稳定的影响

电动机实验报告doc

电动机实验报告 篇一:电机实验报告 黑龙江科技大学 综合性、设计性实验报告 实验项目名称电机维修与测试 所属课程名称电机学 实验日期 XX年5.6—5.13 班级电气11-13班 学号 姓名 成绩 电气与信息工程学院实验室 篇二:电机实验报告 实验报告本 课程名称:电机拖动基础班级:电气11-2 姓名田昊石泰旭孙思伟 指导老师:_史成平 实验一单相变压器实验 实验名称:单相变压器实验 实验目的:1.通过空载和短路实验测定变压器的变比和参数。

2.通过负载实验测取变压器的运行特性。 实验项目:1. 空载实验测取空载特性U0=f(I0), P0=f(U0)。 2. 短路实验测取短路特性Uk=f(Ik), Pk=f(I)。 3. 负载实验保持U1=U1N,cos?2?1的条件下,测取U2=f(I2)。 (一)填写实验设备表 (二)空载实验 1.填写空载实验数据表格 2. 根据上面所得数据计算得到铁损耗PFe、励磁电阻Rm、励磁电抗Xm、电压比k (三)短路实验 1. 填写短路实验数据表格 O (四)负载实验 1. 填写负载实验数据表格 表3 cos?2=1 (五)问题讨论 1. 在实验中各仪表量程的选择依据是什么? 根据实验的单相变压器额定电压、额定电流、额定容量、空载电压,单 相变压器电源电压和频率、线圈匝数、磁路材质及几何尺寸等。 2. 为什么每次实验时都要强调将调压器恢复到

起始零位时方可合上电源开关或断开电源开关? 防止误操作造成人身伤害、防止对变压器及其它仪器仪表等设备过压过 流而损坏。 3. 实验的体会和建议 1.电压和电流的区别:空载试验在低压侧施加额定电压,高压侧开路;短路 试验在高压侧进行,将低压侧短路,在高压侧施加可调的低电压。2.测量范围的不同:空载试验主要测量的是铁芯损耗和空载电流, 而短路试 验主测量的是短路损耗和短路电阻。3.测量目的不同:空载试验主要测量数据反映铁芯情况,短路试验反映的是线圈方面的问题。 4.试验时,要注意电压线圈和电流线圈的同名端,要避免接错线。选择的导 线应该是高压导线,要不漏线头要有绝缘外皮保护。5.通过负载试验可以知道变压器的阻抗越小越好。阻抗起着限制变压器的电 流的作用,在设计时我们要考虑这些。 篇三:直流电动机实验报告 电机 实验报告 课程名称:______电机实验_________指导老师:___

同步发电机励磁控制实验..

实验报告 课程名称: 电力系统分析综合实验 指导老师: 成绩:__________________ 实验名称: 同步发电机励磁控制实验 实验类型:________________同组学生姓名:__________ 一、实验目的 1.加深理解同步发电机励磁调节原理和励磁控制系统的基本任务; 2.了解自并励励磁方式和它励励磁方式的特点; 3.熟悉三相全控桥整流、逆变的工作波形;观察触发脉冲及其相位移动; 4.了解微机励磁调节器的基本控制方式; 5.掌握励磁调节器的基本使用方法; 6.了解电力系统稳定器的作用;观察强励现象及其对稳定的影响。 二、原理与说明 同步发电机的励磁系统由励磁功率单元和励磁调节器两部分组成,它们和同步发电机结合在一起就构成一个闭环反馈控制系统,称为励磁控制系统。励磁控制系统的三大基本任务是:稳定电压,合理分配无功功率和提高电力系统稳定性。 图1 励磁控制系统示意图 实验用的励磁控制系统示意图如图l 所示。可供选择的励磁方式有两种:自并励和它励。当三相全控 专业: 电气工程及其自动化 姓名: 学号: 日期: 地点:教2-105

桥的交流励磁电源取自发电机机端时,构成自并励励磁系统。而当交流励磁电源取自380V市电时,构成它励励磁系统。两种励磁方式的可控整流桥均是由微机自动励磁调节器控制的,触发脉冲为双脉冲,具有最大最小α角限制。 微机励磁调节器的控制方式有四种:恒U F (保持机端电压稳定)、恒I L(保持励磁电流稳定)、恒Q(保持发电机输出无功功率稳定)和恒α(保持控制角稳定)。其中,恒α方式是一种开环控制方式,只限于它励方式下使用。 同步发电机并入电力系统之前,励磁调节装置能维持机端电压在给定水平。当操作励磁调节器的增减磁按钮,可以升高或降低发电机电压;当发电机并网运行时,操作励磁调节器的增减磁按钮,可以增加或减少发电机的无功输出,其机端电压按调差特性曲线变化。 发电机正常运行时,三相全控桥处于整流状态,控制角α小于90?;当正常停机或事故停机时,调节器使控制角α大于90?,实现逆变灭磁。 三、实验项目和方法 (一) 不同α角(控制角)对应的励磁电压波形观测 (1)合上操作电源开关,检查实验台上各开关状态:各开关信号灯应绿灯亮、红灯熄; (2)励磁系统选择它励励磁方式:操作“励磁方式开关”切到“微机它励”方式,调节器 面板“它励”指示灯亮; (3)励磁调节器选择恒α运行方式:操作调节器面板上的“恒α”按钮选择为恒α方式,面 板上的“恒α”指示灯亮; (4)合上励磁开关,合上原动机开关; (5)在不启动机组的状态下,松开微机励磁调节器的灭磁按钮,操作增磁按钮或减磁按钮 即可逐渐减小或增加控制角α,从而改变三相全控桥的电压输出及其波形。 注意:微机自动励磁调节器上的增减磁按钮键只持续5秒内有效,过了5秒后如还需

励磁系统建模试验方案

励磁系统建模试验方案

目录 1.试验目的 (1) 2.试验内容 (1) 3.试验依据 (1) 4.试验条件 (1) 5.设备概况及技术数据 (2) 6.试验内容 (4) 7.试验分工 (5) 8.环境、职业健康安全风险因素辨识和控制措施 (6) 9.试验设备 (6)

1.试验目的 对被测试机组的励磁系统进行频率响应以及动态响应测试,确认励磁系统模型参数和特性,为电力系统分析计算提供可信的模型数据。 2.试验内容 2.1励磁系统模型传递函数静态验证试验。 2.2发电机空载特性测量及空载额定状态下定子电压等各物理量的测量。 2.3发电机时间常数测量。 2.4 A VR比例放大倍数测量试验。 2.5系统动态响应测试(阶跃试验)。 2.6 20%大干扰阶跃试验。 2.7对发电机进行频率响应测试。 3.试验依据 Q/GDW142-2012《同步发电机励磁系统建模导则》 设备制造厂供货资料及有关设计图纸、说明书。 4.试验条件 4.1资料准备 励磁调节器制造厂应提供AVR和PSS模型和参数。 电机制造厂应提供发电机的有关参数和特性曲线。 4.2设备状态要求 被试验发电机组励磁系统已完成全部常规的检查和试验,调节器无异常,具备开机条件。

5.设备概况及技术数据 容量为135MW,励磁系统形式为自并励励磁方式,励磁调节器采用南瑞电控公司生产的NES6100型数字励磁调节器。其励磁系统结构框图如图1: 图1 励磁系统框图 5.1励磁调节器模型: 图2 励磁调节器模型

5.2发电机: 生产厂家:南京汽轮机电机厂 型号:QFR-135-2 额定视在功率:158.8 MV A 额定有功功率:135 MW 额定定子电压:13.8 kV 额定定子电流:6645 A 额定功率因数:0.85 额定励磁电流:893 A 额定励磁电压:403 V 额定空载励磁电流:328 A 额定空载励磁电压:147 V 额定转速:3000 r/min 发电机轴系(发电机+燃气轮机)转动惯量(飞轮转矩):18.91t.m2 转子绕组电阻:0.3073Ω(15℃)0.3811Ω(75℃), 0.4179Ω(105℃试验值) 转子绕组电感: 直轴同步电抗Xd(非饱和值/饱和值):219.04/197.15 直轴瞬变电抗Xd’(非饱和值/饱和值):30.02/27.02 直轴超瞬变电抗Xd”(非饱和值/饱和值):19.63/17.67 横轴同步电抗Xq(非饱和值/饱和值):205.96/182.36 横轴瞬变电抗Xq’(非饱和值/饱和值):36.03/32.42 横轴超瞬变电抗Xq”(非饱和值/饱和值):23.1/20.79 直轴开路瞬变时间常数Td0’ : 9.8 秒 横轴开路瞬变时间常数Tq0’ : 1.089秒 直轴开路超瞬变时间常数Td0” : 0.06秒 横轴开路超瞬变时间常数Tq0” : 0.054秒

相关主题
文本预览
相关文档 最新文档