当前位置:文档之家› 三、梁弯曲的内力、变形、应力

三、梁弯曲的内力、变形、应力

三、梁弯曲的内力、变形、应力
三、梁弯曲的内力、变形、应力

目录

引言 (2)

一杆件受拉压的内力、应力、变形 (2)

1.1轴向拉压的内力、轴力图 (2)

1.2 轴向拉压杆横截面上的应力 (5)

1.3 轴向拉压杆横截面上的变形 (7)

1.4 圣维南原理 (9)

1.5 工程结构实例分析 (11)

二圆轴扭转 (15)

2.1、扭转的力学模型及ANSYS建模 (15)

2.2、圆轴扭转时,横截面上的内力偶矩------扭矩 (15)

2.3、圆轴扭转时,横截面上的应力、强度条件 (15)

(1) 横截面上的切应力 (15)

(2) 极惯性矩与抗扭截面系数 (15)

三、梁弯曲的内力、变形、应力 (20)

3.1 梁的弯曲内力、变形 (20)

3.2 弯曲应力 (27)

3.3 工程实例: (31)

四、压杆稳定 (35)

4.1、压杆稳定的概念 (35)

4.2、临界压力 (35)

4.3、三类压杆的临界载荷 (36)

4.4、压杆稳定性计算 (36)

4.5 工程实例4 (38)

引 言

《材料力学》是机械、土木类工科学生重要的技术基础课,其计算方法和思想在工程计算中应用非常广泛。为了使学生对课内知识体系有一个比较清晰的感性认识,锻炼学生的求真精神和实践动手能力,进一步培养学生的综合创造力,兴趣小组的学生们在教师的指导下基于ANSYS 有限元分析软件对《材料力学》的某些知识点进行数值计算与模拟,得到相关的数据、云图或动画,从而对理论公式进行形象验证,更开阔了学生的视野,提高了学生的CAE 水平。

本研究内容包括三部分:

(1)对《材料力学》课程中的基本内容,包括拉压、剪切、扭转、弯曲的内力、应力、变形、压杆稳定、动载荷、疲劳强度、圣维南原理等重要理论知识点情况通过ANSYS 进行分析,得到内力、变形、应力、应变相关的数据、云图或动画;

(2)对重要知识点的典型例题通过ANSYS 进行计算,并与理论计算结果进行对比验证。

(3)对《材料力学》理论知识能够解决的典型工程实际问题进行建模、分析与计算。

一 杆件受拉压的内力、应力、变形

1.1轴向拉压的内力、轴力图

在工程结构和机械中,发生轴向拉伸或压缩的构件是很常见的。 在轴向外力作用下,杆件横截面上唯一的内力分量是轴力N F

轴向拉压杆件的受力特点:作用于杆件上的合外力的作用线与杆件轴线重合,杆件变形是沿轴线方向的延长或缩短。

对如图1-1a 所示的两端受轴向外力p F 作用的杆件,用一假想平面沿任意横截面将杆截为两段,由任一部分的平衡方程0=∑F ,可求得截面上的轴力

N F =p F (如图1-1b)

图1-1

一般规定拉伸的轴力为正,压缩的轴力为负。

例1.1 试用Ansys 绘制图1-2a 所示杆件的轴力图。(设a=1m).

图1-2a

解:水平方向受力平衡得:

8kN F P3=

根据平衡方程及杆的各段的轴力方程得到如下理论值:

kN F kN

F kN

F N N N 4126321-=-==

下面用ANSYS 进行绘图计算:有限元模型如图1-2b ,绘制轴力图如图1-2c 。

从上图可以读取AB 段横截面上的轴力为红色区域,值为6000N ;从左向右BC 段蓝色区域轴力为-12000N ;CD 段绿色区域轴力值为-4000N 。

可见理论值与通过ANSYS 计算得到的值相同。

图 1-2b ANSYS 模型

1-2c 杆件的轴力图

1.2 轴向拉压杆横截面上的应力

轴向拉压杆横截面上的内力分量只有轴力N F ,而轴力N F 是截面上轴向分布内力的合力,即

?A =A

N d F σ

由于外力合力的作用线与杆轴重合(图1-3a),材料又是均匀连续的,则有试验结果表明,对于细长杆,在离加力端一定距离的大部分区域,其横截面在杆件变形后仍保持平面,杆件各纵向线段的伸长都相等,这表明横截面上只有正应力且是均匀分布的,如图1-3b 所示。于是

A =A =?σσA

N d F

图1-3

可得轴向拉压杆横截面上正应力的计算公式

A

F N

=

σ 正应力与轴力具有相同的正负符号,即受拉的应力为正,受压的为负。 例1.2:三角架结构尺寸及受力如图1-4a 所示。其中kN F P 2.22=,钢杆BD 的直径mm d BD 4.25=,钢杆CD 的横截面面积231032.2mm CD ?=A 。试用ANSYS 求BD 与CD 的横截面上的正应力。 解:BD 杆横截面积:()

4

)

10

4.25(14.32

3-?? =410064506.5-?m ;

CD 杆横截面积:;1032.2101032.2363m m --?=?? E=Pa 11101.2?

图 1-4

首先用杆单元建模如图1-4c 所示:

理论值:根据平衡方程及应力的计算公式得MPa CD 75.962.0MPa;BD ==σσ

用ANSYS 分析的应力图为1-4d 所示;ANSYS 分析结果:

图1-4c ANSYS 模型

BD 杆横截面上的应力

080.61991E BD +=σ

CD 杆横截面上的应力

07-0.95690E +=CD σ

1.3 轴向拉压杆横截面上的变形

实验表明,杆件在轴向拉力或压力作用下,杆件沿轴线方向将发生伸长或缩短,而在杆件的横向也同时发生缩短或伸长,如图1-5a,b 所示。

图1-5

杆沿轴线方向的变形称为轴向变形或纵向变形。 拉压杆的胡克定律 EA

l

F l N =

?,式中的比例系数E 为材料常数,称为弹性模量。由实验测定。EA 称为抗拉(压)刚度。

图1-4d 三角架的应力图

例 1.3 如图1-6a所示的受多个力作用的等直杆,横截面面积2

A ,材料

500mm

的弹性模量E=200GPa,试求杆件总的纵向变形量。

图1-6a

解:用杆单元画出受力图模型:

图1-6b ANSYS模型图

用ANSYS画出轴力图;Array

图1-6c 杆的轴力图

从上图得出结果:6000=NAB F N 2000-=NBC F N 3000=NCD F N ; 理论值为: k F NAB 6=N k F NBC 2-=N k F NCD 3=N ;

ANSYS 分析的变形结果:=?l 0.65000E-04(m)。 理论值为: =?l mm 3105.6-? 1.4 圣维南原理

对于作用在物体边界上一小块表面上的外力系可以用静力等效(主矢量、主矩相同)并且作用于同一小块表面上的外力系替换,这种替换造成的区别仅在离该小块表面的近处是显著的,而在较远处的影响可以忽略。 其要点有两处:

一、两个力系必须是按照刚体力学原则的“等效”力系;

二、替换所在的表面必须小,并且替换导致在小表面附近失去精确解。 一般对连续体而言,替换所造成显著影响的区域深度与小表面的尺寸有关。

下面用为一个100mm ,宽为30mm 的长方形钢板(),两端受到集中载荷

N F 10001-=、N F 10002=;试用ANSYS 分析应力分布情况。

图1-6d 杆的变形图

1-7a 结构简图

F 1

图1-7d 板在集中力作用下应力分布云图

图1-7b 有限元剖分图

图1-7c 变形前后比较

1.5 工程结构实例分析

例题1.5.1:以等截面板为研究对象建立有限元分析模型,定性讨论其变形与应力分布情况。其ANSYS 模型及变形图如(a1、b1,a2、b2 a3、b3)所示。

a2 杆受拉变形前后 a2 杆受压变形前后

b1 杆受压模型

a1 杆受拉模型

b3 杆受压变形前后位移

图1-8

a3 杆受拉变形前后位移

例 1.5.2 用ANSYS 求解如图1-9a 所示桁架结构的节点位移、支座反力和每根杆内的应力。其中2/200000mm N E =,杆的横截面积23250mm A =。

分析过程如下:

图1-9c 桁架变形图

图1-9a

图1-9b ANSYS 模型图

表1-1

表1-2 支座反力

图1-9d 节点位移图

表1-3 各杆的应力

图1-9e 桁架应力分布

二 圆轴扭转

2.1、扭转的力学模型及ANSYS 建模 构件特征----等圆截面直杆。

受力特征------外力偶矩的作用面与杆件轴线垂直。 变形特征------杆件各横截面绕杆轴作相对转动。 2.2、圆轴扭转时,横截面上的内力偶矩------扭矩

传动轴的转速、传递的功率与外力偶矩之间的关系为

)(9545m N n

P

M r ?=

扭矩-----杆件受扭时,横截面上的内力偶矩,用T 表示。

扭矩的正负号规定------用右手螺旋法则,扭矩矢量的方向指向截面的为负,背离截面的为正。

扭矩图-----表示圆杆个截面上的扭矩沿杆轴线方向变化规律的图线。 2.3、圆轴扭转时,横截面上的应力、强度条件

(1) 横截面上的切应力

t

p p

W T I T I T ==

=

ρτρτmax 它的大小与该点到圆心的距离成正比,其方向与该点的半径相垂直。 (2) 极惯性矩与抗扭截面系数 实心圆截面

3416

,

32

D W D I t P π

π

=

=

空心圆截面

)1((16

),

1(32

)(32

33

4

4

4

4απαππ

-=

-=

-=

D W D d D I t P

式中, D

d =

α (3) 圆周扭转的强度条件 ][m a x ττ≤==t

W T

(4) 强度计算的三类问题

强度校核 ][max ττ≤==

t

W T

截面设计 ]

[τT

W t ≥

由t W 计算D 许用载荷计算 ][τ≤e M 由T 计算e M

2.4、圆轴扭转变形的有限元计算

1、左端固定、右端受主动力矩的薄壁圆轴的扭转变形的有限元分析。

2-1a 、b 、c 分别是有限元分析模型、变形图、应力分布云图。

图2-1a 有限元分析模型图

2、左端固定、右端受主动力矩的实心圆轴的扭转变形的有限元分析。

2-2a 、b 、c 分别是有限元分析模型、变形图、应力分布云图。

图 2-1b 变形图

图2-1c 应力分布云图

图2-2a 实心圆轴扭转变形有限元分析模型图

图 2-2b 变形图

图2-2c 应力分布云图

3、左端固定、右端受主动力矩的实心矩形截面长轴的扭转变形的有限元分析。

2-3a 、b 、c 分别是有限元分析模型、变形图、应力分布云图。

图 2-3b 变形图

图2-3a 实心圆轴扭转变形有限元分析模型图

2-3c应力分布云图

三、梁弯曲的内力、变形、应力

3.1 梁的弯曲内力、变形

作用于杆件上的外力垂直于杆件的轴线,使原为直线的轴线变形后成为曲线,这种形式的变形称为弯曲变形,以弯曲变形为主的杆件称为梁。当作用于杆件上所有的外力都在纵向对称面内时,弯曲变形后的轴线也将是位于这个对称面内的一条曲线。

剪力:梁的弯曲内力称为剪力,它是与横截面相切的分布内力的合力。

弯矩:是与横截面垂直的分布内力的合力偶矩。

剪力方向:截面的左段对右段向上相对错开时,横截面上的剪力规定为正,反之为负。

弯矩方向:在横截面处弯曲变形凸向下时,截面上的弯矩规定为正,反之为负。

弯曲变形用挠度和转角来定义。

下面分别以悬臂梁和简支梁在集中载荷和均布载荷作用为例做出剪力图、弯矩图、绘制梁的变形曲线图。

3.1、图3-1a所示的悬臂梁,自由端受集中力kN

作用,绘制梁的剪力

F20

弯曲变形、应力状态概念练习

第七章练习 (弯曲变形) 一 选择题 24.如图所示变截面杆,用积分法求挠曲线方程时应分( )段积分。 A .2; B.3; C.3; D.4。 25.如13题图所示变截面杆,用积分法求挠曲线方程时共有( )个积分常数。 A .2; B.4; C.6; D.8。 二 填空题 1.如图所示,用积分法求图示梁的变形时,所应满足的边界条 件是 A 截面挠度为零, C 截面挠度等于CB 杆伸长 。 2.提高梁弯曲刚度最有效的措施是 增加支座 ,减少跨长 。 三. 简答题 1. 静不定结构如图所示,试对每一结构分别选取一种基本静定系,写出相应的变形协调方程。 第八章练习 (应力状态,强度理论) 一 选择题 1.轴向拉伸构件,按四个强度理论中的( )强度理论计算的相当应力相同。 A .第一和第二; B . 第三和第四; C .第一和第三; D . 第一、第二、第三和第四。 2.圆轴受扭时,轴表面各点处于( )。 A . 单向应力状态; B . 二向应力状态; C . 三向应力状态; D . 各向等应力状态。 题25图 题1图 (a ) (b )

3.等截面杆受轴向拉力作用,如图所示,A 、B 、C 三点的应力状态( )。 A . 各不相同; B . 相同; C . 仅A 、C 两点的应力状态相同; D . 仅B 、C 两点的应力状态相同。 4.图示某危险点的应力状态,其主应力1σ和最大切应力为( )。 A .120MPa ,30 MPa ; B.130 MPa, 80 MPa ; C.150MPa ,60 MPa ; D.140 MPa,, 80MPa 。 5.按照第三强度理论,如图所示应力状态的相当应力是为( )MPa 。 A .100; B.80; C.60; D.120。 6.对于一个微分单元体,下列结论中( )是错误的。 A .正应力最大的面上切应力必为零; B.切应力最大的面上正应力必为零; C.正应力最大的面与切应力最大的面相交成450角; D.正应力最大的面与正应力最小的面必互相垂直。 7.两单元体的分别如图(a )(b )所示,且σ与τ的数值相等,由第三强度理论比较两者的危险程度,则( )。 A .(a )为平面应力状态,(b )为空间应力状态,两者无法比较; B.应力状态图(b )较图(a )危险; C.两者的危险程度相同; D.应力状态图(a )较图(b )危险。 8.以下结论中( )是正确的。 A .第一、二强度理论主要用于塑性材料; B.第三、四强度理论主要用于脆性材料; C.第一强度理论主要用于单向应力状态; D.第四强度理论可用于塑性屈服的任何应力状态。 9. 图示应力单元,已知σx = 40MPa,σy = 40MPa,τxy = 20MPa ,应力单元的主应力大小为 ( )。 A .σ1 = 40MPa ,σ2= 0,σ3=-40MPa ; B .σ1 = 60MPa ,σ2= 20 MPa ,σ3=0 ; C.σ1 = 80MPa ,σ2= 0,σ3=-80MPa ; D.σ1 = 100MPa ,σ2= 60 MPa ,σ3=0 。 题3图 题4图 题5图 单位MPa (a ) (b )

工程力学第六章答案 梁的变形

第五章 梁的变形 测试练习 1. 判断改错题 5-1-1 梁上弯矩最大的截面,挠度也最大,弯矩为零的截面,转角亦为零. ( ) 5-1-2 两根几何尺寸、支承条件完全相同的静定梁,只要所受荷栽相同,则两梁所对应的截面的挠度及转角相同,而与梁的材料是否相同无关。 ( ) 5-1-3 悬臂梁受力如图所示,若A 点上作用的集中力P 在A B 段上作等效平移,则A 截面的转角及挠度都不变。 ( ) 5-1-4 图示均质等直杆(总重量为W ),放置在水平刚性平面上,若A 端有一集中力P 作用,使A C 部分被提起,C B 部分仍与刚性平面贴合,则在截面C 上剪力和弯矩均为零。 ( ) 5-1-5 挠曲线近似微分方程不能用于求截面直梁的位移。 ( ) 5-1-6 等截面直梁在弯曲变形时,挠度曲线的曲率最大值发生在转角等于零的截面处。 ( ) 5-1-7两简支梁的抗刚度E I 及跨长2a 均相同,受力如图所示,则两梁跨中截面的挠度不等而转角是相等的。 ( ) 5-1-8 简支梁在图示任意荷载作用下,截面C 产生挠度和转角,若在跨中截面C 又加上一 个集中力偶M 0作用,则梁的截面C 的挠度要改变,而转角不变。 ( ) 5-1-9 一铸铁简支梁,在均布载荷作用下,当其横截面相同且分别按图示两种情况放置时,梁同一截面的应力及变形均相同。 ( ) 5-1-10 图示变截面梁,当用积分法求挠曲线方程时,因弯矩方程有三个,则通常有6个积分常量。 ( ) 题5-1-3图 题5-1-4图 题5-1-8图 题5-1-7图 题5-1-9图

2.填空题 5-2-1 挠曲线近似微分方程EI x M x y ) ()(" - = 的近似性表现在 和 。 5-2-2 已知图示二梁的抗弯度E I 相同,若使二者自由端的挠度相等,则 =2 1 P P 。 5-2-3 应用叠加原理求梁的变形时应满足的条件是: 。 5-2-4 在梁的变形中挠度和转角之间的关系是 。 5-2-5 用积分法求图示的外伸梁(B D 为拉杆)的挠曲线方程时,求解积分常量所用到的边界条件是 ,连续条件是 。 5-2-6 用积分法求图示外伸梁的挠曲线方程时,求解积分常量所用到边界条件是 ,连续条件是 。 5-2-7 图示结构为 次超静定梁。 5-2-8 纯弯曲梁段变形后的曲率与外力偶矩M 的关系为 ,其变形曲线为 曲线。 5-2-9 两根E I 值相同、跨度之比为1:2的简支梁,当承受相同的均布荷载q 作用时,它们的挠度之比为 。 5-2-10 当梁上作用有均布荷载时,其挠曲线方程是x 的 次方程。梁上作用有集中力时,挠曲线方程是x 的 次方程。梁上作用有力偶矩时,挠曲线方程是x 的 次方程。 5-2-11 图示外伸梁,若A B 段作用有均布荷载,B C 段上无荷载,则A B 段挠曲线方程是x 的 次方程;B C 段挠曲线方程是x 的 次方程。 5-2-12 减小梁变形的主要途径有: , , 。 题5-2-2图 题5-2-7图 题5-2-6图 x C 题5-2-11图

材料力学作业7(弯曲变形)

第七章 弯曲变形 一、 选择题 1、等截面直梁在弯曲变形时,挠曲线曲率最大发生在( )处。 A. 挠度最大 B. 转角最大 C. 剪力最大 D. 弯矩最大 2、将桥式起重机的主钢梁设计成两端外伸的外伸梁较简支梁有利,其理由是( )。 A. 减小了梁的最大弯矩值 B. 减小了梁的最大剪力值 C. 减小了梁的最大挠度值 D. 增加了梁的抗弯刚度值 3、图示两梁的抗弯刚度EI相同,载荷q相同, 则下列结论中正确的是( )。 A. 两梁对应点的内力和位移相同 B. 两梁对应点的内力和位移不相同 C. 两梁对应点的内力相同,位移不同 D. 两梁对应点的内力不同,位移相同 4、为提高梁的抗弯刚度,可通过( )来实现。 A. 选择优质材料 B. 合理安排梁的支座,减小梁的跨长 C. 减少梁上作用的载荷 D. 选择合理截面形状 5、图示梁的边界条件为 。 A. w A =0,θA =0 B. w B =0,θB =0 C. w A =0,w B =0 D. w A =0,θA =0 6、图示悬臂梁在BC 二处承受大小相等、方向相反的一对力偶,其数值为M 0。试分析判断下列挠度曲线中哪一种是正确的。( ) (A ) (B ) (C ) (D )

二、计算题 1、图示梁,弯曲刚度EI为常数。试绘制挠曲轴的大致形状,并用积分法计算截面C的转角。 2、图示简支梁,左右端各作用一个力偶矩分别为M1和M2的力偶,欲使挠曲轴拐点位于离左端l/3处,则M1和M2应保持何种关系。

3、图示梁,弯曲刚度EI为常数。试用叠加法计算截面B的转角和截面C的挠度。 4、图示电磁开关,由铜片AB与电磁铁S组成。为使端点A与触点C接触,试求磁铁S所需吸力的最小值F以及间距a的尺寸。铜片横截面的惯性矩I z=0.18×10-12m4,弹性模量E=101GPa。

材料力学B试题6弯曲变形

弯曲变形 1. 已知梁的弯曲刚度EI 为常数,今欲使梁的挠曲线在x =l /3处出现一拐点,则比值M e1/M e2为: (A) M e1/M e2=2; (B) M e1/M e2=3; (C) M e1/M e2=1/2; (D) M e1/M e2=1/3。 答:(C) 2. 外伸梁受载荷如 致形状有下列(A)(B)、(C),(D)四种: 答:(B) 3. 简支梁受载荷并取坐标系如图示,则弯矩M 、剪力F S 与分布载荷q 之间的关系以及挠曲线近似微分方程为: (A)EI x M x w q x F F x M ) (d d ,d d , d d 2 2S S ===; (B)EI x M x w q x F F x M ) (d d ,d d , d d 2 2 S S =-=-=; (C)EI x M x w q x F F x M )(d d ,d d , d d 2 2S S -==-=; (D)EI x M x w q x F F x M )(d d ,d d , d d 2 2S S -=-==。 答:(B) 4. 弯曲刚度为EI 的悬臂梁受载荷如图 示,自由端的挠度EI l M EI Fl w B 232 e 3+=(↓) 则截面C 处挠度为:

(A)2 e 3 322323??? ??+??? ??l EI M l EI F (↓); (B)2 3 3223/323?? ? ??+??? ??l EI Fl l EI F (↓); (C)2 e 3 322)3/(323? ? ? ??++??? ??l EI Fl M l EI F (↓);(D)2 e 3 322)3/(323? ? ? ??-+??? ??l EI Fl M l EI F (↓)。 答:(C) 5. 画出(a)、(b)、(c)三种梁的挠曲线大致形状。 答: 6. 7. (a)、(b)刚度关系为下列中的哪一种: (A) (a)>(b); (B) (a)<(b); (C) (a)=(b); (D) 不一定。 答:(C) 8. 试写出图示等截面梁的位移边界条件,并定性地画出梁的挠曲线大致形状。 答:x =0, w 1=0, 1 w '=0;x =2a ,w 2 w 2;x =2a ,32 w w '='。 9. 试画出图示静定组合梁在集中力F 作用下挠曲线的大致形状。 (a) (b) (c) w ===θw w

纯弯梁的弯曲应力测定

纯弯梁的弯曲应力测定实验报告 使用设备名称与型号 同组人员 实验时间 1、 实验目的 1.测定梁纯弯曲时横截面上的正应力大小及分布规律,并与理论值比较,以验证弯曲正应力公式。 2.观察正应力与弯矩的线性关系。 3.了解电测法的基本原理和电阻应变仪的使用方法。 2、 实验设备与仪器 1.弯曲梁实验装置和贴有电阻应变片的矩形截面钢梁。 2.静态数字电阻应变仪YJ28A-P10R(见附录四)和载荷显示仪。 3.直尺。 3、 实验原理 梁纯弯曲时横截面上的正应力公式为σ= ,式中M为作用在横截面上的弯矩,Y为欲求应力点到中性轴Z的距离,I z为梁横截面对中性轴的惯性矩。本实验采用矩形截面钢梁,实验时将梁的支承及载荷情况布置如图6-1所示,梁的CD段为纯弯曲,在梁的CD段某截面不同高度(四等分点)处贴五片电阻应变片,方向平行梁轴,温度补偿片粘贴梁上不受力处,当纯弯梁受载变形时,利用电阻应变仪测出各应变片的应变值(即梁上各纵向应变值)ε实。由于纵向纤维间不互相挤压,故根据单向应力状态的虎克定律求出应力σ实=Eε实。E为梁所用材料的弹性模量。为了减少测量误差,同时也可以验证正应

力与弯矩的线性关系,采用等量加载来测定沿高度分布的各相应点的应变,每增加等量的载荷 F,测定各点相应的应变一次,取应变增量的平均值 ε实。求出各应力增量 σ实=E ε实,并与理论值 σ理= 进行比较,其中 M= Fa.,从而验证理论公式的正确性。

图6-1纯弯梁示意图 4、 实验操作步骤 1.将梁放在实验装置的支座上。注意应尽量使梁受平面弯曲,用尺测量力作用点的位置及梁的截面尺寸。 2.在确保梁的最大应力小于材料的比例极限σp前提下,确定加载方案。 3.将梁上各测点的工作应变片逐点连接到应变仪的A、B接线柱上,而温度补偿片接在B、C接线柱上。按电阻应变仪的使用方法,将应变仪调整好。 4.先加载至初载荷,记录此时各点的应变值,然后每次等量增加载荷 ΔF,逐次测定各点相应的应变值,直到最终载荷终止。卸载后,注意记录各测点的零点漂移。 5.检查实验数据是否与离开中性轴的距离成正比,是否与载荷成线形关系,结束工作。 5、 实验结果及分析计算 1、 实验数据 12345

材料力学_考试题集(含答案)

《材料力学》考试题集 一、单选题 1.构件的强度、刚度和稳定性________。 (A)只与材料的力学性质有关(B)只与构件的形状尺寸有关(C)与二者都有关(D)与二者都无关 2.一直拉杆如图所示,在P 力作用下 。 (A) 横截面a上的轴力最大(B) 横截面b上的轴力最大 (C) 横截面c上的轴力最大(D) 三个截面上的轴力一样大 3.在杆件的某一截面上,各点的剪应力。 (A)大小一定相等(B)方向一定平行 (C)均作用在同一平面内(D)—定为零 4.在下列杆件中,图所示杆是轴向拉伸杆。 (A) (B) (C) (D) 5.图示拉杆承受轴向拉力P的作用,斜截面m-m的面积为A,则σ=P/A为。 (A)横截面上的正应力(B)斜截面上的剪应力 (C)斜截面上的正应力(D)斜截面上的应力 P

6. 解除外力后,消失的变形和遗留的变形 。 (A)分别称为弹性变形、塑性变形(B)通称为塑性变形 (C)分别称为塑性变形、弹性变形(D)通称为弹性变形 7.一圆截面轴向拉、压杆若其直径增加—倍,则抗拉。 (A)强度和刚度分别是原来的2倍、4倍(B)强度和刚度分别是原来的4倍、2倍 (C)强度和刚度均是原来的2倍(D)强度和刚度均是原来的4倍 8.图中接头处的挤压面积等于。 (A)ab (B)cb (C)lb (D)lc 9.微单元体的受力状态如下图所示,已知上下两面的剪应力为τ则左右侧面上的剪应力为。 (A)τ/2(B)τ(C)2τ(D)0 10.下图是矩形截面,则m—m线以上部分和以下部分对形心轴的两个静矩的。 (A)绝对值相等,正负号相同(B)绝对值相等,正负号不同 (C)绝对值不等,正负号相同(D)绝对值不等,正负号不同 11.平面弯曲变形的特征是。 (A)弯曲时横截面仍保持为平面(B)弯曲载荷均作用在同—平面内; (C)弯曲变形后的轴线是一条平面曲线 (D)弯曲变形后的轴线与载荷作用面同在—个平面内 12.图示悬臂梁的AC段上,各个截面上的。 P

《工程力学》试卷

湖北工业大学继续教育学院 2014年上学期《工程力学》试卷 姓名_____________专业_____________层次___________学号____________年级_______站点_________分数_________ 一、填空题:(共10小题,每空2分,共20分)请在每小题的空格中填上正确答案。错填、不填均无分。 1.力对物体的效应取决于力的大小、方向和作用点。 2.柔索约束的约束反力通过柔索与物体的连接点,沿柔索轴线,方向沿柔索。 3.平面汇交力系合成的结果是一个通过汇交点的合力,该合力矢量等于原力系中各分力的矢量和。 4、求杆件内力的基本方法是_截面法_。 5、联接件剪切变形时,发生相对错动的截面称为剪切变形___。 6.当梁上载荷作用于梁的纵向对称面内时,梁将发生平面弯曲。 7.计算细长杆临界压力的欧拉公式仅在应力不超过材料的___比例极限___时成立。 8.压杆柔度的计算公式为_λ=μl/i。 9.作用在刚体上的力可沿其作用线任意移动,而不改变力对刚体的作用效果,所以,在静力学中,力是_滑移矢量_。 10.杆件变形的基本形式有_拉伸或压缩、_剪切__、__扭转__、__弯曲___。 二、单选题:(每小题2分,共30分) 1 材料和柔度都相同的两根压杆(a) A. 临界应力一定相等,临界压力不一定相等; B. 临界应力不一定相等,临界压力一定相等; C. 临界应力和压力都一定相等; D. 临界应力和压力都不一定相等。 2 在下列有关压杆临界应力σcr 的结论中,(d)是正确的。 A.细长杆的σcr 值与杆的材料无关; B. 中长杆的σcr 值与杆的柔度无关; C. 中长杆的σcr值与杆的材料无关; D. 短粗杆的σcr值与杆的柔度无关。 3 一等直拉杆在两端承受拉力作用,若其一半为钢,另一半为铝,则两段的(b )。 A. 应力相同,变形相同; B. 应力相同,变形不同; C. 应力不同,变形相同; D. 应力不同,变形不同; 4. 若轴向拉伸等直杆选用同种材料,三种不同的截面形状:圆形、正方形、空心圆,比 较三种情况的材料用量,则(d)。 A. 正方形截面最省料; B. 圆形截面最省料; C. 空心圆截面最省料; D. 三者用料相同。 5、由四根相同的等边角钢组成一组合截面压杆。若组合截面的形状分别如图(a),(b)所 示,则两种情况下其( A )。 A. 稳定性不同,强度相同; B. 稳定性相同,强度不同; C. 稳定性和强度都不同; D. 稳定性和强度都相同。 (a) (b) 6.一悬臂梁及其⊥形截面如图所示,其中C为截面形心,该梁横截面的(B)。 A. 中性轴为z1,最大拉应力在上边缘处; B. 中性轴为z1,最大拉应力在下边缘处; C. 中性轴为z0,最大拉应力在上边缘处; D. 中性轴为z0,最大拉应力在下边缘处。 7.任意图形,若对某一对正交坐标轴的惯性积为零,则这一对坐标轴一定是该图形(B)。 A. 形心轴 B. 主惯性轴 C. 行心主惯性轴 D. 对称轴 8.低碳钢试件扭转破坏是(C)。 A. 沿横截面拉断; B. 沿45°螺旋面拉断; C. 沿横截面剪断; D. 沿45°螺旋面剪断。 9、根据(B )可得出结论:矩形截面杆受扭时,横截面上边缘各点的切应力必平行于截 面周边,角点处切应力为零。 平面假设;B. 切应力互等定理; C. 各向同性假设; D. 剪切胡克定律。 10、在圆轴表面画出图示的微正方形,受扭时该正方形(B)。 A.保持为正方形; B.变为矩形; C.变为菱形; D.变为平行四边形。 11、截面为圆环形的开口和闭口薄壁杆件的横截面如图a、b所示,设两杆具有相同的平 均半径和壁厚,则二者(图呢?如果没猜错的话 A)。 A.抗拉强度相同;抗扭强度不同; B.抗拉强度不同,抗扭强度相同; C.抗拉、抗扭强度都相同; D.抗拉、抗扭强度都不同。 12、两端铰支细长压杆,若在其长度的一半处加一活动铰支座,则欧拉临界压力是原来的(D)倍。 A. 1/4 B. 1/2 C. 2 D. 4 13、在梁的正应力公式中,I为梁截面对(C)的惯性矩。 A. 形心轴 B. 对称轴 C. 中性轴 D. 形心主轴 14、梁在集中力作用的截面处,(B)。 A. Q图有突变,M图光滑连续 B. Q图有突变,M图连续但不光滑 C. M图有突变,Q图光滑连续 D. M图有突变,Q图连续但不光滑 15、等截面直梁在弯曲变形时,挠曲线曲率在最大(D)处一定最大。 A. 挠度 B. 转角 C. 剪力 D. 弯矩 y y M e h/2 z1 O h/2 z C

工程力学习题库-弯曲变形

第8章 弯曲变形 本章要点 【概念】平面弯曲,剪力、弯矩符号规定,纯弯曲,中性轴,曲率,挠度,转角。 剪力、弯矩与荷载集度的关系;弯曲正应力的适用条件;提高梁的弯曲强度的措施;运用叠加法求弯曲变形的前提条件;截面上正应力分布规律、切应力分布规律。 【公式】 1. 弯曲正应力 变形几何关系:y ερ = 物理关系:E y σρ = 静力关系:0N A F dA σ==?,0y A M z dA σ==?,2z z A A EI E M y dA y dA σρ ρ == =?? 中性层曲率: 1 M EI ρ = 弯曲正应力应力:,M y I σ= ,max max z M W σ= 弯曲变形的正应力强度条件:[]max max z M W σσ=≤ 2. 弯曲切应力 矩形截面梁弯曲切应力:b I S F y z z S ??=* )(τ,A F bh F S S 2323max ==τ 工字形梁弯曲切应力:d I S F y z z S ??=* )(τ,A F dh F S S ==max τ 圆形截面梁弯曲切应力:b I S F y z z S ??=* )(τ,A F S 34max =τ 弯曲切应力强度条件:[]ττ≤max

3. 梁的弯曲变形 梁的挠曲线近似微分方程:()''EIw M x =- 梁的转角方程:1()dw M x dx C dx EI θ= =-+? 梁的挠度方程:12()Z M x w dx dx C x C EI ??=-++ ??? ?? 练习题 一. 单选题 1、 建立平面弯曲正应力公式z I My /=σ,需要考虑的关系有( )。查看答案 A 、平衡关系,物理关系,变形几何关系 B 、变形几何关系,物理关系,静力关系; C 、变形几何关系,平衡关系,静力关系 D 、平衡关系, 物理关系,静力关系; 2、 利用积分法求梁的变形,不需要用到下面那类条件( )来确定积分常 数。 查看答案 A 、平衡条件 B 、边界条件 C 、连续性条件 D 、光滑性条件 3、 在图1悬臂梁的AC 段上,各个截面上的( )。 A .剪力相同,弯矩不同 B .剪力不同,弯矩相同 C .剪力和弯矩均相同 D .剪力和弯矩均不同 图1 图2 4、 图2悬臂梁受力,其中( )。 A .A B 段是纯弯曲,B C 段是剪切弯曲

材料力学习题册答案-第6章 弯曲变形

第六章弯曲变形 一、是非判断题 1.梁的挠曲线近似微分方程为EIy’’=M(x)。(√)2.梁上弯矩最大的截面,挠度也最大,弯矩为零的截面,转角为零。(×)3.两根几何尺寸、支撑条件完全相同的静定梁,只要所受载荷相同,则两梁所对应的截面的挠度及转角相同,而与梁的材料是 否相同无关。(×)4.等截面直梁在弯曲变形时,挠曲线的曲率最大值发生在转角等于零的截面处。(×)5.若梁上中间铰链处无集中力偶作用,则中间铰链左右两侧截面的挠度相等,转角不等。(√)6.简支梁的抗弯刚度EI相同,在梁中间受载荷F相同,当梁的跨度增大一倍后,其最大挠度增加四倍。(×)7.当一个梁同时受几个力作用时,某截面的挠度和转角就等于每一个单独作用下该截面的挠度和转角的代数和。(√)8.弯矩突变的截面转角也有突变。(×) 二、选择题 1. 梁的挠度是(D) A 横截面上任一点沿梁轴线方向的位移 B 横截面形心沿梁轴方向的位移 C横截面形心沿梁轴方向的线位移

D 横截面形心的位移 2. 在下列关于挠度、转角正负号的概念中,(B)是正确的。 A 转角的正负号与坐标系有关,挠度的正负号与坐标系无关 B 转角的正负号与坐标系无关,挠度的正负号与坐标系有关 C 转角和挠度的正负号均与坐标系有关 D 转角和挠度的正负号均与坐标系无关 3. 挠曲线近似微分方程在(D)条件下成立。 A 梁的变形属于小变形 B 材料服从胡克定律 C 挠曲线在xoy平面内 D 同时满足A、B、C 4. 等截面直梁在弯曲变形时,挠曲线的最大曲率发生在(D)处。 A 挠度最大 B 转角最大 C 剪力最大 D 弯矩最大 5. 两简支梁,一根为刚,一根为铜,已知它们的抗弯刚度相同。跨中作用有相同的力F,二者的(B)不同。 A支反力 B 最大正应力 C 最大挠度D最大转角6. 某悬臂梁其刚度为EI,跨度为l,自由端作用有力F。为减小最大挠度,则下列方案中最佳方案是(B) A 梁长改为l /2,惯性矩改为I/8 B 梁长改为3 l /4,惯性矩改为I/2 C 梁长改为5 l /4,惯性矩改为3I/2 D 梁长改为3 l /2,惯性矩改为I/4 7. 已知等截面直梁在某一段上的挠曲线方程为: y(x)=Ax2(4lx - 6l2-x2),则该段梁上(B)

弯曲变形的强度条件和强度计算

弯曲变形的强度条件和强度计算 当梁受到一组垂直于其轴线的力即横向力或位于轴线平面内的外力偶作用时,梁的轴线由一条直线变为曲线,称为弯曲变形。如果梁的几何形状材料性能和外力都对称于梁的纵向对称面则称为对称弯曲。如果梁变形后的轴为形心主惯性平面内的平面曲线则称为平面弯曲。本课程中主要研究以对称弯曲为主的平面弯曲,如图1所示。 图1 平面弯曲 一、梁弯曲时的内力——剪力和弯矩 梁的横截面上有两个分量——剪力和弯矩,它们都随着截面位置的变化而变化,可表示为F S=F S(x)和M=M (x),称为剪力方程和弯矩方程。 为了研究方便,通常对剪力和弯矩都有正负规定:使微段梁发生顺时针转动的剪力为正,反之为负,如图2所示;使微段梁上侧受拉下侧受压的弯矩为正,反之为负,如图3所示。 图2 剪力的正负 图3 弯矩的正负 例1:试写出下图所示梁的内力方程,并画出剪力图和弯矩图。

解:( 1 )求支反力 = ∑C M:0 3 10 12 6= ? - - ? Ay F,kN 7 = Ay F = ∑Y:0 10= - +By Ay F F,kN 3 = By F (2)列内力方程 剪力: ? ? ? < < - < < = 6 3 kN 3 3 kN 7 ) ( S x x x F 弯矩: ? ? ? ≤ ≤ ≤ ≤ ? - ? - = 6 3 3 m kN ) 6(3 m kN 12 7 ) ( x x x x x M (3)作剪力图和弯矩图 二、梁弯曲时的正应力 在一般情况下,梁的横截面上既有弯矩又有剪力。若梁上只有弯矩没有剪力,称为纯弯曲。本讲主要讨论纯弯曲时横截面上的应力——正应力。梁横截面上的正应力大小与该点至中性轴的距离成正比,即正应力沿截面宽度均匀分布,沿高度呈线性分布,如图4所示。 图4 梁弯曲时的正应力分布图 即有y I x M z ) ( = σ(1)

《材料力学》1答案

一、单选题(共 30 道试题,共 60 分。) 1. 厚壁玻璃杯倒入开水发生破裂时,裂纹起始于() A. 内壁 B. 外壁 C. 壁厚的中间 D. 整个壁厚 正确答案:B 满分:2 分 2. 图示结构中,AB杆将发生的变形为() A. 弯曲变形 B. 拉压变形 C. 弯曲与压缩的组合变形 D. 弯曲与拉伸的组合变形 正确答案:D 满分:2 分 3. 关于单元体的定义,下列提法中正确的是() A. 单元体的三维尺寸必须是微小的 B. 单元体是平行六面体 C. 单元体必须是正方体 D. 单元体必须有一对横截面 正确答案:A 满分:2 分 4. 梁在某一段内作用有向下的分布力时,则在该段内M图是一条 ( ) A. 上凸曲线; B. 下凸曲线;

C. 带有拐点的曲线; D. 斜直线 正确答案:A 满分:2 分 5. 在相同的交变载荷作用下,构件的横向尺寸增大,其()。 A. 工作应力减小,持久极限提高 B. 工作应力增大,持久极限降低; C. 工作应力增大,持久极限提高; D. 工作应力减小,持久极限降低。 正确答案:D 满分:2 分 6. 在以下措施中()将会降低构件的持久极限 A. 增加构件表面光洁度 B. 增加构件表面硬度 C. 加大构件的几何尺寸 D. 减缓构件的应力集中 正确答案:C 满分:2 分 7. 材料的持久极限与试件的()无关 A. 材料; B. 变形形式; C. 循环特征; D. 最大应力。 正确答案:D 满分:2 分 8. 梁在集中力作用的截面处,它的内力图为() A. Q图有突变, M图光滑连续; B. Q图有突变,M图有转折; C. M图有突变,Q图光滑连续; D. M图有突变,Q图有转折。 正确答案:B 满分:2 分 9.

工程力学第六章答案-梁的变形

工程力学第六章答案-梁的变形

第五章 梁的变形 测试练习 1. 判断改错题 5-1-1 梁上弯矩最大的截面,挠度也最大,弯矩为零的截面,转角亦为零. ( ) 5-1-2 两根几何尺寸、支承条件完全相同的静定梁,只要所受荷栽相同,则两梁所对应的截面的 挠度及转角相同,而与梁的材料是否相同无关。 ( ) 5-1-3 悬臂梁受力如图所示,若A 点上作用的集中力P 在A B 段上作等效平移,则A 截面的转角及 挠 度 都 不 变 。 ( ) 5-1-4 图示均质等直杆(总重量为W ),放置在水平刚性平面上,若A 端有一集中力P 作用,使A C 部分被提起C B 部分仍与刚性平面贴合,则在截面C 上剪力和弯矩均为零。 ( ) A P 题 A P 题

5-1-5 挠曲线近似微分方程不能用于求截面直梁的位移。 ( ) 5-1-6 等截面直梁在弯曲变形时,挠度曲线的曲率最大值发生在转角等于零的截面处。 ( ) 5-1-7两简支梁的抗刚度E I 及跨长2a 均相同,受力如图所示,则两梁跨中截面的挠度不等而转角是 相 等 的 。 ( ) 5-1-8 简支梁在图示任意荷载作用下,截面C 产生挠度和转角,若在跨中截面C 又加上一个集中力偶M 0作用,则梁的截面C 的挠度要改变,而转角不变。 ( ) A B C P q l l 题 B A C a a 题 a a A C B q 2q

5-1-9 一铸铁简支梁,在均布载荷作用下,当其横截面相同且分别按图示两种情况放置时,梁同 一截面的应力及变形均相同。 ( ) 5-1-10 图示变截面梁,当用积分法求挠曲线方程时,因弯矩方程有三个,则通常有6个积分常量。 ( ) 2.填空题 5-2-1 挠曲线近似微分方程EI x M x y )()(" -= 的近似性 表现在 和 。 题 q P q 题

三、梁弯曲的内力、变形、应力

目录 引言 (2) 一杆件受拉压的内力、应力、变形 (2) 1.1轴向拉压的内力、轴力图 (2) 1.2 轴向拉压杆横截面上的应力 (5) 1.3 轴向拉压杆横截面上的变形 (7) 1.4 圣维南原理 (9) 1.5 工程结构实例分析 (11) 二圆轴扭转 (15) 2.1、扭转的力学模型及ANSYS建模 (15) 2.2、圆轴扭转时,横截面上的内力偶矩------扭矩 (15) 2.3、圆轴扭转时,横截面上的应力、强度条件 (15) (1) 横截面上的切应力 (15) (2) 极惯性矩与抗扭截面系数 (15) 三、梁弯曲的内力、变形、应力 (20) 3.1 梁的弯曲内力、变形 (20) 3.2 弯曲应力 (27) 3.3 工程实例: (31) 四、压杆稳定 (35) 4.1、压杆稳定的概念 (35) 4.2、临界压力 (35) 4.3、三类压杆的临界载荷 (36) 4.4、压杆稳定性计算 (36) 4.5 工程实例4 (38)

引 言 《材料力学》是机械、土木类工科学生重要的技术基础课,其计算方法和思想在工程计算中应用非常广泛。为了使学生对课内知识体系有一个比较清晰的感性认识,锻炼学生的求真精神和实践动手能力,进一步培养学生的综合创造力,兴趣小组的学生们在教师的指导下基于ANSYS 有限元分析软件对《材料力学》的某些知识点进行数值计算与模拟,得到相关的数据、云图或动画,从而对理论公式进行形象验证,更开阔了学生的视野,提高了学生的CAE 水平。 本研究内容包括三部分: (1)对《材料力学》课程中的基本内容,包括拉压、剪切、扭转、弯曲的内力、应力、变形、压杆稳定、动载荷、疲劳强度、圣维南原理等重要理论知识点情况通过ANSYS 进行分析,得到内力、变形、应力、应变相关的数据、云图或动画; (2)对重要知识点的典型例题通过ANSYS 进行计算,并与理论计算结果进行对比验证。 (3)对《材料力学》理论知识能够解决的典型工程实际问题进行建模、分析与计算。 一 杆件受拉压的内力、应力、变形 1.1轴向拉压的内力、轴力图 在工程结构和机械中,发生轴向拉伸或压缩的构件是很常见的。 在轴向外力作用下,杆件横截面上唯一的内力分量是轴力N F 轴向拉压杆件的受力特点:作用于杆件上的合外力的作用线与杆件轴线重合,杆件变形是沿轴线方向的延长或缩短。 对如图1-1a 所示的两端受轴向外力p F 作用的杆件,用一假想平面沿任意横截面将杆截为两段,由任一部分的平衡方程0=∑F ,可求得截面上的轴力 N F =p F (如图1-1b)

弯曲内力和应力基本概念练习

弯曲内力练习 一、选择题 1.外伸梁受均布载荷作用,如图所示。以下结论中( )是错误的。 A .A B 段剪力表达式为()qx x F Q -=; B .AB 段弯矩表达式为22 1)(qx x M -=; C.BC 段剪力表达式为()L qa x F Q 22=; D.BC 段弯矩表达式为)(2)(2x L L qa x M --=。 2.外伸梁受集中力偶作用,如图所示,以下结论中( )是错误的。 A .当力偶作用点C 位于支座 B 的右侧时,梁的弯矩图为梯形; B.当C 点位于支座B 的右侧时,梁上各截面的弯矩()0≥x M ; C.当C 点在梁上移动时,梁的剪力图不改变; D.当C 点在梁上移动时,梁的中央截面上弯矩不改变。 题2图 题1图

3.简支梁受集中力作用,如图所示,以下结论中( )是错误的。 A .AC 段,剪力表达式为 ()L Fb x F S =; B.AC 段,弯矩表达式为x L Fb x M =)(; C.CB 段,剪力表达式为 ()L Fa x F S = ; D.CB 段,弯矩表达式为)()(x L L Fa x M -= 。 4.简支梁的四种受载情况如图,设M 1、M 2、M 3、M 4分别表示梁(a )、(b )、(c )、(d )中的最大弯矩,则下列结论中( )是正确的。 A .M 1 >M 2 = M 3 >M 4; B. M 1 >M 2 > M 3 >M 4; C.M 1 >M 2 >M 3 = M 4; D. M 1 >M 2 >M 4> M 3 。 5 .外伸梁受均布载荷作用,如图所示。以下梁的剪力、弯矩图 (a ) (b ) (c ) (d )

2014级工程力学复习题与答案

2014级《工程力学》复习题与答案 一、单项选择题 1.平面平行力系合成的结果是[ B ] A.合力 B.合力偶 C.主矩 D.主矢和主矩 2.当作用在质点系上外力系的主矢在某坐标轴上的投影为零时,则质点系质心的[ B ] A.速度一定为零 B.速度在该轴上的投影保持不变 C.加速度在该轴上的投影一定不为零 D.加速度在该轴上的投影保持不变 3.当动点的切向加速度的大小恒定不变,法向加速度的大小随时间变化时,动点的运动状态为[ B ] A.匀速曲线运动 B.匀变速曲线运动 C.匀速直线运动 D.匀变速直线运动 4.等截面直梁在弯曲变形时,挠曲线的最大曲率发生在[ D ] A.挠度最大的横截面 B.转角最大的横截面 C.剪力最大的横截面 D.弯矩最大的横截面 5.某轴材料为低碳钢,工作时发生弯扭组合变形,对其进行强度计算时,宜采用[ D ] A.第一或第二强度理论 B.第二或第三强度理论 C.第一或第四强度理论 D.第三或第四强度理论 6.图示轴向受力杆件中n-n截面上的轴力为[ C ] A.-3P B.-4P C.+4P D.+8P 7.图示截面,在圆截面中挖去一正方形,已知圆截面的直径为D,正方形的边长为a,其惯性矩IZ= [ B ] A.πD 32 4 - a4 12 B. πD 64 4 - a4 12 C.πD 32 4 - a4 6 D.πD 16 4 - 2 12 4 a 8.当动点的切向加速度的大小恒定不变,法向加速度的大小随时间变化时,动点的运动状态为[ B ] A.匀速曲线运动 B.匀变速曲线运动 C.匀速直线运动 D.匀变速直线运动 9.等截面直梁在弯曲变形时,挠曲线的最大曲率发生在[ D ] A.挠度最大的横截面 B.转角最大的横截面

测试题-弯曲变形(答案)

班级:学号:姓名: 《工程力学》弯曲变形测试题 一、判断题(每小题2分,共20分) 1、梁弯曲变形后,最大转角和最大挠度是同一截面。(×) 2、不同材料制成的梁,若截面尺寸和形状完全相同,长度及受力情况也相同,那么这两 根梁弯曲变形时,最大挠度值相同。(×) 3、EI是梁的抗弯刚度,提高它的最有效、最合理的方法是改用更好的材料。(×) 4、梁的挠曲线方程随弯矩方程的分段而分段,只要梁不具有中间铰,则梁的挠曲线仍然 是一条光滑、连续的曲线。(√) 5、梁弯曲后,梁某点的曲率半径和该点所在横截面位置无关。(×) 6、梁上有两个载荷,梁的变形与两个载荷加载次序无关。(√ ) 7、一般情况下,梁的挠度和转角都要求不超过许用值。(√ ) 8、在铰支座处,挠度和转角均等于零。(×) 9、绘制挠曲线的大致形状,既要根据梁的弯矩图,也要考虑梁的支撑条件。(√ ) 10、弯矩突变的截面转角也有突变。(×) 二、单项选择题(每小题2分,共20分) 1、梁的挠度是(B )。 A. 横截面上任一点沿梁轴方向的位移 B. 横截面形心沿垂直梁轴方向的位移 C. 横截面形心沿梁轴方向的线位移 D. 横截面形心的位移 2、在下列关于挠度、转角正负号的概念中,(C)是正确的。 A. 转角的正负号与坐标系有关,挠度的正负号与坐标系无关 B. 转角的正负号与坐标系无关,挠度的正负号与坐标系有关 C. 转角和挠度的正负号均与坐标系有关 D. 转角和挠度的正负号均与坐标系无关 3、挠曲线近似微分方程在(D )条件下成立。 A. 梁的变形属于小变形 B .材料服从胡克定律 C. 挠曲线在xoy平面内 D. 同时满足A、B、C 4、等截面直梁在弯曲变形时,挠曲线的最大曲率发生在(D )处。 A. 挠度最大 B. 转角最大 C. 剪力最大 D. 弯矩最大 5、应用叠加原理求梁横截面的挠度、转角时,需要满足的条件有(C ) A. 梁必须是等截面的 B. 梁必须是静定的 C. 变形必须是小变形; D. 梁的弯曲必须是平面弯曲 6、两简支梁,一根为钢、一根为铜,已知它们的抗弯刚度相同。跨中作用有相同的力F, 二者的(B )不同。 A. 支反力 B. 最大正应力 C. 最大挠度 D. 最大转角 7、已知等截面直梁在某一段上的挠曲线方程为:错误!未找到引用源。,则该段梁上(B )。 A. 无分布载荷作用 B. 有均匀载荷作用 C. 分布载荷是x的一次函数 D. 分布载荷是x的二次函数 8、在下列关于梁转角的说法中,( D )是错误的。 A. 转角是横截面绕中性轴转过的角位移 B. 转角是变形前后同一截面间的夹角 C. 转角是挠曲线的切线与轴向坐标轴间的夹角

弯曲应力与变形1

课程: 材料力学教者: 第30,31,32课时(3.22,3.26) 课程内容或课题: 1.梁纯弯曲时横截面上正应力计算公式的推导 2.熟练弯曲正应力强度条件的建立和相应的计算 目的要求: 1.掌握梁纯弯曲时横截面上正应力计算公式的推导过程,理解推导中所作的基本假设2.理解横力弯曲正应力计算仍用纯弯曲公式的条件和近似程度 3.掌握弯曲正应力强度条件的建立和相应的计算 重点难点: 1.纯弯曲梁横截面上正应力公式的分析推导 2.横力弯曲横截面上正应力的计算,最大拉应力和最大压应力的计算 3.弯曲的强度计算 教学形式、手段: 采用启发式教学,通过提问,引导学生思考 教学过程: 一:导入新课 二:授新 1、几个基本概念 ⑴平面弯曲和弯曲中心 变形后梁轴线的位移方向沿着加载方向的弯曲情况,称为平面弯曲。

图6-1 怎样加载才能产生平面弯曲? 若梁的横截面有对称平面时,载荷必须作用在次对称平面内,才能发生平面弯曲。 图6-2 若梁的横截面没有对称平面时,载荷的作用线必须通过截面的弯曲中心。 什么叫弯曲中心? 当载荷的作用线通过横截面上某一点特定点时,杆件只产生弯曲而无扭转。这样的特定点称为弯曲中心。 图6-3 关于弯曲中心位置的确定及工程上常见图形的弯曲中心位置。

图6-4 ①具有两个对称轴或反对称的截面,如工字形、圆形、圆环形、空心矩形截面等,弯曲中心与形心(两对称轴的交点)重合,如图6-4(a),(b),(c)所示。 ②具有一个对称轴的截面,如槽形和T形截面,弯曲中心必在对称轴上,如图6-4(d)、(e)所示。 ③如果截面是由中线相交于一点的几个狭长矩形所组成,如L形或T形截面,则此交点就是弯曲中心,如图6-4(e)、(f) ④不对称实心截面的弯曲中心靠近形心。这种截面在荷载作用线通过形心时也将引起扭转,但由于这种截面的抗扭刚度很大,弯曲中心与形心又非常靠近,故通常不考虑它的扭转影响。 ⑵纯弯曲和横力弯曲 图6-5 平面弯曲时,如果某段梁的横截面上只有弯矩而无剪力,这种弯曲称为纯弯曲;如果梁的横截面上既有弯矩又有剪力,则这种弯曲称为横力弯曲。 ⑶中性层和中性轴

梁弯曲变形仿真的ansys命令流

/BATCH /COM,ANSYS RELEASE 10.0 UP20050718 16:47:49 01/08/2015 /input,menust,tmp,'',,,,,,,,,,,,,,,,1 /GRA,POWER /GST,ON /PLO,INFO,3 /GRO,CURL,ON /CPLANE,1 /REPLOT,RESIZE WPSTYLE,,,,,,,,0 !* /NOPR /PMETH,OFF,0 KEYW,PR_SET,1 KEYW,PR_STRUC,1 KEYW,PR_THERM,0 KEYW,PR_FLUID,0 KEYW,PR_ELMAG,0 KEYW,MAGNOD,0 KEYW,MAGEDG,0 KEYW,MAGHFE,0 KEYW,MAGELC,0 KEYW,PR_MULTI,0 KEYW,PR_CFD,0 /GO !* /COM, /COM,Preferences for GUI filtering have been set to display: /COM, Structural !* /PREP7 !* ET,1,BEAM188 !* !* MPTEMP,,,,,,,, MPTEMP,1,0 MPDATA,EX,1,,2.1e11 MPDATA,PRXY,1,,0.3 SECTYPE, 1, BEAM, RECT, , 0 SECOFFSET, CENT SECDATA,0.1,0.15,0,0,0,0,0,0,0,0 K,1,0,0,, K,2,10,0,,

K,3,5,1,, LSTR, 1, 2 CM,_Y,LINE LSEL, , , , 1 CM,_Y1,LINE CMSEL,S,_Y !* !* CMSEL,S,_Y1 LATT,1, ,1, , 3, ,1 CMSEL,S,_Y CMDELE,_Y CMDELE,_Y1 !* FLST,5,1,4,ORDE,1 FITEM,5,1 CM,_Y,LINE LSEL, , , ,P51X CM,_Y1,LINE CMSEL,,_Y !* LESIZE,_Y1, , ,5, , , , ,1 !* LMESH, 1 FINISH /SOL FLST,2,1,3,ORDE,1 FITEM,2,1 !* /GO DK,P51X, , , ,0,UX,UY,UZ,ROTX, , , FLST,2,5,2,ORDE,2 FITEM,2,1 FITEM,2,-5 SFBEAM,P51X,1,PRES,100, , , , , , /STATUS,SOLU SOLVE

相关主题
文本预览
相关文档 最新文档