当前位置:文档之家› PCB设备蚀刻补偿原理及应用资料

PCB设备蚀刻补偿原理及应用资料

PCB设备蚀刻补偿原理及应用资料
PCB设备蚀刻补偿原理及应用资料

蚀刻补偿原理及应用

1、蝕刻補償原理

什麼是“間隔噴淋蝕刻”的意思?為什麼“間隔噴淋蝕刻”能給我們一個更加均勻的蝕刻效果呢?當蝕刻噴淋到上板面的時候,板邊緣的藥水流動要更快於板中間,這樣導致了在上板面形成一種“魂凝”狀態,從而阻礙了噴淋和降低了蝕刻反映速度,導致在上板面形成一個“銅山”(如圖一所示),為了得到更好的蝕刻品質,這些“銅山”應該要除去,下面圖表會解釋這個過程。所謂的“銅山”已經使用3D圖表顯示,同時使用等高線分開。

為了補償上板面“混凝”的影響,設計了一個特殊的噴淋系統,這個系統在工作方向垂直方向上安裝了一些噴管,每一根噴管可以各自的控制其開關,而且每一根噴管安裝了不同數量的噴嘴,噴嘴的形狀安排成一個三角形。正常情況下按照以下排列:第一根噴管安裝了9個噴嘴,第二根噴嘴安裝了8個噴嘴,第三根噴管安裝了7個噴嘴,如此類推,直到最後一根噴管安裝3到4個噴嘴為止,如

圖2所示。由於可以選擇每一個噴管的開、關,在板面上的“銅山”可以被一層一層的除掉。

下面給了我們關於“間隔噴淋”程式更詳細的解釋:

以上圖解顯示了有6根噴管的“間隔噴淋”系統,在板面上的橢圓形表示了板面上殘銅(銅山)的不同的厚度。

當板走進時,有8個噴嘴的第一根噴管被開動,目的是蝕刻掉1.5um 的銅厚,意味著原來1.5um 的區域被蝕刻為0um ,3un 的區域蝕刻為1.5um ,如此類推。在第一個噴管到達板後端以前,第二根噴管已經被開動,實際上是在1.5um 銅厚的區域剛好到達第二根噴管時開動的。第三根噴管是在下一層銅層到達時開動,如此類推,一直到裝有3個噴嘴的最後一根噴管噴完為止,這意味著這個系統可以根據實際蝕刻掉板面上最後一層銅層,而噴灌管的開、關選擇可以在PLC 控制的PC 上設定。

2、蝕刻補償控制與操作(手動機)2.1控制板面之操作鍵

2.2概覽蝕刻補償各噴管狀況 按 鍵進入概覽板面(在概覽板面內,可視察噴管開關狀況)

噴管號 噴管開關狀況: 上噴管開啟╦

上噴管關閉╤

下噴管關閉╧ 2.3閱覽工作狀態信息 按 鍵進入信息閱覽板面(在信息板面內,可閱覽工作狀態信息)

離開工作信息板面,需按下鍵 與工作信息不同,故障信息會閃動,直致按下 但必須確認或修復排除所有故障信息 鍵確認或修復排除故障

如有多個信息可按 閱讀其他信息 按鍵閱讀內文,離開按

2.4蝕刻補償參數輸入

按 鍵進入設定補償參數板面

在板面首頁可輸入零點修正值及蝕刻補償類型 +10厘米 (Outsidelayer 外層補償) 零點修正范圍------ +50cm~-50cm

蝕刻補償類型為內層補償時,只有板面內心部分受噴淋 蝕刻補償類型為外層補償時,只有板面沿邊部分受噴淋 如下圖示:

板後沿設定 板前沿設定

內層補償

生產板傳動方向 外層補償

<<

To p p i p e 02: i n t St a r t A f t e r F r o n t : 0 c m St o p B e f o r e E n d : 0 c m << >>

<<

>>

下頁)可輸入蝕刻補償參數

間歇噴淋

板前沿5厘米(設定) 板後沿5厘米(設定) 下頁 上頁

2.5輸入應用程式

按 鍵進入應用程式板面

(可鍵入1-20號程式) 號程式應用中

鍵入新程式New:??

後按下鍵

現假設新程式為2號程式,輸入操作如下:

鍵入2

2.6載入及儲存程式

載入程式

儲存程式

完成載入程式

完成儲存程式

3、蝕刻補償操作步驟:

3.1 選擇內層/外層模式,一般情況下選擇內層模式

3.2 選擇噴淋模式為“間隔噴淋”,同時設定所有距離為0cm

3.3 進板

3.4零點修正:觀察是否在板到時馬上噴淋

如果超過噴管再噴淋,選“-”

如果沒到噴管噴淋,選“+”

3.5設定噴淋主壓力

3.6設定分壓

3.7進板

3.8測量和記錄銅厚資料

3.9根據資料調整補償蝕刻和分壓或總壓(如有需要).

3.10重複第7~9項直至標準偏差小於0.7(0.5OZ), 1.2(1 OZ), 1.6(2OZ)

4、異常問題處理:

无功补偿装置几种常见类型比较

无功补偿装置几种常见类型比较 常见的动态无功补偿装置有四种:调压式动态无功补偿装置、磁控式动态无功补偿装置、相控式(TCR型)动态无功补偿装置、SVG 动态无功发生器。 ① 调压式动态无功补偿装置 调压式动态补偿装置原理是:在普通的电容器组前面增加一台电压调节器,利用电压调节器来改变电容器端部输出电压。根据 Q=2πfCU2改变电容器端电压来调节无功输出,从而改变无功输出容量来调节系统功率因数,目前生产的装置大多可分九级输出。该装置为分级补偿方式,容易产生过补、欠补。由于调压变压器的分接头开关为机械动作过程,响应时间慢(约3~4s),虽能及时跟踪系统无功变化和电压闪变,但跟踪和补偿效果稍差。但比常规的电容器组的补偿效果要好的多;在调压过程中,电容器频繁充、放电,极大影响电容器的使用寿命。由于有载调压变压器的阻抗,使得滤波效果差。虽然价格便宜, 占地面积小,维护方便,一般年损耗在0.2%以下。 ② 磁控式(MCR型)动态无功补偿装置 磁控式动态无功补偿装置原理是:在普通的电容器组上并联一套磁控电抗器。磁控电抗器采用直流助磁原理,利用附加直流励磁磁化铁心,改变铁心磁导率,实现电抗值的连续可调,从而调节电抗器的输出容量,利用电抗器的容量和电容器的容量相互抵消,可实现无功功率的柔性补偿。 能够实现快速平滑调节,响应时间为100-300ms,补偿效果满足风场工况要求。

磁控电抗器采用低压晶闸管控制,其端电压仅为系统电压的1%~2%,无需串、并联,不容易被击穿,安全可靠。设备自身谐波含量少,不会对系统产生二次污染。占地面积小,安装布置方便。装置投运后功率因数可达0.95以上,可消除电压波动及闪变,三相平衡符合国际标准。免维护,损耗较小,年损耗一般在0.8%左右。 ③相控式动态无功补偿装置(TCR) 相控式动态无功补偿装置(TCR)原理是:在普通的电容器组上并联一套相控电抗器(相控电抗器一般由可控硅、平衡电抗器、控制设备及相应的辅助设备组成)。相控式原理的可控电抗器的调节原理见下图 所示。 通过对可控硅导通时间进行控制,控制角(相位角)为α,电流基波分量随控制角α的增大而减小,控制角α可在0°~90°范围内变化。控制角α的变化,会导致流过相控电抗器的电流发生变化,从而改变电抗器输出的感性无功的容量。 普通的电容器组提供固定的容性无功,感性无功和容性无功相抵消,从而实现总的输出无功的连续可调。 i 相控式原理图 优点: 响应速度快,≤40ms。适合于冶金行业。 一般年损耗在0.5%以下。缺点:晶闸管要长期运行在高电压和大电流工况下,容易被

用电企业无功功率补偿的作用、目的和意义

用电企业无功功率补偿的作用、目的和意义 电网中的许多用电设备是根据电磁感应原理工作的。它们在能量转换过程中建立交变磁场,在一个周期内吸收的功率和释放的功率相等,这种功率叫无功功率。电力系统中,不但有功功率平衡,无功功率也要平衡。 有功功率、无功功率、视在功率之间的关系如图1所示 式中 S——视在功率,kVA P——有功功率,kW Q——无功功率,kvar φ角为功率因数角,它的余弦(cosφ)是有功功率与视在功率之比即cosφ=P/S称作功率因数。 由功率三角形可以看出,在一定的有功功率下,用电企业功率因数cosφ越小,则所需的无功功率越大。如果无功功率不是由电容器提供,则必须由输电系统供给,为满足用电的要求,供电线路和变压器的容量需增大。这样,不仅增加供电投资、降低设备利用率,也将增加线路损耗。为此,国家供用电规则规定:无功电力应就地平衡,用户应在提高用电自然功率因数的基础上,设计和装置无功补偿设备,并做到随其负荷和电压变动及时投入或切除,防止。还规定用户的功率因数应达到相应的标准,否则供电部门可以拒绝供电。因此,无论对供电部门还是用电部门,对无功功率进行自动补偿以提高功率因数,防止无功倒送,从而节约电能,提高运行质量都具有非常重要的意义。 无功补偿的基本原理是:把具有容性功率负荷的装置与感性功率负荷并联接在同一电路,能量在两种负荷之间相互交换。这样,感性负荷所需要的无功功率可由容性负荷输出的无功功率补偿。 当前,国内外广泛采用并联电容器作为无功补偿装置。这种方法安装方便、建设周期短、造价低、运行维护简便、自身损耗小。 采用并联电容器进行无功补偿的主要作用: 1、提高功率因数 如图2所示图中

无功补偿控制器及动态补偿装置工作原理

无功功率补偿装置在电子供电系统中所承担的作用是提高电网的功率因数,降低供电变压器及输送线路的损耗,提高供电效率,改善供电环境。所以无功功率补偿装置在电力供电系统中处在一个不可缺少的非常重要的位置。合理的选择补偿装置,可以做到最大限度的减少网络的损耗,使电网质量提高。反之,如选择或使用不当,可能造成供电系统,电压波动,谐波增大等诸多因素。 一、按投切方式分类: 1.延时投切方式 延时投切方式即人们熟称的”静态”补偿方式。这种投切依靠于传统的接触器的动作,当然用于投切电容的接触器专用的,它具有抑制电容的涌流作用,延时投切的目的在于防止接触器过于频繁的动作时,电容器造成损坏,更重要的是防备电容不停的投切导致供电系统振荡,这是很危险的。当电网的负荷呈感性时,如电动机、电焊机等负载,这时电网的电流滞带后电压一个角度,当负荷呈容性时,如过量的补偿装置的控制器,这是电网的电流超前于电压的一个角度,即功率因数超前或滞后是指电流与电压的相位关系。通过补偿装置的控制器检测供电系统的物理量,来决定电容器的投切,这个物理量可以是功率因数或无功电流或无功功率。 下面就功率因数型举例说明。当这个物理量满足要求时,如COSΦ超前且》0.98,滞后且》0.95,在这个范围内,此时控制器没有控制信号发出,这时已投入的电容器组不退出,没投入的电容器组也不投入。当检测到COSΦ不满足要求时,如COSΦ滞后且《0.95,那么将一组电容器投入,并继续监测COSΦ如还不满足要求,控制器则延时一段时间(延时时间可整定),再投入一组电容器,直到全部投入为止。当检测到超前信号如COSΦ《0.98,即呈容性载荷时,那么控制器就逐一切除电容器组。要遵循的原则就是:先投入的那组电容器组在切除时就要先切除。如果把延时时间整定为300S,而这套补偿装置有十路电容器组,那么全部投入的时间就为30分钟,切除也这样。在这段时间内无功损失补只能是逐步到位。如果将延时时间整定的很短,或没有设定延时时间,就可能会出现这样的情况。当控制器监测到COSΦ〈0.95,迅速将电容器组逐一投入,而在投

无功补偿的意义及原理

四、无功补偿的意义及原理 人们对有功功率的理解非常容易,而要深刻认识无功功率却并不轻而易举的。在正弦电路中,无功功率的概念是清楚的,而在含有谐波时,至今尚无公认的无功功率定义。但是,对无功功率这一概念的重要性和无功补偿重要性的认识,却是一致的。无功功率应包含对基波无功功率的补偿和对谐波无功功率的补偿。 无功功率对供电系统和负荷的运行都是十分重要的。电力系统网络元件的阻抗主要是电感性的。因此,粗略地说,为了输送有功功率,就要求送电端和受电端有一相位差,这在相当宽的范围内可以实现。而为了输送无功功率,则要求两端电压有一幅值差,这只能在很窄的范围内实现。不仅大多网络元件消耗无功功率,大多数负载也需要消耗无功功率。网络元件和负载所需要的无功功率必须从网络中某个地方获得。显然,这些无功功率如果都要由发电机提供并经过长距离传送是不合理的,通常也是不可能的。合理的方法应是在需要消耗无功功率的地方产生无功功率,这就是无功补偿。 无功补偿的作用主要有以下几点: (1)提高供用电系统及负载的功率因数,降低设备容量,减少功率损耗; (2)稳定受电端及电网的电压,提高供电质量。在长距离输电线路合适的地点设置动态无功补偿装置,还可以改善输系统的稳定性,提高输电能力; (3)在电气化铁道等三相负载不平衡的场合,通过适当的无功补偿可以平衡三相的有功及无功负载。 (一).无功补偿的物理意义 无功功率只是描述了能量交换的幅度,而并不消耗功率。图中的单相电路就是这

方面的一个例子,其负载为一阻感负载。电阻消耗有功功率,而电感则在一周期内的一部分时间把从电源吸收的能量储存起来,另一部分时间再把储存的能量向电源和负载释放,并不消耗能量。无功功率的大小表示了电源和负载电感之间交换能量的幅度。电源向负载提供这种功率是阻感负载内在的需要,同时也对电源的输出带来一定的影响。 下图是带有阻感负载的三相电路,为了和上图对照,假设u、R、L的参数均和上图相同,且为对称三相电路。这时无功功率的大小当然也表示了电源和负载电感之间能量交换的幅度。无功能量在电源和负载之间来回流动。

无功功率补偿投切原理

无功功率(reactive power ):无功功率是按电磁感应原理工作的某个交流供用电设备和交流电源之间的能量交换,这种能量互换的最大值称为无功功率。这部分能量是用电器工作所必须的,但不能转换为我们所需要的能量,如机械能和热能。为了形象的描述电源利用的程度,我们提出了功率因数的概念,功率因数就是电路中有用功率和视在功率(电源总功率)的比值。由此可见,提高电网的功率因数对国民经济发展的重要意义。功率因数的提高,能使发电设备的容量得到充分利用,减少线路电流和功率损失。 无功补偿原理:通常我们用来提高功率因数的方法就是补偿法。即采用能够提供无功功率的装置来补偿用电设备所需的无功功率,降低电源的功率损失,提高功率因数,采用电力电容器来补偿用电设备所需无功功率的方法,称为电容无功补偿法。 这是由于理想的电容器在电路里是不消耗电能的,它只是从电源吸收电能转换成电场能,再把电场能转换成电能还给电源,完成它与电源之间的能量互换,因此电容上的功率也是无功功率,它的无功功率是由于电容上的电流I超前电压90°引起的,而我们的用电设备大多数都是感性负载,其工作时由于电流滞后引起的无功功率刚好与电容引起的无功功率相反。所以我们可以利用电容工作时产生的无功功率来补偿用电设备在工作时消耗的无功功率。 电容投切无功补偿简介:通过以上分析我们知道在电路中接入电容可以为设备提供无功功率,提高功率因数。由于我们的设备不可能是纯容性或纯感性的,且设备运行的状态也是不可预知的,如开、关机,或开机时不同工作状态所需要的无功功率都不相同。当补偿器提供的无功功率大于设备所需时,也会对电网造成极大影响。所以我们需要适时的调整无功功率的补偿来匹配设备所需的无功功率,即电容组投切方式。电容组投切的时机和数量则由专用控制器决定,而电容组容量一般选择系统额定容量的15%~40%。 电容投切无功补偿装置组成及其技术要点: 电容器:选用优质自愈式并联电容器,可按不同容量灵活编码组合,投切级数多,大容量补偿可一次到位。 控制器:选用快速DSP芯片,能够准确快速的检测出电路当前的功率因数,并根据当前功率因数选择合适的电容组数量投入到电路中,或在过补偿时及时投入感性电抗消除影响。 投切开关:触点式:功耗较小,但不适合频繁开启的场合。 晶闸管式:开关频率高,但功耗较高,容易损坏。 复合式:开关时采用晶闸管,导通后切换到触点式,开关频率高,功耗小,但是结构复杂 电抗器(装置中多为感性):多用在高压系统中,用来消除过补偿功率,滤除谐波。

电力电容器的补偿原理

1电力电容器的补偿原理 电容器在原理上相当于产生容性无功电流的发电机。其无功补偿的原理是把具有容性功率负荷的装置和感性功率负荷并联在同一电容器上,能量在两种负荷间相互转换。这样,电网中的变压器和输电线路的负荷降低,从而输出有功能力增加。在输出一定有功功率的情况下,供电系统的损耗降低。比较起来电容器是减轻变压器、供电系统和工业配电负荷的最简便、最经济的方法。因此,电容器作为电力系统的无功补偿势在必行。当前,采用并联电容器作为无功补偿装置已经非常普遍。 2电力电容器补偿的特点 2.1优点 电力电容器无功补偿装置具有安装方便,安装地点增减方便;有功损耗小(仅为额定容量的0.4 %左右);建设周期短;投资小;无旋转部件,运行维护简便;个别电容器组损坏,不影响整个电容器组运行等优点。 2.2缺点 电力电容器无功补偿装置的缺点有:只能进行有级调节,不能进行平滑调节;通风不良,一旦电容器运行温度高于70 ℃时,易发生膨胀爆炸;电压特性不好,对短路稳定性差,切除后有残余电荷;无功补偿精度低,易影响补偿效果;补偿电容器的运行管理困难及电容器安全运行的问题未受到重视等。 3无功补偿方式 3.1高压分散补偿 高压分散补偿实际就是在单台变压器高压侧安装的,用以改善电源电压质量的无功补偿电容器。其主要用于城市高压配电中。 3.2高压集中补偿

高压集中补偿是指将电容器装于变电站或用户降压变电站6 kV~10 kV高压母线的补偿方式;电容器也可装设于用户总配电室低压母线,适用于负荷较集中、离配电母线较近、补偿容量较大的场所,用户本身又有一定的高压负荷时,可减少对电力系统无功的消耗并起到一定的补偿作用。其优点是易于实行自动投切,可合理地提高用户的功率因素,利用率高,投资较少,便于维护,调节方便可避免过补,改善电压质量。但这种补偿方式的补偿经济效益较差。 3.3低压分散补偿 低压分散补偿就是根据个别用电设备对无功的需要量将单台或多台低压电容器组分散地安装在用电设备附近,以补偿安装部位前边的所有高低压线路和变压器的无功功率。其优点是用电设备运行时,无功补偿投入,用电设备停运时,补偿设备也退出,可减少配电网和变压器中的无功流动从而减少有功损耗;可减少线路的导线截面及变压器的容量,占位小。缺点是利用率低、投资大,对变速运行,正反向运行,点动、堵转、反接制动的电机则不适应。 3.4低压集中补偿 低压集中补偿是指将低压电容器通过低压开关接在配电变压器低压母线侧,以无功补偿投切装置作为控制保护装置,根据低压母线上的无功符合而直接控制电容器的投切。电容器的投切是整组进行,做不到平滑的调节。低压补偿的优点:接线简单、运行维护工作量小,使无功就地平衡,从而提高配变利用率,降低网损,具有较高的经济性,是目前无功补偿中常用的手段之一。 4电容器补偿容量的计算 无功补偿容量宜按无功功率曲线或无功补偿计算方法确定,其计算公式如下: QC=p(tgφ1-tgφ2)或是QC=pqc(1) 式中:Qc:补偿电容器容量; P:负荷有功功率; COSφ1:补偿前负荷功率因数; COSφ2:补偿后负荷功率因数; qc:无功功率补偿率,kvar/kw。 5电力电容器的安全运行

生产印制电路板的工艺流程简介

生产印制电路板的工艺流程简介 工厂生产印制电路板的工艺大致为:绘图→照相制版→感丝网→落料→图形转移→蚀刻→钻孔→刻板→孔化→抛光→镀金镀银→阻焊→助焊→修边→印字符图→出厂检验等15道工序。现分别简介如下:①照相制版将用户提供的印制电路板导电图形图制成照相底片(照相底片也称工作底片,是用来把导电图形转印到印制电路板或丝网板的正片或负片)。 ②感丝网对用户提供的助焊图及字符图做网架,为对印制电路板做助焊、阻焊处理和印制字符图做准备。 ③落料根据图纸提供的印制电路板外形尺寸备板。 ④图形转移将导电图形由照相底片转移到印制电路板上。一般由感光机完成,将导电图形感光到已落好料的敷铜板上。 ⑤蚀刻俗称烂板,将感光好的敷铜板置于三氧化铁(Fe2Cl3)溶液或其他蚀刻液中腐蚀掉不需要的铜箔。 ⑥整板去毛刺,整形,开异形孔,初检。 ⑦刻板将未腐蚀干净的导电条、工艺线等用手工法除去。 ⑧孔化孔化,全称引线孔金属孔化。即在双面板或多层板引线孔和过孔内壁和基板两面上用电化学方法沉积金属,实现两个外层电路和内外层电路之间的电气连接。 ⑨抛光烘干后的表面处理,去除表面氧化层。 ⑩镀金镀银根据用户要求,采用电或化学镀金或镀银,再抛光两次,

清洗烘干。 ⑥阻焊采用丝网印制法,将阻焊剂涂覆在除焊盘和过孔盘以外的区域上。 ⑥助焊采用丝网印制法,在焊盘和过孔盘上上助焊剂。 ⑩印字符图采用丝网印制法,在印制电路板元件面上印上字符图。⑩修边将制好的印制电路板对外轮廓按尺寸进行加工。 ⑩检验对印制电路板进行目视检验(10倍放大镜)、印制图形连通性检验、绝缘电阻测量、可焊性试验、电镀层检验和粘合强度检验等。

浅谈无功补偿原理及无功补偿率

浅谈无功补偿原理及无功补偿率 无功补偿原理 电网中的电力负荷如电动机、变压器等,大部分属于感性负荷,在运行过程中需向这些设备提供相应的无功功率。在电网中安装并联电容器等无功补偿设备以后,可以提供感性负载所消耗的无功功率,减少了电网电源向感性负荷提供、由线路输送的无功功率,由于减少了无功功率在电网中的流动,因此可以降低线路和变压器因输送无功功率造成的电能损耗,这就是无功补偿。 简介编辑 无功补偿原理 当电网电压的波形为正弦波,且电压与电流同相位时,电阻性电气设备如白炽灯、电热器等从电网上获得的功率P等于电压U和电流I的乘积,即:P=U×I。 电感性电气设备如电动机和变压器等由于在运行时需要建立磁场,此时所消耗的能量不能转化为有功功率,故被称为无功功率Q。此时电流滞后电压一个角度φ。在选择变配电设备时所根据的是视在功率S,即有功功率和无功功率的矢量和:  无功功率为: 有功功率与视在功率的比值为功率因数: cosf=P/S 无功功率的传输加重了电网负荷,使电网损耗增加,系统电压下降。故需对其进行就近和就地补偿。并联电容器可补偿或平衡电气设备的感性无功功率。当容性无功功率QC等于感性无功功率QL时,电网只传输有功功率P。根据国家有关规定,高压用户的功率因数应达到0.9以上,低压用户的功率因数应达到0.85以上。 如果选择电容器功率为Qc,则功率因数为: cosφ= P/ (P2 + (QL-Qc)2)1/2 在实际工程中首先应根据负荷情况和供电部门的要求确定补偿后所需达到的功率因数值,然后再计算电容器的安装容量: Qc = P(tanf1 - tanf2)=P〔(1/cos2f1-1)1/2-(1/cos2f2-1)1/2〕 式中:

PCB外层电路的蚀刻工艺

PCB外层电路的蚀刻工艺 一.概述 目前,印刷电路板(PCB)加工的典型工艺采用"图形电镀法"。即先在板子外层需保留的铜箔部分上,也就是电路的图形部分上预镀一层铅锡抗蚀层,然后用化学方式将其余的铜箔腐蚀掉,称为蚀刻。图1所示的,为图形电镀后板子横截面的情况。在图1状态下,印制板的整体厚度是整个加工过程中之最,以后将逐渐减薄,直到阻焊涂覆工艺。图1的下一道工艺是去膜,即将铜层上铅锡部分以外的感光保护膜剥离掉。图2表示了去膜后板子的横截面。 接下去的工艺就是蚀刻。要注意的是,这时的板子上面有两层铜.在外层蚀刻工艺中仅仅有一层铜是必须被全部蚀刻掉的,其余的将形成最终所需要的电路。这种类型的图形电镀,其特点是镀铜层仅存在于铅锡抗蚀层的下面。另外一种工艺方法是整个板子上都镀铜,感光膜以外的部分仅仅是锡或铅锡抗蚀层(见图3)。这种工艺称为“全板镀铜工艺“。与图形电镀相比,全板镀铜的最大缺点是板面各处都要镀两次铜而且蚀刻时还必须都把它们腐蚀掉。因此当导线线宽十分精细时将会产生一系列的问题。同时,侧腐蚀(见图4)会严重影响线条的均匀性。在印制板外层电路的加工工艺中,还有另外一种方法,就是用感光膜代替金属镀层做抗蚀层。这种方法非常近似于内层蚀刻工艺,可以参阅内层制作工艺中的蚀刻。目前,锡或铅锡是最常用的抗蚀层,用在氨性蚀刻剂的蚀刻工艺中.氨性蚀刻剂是普遍使用的化工药液,与锡或铅锡不发生任何化学反应。氨性蚀刻剂主要是指氨水/氯化氨蚀刻液。此外,在市场上还可以买到氨水/硫酸氨蚀刻药液。以硫酸盐为基的蚀刻药液,使用后,其中的铜可以用电解的方法分离出来,因此能够重复使用。由于它的腐蚀速率较低,一般在实际生产中不多见,但有望用在无氯蚀刻中。有人试验用硫酸-双氧水做蚀刻剂来腐蚀外层图形。由于包括经济和废液处理方面等许多原因,这种工艺尚未在商用的意义上被大量采用.更进一步说,硫酸-双氧水,不能用于铅锡抗蚀层的蚀刻,而这种工艺不是PCB外层制作中的主要方法,故决大多数人很少问津。 二.蚀刻质量及先期存在的问题 对蚀刻质量的基本要求就是能够将除抗蚀层下面以外的所有铜层完全去除干净,止此而已。从严格意义上讲,如果要精确地界定,那么蚀刻质量必须包括导线线宽的一致性和侧蚀程度。由于目前腐蚀液的固有特点,不仅向下而且对左右各方向都产生蚀刻作用,所以侧蚀几乎是不可避免的。侧蚀问题是蚀刻参数中经常被提出来讨论的一项,它被定义为侧蚀宽度与蚀刻深度之比, 称为蚀刻因子。在印刷电路工业中,它的变化范围很宽泛,从1:1到1:5。显然,小的侧蚀度或低的蚀刻因子是最令人满意的。蚀刻设备的结构及不同成分的蚀刻液都会对蚀刻因子或侧蚀度产生影响,或者用乐观的话来说,可以对其进行控制。采用某些添加剂可以降低侧蚀度。这些添加剂的化学成分一般属于商业秘密,各自的研制者是不向外界透露的。至于蚀刻设备的结构问题,后面的章节将专门讨论。从许多方面看,蚀刻质量的好坏,早在印制板进入蚀刻机之前就已经存在了。因为印制电路加工的各个工序或工艺之间存在着非常紧密的内部联系,没有一种不受其它工序影响又不影响其它工艺的工序。许多被认定是蚀刻质量的问题,实际上在去膜甚至更以前的工艺中已经存在了。对外层图形的蚀刻工艺来说,由于它所体现的“倒溪”现像比绝大多数印制板工艺都突出,所以许多问题最后都反映在它上面。同时,这也是由于蚀刻是自贴膜,感光开始的一个长系列工艺中的最后一环,之后,外层图形即转移成功了。环节越多,出现问题的可能性就越大。这可以看成是印制电路生产过程中的一个很特殊的方面。从理论上讲,印制电路进入到蚀刻阶段后,其图形截面状态应如图2所示。在图形电镀法加工印制电路的工艺中,理想状态应该是:电镀后的铜和锡或铜和铅锡的厚度总和不应超过耐电镀感光膜的厚度,使电镀图形完全被膜两侧的“墙”挡住并嵌在里面。然而,现实生产中,全世界的印制电路板在电镀后,镀层图形都要大大厚于感光图形。在电镀铜和铅锡的过程中,由于镀层高度超过了感光膜,便产生横向堆积的趋势,问题便由此产生。在线条上方覆盖着的锡或铅锡抗蚀层向两侧延伸,形成了“沿”,把小部分感光膜盖在了“沿”下面(见图5)。锡或铅锡形成的“沿”使得在去膜时无法将感光膜彻底去除干净,留下一小部分“残胶”在“沿”的下面(见图六)。“残胶”或“残膜”留在了抗蚀剂“沿”的下面,将造成不完全的蚀刻。线条在蚀刻后两侧形成“铜根”,铜根使线间距变窄,造成印制板不符合甲方要求,甚至可能被拒收。由于拒收便会使PCB的生产成本大大增加。另外,在许多时候,由于反应而形成溶解,在印制电路工业中,残膜和铜还可能在腐蚀液中形成堆积并堵在腐蚀机的喷嘴处和耐酸泵里,不得不停机处理和清洁,而影响了工作效率。 三.设备调整及与腐蚀溶液的相互作用关系 在印制电路加工中,氨性蚀刻是一个较为精细和复杂的化学反应过程。反过来说它又是一个易于进行的工作。一旦工艺上调通,就可以连续进行生产。关键是一旦开机就需保持连续工作状态,不宜干干停停。蚀刻工艺在极大的程度上依赖设备的良好工作状态。就目前来讲,无论使用何种蚀刻液,必须使用高压喷淋,而且为了获得较整齐的线条侧边和高质量的蚀刻效果,必须严格选择喷嘴的结构和喷淋方式。为得到良好的侧面效果,出现了许多不同的理论,形成不同的设计方式和设备结构。这些理论往往是大相径庭的。但是所有有关蚀刻的理论都承认这样一条最基本的原则,即尽量快地让金属表面不断的接触新鲜的蚀刻液。对蚀刻过程所进行的化学机理分析也证实了上述观点。在氨性蚀刻中,假定所有其它参数不变,那么蚀刻速率主要由蚀刻液中的氨(NH3)来决定。因此用新鲜溶液与蚀

补偿电容的作用和工作原理

电容补尝柜的作用和工作原理 一.电容补偿柜之作用: 用于补偿发电机无功电流、减轻发电机工作负荷,增加发电机可使用容量,可减少工厂一定的用电量、节省工业电力,提高发供电设备的供电质量和供电能力。 二.电容柜工作原理 用电设备除电阻性负载外,大部分用电设备均属感性用电负载(如日光灯、变压器、马达等用电设备)这些感应负载,使供电电源电压相位发生改变(即电流滞后于电压),因此电压波动大,无功功率增大,浪费大量电能。当功率因数过低时,以致供电电源输出电流过大而出现超负载现象。电容补偿柜内的电脑电容控制系统可解决以上弊端,它可根据用电负荷的变化,而自动设置。电容组数的投入,进行电流补偿,从而减低大量无功电流,使线路电能损耗降到最低程度,提供一个高素质的电力源。 三.电容补偿技术:

在工业生产中广泛使用的交流异步电动机,电焊机、电磁铁工频加热器导用点设备都是感性负载。这些感性负载在进行能量转换过程中,使加在其上的电压超前电流一个角度。这个角度的余弦,叫做功率因数,这个电流(既有电阻又有电感的线圈中流过的电流)可分解为与电压相同相位的有功分量和落后于电压90度的无功分量。这个无功分量叫做电感无功电流。与电感无功电流相应的功率叫做电感无功功率。当功率因数很低时,也就是无功功率很大时会有以下危害: ?增长线路电流使线路损耗增大,浪费电能。 ?因线路电流增大,可使电压降低影响设备使用。 ?对变压器而言,无功功率越大,则供电局所收的每度电电费越贵,当功率因数低于0.7时,供电局可拒绝供电。 ?对发电机而言,以310KW 发电机为例。 310KW 发电机的额定功率为280KW ,额定电流为530A ,当负载功率因数0.6 时 功率= 380 x 530 x 1.732 x0.6 = 210KW

本文档内容主要涵盖使用化学蚀刻方法制作PCB板具体流程.

目录 第一节概述 (3) 第二节PCB流程 (4) 2.1电镀沉铜 (4) 2.2覆感光膜 (8) 2.3感光膜曝光 (12) 2.4感光膜显影 (15) 2.5 覆铜板蚀刻 (17) 2.6 覆铜板镀锡 (18) 2.7 覆阻焊膜 (19) 2.8 阻焊膜曝光 (19) 2.9 阻焊膜显影 (20) 2.10 阻焊膜加固 (20) 2.11 裁板 (20) 附录 (22) 070621V1.0

第一节概述 第一节概述 本文档内容主要涵盖使用化学蚀刻方法制作PCB板具体流程,以及镀锡、覆阻焊膜流程的操作准则,如图1.1所示。对于电路设计,电路胶片制作,覆铜板钻孔,以及使用裁板机成形PCB板则另提供详细说明文档。 图1.1 化学蚀刻方法制作PCB板流程 此文档以流程为线索,详细描述了在制作过程中各步骤的作用、操作要领及注意事项,用户可以很轻松的了解在每一个步骤中发生的本质性变化,以及它在整个流程中的传承功能。

第二节PCB流程 第二节PCB流程 2.1电镀沉铜 1、功能说明 此过程专门针对PCB制造工艺中的双层板,旨在为双层贯通的孔壁镀上铜,使上下层导通。 2、所需设备及数量 KH-A101 电路板沉铜设备1台 KH-A101-1 平整剂10L KH-A101-2 预活化剂10L KH-A101-3 活化剂10L KH-A101-4 化学沉铜剂10L KH-A101-5 电镀液10L 说明:药剂数量可按比例酌情增减。 KH-A101电路板沉铜设备如图2.1示。 图2.1 电路板沉铜设备 KH-A101电路板沉铜设备控制面板如图2.2示。

第二节 PCB 流程 图2.2 控制面板图 1) 交流总开关 2) 第一槽-除油槽的气泵开关(空气振动) 3) 第一槽-除油槽的温度调节器 4) 第一槽-除油槽的温度控制开关 5) 第三槽-活化槽的气泵开关(空气振动)(依各厂供应的活化药剂不同而决定是否 开启,本公司提供的STARTKIT,不需启动) 6) 第四槽-化学沉铜槽的气泵开关(空气振动) 7) 第四槽-化学沉铜槽的温度调节器 8) 第四槽-化学沉铜槽的温度控制开关 9) 第五槽-电镀铜槽的计时器(出厂时已将所需时间设立完成,只需按下RST 键, 即开始执行电镀) 10) 第五槽-电镀铜槽的气泵开关(空气振动) 11) 第五槽-电镀铜槽的电源输出端口 3、流程说明 1) 安装设备。将设备放置在平整的桌台上,锁定两个前轮拉闸,以固定机体。 2) 接线。按手册将主机电源、电镀槽外接电源以及电镀槽负极电夹安置完毕。外接电源接线如图2.3所示。外接电源设置,电压=6V ,电流=3A 。 图2.3 外接电源接线图 2 6 7 3 8 4 10 9 1 11 5

无功补偿的意义

第1章绪论 1.1 无功补偿的意义 国民经济的高速发展和人民生活水平的不断提高带来了电力负荷的高速增长。尤其是近两、三年来,由于电力负荷增长迅猛,而发电装机容量和输配电能力不足,造成全国近20个省市电力供应紧张,部分省市出现限电拉闸[1]。与此同时,随着电力市场的开放,电力用户对电能质量的要求也在提高;电力生产与供应企业也比以往任何时候都重视电力系统运行的经济性。 电力系统运行的经济性和电能质量与无功功率有重大的关系。无功功率是电力系统一种不可缺少的功率。大量的感性负荷和电网中的无功功率损耗,要求系统提供足够的无功功率,否则电网电压将下降,电能质量得不到保证。同时,无功功率的不合理分配,也将造成线损增加,降低电力系统运行的经济性。 无功功率从何而来?显然,发电机提供的无功功率相对负荷和网络对无功功率的需求来说只是“杯水车薪”,仅仅依靠发电机提供无功功率也是极不经济的。无功功率最主要的来源是利用各种无功功率补偿(以下简称无功补偿)设备在电力系统的各个环节进行无功补偿。因此,无功补偿是电力系统的重要组成部分,它是保证电能质量和实现电力系统经济运行的基本手段。 低压电力用户量大面广,其负荷的功率因数又大都比较低,因此在低压电网中进行无功功率的就地补偿是整个电力系统无功补偿的重要环节。 低压电网的无功补偿主要采用并联电容器进行,它包括固定电容器(FC)补偿和自动投切电容器的动态补偿以及两者混合补偿等方式。 电力负荷是随时变化的,所需要的无功功率也是随时变化的,为了维持无功平衡,要求无功补偿设备实行动态补偿,即要根据无功负荷的变化及时投切电容器。以往的低压动态无功补偿设备以机械开关(接触器)作为电容器的投切开关,机械开关不仅动作速度慢,而且会产生诸如涌流冲击、过电压、电弧重燃等现象,开关本身和电容器都容易损坏。据调查,我国过去使用的自动投切电容器无功补偿装置在使用3年后损坏率达75%[2]。 随着电力电子技术和微机控制技术的迅速发展和广泛应用,出现了智能型的动态无功补偿装置。这种以电力电子器件作为无功器件(电容器、电抗器)的控制或开关器件的动态无功补偿装置被称为静止无功补偿装置(SVC:Static V ar Compensator)。 SVC是动态无功补偿技术的发展方向,它正成为传统无功补偿装置的更新换代产

静止无功补偿器_SVC_及其工程应用发展前景

中国电力教育2010年管理论丛与技术研究专刊 450 静止无功补偿器(SVC)及其工程应用发展前景 陈鹏良*1?楼书氢2?刘世欣3 (1.天津市电力公司城西供电分公司,天津 300110;2.江西省吉安供电公司,江西 吉安 343009; 3.内蒙古电力科学研究院,内蒙古 呼和浩特 010020) 摘?要:静止无功补偿装置以其能够快速、平滑的调节容性和感性无功功率,实现动态补偿,在电力系统中得到了广泛的应用。本文主要介绍了它的主要结构型式,并对其在国内外电力系统当中的一些实际应用进行了介绍和总结,针对其关键技术内容指出了SVC国产化发展道路和在我国的应用前景。 关键词:静止无功补偿器;工程应用;发展前景 *作者简介:陈鹏良,男,天津市电力公司城西供电分公司,工程师。 电压是衡量电能质量的重要指标之一,电力系统运行 过程中必须保证母线电压稳定在允许范围内,以满足用电 设备对电压质量的要求。工业配电系统中较多采用电容器 组以达到无功补偿调压和提高功率因数的目的,但是该方 法只能进行分级阶梯状调节,并且受机械开关动作的限制, 响应速度慢,不能满足对波动频繁的无功负荷进行补偿的 要求。[1] 静止无功补偿器(Static Var Compensator, SVC) 是一种快速调节无功功率的装置,它可以使所需的无功功 率随时调整,从而保持系统电压水平的恒定,并能有效抑 制冲击性负荷引起的电压波动和闪变、高次谐波,提高功 率因数,还可实现按各相的无功功率快速补偿调节实现三 相无功功率平衡。 一、SVC结构性能对比及关键技术问题 SVC由可控支路和固定(或可变)电容器支路并联而成, 主要有3种结构型式,[2]如图1所示。 1.晶 闸管控制电抗器(Thyristor?Controlled?Reactor,? TCR) 用可控硅阀控制线性电抗器实现快速连续的无功功率 调节,它具有反应时间快(5~20ms),运行可靠、无级补偿、 分相调节、价格便宜等优点。同时能实现分相控制,有较 好的抑制不对称负荷的能力。 2.晶闸管投切电容器(Thyristor?Switched?Capacitor,? TSC) 分相调节、直接补偿、装置本身不产生谐波,损耗小。 在运行时,根据所需补偿电流的大小,决定投入电容的组 数。由于电容是分组投切的,所以会在电网中产生冲击电流。 为了实现无功电流尽可能的平滑调节,一是增加电容的组 数,组数越多,级差就越小,但又会增加运行成本;二是 把握电容器的投切时间,一般采取过零投切。 3.自饱和电抗器(Saturated?Reactor,?SR) 由饱和电抗器和串联电容器组成的回路具有稳压的特 性,能维持连接母线的电压水平,对冲击性负荷引起的电 压波动具有补偿作用,与其并联的滤波电路能吸收谐波并 提高功率因数,而且还具有有效抑制三相不平衡的能力。 其优点是补偿快速、可靠、过载能力强,维护简单,但运 行时电抗器长期处于饱和状态,有较大的噪声和损耗,原 材料消耗也大,补偿不对称负荷自身产生较大谐波电流, 无平衡有功负荷能力。 以上几种SVC装置性能对比如表1所示。[3,4] 表1?SVC装置性能对比 性能TCR TSC SR 调节范围超前/滞后超前超前/滞后 控制方式连续不连续连续 调节灵活性好好差 响应速度较快快快 调节精度好差好 产生谐波多无少 控制难易程度稍复杂稍复杂简单 技术成熟程度好好好 分相调节可以有限不可以 维护检修方便方便不常维修 二、国外SVC应用介绍 1.纳米比亚400kV,330Mvar项目 纳米比亚NamPower公司新建的一条长890km的 400kV输电系统,把纳米比亚高压输电系统和南非Eskon 高压输电系统连接起来,但是新增的线路带来了新的问题, 主要是电压的稳定性和谐振问题。NamPower的Auas变电 站会出现非常高的过电压。一旦发生50Hz的谐振,在某个 系统负荷的发电机出力条件下就会出现很高的动态过电压, (a)?TCR (b)?TSC (c)?SR 图1?常见的几种SVC基本结构

低压无功补偿系统硬件设计

摘要 本文主要介绍低压无功补偿装置的基本原理、控制方案以及硬件方面的选型和设计。 该补偿系统采用TI公司的定点TMS320LF2812系列DSP和MCU的双控制器进行控制,TMS320LF2812为补偿装置的总控制器,具有自动采样计算、无功自动调节、故障保护、数据存储等功能。同时具备指令运算速度快(约100MIP)、运算量大的优点,同时MCU与外部设备进行通讯,互不干扰,更好的满足了实时性和精确性的要求。采用晶闸管控制投切电容器、数字液晶实时显示系统补偿情况,可以实现快速、无弧、无冲击的电容器投切。为了更详细的介绍该系统,在论文第四章设计了比较完整的各功能模块的硬件电路图,其中包括电源模块、信号变换及调理模块、AD采样模块、锁相同步采样模块、通讯模块等。 关键字:低压无功补偿;晶闸管投切电容器;DSP

Abstract This paper mainly introduces the basic principle of low-voltage reactive power compensation device, control scheme and hardware selection and design. The compensation system by TI company's fixed-point tms320lf2812 series DSP and MCU dual controller control, tms320lf2812 compensation device controller with automatic sample calculation, automatic reactive power regulation, fault protection, data storage and other functions. At the same time with the instruction operation speed (about 100MIP), the advantages of large amount of computation. At the same time, MCU and peripheral equipment

无功补偿的作用

功率因数 [编辑本段] 概述 在交流电路中,电压与电流之间的相位差(Φ)的余弦叫做功率因数,用符号cosΦ表示,在数值上,功率因数是有功功率和视在功率的比值,即cosΦ= P/S 功率因数的大小与电路的负荷性质有关,如白炽灯泡、电阻炉等电阻负荷的功率因数为1,一般具有电感或电容性负载的电路功率因数都小于1。功率因数是电力系统的一个重要的技术数据。功率因数是衡量电气设备效率高低的一个系数。功率因数低,说明电路用于交变磁场转换的无功功率大,从而降低了设备的利用率,增加了线路供电损失。所以,供电部门对用电单位的功率因数有一定的标准要求。 (1) 最基本分析:拿设备作举例。例如:设备功率为100个单位,也就是说,有100个单位的功率输送到设备中。然而,因大部分电器系统存在固有的无功损耗,只能使用70个单位的功率。很不幸,虽然仅仅使用70个单位,却要付100个单位的费用。(我们日常用户的电能表计量的是有功功率,而没有计量无功功率,因此没有说使用70个单位而却要付100个单位的费用的说法,使用了70个单位的有功功率,你付的就是70个单位的消耗)在这个例子中,功率因数是0.7 (如果大部分设备的功率因数小于0.9时,将被罚款),这种无功损耗主要存在于电机设备中(如鼓风机、抽水机、压缩机等),又叫感性负载。功率因数是马达效能的计量标准。 (2) 基本分析:每种电机系统均消耗两大功率,分别是真正的有用功(叫千瓦)及电抗性的无用功。功率因数是有用功与总功率间的比率。功率因数越高,有用功与总功率间的比率便越高,系统运行则更有效率。 (3) 高级分析:在感性负载电路中,电流波形峰值在电压波形峰值之后发生。两种波形峰值的分隔可用功率因数表示。功率因数越低,两个波形峰值则分隔越大。 [编辑本段] 对于功率因数改善 电网中的电力负荷如电动机、变压器、日光灯及电弧炉等,大多属于电感性负荷,这些电感性的设备在运行过程中不仅需要向电力系统吸收有功功率,还同时吸收无功功率。因此在电网中安装并联电容器无功补偿设备后,将可以提供补偿感性负荷所消耗的无功功率,减少了电网电源侧向感性负荷提供及由

无功补偿的作用与必要性

无功补偿的作用与必要性 ①无功电流的产生与损耗 大家知道,我们的工厂低压配电是通过厂用变将10KV变成400V,然后通过低压配电系统,给用电设备提供电源,驱动动力设备工作的,动力设备多为感性负载。如电动机、电焊机、空调机等。当它投入运行以后,将产生很大的感性电流,这种电流它不做工,是无功电流。由于它的存在,使得在配电网络中及变压器中,流过的电流就是电感电流与电阻电流之和,即I=I R+I L。而变压器的容量是电流乘电压,即S= 3 UI(KVA)。当电压一定时,要使变压器的容量得到充分利用,就必须减小电流,而减小电流的唯一办法,就只能使I L电感电流尽量减少。同时由于I L电感电流的存在使得损耗大量增加,它的损耗大小与I L电感电流的平方成正比,这些损耗在变压器及线路中转变成热量散发,使得变压器及配电设备温度升高。不仅影响设备的利用率,还由于温度过高,破坏设备的绝缘,缩短设备的使用寿命,甚至损坏设备。所以怎样减少电感电流,就成了企业减少能源损耗,设备挖潜增加经济效益与社会效益的必经之路。下面我们以调查东莞某外资企业的情况加以说明: 该企业安装630KVA变压器两台,根据监测结果。补偿前平均功率因数COS=0.71(还不算太低)总输出电流385.5A,总无功功率186KVAR,补偿后平均功率因数COS=0.985,总输出电流只有284A,总无功功率只有34KVAR,从而使:

a) 无功功率下降率为Q=(1-Q2/Q1) ×100%=(1-34/186)×100%=81.72% b) 减少线损率为▲P=[1-( I2/I1) 2]×100%=[1-( 284/385.5) 2]×100%=45.73% 由此可见,投入补偿后明显减少了无功功率提高了功率因数,减少了电流和线损率。 ②优化电能质量 a) 抑制波动负荷和冲击负荷造成的电压波动和电压闪变,滤除高次谐波。 大家知道,投入、切除感性负载时,根据电磁原理,一定会产生操作过电压,这种过电压是由于感性负载电流突变产生的高次谐波形成的,而高次谐波对于电容来说相当于短路状态,所以电容是高次谐波的吸收器。 b) 稳定电网电压 仍以上面提到的企业为例,在投入电容前低压侧系统电压与投入电容后低压侧系统电压对比,投入电容后电压有明显提高: ▲NU=( I1-I2)/ I1×100%= (385.5 -284)/ 385.5×100%=26.33% 由此可见投入电容补偿以后不仅明显提高了功率因数,减少了电流和线损率,电压也相对稳定提高了供电可靠性,并能充分利用配电设备的容量,达到节能降损的预期目标。 ③电容补偿的目的和积极意义

电路板蚀刻是什么意思

电路板蚀刻是什么意思 电路板蚀刻是什么意思 印刷线路板从光板到显出线路图形的过程是一个比较复杂的物理和化学反应的过程,本文就对其最后的一步--蚀刻进行解析。目前,印刷电路板(PCB)加工的典型工艺采用“图形电镀法”。即先在板子外层需保留的铜箔部分上,也就是电路的图形部分上预镀一层铅锡抗蚀层,然后用化学方式将其余的铜箔腐蚀掉,称为蚀刻。 蚀刻法是用蚀刻液将导电线路以外的铜箔去除掉的方法,雕刻法是用雕刻机将导电线路以外的铜箔去除掉的方法,前者是化学方法,较常见,后者是物理方法。 电路板蚀刻法,是化学腐蚀法,是用浓硫酸腐蚀不需要的覆铜做成的电路板。雕刻法使用物理的方法,用专门的雕刻机,刀头雕刻覆铜板形成电路走线的方法。 了解有关PCB蚀刻过程中应该注意的问题。 减少侧蚀和突沿,提高蚀刻系数 侧蚀产生突沿。通常印制板在蚀刻液中的时间越长,侧蚀越严重。侧蚀严重影响印制导线的精度,严重侧蚀将使制作精细导线成为不可能。当侧蚀和突沿降低时,蚀刻系数就升高,高的蚀刻系数表示有保持细导线的能力,使蚀刻后的导线接近原图尺寸。电镀蚀刻抗蚀剂无论是锡-铅合金,锡,锡-镍合金或镍,突沿过度都会造成导线短路。因为突沿容易断裂下来,在导线的两点之间形成电的桥接。 侧蚀的影响因素如下! 1、蚀刻方式:浸泡和鼓泡式蚀刻会造成较大的侧蚀,泼溅和喷淋式蚀刻侧蚀较小,尤以喷淋蚀刻效果最好。 2、蚀刻液的种类:不同的蚀刻液化学组分不同,其蚀刻速率就不同,蚀刻系数也不同。例如:酸性氯化铜蚀刻液的蚀刻系数通常为3,碱性氯化铜蚀刻液的蚀刻系数可达到4。近来的研究表明,以硝酸为基础的蚀刻系统可以做到几乎没有侧蚀,达到蚀刻的线条侧壁接近垂直。这种蚀刻系统正有待于开发。

相关主题
文本预览
相关文档 最新文档