当前位置:文档之家› 飞机复合材料加筋薄壁结构的创新设计理念研究

飞机复合材料加筋薄壁结构的创新设计理念研究

飞机复合材料加筋薄壁结构的创新设计理念研究
飞机复合材料加筋薄壁结构的创新设计理念研究

南京航空航天大学

大学生创新训练计划项目

研究总结报告

项目名称:飞机复合材料加筋薄壁结构的创新设计理念研究项目负责人:何俊(学号:010610423)

项目参加者:黄达飞(学号:010610428)

顾海雷(学号:010610425)

项目指导教师:陈普会(所属院系:航空宇航学院)

项目迄止时间:2009 年 3 月~ 2010 年 11 月

南京航空航天大学教务处

2010年12月

飞机复合材料加筋薄壁结构的创新设计

理念研究

摘要

复合材料加筋壁板是航空工程中应用比较广泛的典型结构细节件,对其力学性能进行研究具有重要意义。用数值分析方法研究复合材料典型结构单元在轴压作用下的失效机理和传载特性,对复合材料整体化结构的设计具有重要的指导意义。

本文针对一种材料体系(T700/BA9916),设计L型单筋条壁板试验件,采用ABAQUS 商业化有限元分析软件共建立了3个分析模型,分别采用了结构后屈曲分析方法、融合渐进损伤分析的结构后屈曲分析方法和融合内聚力模型的结构后屈曲分析方法对相关模型的轴压失效过程进行了模拟分析,并将不同分析结果和分析方法进行了对比,得到了一些对结构单元的细节设计具有指导意义的结论,并对进一步的研究工作进行了展望。

关键词单筋条壁板,后屈曲分析,渐进损伤分析,内聚力模型,承载能力

目录

摘要 (2)

第一章引言 (4)

第二章有限元分析方法 (5)

2.1 结构后屈曲分析 (5)

2.2 渐进损伤分析 (5)

2.3 基于内聚力模型的界面元分析 (6)

第三章试验件设计 (7)

3.1 试验件设计 (7)

3.2 有限元建模与分析 (7)

第四章工作总结 (16)

第一章引言

飞行器的薄壁结构由于自身明显的优点得到了广泛的应用。对于—般薄壁结构,其蒙皮在处于较低的应力水平时便可能产生失稳现象,但这不等于整个结构的破坏,它仍具有一定的承载能力。所以,研究薄壁结构后屈曲状态下的承力特性和应力分析方法,对于提高结构承载能力、减轻重量、改进结构设计等都将具有重要意义。

随着先进复合材料在飞行器结构中的应用越来越多,结构设计理念正在发生变革,目前的主要发展趋势是采用整体化的设计思想。整体化设计指的是将若干个零件设计成一个较大的整体件,从而减少零件数量,减少连接件和连接过渡区附加重量、减少装配,进而减轻结构重量、降低成本。整体化工艺设计也日益受到重视与应用,如B-2飞机外翼整体翼面壁板、正弦波腹板梁、机翼整体下翼面壁板、A380安定面格栅结构壁板、整体缠绕机身等。

鉴于上面所述,本文重点研究复合材料整体壁板的后屈曲承载能力,设计了L型单筋条壁板试验件,采用ABAQUS商业化有限元分析软件共建立了3种分析模型,对其轴压失效过程进行了模拟分析。

三种有限元分析方法:结构后屈曲分析;渐进损伤分析;基于内聚力模型的界面元分析。

第二章 有限元分析方法

2.1 结构后屈曲分析

复合材料加筋板的屈曲是指当平面载荷达到使初始平直的平衡状态不再稳定而挠曲成为曲面形状,使产生偏离平面状态的载荷称为屈曲载荷。平面载荷下复合材料结构的屈曲分析涉及到特征值问题的解答。具体分析方法如下:

(1)首先进行特征值屈曲分析,得到一些特征值和屈曲模态。特征值屈曲分析即为“结构弹性稳定分析”,指结构在外载荷作用下,在原来的平衡状态之外,出现了另一种平衡状态。在数学推导中解决的是一个求解特征值的问题,故而被称为特征值屈曲分析。特征值屈曲,仅考虑结构的线性行为。

(2)由于第一阶模态最容易发生(载荷最小),取初始屈曲模态的横向位移值作为初始扰动加入到后面进行实际结构承载分析,得到结构的承载特性和失效破坏过程,这就是结构后屈曲分析。

下面将采用上述方法对单筋条壁板进行结构后屈曲分析。

2.2 渐进损伤分析

复合材料层压板是多相材料,其失效问题很复杂,主要包括单层内的材料失效和层间的分层失效模式。其中单层内的失效形式主要为基体开裂和纤维断裂,分层失效模式主要为层间拉伸分层失效和剪切分层失效等。

复合材料的损伤是一个渐进损伤的过程,薄弱处的失效会引起载荷的重新分配,各种不同形式的损伤会造成复合材料层压板的刚度不断折减,最后达到完全破坏,这是一个渐进的损伤过程,考虑材料失效过程及失效后结构性能不断变化的分析方法称之为渐进损伤分析方法(Progressive Damage Analysis, PDA)。

1980年,Hashin 提出了改进的三维失效判据,Hashin 认为横向应力2233,σσ和剪

切应力121323,,τττ对基体在拉伸或压缩载荷下的损伤也有贡献。

纤维拉伸失效:

1311121112131,(0)t X S S τστσ??????++≥≥ ? ? ???????

(2-1) 纤维压缩失效:

11

111,(0)c X σσ≥< (2-2)

基体拉伸失效:

22222332322331312223322312131,()0t Y S S S σστσσττσσ????????+-+++≥+≥ ? ? ? ????????? (2-3)

基体压缩失效:

222223322332322332232323221312223312131221,()0c c Y Y S S S S S σσσστσσττσσ??????????++- ?-++ ? ? ? ? ??

?????????????++≥+< ? ?????

(2-4) 其中X c 和X t 是纤维方向的压缩和拉伸强度,Y c 和Y t 是横向压缩和拉伸强度,S 12,S 13,S 23分别是1-2、1-3、2-3方向的剪切强度。

在ABAQUS 分析软件中,纤维增强复合材料初始损伤判据基于Hashin 准则,由上面知该判据考虑四种破坏机理:纤维拉伸、纤维压缩、基体拉伸、基体压缩。在后面将采用Hashin 准则分析复合材料失效的情况。

2.3 基于内聚力模型的界面元分析

内聚力模型(Cohesive zone model )是对复合材料界面的一种简化,但通过适当地选取参数,可以反映出界面层的特性。内聚单元是基于内聚力模型的界面元在有限元中的应用。在ABAQUS 中,可通过内聚单元的损伤萌生、失效来模拟复合材料界面的分层起始扩展过程。

内聚单元是一种基于内聚力模型的零厚度界面元,主要用来模拟分析粘结层、复合材料界面层、补片等的破坏。采用强度准则判断内聚单元的损伤萌生,损伤萌生后则采用Griffith 能量破坏准则,同时也可以根据应变值判断其损伤萌生及破坏过程。本文将在筋条和蒙皮之间加入内聚力单元来模拟筋条和蒙皮之间的脱胶破坏情况。

第三章试验件设计

3.1 试验件设计

根据L型筋,设计单筋条壁板试验件。试验件壁板两端头用长20mm、宽100mm、厚60mm的环氧树脂加铝粉浇铸,防止试件受压两端压劈。壁板长度为240mm,宽度为70mm,注意实际试验长度为200mm。

材料体系如下:

壁板材料主要为T700/BA9916,其单向带基本性能为:E1T =E1C=119.5GPa,υ12 =0.301,E2T =E2C =9.0GPa,G12 =5.18GPa,单层厚度h0 =0.13mm。

铺层参数如下:

蒙皮铺层:

[+45/-45/+45/-45/0/+45/-45/0/90/0/-45/+45/0/-45/+45/-45/+45],共17层,对称;

L型筋条铺层:

[+45/03/-45/02/+45/03/-45/90/-45/03/45/02/-45/03/+45],共25层,对称。

将上述轴压试验件放在压力试验机上进行试验即可,压心调准后,通过油缸将试验机平台向下顶对试验件实施压缩载荷。

3.2 有限元建模与分析

以两端头之间的壁板作为分析对象,利用ABAQUS建立有限元模型。其中轴压壁板的尺寸、材料体系和铺层参数由上面试验件设计可获知。

所用复合材料蒙皮、筋条简化为S4R壳单元,且将筋条局部圆角简化为直角。轴压试验中,壁板竖立在试验机台面上,由上压头施加均匀压缩位移,因此有限元分析时对壁板下端所有节点固定三个转动和一个上下平动的自由度,上端施加5mm均匀压缩位移(约束三个转动自由度),并且消除刚体平移,最后通过支反力推算得到相应位移时的外载荷。

(1)结构后屈曲分析

按照上面所述方法进行建模,分别建立蒙皮和L型筋条两个部件,然后通过Tie 将其连接。图3.1和3.2为L模型复合材料铺设图和网格划分图。图3.1不同颜色表示所铺复合材料方向不同。蒙皮单元尺寸长2.5mm、宽2.5mm,共有1600个单元;筋条网格尺寸长2.5mm、宽2.5mm,共1600个单元。

图3.1 L模型复合材料铺设图图3.2 L模型网格划分图

首先对L模型进行特征值屈曲分析,得到一阶屈曲模态图(变形系数为1)如图3.3所示。然后将初始屈曲模态的横向位移值作为初始扰动加入到L型壁板轴压承载分析中,可得到位移载荷为5mm时的结构变形图(图3.4)和位移载荷曲线图(图3.5)。

图3.3 L模型一阶屈曲模态图

图3.4 L模型结构变形图

图3.5 L模型位移载荷曲线图

由位移载荷曲线图可知当加载位移约为1.0mm时由于结构开始发生屈曲而使曲线出现拐点;当加载位移为3.316mm时结构达到最大承载能力159.2kN;随后随加载位移增大,承载能力迅速下降。

(2)融合渐进损伤的结构后屈曲分析

在(1)中所建立的模型中加入Hashin准则,用以模拟损伤,得到LPDA壁板模

型,进而进行考虑渐进损伤的结构后屈曲分析。

应用Hashin准则所需要的复合材料T700/BA9916的强度指标为:纵向拉伸强度X t=2688MPa,纵向压缩强度X c=1458MPa,横向拉伸强度Y t=69.5MPa,横向压缩强度Y c=236MPa,纵向剪切强度S12=S13=136MPa,横向剪切强度S23=105MPa。

复合材料铺层、单元选择、网格划分情况等均与(1)中模型完全相同,故而特征值屈曲分析时可得到相同的一阶屈曲模态图(图3.3),然后将初始屈曲模态的横向位移值作为初始扰动加入到L型壁板轴压承载分析中,可得到位移载荷曲线,如图3.6所示。

图3.6 LPDA模型位移载荷曲线图

由位移载荷曲线图可知当加载位移约为1.0mm时由于结构开始发生屈曲而使曲线出现拐点;当加载位移为1.520mm时结构达到最大承载载荷104.9kN;随后随加载位移增大,复合材料纤维和基体发生损伤并迅速扩展,使得承载能力迅速下降;当加载位移大于1.7mm以后,结构承载能力已经降到最低。

(3)融合内聚力模型的结构后屈曲分析

在(1)中所建立的模型中的蒙皮和筋条之间加入内聚力单元,用以模拟层间损伤,得到LCZM壁板模型,进而进行考虑蒙皮和筋条之间脱胶的结构后屈曲分析。

现在需要增加内聚力单元的各个指标。内聚层定义参数为:E33=20000MPa,

G 13=G 23=7700MPa ,G Ic =0.969N/mm ,G IIc =1.719N/mm ,G IIIc =1.719N/mm ,MPa t n 610

=,MPa t t t s 6800==,其中弹性常数参考基体的参数,临界应力值参考相关资料取值。

内聚层选择COH3D8单元,网格密度为长2.5mm 、宽2.5mm 、高0.1mm ,共有640个单元。需说明的是:在建模过程中,为方便建模,内聚层给予了厚度。由于内聚单元为基于内聚力模型的界面元,分析中是按零厚度单元进行计算,内聚单元平面方向没有正应力的存在。网格情况见图3.8,只给出了内聚单元部分。

图3.8 LCZM 模型内聚层网格划分图

首先对LCZM 模型进行特征值屈曲分析,得到一阶屈曲模态图(变形系数为1),如图3.9所示。然后将初始屈曲模态的横向位移值作为初始扰动加入到L 型壁板轴压承载分析中,可得到位移载荷曲线(图3.10)。

图3.9 LCZM模型一阶屈曲模态图

图3.10 LCZM模型载荷位移曲线图

由位移载荷曲线图可知当加载位移约为1.0mm时由于结构开始发生屈曲而使曲线出现拐点;当加载位移为1.942mm时结构达到最大承载载荷118.4kN;此时模型蒙皮与筋条的层间内聚力单元已开始发生损伤,并随加载位移增大而迅速扩展,使得蒙皮与筋条发生局部分离,承载能力迅速下降;当加载位移大于3.5mm以后,结构承载能力已经降到较低水平。

具体过程分析如下:在加载位移为1.863mm时,脱层起始,图3.11的Mises应

力云图表明脱层萌生于壁板中部边缘区域;在位移为2.145mm时,脱层已达到横向完全扩展(图3.12);随着加载位移的继续增加,脱层继续扩展,当加载位移为2.333mm 时(图3.13,图3.14),脱层长度已达约140mm,此时筋条与蒙皮已经大部分脱开,筋条失去承载作用,蒙皮发生总体屈曲,承载能力急剧下降。

图3.11 1.863mm时LCZM模型脱层开始Mises应力云图

图3.12 2.145mm时,LCZM模型脱层横向完全扩展图

图3.13 2.333mm时,LCZM模型脱层完全扩展图

图3.14 2.333mm时,LCZM模型蒙皮筋条分离图

(4)三种分析方法的结果比较

上面给出了对于L型壁板的三种分析方法结果,得到了三种模型:L模型,LPDA

模型,LCZM模型。现在将它们的位移载荷曲线放在一起进行分析,如图3.15所示。

图3.15 L型壁板三种模型位移载荷曲线对比图

由图可得以下几点:

1)三条曲线在加载位移为0~1mm时是重合的,这个线性段表征壁板在承受线弹性压缩。

2)在加载位移为1mm时,由于加入了内聚力单元和略微不同于其他两个模型的初始屈曲扰动值,LCZM曲线与其他两条曲线出现了一些差异,但是三条曲线均在此时发生了偏折,这是源于此时结构开始发生屈曲。

3)从最终承载能力上来看,L模型最高,LCZM、LPDA模型比较接近。这是因为L模型仅考虑了壁板结构的后屈曲效应,而未考虑结构本身的损伤效应;与之不同的是,LCZM模型加入了可以模拟蒙皮与筋条层间损伤情况的内聚力单元,以及LPDA模型加入了考虑损伤的Hashin准则。

4)在各自模型达到最终承载能力之后,L模型和LCZM模型由于筋条和蒙皮本身完好并未破坏而仍具有一定的承载能力,故而曲线下降相对较缓;而由于载荷过大使得层内迅速发生破坏的LPDA模型,曲线迅速下降到最低,结构不再具有承载能力。

另外由于LCZM模型分析中内聚层参数的设定只是参考相关材料参数,并不能完全

符合实际情况,要达到较为精确的设定还需要一定的试验和分析做基础。

第四章工作总结

本文针对一种材料体系(T700/BA9916),设计了L型单筋条壁板试验件采用ABAQUS商业化有限元分析软件共建立了3个分析模型,对其轴压失效过程进行了模拟分析,并将不同分析方法进行了对比。可得以下结论:

(1)采用S4R壳单元的结构后屈曲分析方法,并结合Hashin复合材料失效判据能较好地综合模拟复合材料结构的后屈曲与损伤累积的耦合历程。

(2)采用S4R壳单元的结构后屈曲分析方法,并结合内聚力单元能较好地模拟蒙皮与筋条的脱胶损伤对结构后屈曲承载能力的影响。

(3)对于三种分析方法,三条曲线在小位移加载时是重合的,表征了壁板在承受线弹性压缩;而后由于结构开始发生屈曲三条曲线均发生偏折;从最终承载能力上来看,原始模型最高,~CZM、~PDA模型比较接近;在达到最终承载能力之后,原始模型和~CZM模型由于筋条和蒙皮本身完好并未破坏仍具有一定的承载能力,曲线下降相对较缓,而由于载荷过大使得层内迅速发生破坏的~PDA模型,曲线迅速下降到最低,结构不再具有承载能力。

大型飞机复合材料机身结构设计

大型飞机复合材料机身结构设计 李晓乐 (北京航空航天大学航空科学与工程学院,北京 100083) 摘要:本文研究了复合材料在大型飞机机身上的应用。利用相关机身结构数据,进行了结构形式的分析和选 择。参照有关规定,针对所设计的飞机机身在气密载荷作用下的情况进行了强度分析,并用这些分析结果来指 导复合材料的结构设计。复合材料选择为层合结构。并依据层合复合材料的特性,进行了层合板的铺层角度设 计和铺层顺序设计。对所设计的大型飞机复合材料机身结构进行了刚度分析,给出了主要构件的应力、应变结 果,证明了这种层合复合材料设计是合理可行的,为复合材料在我国大飞机项目上的应用提供了参考。 关键词:复合材料;大型飞机;机身结构;刚度 The Structural Design of Composites of Large Airplane Fuselage LI Xiaole (School of Aeronautical Science and Engineering, Beihang University, Beijing 100083, China) Abstract: This paper discusses the application of composite material in the large airplane fuselage. The concrete form of fuselage was analyzed and determined, which based on the data of some existing fuselage structure. Compared with some standard, the strength of the fuselage was analyzed under the pressure load. The result can conduct the structures design. The laminate of composites was chosen. The degree and the order of composite were also determined. The stiffness of the designed composite fuselage was computed, which also showed the result of strain and stress. Analysis manifested that the composites is designed appropriately, and the result can be consulted in the large-aircraft program. Keywords: Composites, Large Airplane, Fuselage Structure, Stiffness 机身是飞机的重要部件之一,它把机翼、尾翼、起落架等部件连接在一起,形成一架完整的飞机。对大型民用飞机来说,机身还能安置空勤组人员、旅客、装载燃油、设备和货物。现代飞机的机身是一种加强的壳体,这种壳体的设计通常称为“半硬壳式设计”。为了防止蒙皮在受压和受剪时失稳,就需要安装隔框、桁条等加强构件[1~2]。 随着时代的发展,复合材料在飞机设计中的用量越来越大,除了以前的非承力构件,现在主承力构件上也开始采用大量的复合材料设计。但到现在为止,虽然复合材料的用量有了相应的增加,可飞机机身仍然是有金属参加的[1]。 本文针对机身所承受的载荷,确定飞机机身的整体刚度、强度。然后以刚度、强度为基准,设计复合材料的结构形式,并对这种形式的机身进行初步的性能计算,旨在为复合材料在我国大飞机项目上的应用提供一些参考。 1 机身结构设计 作者介绍:李晓乐(1985-), 男, 硕士研究生. ft4331789@https://www.doczj.com/doc/3518127022.html,

复合材料在飞机上的应用

新视点 NEW VIEWPOINT 64航空制造技术2006年第3期 目前,复合材料在飞机上的应用已非常广泛,但在20世纪90年代初复合材料市场曾一度陷入低靡,究其原因是由于复合材料设计制造的复杂性造成了成本壁垒,人们开始认识到只有重视性能和成本的平衡,才能使复合材料展现辉煌。随着复合材料先进技术的成熟,使其性能最优和低成本成为可能,大大推动了复合材料在飞机上的广泛应用。本文在介绍国外复合材料在飞机上广泛应用的基础 上,对作为技术保障的数字化设计技术和先进制造技术进行了分析研究。从国外情况看,各种先进的飞机都与复合材料的应用密不可分,复合材料在飞机上的用量和应用部位已成为衡量飞机结构先进性的重要指标之一。下面介绍复合材料在飞机上应用的发展趋势。 (1) 复合材料在飞机上的用量日益增多。 复合材料在飞机上 的应用评述 北京航空航天大学机械工程及自动化学院 张丽华 范玉青 复合材料用量通常用其所占飞机机体结构重量的百分比表示,纵观复合材料在民机上的发展情况发现,无论是波音公司还是空中客车公司,随着时间推移,复合材料的用量都呈增长趋势。最具代表意义的是空客公司的A380客机和波音公司最新推出的787客机。在A380上仅碳纤维复合材料的用量就达32t左右,占结构总重的15%,再加上其他种类的复合材料,估计其总用量可达25%左右。787 上初步估计复合材料用量可达50%,远远超过了A380。另外,复合材料 在军机和直升机上的用量也有同样的 增长趋势。(2) 应用部位由次承力结构向主承力结构过渡。 飞机上最初采用复合材料的部位有舱门、整流罩、安定面等次承力结 构,目前已广泛应用于机翼、机身等部位,向主承力结构过渡。从1982年开始用复合材料制造飞行操纵面(如A310-200飞机的升降舵和方向舵),空客公司在主承力结构上使用复合材 料已有20多年的经验。在A380上采用的碳纤维复合材料大型构件主要有中央翼盒、翼肋、机身上蒙皮壁板、机身后段、机身尾段、地板梁、后承压框、垂尾等,大量的主承力结构都采用了复合材料。787复合材料的应用则更让世人瞩目,其机身和机翼部位采用碳纤维增强层合板结构代替铝合金;发动机短舱、水平尾翼和垂直尾翼、舵面、翼尖等部位采用碳纤维增强夹芯板结构;机身与机翼衔接处的整流蒙皮采用玻璃纤维增强复合材料。与A380相比其用量更大,主承载部位的应用更加广泛,这将是世界上采用复合材料最多的大型商用喷气客机。 (3) 复合材料在复杂曲面构件上的应用越来越多。 飞机上复杂曲面零件很多,复合材料的应用也越来越多,比如A380机身19段、19.1段和球面后压力隔框等均为采用复合材料的具有复杂曲 复合材料在飞机上的用量和应用部位已成为衡量飞机结构先进性的重要指标之一;复合材料构件的整体成型、共固化技术不断进展,复杂曲面构件不断扩大应用;复合材料的数字化设计,设计、制造一体化,以及基于三维模型铺层展开的专用设计/制造软件等技术的开发是先进复合材料发展的基本技术保障 复合材料在飞机上的应用

(完整版)12级复合材料结构设计参考资料

复合材料结构设计参考资料复合材料与工程 考试形式 笔试闭卷 考试时间和地点 时间:2015年6月25日14:00--15:40 地点:材料学院A107 题型与分数分布 一.名词解释 二.填空题 三.简答题 四.计算题

一、绪论 1.复合材料:由两种或两种以上具有不同的化学或物理性质的组分材料组成的一种与组分材料性质不同的新材料,且各组分材料之间具有明显的界面。 一相为连续相,称为基体;起连接增强体、传递载荷、分散载荷的作用。 一相为分散相,称为增强体(增强相)或功能体。是以独立的形态分布在整个连续相中的,两相之间存在着相界面。(分散相可以是增强纤维,也可以是颗粒状或弥散的填料) 主要起承受载荷的作用,赋予复合材料以一定的物理、化学功能。 2.复合材料分类: A按基体材料分:树脂基的复合材料、金属基复合材料、无机非金属复合材料 B按分散相形态分:连续纤维增强、纤维织物增强、片状材料增强、短纤维增强、颗粒增强C按增强体材料种类分类:玻璃纤维、碳纤维、有机纤维、金属纤维、陶瓷纤维。 D按用途分类:结构复合材料:利用复合材料的各种良好力学性能用于制造结构的材料。 功能复合材料:指具有除力学性能以外其他物理性能的复合材料 3.复合材料的结构层次: 三次结构:纤维缠绕压力容器,即平常所说的制品结构(a) 二次结构:从容器壁上切取的壳元即是由若干具有不同纤 维方向的单层材料按一定顺序叠合而成的层合 板(b) 一次结构:层合板的一个个铺层,是层合板的基本单元(c) 二、单层板的宏观力学分析 1.单层板的正轴刚度 正向:也就是说应力方向与坐标方向一致方向为正向,相反为负向。 正面:截面外法线方向与坐标轴方向一致的面,否则为负面。 σ1和σ2——表示正应力分量:拉伸为正,压缩为负,也就是使整 个单层板产生拉伸时的应力为正应力,而使单层板产生压缩时的应 力为负应力。 τ12——表示剪应力分量:其中正面正向为正;负面负向也为正。 A.力学实验 a.纵向单轴试验: 纵向泊松比v1是单层板由于纵向单轴应力σ1而引起的横向线应变ε2(1)与纵向线应变ε1(1)的比值。(ε2(1)表示的是这个应变是由纵向应力σ1引起的) b.横向单轴试验

飞机复合材料损伤检测与维修【毕业作品】

BI YE SHE JI (20 届) 飞机复合材料损伤检测与维修 所在学院 专业班级飞机结构修理 学生姓名学号 指导教师职称 完成日期年月

摘要 复合材料是由两种或两种以上的原材料,通过各种工艺方法组合成的新材料。其应用在航空领域越来越广泛。对于现代飞机来说复合材料的应用对减重、耐腐蚀和降低成本有着重要的作用。对飞机结构轻质化、小型化和高性能化起着至关重要的作用。复合材料在飞机上的应用日趋广泛,其应用和修理水平亟待提高。论文介绍了飞机复合材料的损伤特征和可用于飞机复合材料损伤无损检测的目视、敲击、阻抗、谐振、超声、射线照像、红外热图和声发射等检测法,并结合实际介绍了不同类型复合材料结构和缺陷检测方法的选择。 关键词:复合材料;损伤检测;维修

ABSTRACT Composite materials are composed of two or more than two kinds of raw materials. Its application in aviation field is more and more extensive. For modern aircraft, the application of composite materials has an important role in weight loss, corrosion resistance and cost reduction. It plays an important role in the light weight, small size and high performance of the aircraft structure. The application of composite materials in aircraft is becoming more and more extensive, and its application and repair level need to be improved. This paper introduces the damage characteristics of aircraft composite material and can be used for nondestructive detection of visual, percussion, impedance, resonance, ultrasound, X-ray, infrared thermography and acoustic emission detection method of damaged aircraft composite materials, and introduces different types of composite structure and defect detection method combined with the actual choice. Key words:composite material; damage detection; maintenance

飞机复合材料设计

目录 复合材料 (2) 1. 复合材料特点 (2) 1.1 复合材料的应用 (2) 1.2 设计规范的演变 (2) 1.3 复合材料适航验证试验程序 (3) 1.4 碳纤维树脂基复合材料优点 (3) 1.5 碳纤维树脂基复合材料缺点: (4) 2. 材料种类 (4) 2.1 树脂基体 (4) 2.1.1 热塑性复合材料 (4) 2.1.2 热固性复合材料 (5) 2.1.3 树脂材料性能对比 (5) 2.2 增强纤维 (6) 2.2.1 碳纤维 (6) 2.2.2 玻璃纤维 (7) 2.2.3 芳纶纤维 (7) 2.2.4 材料性能对比 (7) 2.3 预浸料 (7) 2.4 芯材 (8) 2.4.1 蜂窝芯 (8) 2.4.2 泡沫芯 (8) 2.5 胶粘剂 (9) 3. 复合材料试验验证步骤 (9) 4. 复合材料结构设计 (9) 4.1 复合材料设计基本要求 (9) 4.2 设计选材 (9) 4.2.1 设计选材需求 (9) 4.2.2 夹层结构的选材 (10) 4.3 层压板设计 (10) 4.3.1 铺层方向和比例 (10) 4.3.2 铺层设计 (10) 4.3.3 丢层要求 (10) 4.3.4 拼接 (11) 4.3.5 开口设计要求 (11) 4.4 夹层结构设计 (11) 4.4.1 制造方法 (11) 4.4.2 面板设计准则 (11) 4.4.3 芯材 (12) 4.5 细节设计 (12) 4.6 复合材料设计优化 (12) 4.7 复合材料连接 (13) 4.7.1 胶接结构 (13) 4.8 垂尾复合材料结构设计 (14)

4.9 复合材料检测 (14) 5. 复合材料制造 (14) 5.1 复合材料的成型方法和特点 (14) 5.2 成型工艺过程 (15) 5.2.1 热压罐工艺 (16) 5.2.2 RTM工艺 (16) 5.2.3 机加工艺 (16) 5.3 制造缺陷 (16) 复合材料 1.复合材料特点 复合材料主要由基体和增强材料组成。非金属基体包括树脂、陶瓷等,增强材料包括碳纤维、芳纶、玻璃纤维等。应用最多的是树脂基碳纤维复合材料,其次是芳纶纤维。玻璃纤维因其强度、刚度较差,难以用在受力结构上,但因为价格便宜,民机上有较多应用。 复合材料的韧性和对环境的耐受能力主要取决于树脂。 韧性:表示材料在塑性变形和破裂过程中吸收能量的能力,韧性越好,则发生脆性断裂的可能性越小。 1.1复合材料的应用 复合材料首次应用于空客A310-300(1985年)的垂尾上,后来应用到了扰流板、方向舵、起落架舱门、整流罩等部位。A340(2001年)首次将复合材料用在机身上,后气密压力框;A380(2005年)将中央翼盒用复合材料,将后压力框后部机身用复合材料,上层客舱底板、龙骨梁。A400M(2009年)第一架使用全碳纤维增强树脂基复合材料的机翼飞机。波音787(2009年)第一家引入全复材机体结构,整个机身结构用了碳纤维增强树脂复合材料。空客后来的A350XWB也是全复材机身。 1.2设计规范的演变 FAA针对复合材料结构合格审定中的新问题,于1978年颁布咨询通告AC-20-107A“复合材料飞机结构”,制定了一个可接受但不是唯一的验证方法,适用于FAR23、25、27和29涉及的所有航空器的复合材料结构,成为制定满足

飞 机 复 合 材 料 及 应 用

飞机复合材料及应用 【摘要】 本文重点讲述了复合材料的构成、种类、性能以及在飞机上的应用。复合材料是由两种或两种以上的原材料,通过各种工艺方法组合成的新材料。对于一个现代飞机来说复合材料的应用对减重﹑耐腐蚀和降低成本有着重要的作用。对飞机结构轻质化、小型化和高性能化起着至关重要的作用。复合材料结构特点和应用效果,在高性能战斗机实现隐身、超声速巡航、过失速飞行控制,前翼飞机先进气动布局的实际应用。 关键词:复合材料层合板 1概述 复合材料是由两种或两种以上的原材料,通过各种工艺方法组合成的新材料。它既可以保持原材料的某些特点,又具有原材料所不具备的新特征,并可根据需要进行设计,与单一均质材料相比它具有较多的优越性。复合材料飞机结构技术是以实现高结构效率和改善飞机气动弹性与隐身等综合性能为目标的高新技术,对飞机结构轻质化、小型化和高性能化起着至关重要的作用。复合材料结构特点和应用效果,在高性能战斗机实现隐身、超声速巡航、过失速飞行控制,前翼飞机先进气动布局的实际应用,以“飞翼”著称的B-2巨型轰炸机的隐身飞行,舰载攻击∕战斗机耐腐蚀性改善和轻质化,对于客机来说复合材料的应用对减重﹑耐腐蚀和降低成本有着重要作用,如波音777和空中客车A330∕A340上的应用,标志着飞机复合材料结构设计发展已经成熟。 我国从20世纪80年代开始,将复合材料应用技术研究列入重点发展领域。复合材料应用基本实现了从次承力构件到主承力构件的转变。复合材料的垂直安定面﹑水平尾翼、方向舵、前机身等构件已在多种型号飞机上使用,可以小批量生产。带整体油箱复合材料机翼等主承力结构已装机试飞成功。航空先进复合材料已进入实际应用阶段。 2 复合材料的探究 2.1 复合材料的构成 复合材料是由两种或两种以上材料独立物理相,通过复合工艺组合构成的新型材料。其中,连续相称为基体、分散相称为增强体,两相彼此之间有明显的界面。它既保留原组分材料的主要特点,并通过复合效应获得原组分材料所不具备

复合材料结构及其成型原理

碳纤维复合材料 (西北工业大学机电学院, 陕西西安710072) 摘要:碳纤维复合材料与金属材料相比,其密度小、比强度、比模量高,具有优越的成型性和其他特性,具有极大的发展潜力。本文介绍了碳纤维复合材料的特点及其应用,总结了碳纤维复合材料的成型工艺及每种成型工艺的特点,并从材料和成型两个方面指出了它的发展方向。 关键词:复合材料;碳纤维;成型工艺;工艺流程 Carbon Fiber Reinforce Plastic (School of Mechatronics, Northwes tern Polytechnical University, Xi’an 710072, China) Abstract: Compared to metals, carbon fiber reinforce plastic has great potential for development with lower density, higher specific strength and modulus, and excellent moldability and other characteristics. This article describes the characteristics and applications of carbon fiber reinforce plastic and sum up the manufacturing process of carbon fiber reinforce plastic and their characteristics. Finally, this article points out the development of carbon fiber reinforce plastic from two aspects: material and manufacturing process. Key words: composites; carbon fiber; manufacturing process; process

山大复合材料结构与性能复习题参考答案.doc

1、简述构成复合材料的元素及其作用 复合材料由两种以上组分以及他们之间的界面组成。即构成复合材料的元素包括基体相、增强相、界面相。 基体相作用:具有支撑和保护增强相的作用。在复合材料受外加载荷时,基体相一剪切变形的方式起向增强相分配和传递载荷的作用,提高塑性变 形能力。 增强和作用:能够强化基体和的材料称为增强体,增强体在复合材料中是分散相, 在复合材料承受外加载荷时增强相主要起到承载载荷的作用。 界面相作用:界面相是使基体相和增强相彼此相连的过渡层。界面相具有一定厚度,在化学成分和力学性质上与基体相和增强相有明显区别。在复 合材料受外加载荷时能够起到传递载荷的作用。 2、简述复合材料的基本特点 (1)复合材料的性能具有可设计性 材料性能的可设计性是指通过改变材料的组分、结构、工艺方法和工艺参数来调节材料的性能。显然,复合材料中包含了诸多影响最终性能、可调节的因素,赋予了复合材料的性能可设计性以极大的自由度。 ⑵ 材料与构件制造的一致性 制造复合材料与制造构件往往是同步的,即复合材料与复合材料构架同时成型,在采用某种方法把增强体掺入基体成型复合材料的同时?,通常也就形成了复合材料的构件。 (3)叠加效应 叠加效应指的是依靠增强体与基体性能的登加,使复合材料获得一?种新的、独特而又优于个单元组分的性能,以实现预期的性能指标。 (4)复合材料的不足 复合材料的增强体和基体可供选择地范围有限;制备工艺复杂,性能存在波动、离散性;复合材料制品成本较高。

3、说明增强体在结构复合材料中的作用能够强化基体的材料称为增强体。增强体在复合材料中是分散相。复合材料中的增强体,按几何形状可分为颗 粒状、纤维状、薄片状和由纤维编制的三维立体结构。喑属性可分为有机增强体 和无机增强体。复合材料中最主要的增强体是纤维状的。对于结构复合材料,纤 维的主要作用是承载,纤维承受载荷的比例远大于基体;对于多功能复合材料, 纤维的主要作用是吸波、隐身、防热、耐磨、耐腐蚀和抗震等其中一种或多种, 同时为材料提供基本的结构性能;对于结构陶瓷复合材料,纤维的主要作用是增 加韧性。 4、说明纤维增强复合材料为何有最小纤维含量和最大纤维含量 在复合材料中,纤维体积含量是一个很重要的参数。纤维强度高,基体韧性好,若加入少量纤维,不仅起不到强化作用反而弱化,因为纤维在基体内相当于裂纹。所以存在最小纤维含量,即临界纤维含量。若纤维含量小于临界纤维量,则在受外载荷作用时,纤维首先断裂,同时基体会承受载荷,产生较大变形,是否断裂取决于基体强度。纤维量增加,强度下降。当纤维量大于临界纤维量时,纤维主要承受载荷。纤维量增加强度增加。总之,含量过低,不能充分发挥复合材料中增强材料的作用;含量过高,由于纤维和基体间不能形成一定厚度的界面过渡层, 无法承担基体对纤维的力传递,也不利于复合材料抗拉强度的提高。 5、如何设才计复合材料 材料设计是指根据对?材料性能的要求而进行的材料获得方法与工程途径的规划。复合材料设计是通过改变原材料体系、比例、配置和复合工艺类型及参数,来改变复合材料的性能,特别是是器有各向异性,从而适应在不同位置、不同方位和不同环境条件下的使用要求。复合材料的可设计性赋予了结构设计者更大的自由度,从而有可能设计出能够充分发掘与应用材料潜力的优化结构。复合材料制品的设计与研制步骤可以归纳如下: 1)通过论证明确对于材料的使用性能要求,确定设计目标 2)选择材料体系(增强体、基体) 3)确定组分比例、几何形态及增强体的配置 4)确定制备工艺方法及工艺参数

复合材料在飞机上的应用

复合材料在飞机航空中的应用与发展 学校:西安航空职业技术学院 专业:金属材料与热处理技术 姓名:郭远 摘要 复合材料在飞机上的用量和应用部位已成为衡量飞机结构先进性的重要指标之一;复合材料构件的整体成型、共固化技术不断进展,复杂曲面构件不断扩大应用;复合材料的数字化设计,设计、制造一体化,以及基于三维模型铺层展开的专用设计/制造软件等技术的开发是先进复合材料发展的基本技术保障. 复合材料在飞机航空中的应用与发展 复合材料大量用于航空航天工业和汽车工业,特别是先进碳纤维复合材料用于飞机尤为值得注意。不久前,碳纤维复合材料只能在军用飞机用作主结构,但是,由于技术发展的进步,先进复合材料已开始在民航客机止也应用作主结构,如机身、机翼等。 一.飞机结构用复合材料的优势 现今新一代飞机的发展目标是“轻质化、长寿命、高可靠、高效能、高隐身、低成本”。而复合材料正具备了上面的几个条件,成为实现新一代飞机发展目标的重要途径。

复合材料具有质轻、高强、可设计、抗疲劳、易于实现结构/功能一体化等优点,因此,继铝、钛、钢之后迅速发展成为四大飞机结构材料之一。 复合材料在飞机结构上的应用首先带来的是显着的减重效益,复合材料尤其是碳纤维复合材料其密度仅为cm3左右,如等量代替铝合金,理论上可有42%的减重效果。 近年来随着复合材料技术的深入研究和应用实践的积累,人们清楚地认识到:复合材料在飞机结构上应用效益绝不仅仅是减重,而且给设计带来创新舞台,通过合理设计,还可提供诸如抗疲劳、抗振、耐腐蚀、耐久性和吸透波等其它传统材料无法实现的优异功能特性,可极大地提高其使用效能,降低维护成本,增加未来发展的潜力和空间。尤其与铝合金等传统材料相比,可明显减少使用维护要求,降低寿命周期成本,特别是当飞机进入老龄化阶段后效果更明显,据说B787较之B767机体维修成本会降低30%,这在很大程度上应归功于复合材料的大量应用。同时,大部分复合材料飞机构件可以整体成型,大幅度减少零件数目,减少紧固件数目,减轻结构质量,降低连接和装配成本,从而有效地降低了总成本,如F/A-18E/F零件数减少42%,减重158kg。复合材料整体成型技术还可消除缝隙、台阶和紧固件,无疑对提高军机的隐身性能也具有非常重要的贡献。 二.飞机结构用复合材料的发展过程 先进复合材料于上世纪60年代中期一问世,即首先用于飞行器结构上。30多年来先进复合材料在飞机结构上应用走过了一条由小到大、由次到主、由局部到整体、由结构到功能、由军机应用扩展到民机应用的发展道路。 1.复合材料在军用飞机上的发展过程

复合材料结构

复合材料结构设计的特点 (1) 复合材料既是一种材料又是一种结构 (2) 复合材料具有可设计性 (3) 复合材料结构设计包含材料设计 复合材料区别于传统材料的根本特点之一可设计性好(设计人员可根据所需制品对力学及其它性能的要求,对结构设计的同时对材料本身进行设计) 具体体现在两个方面1力学设计——给制品一定的强度和刚度、2功能设计——给制品除力学性能外的其他性能 复合材料力学性能的特点 (1) 各向异性性能材料弹性主方向:模量较大的一个主方向称为纵向,用字母L表示,与其垂直的另一主方向称为横向,用字母T表示。通常的各向同性材料中,表达材料弹 )和ν(泊松比)或剪切弹性模量G。 对于复合材料中的每个单层,纵向弹性模量E L、横向弹性模量E T、纵向泊松比νL (或横向泊松比νT)、面内剪切弹性模量G LT。 耦合现象:拉剪耦合与剪拉耦合、弯扭耦合与扭弯耦合 (2) 非均质性 耦合变形:层合结构复合材料在一种外力作用下,除了引起本身的基本变形外,还可能引起其他基本变形。 (3)层间强度低 在结构设计时,应尽量减小层间应力,或采取某些构造措施,以避免层间分层破坏。 研究复合材料的刚度和强度时,基本假设: (1) 假设层合板是连续的。由于连续性假设,使数学分析中的一些连续性概念、极限概念以及微积分等数学工具都能应用于力学分析中。 (2)假设单向层合板是均匀的,多向层合板是分段均匀的。 (3) 假设限于单向层合板是正交各向异性的:即认为单向层合板具有两个相互垂直的弹性对称面。 (4) 假设限于层合板是线弹性的:即认为层合板在外力作用下产生的变形与外力成正比关系,且当外力移去后,层合板能够完全恢复其原来形状。 (5) 假设层合板的变形是很小的。 上述五个基本假设,只有多向层合板的分段均匀性假设和单向层合板的正交各向异性假设,与材料力学中的均匀性假设和各向同性假设有区别。 平面应力状态与平面应变状态 平面应力状态:单元体有一对平面上的应力等于0。(σz=0,τzx=0,τzy =0) 平面应变状态(平面位移):εz=0(即ω=0),τzx=0(γ31=0),τzy =0(γ32=0 ), σz一般不等于0。 复合材料连接方式 复合材料连接方式主要分为两大类:胶接连接与机械连接。胶接连接:受力不大的薄壁结构,尤其是复合材料结构;机械连接:连接构件较厚、受力大的结构。

新一代大型客机复合材料结构一体化设计的若干特点

2017年2月第20卷第4期 中国管理信息化 China Management Informationization Feb.,2017 Vol.20,No.4 新一代大型客机主要指使用效率(Efficiency)、经济(Economics)、超凡的乘坐舒适和便利(Extraordinary comfort and convenience)以及环保(Environmental)等综合性能比当前航线使用的客机有很大提高的大型商用运输机。 新一代大型客机的概念指导了波音787飞机和空客A350飞机的研发。新一代大型客机机体结构的突出特点是广泛采用复合材料,复合材料不仅减轻了飞机结构的质量、提高了飞机结构的使用寿命、降低了飞机的维护费用,还可以增加舱内压力和空气湿度,提高民用飞机的经济性、舒适性、环保性。先进复合材料在飞机结构上的应用走过了一条由小到大、由次到主、由局部到整体、由结构到功能和由军机应用扩展到民机的发展道路。 基于近20多年经验的积累和认知的共识,按照适航规章要求,结合民机工程实际,聚合物基纤维增强复合材料在飞机结构中实现了规模化的应用。要实现复合材料结构规模化的应用,结构设计必须要着重考虑复合材料结构在使用寿命期内、安全使用前提下,同时取得较好的经济效益。结构设计在满足型号设计要求的同时,必须要考虑结构规模化应用对制造、使用、维修提出的新需求,在设计主导下,形成“设计—制造—使用—维修”一体化的结构设计,实现飞机复合材料结构的安全性与经济性。 1 新一代大型客机复合材料结构规模化应用的决策 新一代大型客机机体结构需用新材料的决策是依据未来20~30年内大型客机在总体布局上与目前航线飞机不会有很大差别,但在综合性能、安全性、经济性和环保要求等方面,将有很大的提高发展趋势和航线宽体客机的需求增长制定。 新一代大型客机复合材料结构规模化应用的决策主要考虑: ①实现飞机结构明显减重,机翼、机身主结构均采用复合材料制造;②中模量高强碳纤维/增韧环氧(180℃固化)复合材料已经过工程应用的验证,可满足大型客机主结构对材料的要求;③复合材料制造工艺技术革新和新工艺技术发展,可使复合材料大型结构件制造成本明显下降;④先进设计技术和设计—制造一体化、并行工程技术的应用,使结构设计结果更科学合理,可实现异地设计和制造,为复合材料结构制造国际化创造了条件;⑤半个世纪复合材料应用经验的积累和复合材料结构设计理念与验证技术的更新,使新一代飞机研制周期大大缩短、研发费用减少。 因此,波音公司率先将21世纪初开始研制的现代宽体客机波音787复合材料的用量占到机体结构重量的50%,大大提高了结构效率,与同级别客机相比可节省燃油20%。 空中客车公司于2005年5月宣布空客A350项目启动(A350后称A350XWB,extra Wide-Body,型号系列为A350-900)。空中客车公司面对竞争对手的压力和用户的要求,在A350项目推出的三年间,曾对A350的设计方案进行多次重要修改,选材方案的修改多达6次,包括机身由计划初期采用铝和铝锂合金,改为机体由复合材料制造。 2 复合材料关键结构设计的新问题 飞机机体复合材料结构规模化应用的核心问题是突破飞机机体关键结构复合材料的应用技术。 飞机机体关键结构是指其完整性对保持飞机总体安全是至关重要的承受飞行、地面和增压载荷的结构或元件(其破坏会降低飞机结构完整性)。如:机翼、中央翼盒、机身等主结构,对运输类飞机还包括主要结构元件。 复合材料在飞机机体关键结构的应用,首先要考虑飞机总体安全对结构完整性的要求。同时,还应考虑复合材料用量大幅增加带来的固有特性潜在的危害威胁,如对结构制造缺陷、闪电防护及使用、维修提出的一系列要求。复合材料关键结构设计的新问题、新考虑,大致可归纳为以下几方面。 (1)基于对飞行安全性的认知,机体结构疲劳和损伤容限设计是重点,按《运输类飞机适航标准》对复合材料飞机结构的要求,飞机在整个使用寿命期内将避免由于疲劳、环境影响、制造缺陷或意外损伤引起的灾难性破坏。特别关注考虑的是外来物冲击、目视可见损伤及其扩展特性,两垮元件损伤、结构胶结以及“地—空—地”或“飞—续—飞”重复加载引起的材料性能退化和“高—低—高”温度交变引起的附加应力。 (2)质量、产量、成本综合平衡的大型整体结构制造技术。主结构零构件大型化、整体化设计,如翼面加筋壁板、翼梁、机身筒壳壁板、地板梁、中央翼盒壁板等,对制造技术提出了应通过充分的试制和试验,并进行合格鉴定,以保证其可重复生产性和设计的可靠性,结构制造生产能力应满足飞机按期交付的需求。采用成熟的制造技术,如数字化、自动化(包括检测自动化)、减少或消除人为因素影响的制造方法,可实现降低结构的制造成本,设计、制造一体化是必由的技术途径。 (3)复合材料结构闪电防护设计的地位很重要。复合材料(以碳/环氧复合材料为代表)导电性比标准铝合金大约低1 000倍的固有特性,决定了如果不提供恰当的导电闪电防护,闪电雷击可能造成结构破坏或大面积损伤,并可能在金属液压管路、燃油系统管路和电缆诱导上产生高闪电电流和电压。闪电防护可细分为结构完整性、燃油系统、电气和电子系统三个方面进行考虑,复合材料结构闪电防护给飞机带来了重量和成本的增加。 (4)结构耐撞损性的设计要求。飞机的耐撞损性由机身的冲击响应特性控制。对耐撞损性,规章一直随着实际飞机运行使用得到的经验而改变。机群经验还没有证实需要整机级耐撞损性的标 新一代大型客机复合材料结构一体化设计的若干特点 何长川,梁 伟,杨乃宾 (北京航空航天大学 航空科学与工程学院,北京 100083) [摘 要]大量采用复合材料结构是新一代大型客机机体结构设计的突出特点。飞机机体复合材料结构规模化应用的核心问题是突破飞机机体关键结构复合材料应用技术。复合材料结构一体化综合设计是在确保使用寿命期内、飞机安全飞行使用的前提下,实现复合材料结构规模化应用并取得良好经济的、多设计要素变量的综合设计。本文对波音787和空客A350复合材料机身的设计与制造进行了对比,分析了各自的优缺点。 [关键词]大型客机;复合材料结构;机体结构;规模化应用;一体化设计 doi:10.3969/j.issn.1673 - 0194.2017.04.091 [中图分类号]V25 [文献标识码]A [文章编号]1673-0194(2017)04-0139-03 [收稿日期]2017-01-02 / 139 CHINA MANAGEMENT INFORMATIONIZATION

第二章复合材料在飞机上的应用综述综述

课 题 第二章复合材料在飞机上的应用综述 目的与要求复材在航空制造中的重要地位 航空发动机制造中使用复合材料的分布和比重先进民机使用复材的部位和作用 无人机制造中使用复材的主要特点 未来航空制造中使用复材的主要方向 重点航空发动机制造中使用复合材料的分布和比重先进民机使用复材的部位和作用 难 点 复材在航空制造中的重要地位 教 具 复习提问无人机制造中使用复材的主要特点未来航空制造中使用复材的主要方向启发复材可能还会使用的部位 新知 识点 考查 胶黏剂材料的选用方法、原则和依据 布置 作业 课堂布置,见后面。 课后回忆先进民机使用复材的部位和作用无人机制造中使用复材的主要特点 备注教员

第二章复合材料在飞机上的应用综述第2 页共8 页 图1 复合材料制作的零部件 图2 民用大型飞机复合材料分布图

第二章复合材料在飞机上的应用综述第3 页共8 页 1.复合材料的应用特点 随着航空航天科学技术的不断进步,促进了新材料的飞速发展,其中尤以先进复 合材料的发展最为突出。目前主要指有较高强度和模量的硼纤维、碳纤维、芳纶等增 强的复合材料,耐高温的纤维增强陶瓷基复合材料,隐身复合材料,梯度功能复合材料 等。飞机和卫星制造材料要求质量轻、强度高、耐高温、耐腐蚀,这些苛刻的条件,只 有借助新材料技术才能解决。 复合材料具有质量轻,较高的比强度、比模量,较好的延展性,抗腐蚀、导热、隔 热、隔音、减振、耐高(低)温,独特的耐烧蚀性、透电磁波,吸波隐蔽性、材料性能的 可设计性、制备的灵活性和易加工性等特点,是制造飞机、火箭、航天飞行器等军事 武器的理想材料。 2.飞机机身上的应用 2.1.飞机机身结构上的应用 先进复合材料用于加工主承力结构和次承力结构、其刚度和强度性能相当于或 超过铝合金的复合材料。目前被大量地应用在飞机机身结构制造上和小型无人机整体 结构制造上。 飞机用复合材料经过近40年的发展,已经从最初的非承力构件发展到应用于次 承力和主承力构件,可获得减轻质量(20~30)%的显著效果。目前已进入成熟应用期,对 提高飞机战术技术水平的贡献、可靠性、耐久性和维护性已无可置疑,其设计、制造 和使用经验已日趋丰富。迄今为止,战斗机使用的复合材料占所用材料总量的30%左 右,新一代战斗机将达到40%;直升机和小型飞机复合材料用量将达到(70~80)%左右, 甚至出现全复合材料飞机。 “科曼奇”直升机的机身有70%是由复合材料制成的,但仍计划通过减轻机身前 下部质量,以及将复合材料扩大到配件和轴承中,以使飞机再减轻15%的质量。“阿帕 奇”为了减轻质量,将采用复合材料代替金属机身。使用复合材料,未来的联合运输旋 转翼(JTR)飞机的成本将减少6%,航程增加55%,或者载荷增加36%。以典型的第四代 战斗机F/A-22为例复合材料占24·2%,其中热固性复合材料占23·8%,热塑性复合材 料占0·4%左右。 热固性复合材料的70%左右为双马来酰亚胺树脂(BMI,简称双马)基复合材料[1], 生产200多种复杂零件,其它主要为环氧树脂基复合材料,此外还有氰酸酯和热塑性树 脂基复合材料等。主要应用部位为机翼、中机身蒙皮和隔框、尾翼等。近10年来, 国内飞机上也较多的使用了复合材料。例如由国内3家科研单位合作开发研制的某歼 击机复合材料垂尾壁板,比原铝合金结构轻21 kg,减质量30%。 北京航空制造工程研究所研制并生产的QY8911/HT3双马来酰亚胺单向碳纤维 预浸料及其复合材料已用于飞机前机身段、垂直尾翼安定面、机翼外翼、阻力板、整 流壁板等构件。由北京航空材料研究院研制的PEEK/AS4C热塑性树脂单向碳纤维预 浸料及其复合材料,具有优异的抗断裂韧性、耐水性、抗老化性、阻燃性和抗疲劳性 能,适合制造飞机主承力构件,可在120℃下长期工作,已用于飞机起落架舱护板前蒙 皮。在316℃这一极限温度下的环境中,复合材料不仅性能优于金属,而且经济效益高。 据波音公司估算,喷气客机质量每减轻1 kg,飞机在整个使用期限内即可节省2200美 元。

《复合材料结构设计基础》课程介绍

《复合材料结构设计基础》课程介绍 一、课程简介 《复合材料结构设计基础》是复合材料与工程专业的承前启后的专业方向课,它包含材料力学基础、弹性力学基础、材料设计、结构设计等,因而是具有立体性质的一个科学领域。其主要任务是使学生掌握复合材料结构设计的基础理论、基本知识和基本技能。通过本科程学习,要求学生掌握复合材料经典层合板理论、刚度和强度的计算方法、复合材料结构元件的分析和典型产品结构设计的基本步骤和方法等内容,为后续专业课的学习以及从事复合材料领域的生产和科研奠定坚实的理论基础;学习科学思维方法和研究问题的方法,达到开阔思路、激发探索和创新精神、增强理论分析能力与实践能力的目的。 课程的主要教学内容包括: 第一章绪论 学习了解什么是复合材料特别是什么是纤维增强树脂基复合材料;了解复合材料的发展历史及现状;了解复合材料的结构设计的特点。 第二章单层的刚度与强度 掌握平面应力状态下单轴的正轴应力-应变关系等。掌握单层的偏轴应力-应变关系;掌握单层弹性模量、柔量及工程弹性常数的计算。掌握单层的弹性指标和单层的失效准则。 第三章层合板的刚度与强度 掌握层合板的表示法、掌握对称层合板面内内力与面内应力的关系。掌握几种典型对称层合板的面内刚度系数的计算。了解对称层合板弯曲矩与曲率的关系、掌握对称层合板弯曲工程弹性常数及弯曲刚度系数的计算。了解一般层合板的面内力与面内应变的关系、了解一般层合板工程弹性常数、刚度系数的计算。掌握如何依据单层的强度来预测层合板的最先一层失效强度。 第四章复合材料结构分析 了解在复材构件进行结构分析时所采用的弹性力学的基本方法。了解复材层合梁、薄壁梁等构件的分析方法及设计计算的基本公式。 第五章复合材料连接 了解复材连接方式、掌握胶接连接接头的内力与应力分析计算方法、了解胶

复合材料的性能和应用

摘要:近年来,各种复合材料制备技术日益更新,从陶瓷基复合材料、金属基复合材料到聚合物基复合材料,各种制备技术都得到了很大改善,使得复合材料的性能和应用得到了显著提高。本文综述陶瓷基复合材料、金属基复合材料、聚合物基复合材料等几种重要的研究方法以及应用。 关键词:先进,复合材料,制造技术。 正文:一·陶瓷基复合材料 工程陶瓷的开发是目前国内外甚为重视的新型材料研究领域。纯陶瓷材料因其脆性,不能满足苛刻条件下的使用要求。因此,目前广泛采取增韧技术来提高陶瓷的使用性能。纤维和晶须增韧陶瓷是一类有效的方法。用纤维来增韧陶瓷的技术是十年代以后开始的,最初是用碳纤维增强陶瓷,八十年代以来又开发了用陶瓷纤维和晶须增韧陶瓷,增韧效果不断取得进展,增韧技术也不断有所创新。连续纤维增强陶瓷基复合材料是最有前途的高温结构材料之一,以其优异的高韧性、高强度得到世界各国的高度重视。 连续纤维补强陶瓷基复合料(Continuous Fiber Reinforced Ceramic Matrix Composites,简称CFCC)是将耐高温的纤维植入陶瓷基体中形成的一种高性能复合材料。由于其具有高强度和高韧性,特别是具有与普通陶瓷不同的非失效性断裂方式,使其受到世界各国的极大关注。连续纤维增强陶瓷基复合材料已经开始在航天航空、国防等领域得到广泛应用.20世纪70年代初,科学家在连续纤维增强聚合物基复合材料和纤维增强金属基复合材料研究基础上,首次提出纤维增强陶瓷基复合材料的概念,为高性能陶瓷材料的研究与开发开辟了一个方向。随着纤维制备技术和其它相关技术的进步,人们逐步开发出制备这类材料的有效方法,使得纤维增强陶瓷基复合材料的制备技术日渐成熟。 由于纤维增强陶瓷基复合材料有着优异的高温性能、高韧性、高比强、高比模以及热稳定性好等优点,能有效地克服对裂纹和热震的敏感性[5-6],因此,在重复使用的热防护领域有着重要的应用和广泛的市场。连续纤维增韧陶瓷基复合材料具有类似金属的断裂行为,对裂纹不敏感,不会发生灾难性破坏。其耐高温和低密度特性,使其成为发展先进航空发动机、火箭发动机和空天飞行器防热结构的关键材料。 二·金属基复合材料 金属基复合材料具有比强度高,比刚度高,耐热,耐磨,导热,导电,尺寸稳定等优点,是一种很有发展前途的新材料,金属基复合材料广泛应用于制造航空抗天零部件,也用于制造各种民用产品。 按基体分,金属基复合材料分为:铝基、镁基、钛基、锌基、铁基、铜基等金属基复合材料;按增强材料分,可分为:纤维增强金属基复合材料;其纤维有C、SiC、Si3N4、B4C、Al2O3等纤维;粒子增强金属基复合材料,增强粒子有:Al2O3、TiC、SiC、Si3N4、BN、SiC、MgO等。 纤维增强金属基复合材料的制造方法: (1)叠层加压法:工艺过程是:将金属(合金)箔片或纤维增强金属片按要求剪裁,并一层一层的进行叠层,然后加热加压进行成型和连接,一般是在真空或气体中进行。适于这种方法的材料有铝、钛、铜、高温合金,其增强纤维随需要而定。为了改善连接性能,有事在两片之间加入中间金属或在待连接表面涂覆或沉积一层中间金属。 (2)辊轧成型连接法:其主要的基材是铝、钛箔片,增强纤维主要是B、C、SiC、Si3N4等,有时在基材表面要涂覆一层低熔点的中间金属,增强纤维表面要预先浸沾铝或经物理气相沉积(PVI)、化学气相沉积(CVI)处理。 (3)钎焊法:在增强纤维与基材之间加入箔状、粉末状或膏状的钎料,经真空钎焊或保护钎焊而成。钎焊法可以制造管材、型材、叶片等。 (4)热等静压法:如图2所示,其工艺过程是:将纤维与基材进行叠层并装入一模具中,

相关主题
文本预览
相关文档 最新文档