当前位置:文档之家› 太阳能电池的基本原理

太阳能电池的基本原理

太阳能电池的基本原理
太阳能电池的基本原理

太阳能电池的基本原理

光-电直接转化是目前将太阳能转化为电能的最佳途径,它是将太阳辐射的光能直接转化为电能,实现这种转化的装置称为太阳能电池。太阳能电池具有清洁性和灵活性等优点,它可大到百万千瓦的中型电站,也可小到只供一家之需的电池组,这是其他电源很难做到的。本文举例介绍两类太阳能电池的基本结构及原理:无机硅太阳能电池和有机聚合物双层异质结太阳能电池。

一、硅太阳能电池

硅太阳能电池的基本结构如图1所示,它的核心结构是N型硅/P型硅构成的活性层。通过特殊工艺向硅晶体中掺入少量的三价硼(一般107个原子·cm-3~1019个原子·cm-3)就可以构成P(positive)型硅。未掺杂的硅晶体中,每个硅原子通过共价键与周围4个硅原子相连。掺入少量硼后,硼原子取代某些硅原子的位置,并且在这些硅原子的位置上也与周围4个硅原子形成共价键。因为硼原子只有3个价电子,与周围4个硅原子成键时缺少1个电子,它需要从硅晶体中获取1个电子才能形成稳定结构。结果,硼原子变成负离子,硅晶体中形成空穴(空穴带一个单位的正电荷)。如果向硅晶体中掺入少量五价磷或者砷就构成了N(negative)型硅,例如掺入磷(107个原子·cm-3~1019个原子·cm-3)。掺入的磷原子同样取代硅原子的位置,并与周围的4个硅原子形成共价键。因为磷原子有5个价电子,成键后剩下1个价电子,这个电子受到的束缚力比共价键上的电子小得多,很容易脱离磷原子,成为自由电子,结果该磷原子成为正离子。需要说明的是,P型和N型硅都是电中性的。

当把P型硅与N型硅通过一定方式结合在一起时,发生如图2所示的PN结形成过程。在N区(N型硅一侧)与P区(P型硅一侧)的交界面附近,N区的自由电子较多空穴较少,P区则是空穴较多自由电子较少,这样在P区和N区之间出现空穴和自由电子的浓度差。浓度差导致空穴从P区向N区扩散,自由电子从N区向P区扩散,二者在界面附近复合。P区界面附近带正电荷的空穴离开后,留下带负电荷的硼,因此形成1个负电荷区。同理,在N区界面附近出现1个正电荷区。通常把交界面附近的这种正、负电荷区域叫做空间电荷区。空间电荷区中的正、负电荷产生1个由N区指向P区的内建电场。在内建电场的作用下,空穴和电子发生漂移,方向与它们各自的扩散方向相反,即电子从P区漂移到N 区,空穴从N区漂移到P区。显然,内建电场同时又起着阻碍电子和空穴继续扩散的作用。随着扩散的进行,空间电荷逐渐增多,内建电场逐渐增强,空穴和电子的漂移也逐渐增强,但空穴和电子的扩散却逐渐变弱。无外界影响时,空穴和电子的扩散和漂移最终达到动态平衡。此时,空间电荷的数量一定,空间电荷区不再扩展,内建电场的大小就确定下来。

当具有一定能量的光子入射到PN结表面时,光子在硅表面及体内激发产生大量的电子-空穴对。由于入射光的强度因材料的吸收而不断衰减,因而沿着光照方向,材料内部电子-空穴对的浓度逐渐降低,这导致电子–空穴对向内部扩散。当电子-空穴对扩散到PN结边界时,在内建电场的作用下,空穴、电子被分别

太阳能电池发展现状综述

太阳能电池发展现状综述 摘要:随着社会的发展,传统能源消耗殆尽,能源越来越收到重视。其中发展前景最为广阔的莫过于太阳能。太阳能绿色环保,因此逐渐受到了人们的普遍重视。太阳能已成为新能源领域最具活力的部分,世界各国都致力于发展太阳能。本文主要阐述了太阳能电池的发展历程,太阳能电池的种类,太阳能电池的现状以及发展前景. 关键词:太阳能电池;太阳能电池种类;发展现状; Narration on the Current Situation of Solar Battery Abstract:With the development of society, traditional energy will be used up in a short time.Eneygy are being payed more and more attention.And the solar energy is the most promising.Because of its’environmental protection,it gets widespread attention. Solar energy has become the most vibrant part among the new energy field,and all countrise tried their best to develop solar energy.This article mainly explains the development of solar battery,the types of solar battery,curent situation of solar battery and its’ prospect. Key Words:solar battery; types of solar battery; curent situation of solar battery 1引言 随着经济的发展,能源的重要性日趋凸显。但是石油、煤等不可生起源消耗殆尽,人们开始探索新的能源。太阳能取之不尽用之不竭,因此受到了人们的亲睐。在太阳能电池领域中,太阳能的光电利用是近些年来发展最快、最具活力的研究领域[1].太阳能电池的研制和开发日益得到重视.制作太阳能电池主要是以半导体材料为基础.其工作原理是利用光电材料吸收光能后发生的光电子转化反应。根据所用材料的不同,太阳能电池可分为:①硅太阳能电池;②以无机盐如砷化镓Ⅲ一V化合物、硫化镉、铜铟硒等多元化合物为材料的电池;③纳米晶太阳能电池等。不论以何种材料来制作电池,对太阳能电池材料一般的要求有:①半导体材料的禁带不能太宽;②要有较高的光电转换效率;③材料本身对环境不造成污染;④材料便于工业化生产且材料性能稳定。基于以上几个方面考虑,硅是最理想的太阳能电池材料[2].这也是太阳能电池以硅材料为主的主要原因. 本文简要地综述了太阳能电池发展进程,太阳能电池的种类,以及发展现状,并讨论了太阳能电池的发展趋势。 2太阳能电池现状及其前景

有机薄膜太阳能电池的研究进展

有机薄膜太阳能电池的研究进展 摘要:围绕提高有机薄膜太阳能电池的能量转换效率,从太阳光吸收效率、激子的分解率、载流子的迁移率和电荷向电极的注入效率4个方面综述了国内外的研究进展,并指出了提高转换效率的研究趋势,展望了有机薄膜太阳能电池的美好前景。 关键词:有机薄膜太阳能电池;转换效率 1 前言 近年来,有机薄膜太阳能电池的发展尤其引人注目,德国、日本、韩国和美国在这一领域处于领先地位。相比传统的硅基太阳能电池,有机薄膜太阳能电池以其潜在的低成本、高效率、环境友好、稳定性高的特点,成为最有希望实现民用化光伏的产业,目前的转换效率突破了9%,发展趋势被业界一致看好。 2 有机薄膜太阳能电池的基本原理 图1 有机薄膜太阳能电池的基本原理 当阳光从阳极层(P型有机半导体)照射时,有机分子吸收光产生激子,激子向电子给体和电子受体的界面移动,在界面处通过光诱导解离分解成自由电子和自由空穴,自由电子和自由空穴各自向电极两端迁移,最后注入到两端电极输向外电路。 3 提高转化效率的研究进展 有机薄膜太阳能电池要实现产业化,就需要有较高的转换效率,目前提高转换效率的研究主要集中在以下几方面: 3.1 提高太阳光吸收效率 材料对太阳光的吸收效率越高激子的生成效率就越高。有机材料对太阳光的吸收一般在可见光区,大部分材料对太阳光的吸收利用率不超过40 %,提高材料的吸收光谱与太阳光谱的 匹配性是提高材料对太阳光吸收效率的有效途径。另外,还可以在器件结构中引入具有强吸收特性的材料。利用它们吸收部分太阳能量,再通过激子扩散将其转移给活性材料[1]。 将太阳光吸收特性不同的电池单元层积得到级联电池(又称叠层电池),通过底层电池对顶层电池的补充吸收可以增加对太阳光谱的吸收。张馨芳[2]等人研究了有机无机复合体系本体异质结叠层有机太阳能电池,用Ag作为夹层材料来连接上层的本体异质结太阳电池和下层的太阳电池,得到的叠层结构的太

太阳能电池基本原理光生伏特原理N结内建电场等效电路

太阳能电池基本原理 基本原理——光生伏特效应 太阳能光伏发电是利用太阳电池的光伏效应原理,直接把太阳辐射能转变为电能的发电方式。典型太阳电池是一个 p-n 结半导体二极管。 光子把电子从价带(束缚)激发到导带(自由),并在价带内留下一个空穴(自由)——产生了自由电子-空穴对(光生载流子),p型材料中的电子与n型材料中的空穴将在与少子寿命相当的时间内,以相对稳定的状态存在,直到复合。当载流子复合后,光生电子空穴对将消失,没有电流和功率产生。光生电子-空穴对在耗尽层中产生后,立即被内建电场分离,光生电子被送进n区,光生空穴则被送进p区。光能就以产生电子-空穴对的形式转变为电能。 内建电场 当把N型和P型材料放在一起的时候,在N型材料中,费米能级靠近导带底,在P型材料中,费米能级靠近价带顶,当P型材料和N型材料连接在一起时,费米能级在热平衡时必定恒等,由于在P型材料中有多得多的空穴,它们将向N型一边扩散。与此同时,在N型一边的电子将沿着相反的方向向P型区扩散。由于电子和空穴的扩散,在p-n结区产生了耗尽层,即空间电荷区电场,又称为内建电场。

(1)光子吸收:在大部分有机太阳能电池中,因为材料的带隙过高,只有一小部分入射光被吸收,吸收只能达到30%左右。 (2)激子扩散:激子的扩散长度应该至少等于薄膜的厚度,否则激子就会发生复合,造成吸收光子的浪费。 (3)电荷分离:对于单层器件,激子在电极与有机半导体界面处离化,对于双层器件,激子在施主-受主界面形成的p-n结处离化。 (4)电荷传输:在有机材料中,电荷的传输是定域态间的跳跃,而不是能带内的传输,这意味着有机材料和聚合物材料中载流子的迁移率通常都比无机半导体材料的低。 (5)电荷收集:电荷的收集效率也是影响光伏器件功率转换效率的关键因素,金属与半导体接触时会产生一个阻挡层,阻碍电荷顺利地到达金属电极。 等效电路模型

有机太阳能电池研究进展(1)

专题介绍 有机太阳能电池研究进展 X 林 鹏,张志峰,熊德平,张梦欣,王 丽 (北京交通大学光电子技术研究所,信息存储、显示与材料开放实验室,北京,100044) 摘 要:有机太阳能电池与无机太阳能电池相比,还存在许多关键性问题。为了改善有机太阳能电池的性能,各种研究工作正在进行,这些研究主要是为了寻找新的材料,优化器件结构。对电池原理、部分表征方法、效率损失机制、典型器件结构、最近的发展、以及未来的发展趋势作了简要描述。 关键词:有机太阳能电池;器件结构;给体;受体;转换效率 中图分类号:T N 383 文献标识码:A 文章编号:1005-488X(2004)01-0055-06 Progres s in Study of Organic Sola r Ce ll LIN Peng ,ZHANG Zhi -feng ,XIONG De -ping ,ZHANG Meng -xin ,WANG Li (I nstitute of O p toelectronics T echnology ,Beij ing J iaotong University ,Beijing ,100044,China )Abstr act :Compaer ed with inorganic solar cells ,organic solar cells still have many critical pr oblems.In order to improve the properties of organic solar cells,a lot of different studies have been carried on.T he main purposes of these studies are to seek new mater ials and new device structure.A brief review of the theory of photovoltaic cells,along with some aspects of their characterization ,the basic efficiency loss mechanism ,typical device structures ,and the trends in research will be presented. Key wor ds :organic photovoltaic cell;device structure;donor;acceptor ;conversion effi-ciency 前 言 进入21世纪以来,由于煤、石油、天然气等自然资源有限,已经不能满足人类发展的需要。环境污染也已经成为亟待解决的严重问题。同使用矿物燃料发电相比,太阳能发电有着不可比拟的优点。 太阳能取之不尽,太阳几分钟射向地球的能量相当 于人类一年所耗用的能量。太阳能的利用已经开始逐年增长。但目前使用的硅等太阳能电池材料,因成本太高,只能在一些特殊的场合如卫星供电、边远地区通信塔等使用。目前太阳能发电量只相当于全球总发电量的0.04%。要使太阳能发电得到大规模推广,就必须降低太阳能电池材料的成本,或 第24卷第1期2004年3月 光 电 子 技 术OPT OELECT RONIC T ECHNOLOGY Vol.24No.1 Mar.2004   X 收稿日期:2003-11-17 作者简介:林 鹏(1978-),男,硕士生。主要从事光电子技术研究。 张志峰(1977-),男,硕士生。主要从事有机电致发光(OLED)的研究工作。熊德平(1975-),男,硕士生。主要从事无机半导体材料方面的研究工作。

硅太阳能电池的结构及工作原理

硅太阳能电池的结构及 工作原理 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

一.引言: 太阳能是人类取之不尽用之不竭的可再生能源。也是清洁能源,不产生任何的环境污染。?? 当电力、煤炭、石油等不可再生能源频频告急,能源问题日益成为制约国际社会经济发展的瓶颈时,越来越多的国家开始实行“阳光计划”,开发太阳能资源,寻求经济发展的新动力。欧洲一些高水平的核研究机构也开始转向可再生能源。在国际光伏市场巨大潜力的推动下,各国的太阳能电池制造业争相投入巨资,扩大生产,以争一席之地。 全球太阳能电池产业1994-2004年10年里增长了17倍,太阳能电池生产主要分布在日本、欧洲和美国。2006年全球太阳能电池安装规模已达1744MW,较2005年成长19%,整个市场产值已正式突破100亿美元大关。2007年全球太阳能电池产量达到3436MW,较2006年增长了56%。 中国对太阳能电池的研究起步于1958年,20世纪80年代末期,国内先后引进了多条太阳能电池生产线,使中国太阳能电池生产能力由原来的3个小厂的几百kW一下子提升到4个厂的4.5MW,这种产能一直持续到2002年,产量则只有2MW左右。2002年后,欧洲市场特别是德国市场的急剧放大和无锡尚德太阳能电力有限公司的横空出世及超常规发展给中国光伏产业带来了前所未有的发展机遇和示范效应。 目前,我国已成为全球主要的太阳能电池生产国。2007年全国太阳能电池产量达到1188MW,同比增长293%。中国已经成功超越欧洲、

日本为世界太阳能电池生产第一大国。在产业布局上,我国太阳能电池产业已经形成了一定的集聚态势。在长三角、环渤海、珠三角、中西部地区,已经形成了各具特色的太阳能产业集群。 中国的太阳能电池研究比国外晚了20年,尽管最近10年国家在这方面逐年加大了投入,但投入仍然不够,与国外差距还是很大。政府应加强政策引导和政策激励,尽快解决太阳能发电上网与合理定价等问题。同时可借鉴国外的成功经验,在公共设施、政府办公楼等领域强制推广使用太阳能,充分发挥政府的示范作用,推动国内市场尽快起步和良性发展。 太阳能光伏发电在不远的将来会占据世界能源消费的重要席位,不但要替代部分常规能源,而且将成为世界能源供应的主体。预计到2030年,可再生能源在总 绿色环保节能太阳能 能源结构中将占到30%以上,而太阳能光伏发电在世界总电力供应中的占比也将达到10%以上;到2040年,可再生能源将占总能耗的50%以上,太阳能光伏发电将占总电力的20%以上;到21世纪末,可再生能源在能源结构中将占到80%以上,太阳能发电将占到60%以上。这些数字足以显示出太阳能光伏产业的发展前景及其在能源领域重要的战略地位。由此可以看出,太阳能电池市场前景广阔。 在太阳能的有效利用当中;大阳能光电利用是近些年来发展最快,最具活力的研究领域,是其中最受瞩目的项目之一。

光伏电池的原理及发展现状

光伏电池的原理及发展现状 众所周知,太阳能是一种用之不竭、储量巨大的清洁可再生能源,每天到地球表面的辐射能量相当于数亿万桶石油燃烧的能量,太阳能开发与利用逐步成府重点发展的战略。热能和光能利用是太阳能应用的两种重要形式。光伏发电是利用光伏电池的光伏效应将太阳光的光能直接转换为电能的一种可再生、无污染的发电方式,正在全球范围内迅猛发展,其不仅要替代部分化石能源,而且未来将成为世界能源供应的主体,是世界各国可再生能源发展的重点。本文阐述了太阳能光伏电池的原理,综述了国内外光伏发电技术的发展现状及发展趋势。 光伏电池的原理及发展现状1839 年,法国的Edmond Becquerel 发现了光伏效应,即光照能使半导体材料内部的电荷分布状态发生变化而产生电动势和电流。光伏电池是基于半导体P- N 结接受太阳光照产生光伏效应,直接将光能转换成电能的能量转换器。1954 年,美国Bell 实验室的G.Pearson 等发明了单晶硅光伏电池,其原理如图1 所示。 图 1 中,太阳光照射到光伏电池表面,其吸收具有一定能量的光子,在内部产生处于非平衡状态的电子-空穴对;在P- N 结内建电场的作用下,电子、空穴分别被驱向N,P 区,从而在P- N 结附近形成与内建电场方向相反的光生电场;光生电场抵消P- N 结内建电场后的多余部分使P,N 区分别带正、负电,于是产生由N 区指向P 区的光生电动势; 当外接负载后,则有电流从P 区流出,经负载从N 区流入光伏电池。图2 为光伏电池等效电路,其中,Iph为与光伏电池面积、入射光辐照度成正比的光生电流(1 cm2硅光伏电池的Iph值为16 ~30 mA);ID,Ish分别为P- N 结的正向电流、漏电流;串联电阻RS主要由电池体电阻、电极导体电阻等组成(RS一般<1 );旁漏电阻Rsh 由硅片边缘不清洁或体内缺陷所致(Rsh一般为几k);RL 为外接负载电阻,IL,UO 分别为光伏电池输出电压、电流;当负载开路(RL= )时,UO即为开路电压Uoc,其与环境温度成反比、与电池面积无关(在100 mW/cm2的光谱辐照度下,硅光伏电池的Uoc一般为450 ~600 mV。与图2 对应的光伏电池解析模型,

太阳能电池的特征介绍

太阳能电池的特征介绍 太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。以光电效应工作的薄膜式太阳能电池为主流,而以光化学效应工作的湿式太阳能电池则还处于萌芽阶段。太阳光照在半导体p-n结上,形成新的空穴-电子对,在p-n结电场的作用下,光生空穴流向p区,光生电子流向n区,接通电路后就形成电流。这就是光电效应太阳能电池的工作原理。太阳能电池要使用超纯水设备来进行生产,出水水质保证电池的质量及使用寿命。太阳能绿色能源太阳能发电有两种方式,一种是光—热—电转换方式,另一种是光—电直接转换方式。下面介绍一下太阳能电池的基本特征。 基本特征 太阳能电池的基本特性有太阳能电池的极性、太阳电池的性能参数、太阳能电环保电池的伏安特性三个基本特性。具体解释如下 1、太阳能电池的极性 硅太阳能电池的一般制成P+/N型结构或N+/P型结构,P+和N+,表示太阳能电池正面光照层半导体材料的导电类型;N和P,表示太阳能电池背面衬底半导体材料的导电类型。太阳能电池的电性能与制造电池所用半导体材料的特性有关。 2、太阳电池的性能参数 太阳电池的性能参数由开路电压、短路电流、最大输出功率、填充因子、转换效率等组成。这些参数是衡量太阳能电池性能好坏的标志。 3太阳能电池的伏安特性 P-N结太阳能电池包含一个形成于表面的浅P-N结、一个条状及指状的正面欧姆接触、一个涵盖整个背部表面的背面欧姆接触以及一层在正面的抗反射层。当电池暴露于太阳光谱时,能量小于禁带宽度Eg的光子对电池输出并无贡献。能量大于禁带宽度Eg的光子才会对电池输出贡献能量Eg,大于Eg的能量则会

以热的形式消耗掉。因此,在太阳能电池的设计和制造过程中,必须考虑这部分热量对电池稳定性、寿命等的影响。

太阳能电池的研究现状及发展

太阳能电池的研究现状及发展 【摘要】近年来随着人们对环境的重视,对新能源的需要变得越来越大,太阳能成为新型能源将被广泛应用。黄铁矿结构的二硫化铁(FeS2)是一种具有合适的禁带宽度(Eg≈0.95eV)和较高光吸收系数(当λ≤700nm时,α=5×105cm-1)的半导体材料,而且其组成元素在地球上储量丰富、无毒,有很好的环境相容性。因此,FeS2薄膜在光电子以及太阳能电池材料等方面有潜在的应用前景,受到人们的广泛关注。本文从不同制备方法所制备出的二硫化铁薄膜的研究结果,来分析二硫化铁薄膜的研究状况。 【关键词】能源;二硫化铁;制备方法;光电性能 1.引言 太阳能电池自1954年由诺贝尔实验室和RCA公司几位杰出的科学家发明问世以来,由于地球变暖现象的日益严重,世界各国对二氧化碳的排放量均采取严格的管制,再加上石油匮乏,40年后将消耗殆尽,其价格持续攀升,这些因素都促成了对代替能源的重视与需求,也激发了太阳能产业的蓬勃发展。 太阳是一座聚合核反应器,它一刻不停地向四周空间放射出巨大的能量。它的发射功率为3.865×1026J/S(相当于烧掉1.32×1016ton标准煤释放出来的能量)。地球大气表层所接收的能量仅是其中的22亿分之一,但是地球一年接收的太阳的总能量却是现在人类消耗能源的12000倍。另外,根据文献记载太阳的质量为1.989×1030kg,根据爱因斯坦相对论(E=mc2)可以计算出太阳上氢的含量足够维持800亿年。而由地质资料得出的地球年龄远远小于这个数字。因此可以说太阳能是取之不尽、用之不竭的[1-3] 2.太阳能电池 太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。以光电效应工作的薄膜式太阳能电池为主流,而以光化学效应工作的湿式太阳能电池则还处于萌芽阶段。 2.1 太阳能电池发展 目前,太阳能电池产品是以半导体为主要材料的光吸收材料,在器件结构上则使用P型与N型半导体所形成的PN结产生的内电场,从而分离带负电荷的电子与带正电荷的空穴而产生电压。由于晶体硅材料与器件在技术的成熟度方面领先于其他半导体材料,最早期的太阳能电池极为晶体硅制成,直到近几年晶体硅太阳能电池仍有大约90%的市场占有率。除了技术与投资门槛较低以外,不用担心硅原料匮乏等都是造成其市场占有率高的主因。 在晶体硅太阳能电池之后,大约从1980年起开始有非晶硅薄膜太阳能电池

太阳能电池板及其工作原理

太阳能电池板及其工作原理

太阳能电池板及其工作原理 性能及特点: 太阳能电池分为单晶硅太阳电池(坚固耐用,使用寿命一般可达20年。光电转换效率为15%。)多晶硅太阳电池(其光电转换效率约14.5%,材料制造简便,节约电耗,总的生产成本较低非晶硅太阳电池。)非晶硅太阳能电池(其光电转换率为10%,成本低,重量轻,应用方便。) 太阳能发电原理: 太阳能不象煤和石油一样用交通工具进行运输,而是应用光学原理,通过光的反射和折射进行直接传输,或者将太阳能转换成其它形式的能量进行间接传输。直接传输适用于较短距离。基本上有三种方法:基本上有三种方法:通过反射镜及其它光学元件组合,改变阳光的传播方向,达到用能地点;通过光导纤维,可以将入射在其一端的阳光传输到另一端,传输时光导纤维可任意弯曲;采用表面镀有高反

射涂层的光导管,通过反射可以将阳光导入室内。间接传输适用于各种不同距离。将太阳能转换为热能,通过热管可将太阳能传输到室内;将太阳能转换为氢能或其它载能化学材料,通过车辆或管道等可输送到用能地点;空间电站将太阳能转换为电能,通过微波或激光将电能传输到地面。 太阳能的光电转换是指太阳的辐射能光子通过半导体物质转变为电能的过程,通常叫做"光生伏打效应”,太阳电池就是利用这种效应制成的。 当太阳光照射到半导体上时,其中一部分被表面反射掉,其余部分被半导体吸收或透过。被吸收的光,当然有一些变成热,另一些光子则同组成半导体的原子价电子碰撞,于是产生电子-空穴对。这样,光能就以产生电子-空穴对的形式转变为电能、如果半导体内存在P-n结,则在P型和n型交界面两边形成势垒电场,能将电子驱向n 区,空穴驱向P区,从而使得n区有过剩的电子,P区有过剩的空穴,在P-n结附近形成与势垒电场方向相反光的生电场。光生电场的一部分除抵销势垒电场外,还使P型层带正电,n型层带负电,在n区与p区之间的薄层产生所谓光生伏打电动势。若分别在P型层和n型层焊上金属引线,接通负载,则外电路便有电流通过。如此形成的一个个电池元件,把它们串联、并联起来,就能产生一定的电压和电流,输出功率。 太阳能发电原理图如下:

太阳能电池工作原理和应用

太阳能电池的分类简介 (1)硅太阳能电池 硅太阳能电池分为单晶硅太阳能电池、多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池三种。 单晶硅太阳能电池转换效率最高,技术也最为成熟。在实验室里最高的转换效率为24.7%,规模生产时的效率为15%(截止2011,为18%)。在大规模应用和工业生产中仍占据主导地位,但由于单晶硅成本价格高,大幅度降 低其成本很困难,为了节省硅材料,发展了多晶硅 薄膜和非晶硅薄膜做为单晶硅太阳能电池的替代 产品。 多晶硅薄膜太阳能电池与单晶硅比较,成本低 廉,而效率高于非晶硅薄膜电池,其实验室最高转 换效率为18%,工业规模生产的转换效率为10%(截 止2011,为17%)。因此,多晶硅薄膜电池不久 将会在太阳能电池市场上占据主导地位。 非晶硅薄膜太阳能电池成本低重量轻,转换效率较高,便于大规模生产,有极大的潜力。但受制于其材料引发的光电效率衰退效应,稳定性不高,直接影响了它的实际应用。如果能进一步解决稳定性问题及提高转换率问题,那么,非晶硅太阳能电池无疑是太阳能电池的主要发展产品之一。

2)多晶体薄膜电池 多晶体薄膜电池硫化镉、碲化镉多晶薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是晶体硅太阳能电池最理想的替代产 品。 砷化镓(GaAs)III-V化合物电池的转换效率 可达28%,GaAs化合物材料具有十分理想的光学 带隙以及较高的吸收效率,抗辐照能力强,对热 不敏感,适合于制造高效单结电池。但是GaAs 材料的价格不菲,因而在很大程度上限制了用 GaAs电池的普及。 (3)有机聚合物电池 以有机聚合物代替无机材料是刚刚开始的一个太阳能电池制造的研究方向。由于有机材料柔性好,制作容易,材料来源广泛,成本低等优势,从而对大规模利用太阳能,提供廉价电能具有重要意义。但以有机材料制备太阳能电池的研究仅仅刚开始,不论是使用寿命,还是电池效率都不能和无机材料特别是硅电池相比。能否发展成为具有实用意义的产品,还有待于进一步研究探索。 (5)有机薄膜电池 有机薄膜太阳能电池,就是由有机材料构成核心部分的太阳能电池。大家对有机太阳能电池不熟悉,这是情理中的事。如今量产的太阳能电池里,95%以上是硅基的,而剩下的不到5%也是由其它无机材料制成的 6)染料敏化电池 染料敏化太阳能电池,是将一种色素附着在TiO2粒子上,然后浸泡在一种电解液中。色素受到光的照射,生成自由电子和空穴。自由电子被TiO2吸收,从电极流出进入外电路,再经过用电器,流入电解液,最后回到色素。染料敏化太阳能电池的制造成本很低,这使它具有很强的竞争力。它的能量转换效率为12%左右。 (7)塑料电池 塑料太阳能电池以可循环使用的塑料薄膜为原料,能通过“卷对卷印刷”技术大规模生产,其成本低廉、环保。但塑料太阳能电池尚不成熟,预计在未来5年到10年,基于塑料等有机材料的太阳能电池制造技术将走向成熟并大规模投入使用。 太阳能工作原理 太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。太阳能发电有两种方式,一种是光一热一电转换方式,另一种是光一电直接转换方式。其中,光一电直接转换方式是利用光电效应,将太阳辐射能直接转换成电能,光一电转换的基本装置就是太阳能电池。太阳能电池是一种大有前途的新型

太阳能电池板的介绍及解释

太阳能电池板 科技名词定义 中文名称:太阳能电池板 英文名称:solar cell panel 定义:由若干个太阳能电池组件按一定方式组装在一块板上的组装件。 所属学科:电力(一级学科);可再生能源(二级学科) 本内容由全国科学技术名词审定委员会审定公布 太阳能电池板主要材料是“硅”,“硅”是我们这个星球上储藏最丰量的材料之一。 目录

(一)太阳能电池板:太阳能电池板是太阳能发电系统中的核心部分,也是太阳能发电系统中价值最高的部分。其作用是将太阳能转化为电能,或送往蓄电池中存储起来,或推动负载工作。太阳能电池板的质量和成本将直接决定整个系统的质量和成本。 (二)太阳能控制器:太阳能控制器的作用是控制整个系统的工作状态,并对蓄电池起到过充电保护、过放电保护的作用。在温差较大的地方,合格的控制器还应具备温度补偿的功能。其他附加功能如光控开关、时控开关都应当是控制器的可选项。 (三)蓄电池:一般为铅酸电池,一般有12V和24V这两种,小微型系统中,也可用镍氢电池、镍镉电池或锂电池。其作用是在有光照时将太阳能电池板所发出的电能储存起来,到需要的时候再释放出来。 (四)逆变器:在很多场合,都需要提供AC220V、AC110V的交流电源。由于太阳能的直接输出一般都是DC12V、DC24V、DC48V。为能向AC220V的电器提供电能,需要将太阳能发电系统所发出的直流电能转换成交流电能,因此需要使用DC-AC逆变器。在某些场合,需要使用多种电压的负载时,也要用到DC-DC逆变器,如将24VDC的电能转换成5VDC的电能(注意,不是简单的降压)。 晶体硅太阳能电池的制作过程: 晶体硅太阳能电池 “硅”是我们这个星球上储藏最丰量的材料之一。自从19世纪科学家们发现了晶体硅的半导体特性后,它几乎改变了一切,甚至人类的思维。20世纪末,我们的生活中处处可见“硅”的身影和作用,晶体硅太阳能电池是近15年来形成产业化最快的。生产过程大致可分为五个步骤:a、提纯过程 b、拉棒过程 c、切片过程 d、制电池过程 e、封装过程。 太阳能电池的应用: 太阳能电池板 涉及因素 问题1、太阳能发电系统在哪里使用?该地日光辐射情况如何? 问题2、系统的负载功率多大?

太阳能电池发展现状及存在的主要问题

太阳能电池发展现状及存在的主要问题 晨怡热管2008-10-17 23:05:45 一、2005年国际太阳能电池产业发展情况 2005年,世界太阳能电池总产量1656MW,其中日本仍居首位,762M W,占世界总产量的46%,欧洲为464M W,占总产量的28%,美国156M W,占总产量的9%,其他274MW,占总产量的17%。 2004年全球前14位太阳能电池公司总产量达到1055MW,占当年世界总产量的88.3%,近五年来,日本Sharp公司一直领先,2004年产量达到324MW,见表1。

以2004年数据分析,各种太阳能电池中硅基太阳能电池占总产量的98%,晶体硅太阳能电池占总产量的84.6%,多晶硅太阳能电池占总量的56%,见表2。

2005年,世界光伏市场安装量1460M W,比2004年增长34%,其中德国安装最多,为837MW,比2004年增长53%,占世界总安装量的57%;欧洲为920MW,占总世界安装量的63%,日本安装量292M W,增幅为14%,占世界总安装量的20%;美国安装量为102MW,占世界总安装量的7%,其他安装量为146M W,占世界总安装量的10%。

至2005年全世界光伏系统累计安装量已超过5GW,2005年一年内投资太阳能电池制造业的资金超过10亿美元。现在,一个世界性的问题是制造太阳能的电池的硅原材料紧缺,尽管2005年全世界硅原材料供应增长了12%,但仍然供不应求,国际上长期供货合同抬价25%。持续的硅材料紧缺将对2006年太阳能电池生产产生较大的影响,预计2006年世界太阳能电池产量的增幅将不限制在10%左右。要解决硅材料的紧缺问题预计将需要5年以上的时间。 根据光伏市场需求预测,到2010年,全世界光伏市场年安装量将在3.2G到3.9GW之间,而光伏工业年收入将达到186美元到231亿美元。 日本和欧美各国都提出了各自的中长期PV发展路线图。 按日本的PV路线图(TV Roadmap 2030),到2030年PV电力将达到居民电力消耗的50%(累计安装容量约为100GW),具体的发展目标见表3和表4。

太阳能电池的分类及其工作原理

1 硅系太阳能电池 1.1 单晶硅太阳能电池 硅系列太阳能电池中,单晶硅大阳能电池转换效率最高,技术也最为成熟。高性能单晶硅电池是建立在高质量单晶硅材料和相关的成热的加工处理工艺基础上的。现在单晶硅的电地工艺己近成熟,在电池制作中,一般都采用表面织构化、发射区钝化、分区掺杂等技术,开发的电池主要有平面单晶硅电池和刻槽埋栅电极单晶硅电池。提高转化效率主要是靠单晶硅表面微结构处理和分区掺杂工艺。在此方面,德国夫朗霍费费莱堡太阳能系统研究所保持着世界领先水平。该研究所采用光刻照相技术将电池表面织构化,制成倒金字塔结构。并在表面把一13nm。厚的氧化物钝化层与两层减反射涂层相结合.通过改 进了的电镀过程增加栅极的宽度和高度的比率:通过以上制得的电池转化效率超过23%,是大值可达23.3%。Kyocera公司制备的大面 积(225cm2)单电晶太阳能电池转换效率为19.44%,国内北京太阳能研究所也积极进行高效晶体硅太阳能电池的研究和开发,研制的平面高效单晶硅电池(2cm X 2cm)转换效率达到19.79%,刻槽埋栅电极晶体硅电池(5cm X 5cm)转换效率达8.6%。 单晶硅太阳能电池转换效率无疑是最高的,在大规模应用和工业生产中仍占据主导地位,但由于受单晶硅材料价格及相应的繁琐的电池工艺影响,致使单晶硅成本价格居高不下,要想大幅度降低其成本是非常困难的。为了节省高质量材料,寻找单晶硅电池的替代产品,

现在发展了薄膜太阳能电池,其中多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池就是典型代表。 1.2 多晶硅薄膜太阳能电池 通常的晶体硅太阳能电池是在厚度350-450μm的高质量硅片 上制成的,这种硅片从提拉或浇铸的硅锭上锯割而成。因此实际消耗的硅材料更多。为了节省材料,人们从70年代中期就开始在廉价衬 底上沉积多晶硅薄膜,但由于生长的硅膜晶粒大小,未能制成有价值的太阳能电池。为了获得大尺寸晶粒的薄膜,人们一直没有停止过研究,并提出了很多方法。目前制备多晶硅薄膜电池多采用化学气相沉积法,包括低压化学气相沉积(LPCVD)和等离子增强化学气相沉积(PECVD)工艺。此外,液相外延法(LPPE)和溅射沉积法也可用来 制备多晶硅薄膜电池。 化学气相沉积主要是以SiH2Cl2、SiHCl3、Sicl4或SiH4,为反 应气体,在一定的保护气氛下反应生成硅原子并沉积在加热的衬底上,衬底材料一般选用Si、SiO2、Si3N4等。但研究发现,在非硅衬底上很难形成较大的晶粒,并且容易在晶粒间形成空隙。解决这一问题办 法是先用 LPCVD在衬底上沉炽一层较薄的非晶硅层,再将这层非晶 硅层退火,得到较大的晶粒,然后再在这层籽晶上沉积厚的多晶硅薄膜,因此,再结晶技术无疑是很重要的一个环节,目前采用的技术主

太阳能电池材料的研究现状及未来发展

太阳能电池材料的研究现状及未来发展 太阳能是人类取之不尽,用之不竭的可再生能源,它不产生任何环境污染,是清洁能源.太阳光辐射能转化电能是近些年来发展最快,最具活力的研究,人们研制和开发了不同类型的太阳能电池.太阳能电池其独特优势,超过风能、水能、地热能、核能等资源,有望成为未来电力供应主要支柱.制造太阳能电池材料的禁带宽E:应在1.1eV-13W之间,以1.5eV左右为佳,最好采用直接迁移型半导体,较高的光电转换效率(以下简称“效率”),材料性能稳定,对环境不产生污染,易大面积制造和工业化生产. 1954年美国贝尔实验室研制了世界上第一块实用半导体太阳能电池,不久后用于人造卫星.经近半个世纪努力,人们为太阳电池的研究、发展与产业化做出巨大努力.硅太阳电池于1958年首先在航天器上得到应用.在随后10多年里,空间应用不断扩大,工艺不断改进.20世纪70年代初,硅太阳电池开始在地面应用,到70年代末地面用太阳电池产量己经超过空间电池产量,并促使成本不断降低.80年代初,硅太阳电池进入快速发展,开发的电池效率大幅度提高,商业化生产成本进一步降低,应用不断扩大.20世纪80年代中至今,薄膜太阳能电池研究迅速发展,薄膜电池被认为大幅度降低成本的根本出路,成为 今后太阳能电池研究的热点和主流,并逐步向商业化生产过渡. 1.不同材料太阳电池分类及特性简介 太阳能电池按材料可分为品体硅太阳电池、硅基薄膜太阳电池、化合物半导体薄膜太阳电池和光电化学太阳电池等儿大类.开发太阳能电池的两个关键问题就是:提高效率和降低成本. 1晶体硅太阳电池 晶体硅太阳电池是PV(Photovoltaic)市场上的主导产品,优点是技术、工艺最成熟,电池转换效率高,性能稳定,是过去20多年太阳电池研究、开发和生产主体材料.缺点是生产成本高.在硅电池研究中人们探索各种各样的电池结构和技术来改进电池性能,进一步提高效率.如发射极钝化、背面局部扩散、激光刻槽埋栅和双层减反射膜等,高效电池在这些实验和理论基础上发展起来的. 2硅基薄膜太阳电池 多晶硅(ploy-Si)薄膜和非晶硅(a-Si)薄膜太阳电池可以大幅度降低太阳电池价格.多晶硅薄膜电池优点是可在廉价的衬底材料上制备,其成本远低于晶体硅电池,效率相对较高,不久将会在PV市场上占据主导地位.非晶硅是硅和氢(约10%)的一种合金,具有以下优点:它对 厚,材料的需求量大大减少,沉积温度低(约200'C),阳光的吸收系数高,活性层只有1m 可直接沉积在玻璃、不锈钢和塑料膜等廉价的衬底材料上,生产成本低,单片电池面积大,便于工业化大规模生产.缺点是由于非晶硅材料光学禁带宽度为1.7eV,对太阳辐射光谱的长

有机太阳能电池的原理和应用

有机太阳能电池的原理和应用 一、结构和基本原理 目前的有机太阳能电池可以分为三类。 1.1 肖特基型有机太阳能电池 第一个有机光电转化器件是由Kearns 和Calvin在1958 年制备的,其主要材料为镁酞菁(MgPc)染料,染料层夹在两个功函数不同的电极之间。在这种有机半导体器件中,电子在光照下被从HOMO 能级激发到LUMO能级,产生一对电子和空穴。电子被低功函数的电极提取,空穴则被来自高功函数电极的电子填充,由此在光照下形成光电流。理论上,有机半导体膜与两个不同功函数的电极接触时,会形成不同的肖特基势垒。这是光致电荷能定向传递的基础。因而此种结构的电池通常被称为“肖特基型有机太阳能电池”。在这个器件上,他们观测到了200 mV的开路电压,光电转化效率很低。此后二十多年间,有机太阳能电池领域内创新不多,所有报道的器件之结构都类似于1958 年版,只不过是在两个功函数不同的电极之间换用各种有机半导体材料。由于肖特基型有机太阳能电池是单纯由一种纯有机化合物夹在两层金属电极之间制成的,因此效率比较低,现在已经被淘汰。 1.2 双层膜异质结型有机太阳能电池 在肖特基型有机太阳能电池的基础上,1986 年,行业内出现了一个里程碑式的突破。 实现这个突破的是柯达公司的邓青云博士。这个时代的有机太阳能电池所采用的有机材料主要还是具有高可见光吸收效率的有机染料。邓青云的器件之核心结构是由四羧基苝的一种衍生物(又称作PV)和铜酞菁(CuPc)组成的双层膜。这种太阳能电池又叫做p-n 异质结型有机太阳能电池。在双层膜结构中,p-型半导体材料(电子给体(Donor),以下简记为D)和n-型半导体材料(电子受体(Acceptor),以下简记为A)先后成膜附着在正负极上(下图)。D 层或者 A 层受到光的激发生成激子,激子扩散到 D 层和 A 层界面处发生点电荷分离生成载流子,然后电子经A层传输到电极,空穴经D层传输到对应的电极。1992 年,土耳其人Sariciftci 在美国发现,激发态的电子能极快地从有机半导体分子注 入到C60 分子中,而反向的过程却要慢得多。也就是说,在有机半导体材料与C60 的界面上,激子可以以很高的速率实现电荷分离,而且分离之后的电荷不容易在界面上复合。这是由于C60的表面是一个很大的共轭结构,电子在由60个碳原子轨道组成的分子轨道上离域,可以对外来的电子起到稳定作用。因此C60 是一种良好的电子受体材料。1993 年,Sariciftci在此发现的基础上制成PPV/C60 双层膜异质结太阳能电池。PPV通常叫作“聚对苯乙烯撑”,是一种导电聚合物,也是一种典型的P 型有机半导体材料。此后,以C60 为电子受体的双层膜异质结型太阳能电池层出不穷。 1.3 混合异质结型有机太阳能电池 随后,研究人员在此类太阳能电池的基础上又提出了一个重要的概念:混合异质结(Bulk Heterojunction)。混合异质结概念主要针对光电转化过程中激子分离和载流子传输这两方面的限制。双层膜太阳能电池中,虽然两层膜的界面有较大的面积,但激子仍只能在界面区域分离,离界面较远处产生的激子往往还没移动到界面上就复合了。而且有机材料的载流子迁移率通常很低,在界面上分离出来的载流子在向电极运动的过程中大量损失。这两点限制了双层膜电池的光电转化效率。 而所谓“混合异质结”,就是将给体材料和受体材料混合起来,通过共蒸或者旋涂的方法制成一种混合薄膜。其给体和受体在混合膜里形成一个个单一组成的区域,在任何位置产生的激子都可以通过很短的路径到达给体与受体的界面(即结面),电荷分离的效率得到了提高。同时,在界面上形成的正负载流子亦可通过较短的途径到达电极,从而弥补载流子迁移率的不足。2008 年3 月,大阪大学和大阪市立研究所宣布,成功开发出了单元转换效率高

太阳能电池组装工艺介绍

太阳能电池组装工艺介绍 2012-5-7 作者:来源: OFweek太阳能光伏网 核心提示:为了最大限度地降低电池串并联的损失,必须将性能相近的单体电池组合成组件。背面串接是将36片电池串接在一起形成一个组件串。 工艺简介:在这里只简单的介绍一下工艺的作用,给大家一个感性的认识。 1.电池测试由于电池片制作条件的随机性,生产出来的电池性能不尽相同,所以为了有效地将性能一致或相近的电池组合在一起,所以应根据其性能参数进行分类;电池测试即通过测试电池的输出参数(电流和电压)的大小对其进行分类。以提高电池的利用率,做出质量合格的电池组件。如果把一片或者几片低功率的电池片装在太阳电池单体中,将会使整个组件的输出功率降低。因此,为了最大限度地降低电池串并联的损失,必须将性能相近的单体电池组合成组件。 2.焊接一般将6~12个光伏电池串联起来形成光伏电池串。传统上,一般采用银扁线构成电池的接头,然后利用点焊或焊接(用红外灯,利用红外线的热效应)等方法连接起来。现在一般使用60%的sn、38%的pb、2%的ag电镀后的铜扁丝(厚度约为100~200μm)。接头需要经过火烧、红外、热风、激光处理。由于铅有毒,因此现在越来越多地采用96.5%的铜和 3.5%的银合金。但是利用这种合金焊接时,要求焊接温度不能过高,焊接的时间也不能过长,否则会导致焊缝晶体的长大,强度降低或电池碎裂。焊接接头之间应有良好的配合和适当的间隙,接头要光滑平整、牢固。要求串联的电池片间距均匀、颜色一致。 3.背面串接是将36片电池串接在一起形成一个组件串。目前一般采用的工艺是手动的,电池的定位主要靠一个膜具板,上面有36个放置电池片的凹槽,槽的大小和电池的大小相对应,槽的位置已经设计好,不同规格的组件使用不同的模板,操作者使用电烙铁和焊锡丝将“前面电池”的正面电极(负极)焊接到“后面电池”的背面电极(正极)上,这样依次将36片串接在一起并在组件串的正负极焊接出引线。 4.层压敷设背面串接好且经过检验合格后,将组件串、玻璃和切割好的eva、玻璃纤维、背板按照一定的层次敷设好,准备层压。玻璃事先涂一层试剂,以增加玻璃和eva的黏结强度。敷设时保证电池串与玻璃等材料的相对位置,调整好电池间的距离,为层压打好基础。敷设层次:由下向上:玻璃、eva、电池、eva、玻璃纤维、背板。 5.组件层压将敷设好的电池放入层压机内,通过抽真空将组件内的空气抽出,然后加热使eva熔化将电池、玻璃和背板粘接在一起;最后冷却取出组件。层压工艺是组件生产的关键一步,层压的温度、时间根据eva的性质决定。使用快速固化eva时,层压循环时间约为25min。固化温度为150℃。要求层压好的组件内单片电池无碎裂、无裂纹、无明显移位,在组件的边缘和任何一部分电路之间的eva均无气泡或脱层通道,eva交联度良好。

太阳能电池的研究现状及发展趋势

太阳能电池的研究现状及发展趋势 摘要:太阳能电池的利用可为人类社会提供可再生的清洁能源。综述了太阳能电池的研究现状, 从材料、工艺与转换效率等方面讨论了它们的优势和不足之处, 并对太阳能电池的发展趋势进行了预测。 关键词:太阳能太阳能电池发展趋势 前言 随着煤、石油等一次性能源的逐渐枯竭及对环境的恶化影响,人类迫切需求对环境友好的可再生能源。目前,太阳能电池由于制造成本高、光电转换效率低,因而其应用受到了限制,但其优点及化石能源的枯竭又促使人们不断地寻找低成本、高效率的太阳能电池材料。 太阳能电池的研究现状 太阳能电池由材料分类大致可分为4类:硅太阳能电池;多元化合物薄膜太阳能电池;有机物太阳能电池;纳米晶太阳能电池。 目前研究和应用最广泛的太阳能电池主要是单晶硅、多晶硅和非晶硅电池。硅太阳能电池中以单晶硅太阳能电池转换效率最高,技术也最为成熟。单晶硅电池己十分成熟,效率高,寿命长,在大规模应用和工业生产中,单晶硅太阳能电池占据主导地位。单晶硅电池的最高效率已达到24.4%,而多晶硅电池的效率也已达到19.8%。但是硅电池生产工艺比较复杂,需要高温(400~2000)和高真空条件,这导致其制造成本较高;同时其成熟的技术使光电转换效率已基本达到极限值,而且其材料本身不利于降低成本。开发太阳能电池的两个关键是:提高转换效率和降低成本。由于非晶硅薄膜成本低,便于大量生产,受到普遍重视并得到迅速发展。目前非晶硅太阳能电池的研究取得两大进展:3叠层结构非晶硅太阳能电池转换效率达到13%,创下新的记录;3叠层太阳能电池年生产能力达5MW。非晶硅太阳能电池由于具有较高的转换效率和较低的成本及质量轻等特点,有着极大的潜力。 多元化合物薄膜太阳能电池主要有砷化镓(GaAs)电池、碲化镉(CdTe)电池、硫化镉(CdS)电池和铜铟硒(CuInSe2)薄膜电池。砷化镓及铜铟硒薄膜电池由于具有较高的转换效率受到人们的普遍重视。在多元化合物薄膜太阳能电池中,由于GaAs电池的原料价格昂贵,且不易制备;而CdTe电池含有危险的重金属元素,对环境保护不利,并不是晶体硅太阳能电池最理想的替代。 以聚合物代替无机材料是太阳能电池制造的方向。其原理是利用不同氧化还原型聚合物的不同氧化还原电势,在导电材料(电极)表面进行多层复合,制成类似无机pn结的单向导电装置。其中一个电极的内层由还原电位较低的聚合物修饰,外层聚合物的还原电位较高,电子转移方向只能由内层向外层转移;另一个电极的修饰正好相反,并且第一个电极上两种聚合物的还原电位均高于后者的两种聚合物的还原电位。当两个修饰电极放入含有光敏化剂的电解液中时。光敏化剂吸光

相关主题
文本预览
相关文档 最新文档