当前位置:文档之家› 接近传感器在触摸屏手机中的应用

接近传感器在触摸屏手机中的应用

接近传感器在触摸屏手机中的应用
接近传感器在触摸屏手机中的应用

接近传感器(CM3652)在触摸屏手机中的应用

在触摸屏手机流行之初,用户们就发现了触摸屏的一个缺陷:当我们用最常见的姿势接起电话时,往往脸部会碰到触摸屏幕上,无意中点击到了挂机键或者免提键,造成不必要的尴尬。于是,手机厂商将接近传感器设计进了触摸屏手机,在接电话的时候自动锁屏,避免误触发。另外,锁屏的同时还可以关掉背光,可以有效节能,延长待机时间。

接近传感器的原理非常简单,如下图。它本质上是一个光电二极管,在其旁边放置一个红外光波长的LED。当有物体靠近时,红外光发射的光会被物体反射回来,被接近传感器接收到,于是就感应到了物体接近。

图1:接近传感器的工作原理

为了保证接近感应功能的正常实现,需要注意一系列的问题。

首先是选取正确波长的LED。每一个接近传感器都有其特定的响应光谱,拿Intersil公司的ISL29208A来举例。图中橙色的线是人类眼睛的波长响应曲线,其只对350-600nm波长响应。绿色的线是ISL29028A环境光感应功能的响应曲线,这里不做详细介绍。红色的线是ISL29028A接近感应功能的响应曲线,可以看到它在700-950nm范围内灵敏度较高,820nm 是其最灵敏波长。考虑到LED采购的便利性,通常选用850nm波长的LED。

图2:ISL29028A对不同波长的响应灵敏度

选定好了工作波长,还要考虑LED的发射功率。显然,功率越大,接近感应的响应距离越远。图3是用不同发射功率和不同反射物体做的测试结果。由于ISL29028A是内置ADC 的集成数字式传感器,所以纵轴表示的是ISL29028A的ADC输出值。220mA和110mA也是通过设置ISL29028A内部的寄存器来控制的输出电流。问题来了:为了接近感应的功能,手机要额外负担100-200mA的功耗吗?显然是不合理的。不过不用担心,接近传感器的设计者早就想到了这一点,我们用脉冲式的工作方式,可以将平均功耗降到100uA左右,如图4。LED发射脉宽只有100us,每隔几十到几百ms发射一次,发射间歇ISL29028A处于休眠模式。具体的间隔时间可以通过ISL29028A内部的寄存器来设置。

图3:不同LED发射功率的接近响应曲线

图4:LED发射时序

接下来的问题尤为关键,就是设置LED与传感器之间的隔断。因为传感器必须设计在手机内部,上方有手机外壳密封,LED的光必须穿过透光外壳。但是外壳往往会直接将大量的光直接反射回来照射在接近传感器上。于是,即使没有物体接近的情况下,接近传感器都会接收到强烈的“反射光”,导致误判断。所以,需要在LED与传感器之间建一堵墙,让LED 的光不能在内部反射。如果设计两个360度包裹的套筒分别套住LED和传感器,效果最好。图中的A,B,C,D四个距离的推荐值为:

A=4-5mm

B=C=0.5-1mm

D=2mm

图5:有无隔断情况下接近传感器的响应

在软件设计方面,芯片厂商充分考虑了手机应用的实际场景,将很多软件工作集成到了芯片内部,设计了一系列简单易操作的寄存器并提供了标准I2C接口,使系统设计得以简化。除了刚才提到的LED驱动电流可编程,LED发射脉冲间隔可编程,ISL29028A还支持中断输出,芯片的第7脚为中断输出脚。通常我们用它来作为接近感应的中断输出。事先将设定好的上阈值(比如200)和下阈值(比如100)写入接近阈值寄存器,再结合图3中蓝色实线来看,当物体接近到5厘米时,即ADC读数达到200时,中断脚输出电平由高到低,表示此时有物体接近。当物体逐渐远离达到8厘米时,即ADC读数减小到100时,中断脚输出电平由低到高,表示此时物体已经远离。由于手机不需要对短时间的手指挥动等等动作作出接近响应,所以ISL29028A内部还有一个相当于滤波功能的寄存器,即传感器要连续n 次采样结果超过阈值才会触发中断,n的可选值为1,4,8,16。ISL29028A还有一个自动减除环境中红外光照射值的功能,保证其在阳光直射条件下不会输出饱和,维持正常的接近感应功能。

图6:ISL29028A内部框图

上文提到了ISL29028A除了有接近感应功能外还有环境光感应的功能,从图6的框图也可以看到其内部实际上有两个独立的光电二极管,并且有双路ADC。也就是说ISL29028A 也可以实时感应环境光亮度,自动调节背光。在户外阳光直射的情况下,将背光亮度调到最高,在夜间完全黑暗的环境中,又可以将背光亮度调低,有效的改善手机使用的舒适度,并且达到智能化功耗管理的目的。

手机里的传感器

关于手机传感器的认识 1、加速传感器(重力感应) 原理:现代加速传感器有单轴、两轴、三轴之分。手机上常见的是电容式芯片三轴加速传感器,主要由双芯片构成,即重力测量单元和控制电路单元。在每个方向上,封装部分内有一小块可移动的电极板和两块不可移动的电极板,当可移动电极板受到加速作用时,会产生惯性力,从而影响与左右两个不可移动电极板的间隔,使得电容值改变,促进电容电压值的变化,以此可以计算出加速度。 功能:加速度有两种,一个是静态的加速度,把加速度传感器倾斜一个角度,重力场会在感应场上产生一个分量,通过这个分量,可以测量出手机倾斜了多少角度,由此实现一些前后左右的控制;另外一种就是所谓的动态加速度,可以侦测速度、撞击等.手机通过加速传感器能够实时的获得手机的移动状态,其最初的用途是用来检测手机是竖放还是横放,从而决定是横屏显示还是竖屏显示。随着三轴加速器普及,手机能够识别横放竖放,正面横放、背面横放,正面竖放、背面竖放状态,从而可以实现摇晃手机操作,翻转静音功能等;加速传感器另一个重大用处就是利用手机摇晃来玩游戏,戏中得到充分表现,从而代替传统游戏手柄。 2、距离传感器 工作原理:距离感应器又叫位移传感器,距离感应器一般都在手机听筒的两侧或者是在手机听筒凹槽中,这样便于它的工作。通过发射特别短的光脉冲,并测量此光脉冲从发射到被物体反射回来的时间,通过测时间来计算与物体之间的距离。用各种元件检测对象物的物理变化量,通过将该变化量换算为距离,来测量从传感器到对象物的距离位移的机器。根据使用元件不同,分为光学式位移传感器、线性接近传感器、超声波位移传感器等。 应用:这个传感器在手机上的应用是当我们打电话时,手机屏幕会自动熄灭,当你脸离开,屏幕灯会自动开启,并且自动解锁。这个对于待机手机较短的智能手机来说是相当实用的。现在很多智能手机都装备的这个传感器。此外,距离感应还可应用到一些特殊的功能,例如Galaxy Note II中的”快速一览”功能。 3、气压传感器 原理:气压传感器的工作是通过一个对压强很敏感的薄膜元件工作,薄膜连接了一个柔性电阻,当大气压变化时候,就会导致电阻阻值产生变化。气压传感器的作用主要用于检测大气压、当前高度以及辅助GPS定位。

手机中智能传感器

Android手机中的智能传 感器及其应用 随着技术的进步,手机已经不再是一个简单的通信工具,而是具有综合功能的便携式电子设备。手机的虚拟功能,比如交互、游戏、都是通过处理器强大的计算能力来实现的,但与现实结合的功能,则是通过传感器来实现。本文介绍了几种手机中常见的传感器的原理和用途。 Android智能手机自推出以来,其内置传感器逐渐增多,传感器所能实现的功能也日益多样化,极大的满足了用户对智能手机功能的需求,从依赖于重力传感器的各种游戏,到依靠距离传感器实现的通话灭屏,再到指南针功能下的电子罗盘等等,小小的一个Android智能手机以各种传感器为依托实现了许多有趣的功能。 1.距离传感器 这个传感器在手机上的应用是当我们打电话时,手机屏幕会自动熄灭,同时触摸屏无效,能够防止误操作。当脸离开屏幕时屏幕灯会自动开启,并且自动解锁,因此距离传感器位于手机屏幕上方。这个对于待机手机较短的智能手机来说是相当实用的,现在很多智能手机都装备的这个传感器。距离传感器和光线传感器位置如图.1

图1.距离和光线传感器 距离传感器原理:红外LED灯发射红外线,被近距离物体反射后,红外探测器通过接收到红外线的强度,并测量光脉冲从发射到被物体反射回来的时间,测定距离,一般有效距离在10cm内。距离传感器同时拥有发射和接受装置,一般体积较大。 2.光线传感器 光线传感器,也就是感光器,是能够根据周围光亮明暗程度来调节屏幕明暗的装置。光线传感器可以使用光敏三极管作为感光元件,接受外界光线时,会产生强弱不等的电流,从而感知环境光亮度。在光线强的地方手机屏幕会变暗,达到节电并更好观看屏幕的效果,在光线暗的地方自动将屏幕变亮。可以在工具设置中设置自动调节屏幕亮度。这个传感器也主要起到节省手机电力的作用,自动调节屏幕亮度也能起到保护眼睛的作用。光线传感器位置如图1 光线传感器和距离传感器一般都是放在一起的,位于手机正面听筒周围,这样就存在一个问题,手机的额头上开了太多洞或黑色长条不太好看,所以一些厂商为了减少开孔、或者隐藏开孔,将两个传感器集成到一个窗口下,或者使用黑色面板,黑色面板的手机可以轻易隐藏这两个传感器。 3.方向传感器 方向传感器就是陀螺仪,陀螺仪的测量物理量是偏转,倾斜时的转动角度。陀螺仪传感器最早应用于航空、航天和航海等领域。随着陀螺仪传感器成本的下降,现在很多智能手机都集成有陀螺。陀螺仪是一种用来传感与维持方向的装置,基于角动量守恒的理论设计出来的。陀螺仪主要是由一个位于轴心且可旋转的轮子构成,一旦开始旋转,由于轮子的角动量,陀螺仪就具有了抗拒方向改变的能

触摸屏与传感器的那些事

触摸屏与传感器 所谓触摸屏,从市场概念来讲,就是一种人人都会使用的计算机输入设备,或者说是人人都会使用的与计算机沟通的设备。随着多媒体信息查询设备的与日俱增,人们越来越多地谈到触摸屏,因为触摸屏不仅适用于中国多媒体信息查询的国情,而且触摸屏具有坚固耐用、反应速度快、节省空间、易于交流等许多优点。利用这种技术,用户只要用手指轻轻地碰计算机显示屏上的图符或文字就能实现对主机操作,从而使人机交互更为直截了当,这种技术大大方便了那些不懂电脑操作的用户。 触摸屏在我国的应用范围非常广阔,主要是公共信息的查询;如电信局、税务局、银行、电力等部门的业务查询;城市街头的信息查询;此外应用于领导办公、工业控制、军事指挥、电子游戏、点歌点菜、多媒体教学、房地产预售等。将来,触摸屏还要走入家庭。 触摸屏的第一个特性: 透明,它直接影响到触摸屏的视觉效果。由于透光性与波长曲线图的存在,通过触摸屏看到的图象不可避免的与原图象产生了色彩失真,静态的图象感觉还只是色彩的失真,动态的多媒体图象感觉就不是很舒服了,色彩失真度也就是图中的最大色彩失真度自然是越小越好。平常所说的透明度也只能是图中的平均透明度,当然是越高越好。反光性,主要是指由于镜面反射造成图像上重叠身后的光影,如人影、窗户、灯光等。 触摸屏的第二个特性: 触摸屏是绝对坐标系统,要选哪就直接点那,与鼠标这类相对定位系统的本质区别是一次到位的直观性。绝对坐标系的特点是每一次定位坐标与上一次定位坐标没有关系,触摸屏在物理上是一套独立的坐标定位系统,每次触摸的数据通过校准数据转为屏幕上的坐标,这样,就要求触摸屏这套坐标不管在什么情况下,同一点的输出数据是稳定的,如果不稳定,那么这触摸屏就不能保证绝对坐标定位,点不准,这就是触摸屏最怕的问题:漂移。 为了操作上的方便,人们用触摸屏来代替鼠标或键盘。工作时,首先用手指或其它物体触摸安装在显示器前端的触摸屏,然后系统根据手指触摸的图标或菜单位置来定位选择信息输入。触摸屏由触摸检测部件和触摸屏控制器组成;触摸检测部件安装在显示器屏幕前面,用于检测用户触摸位置,接受后送触摸屏控制器;而触摸屏控制器的主要作用是从触摸点检测装置上接收触摸信息,并将它转换成触点坐标,再送给CPU,它同时能接收CPU发来的命令并加以执行。 传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。

手机中的传感器

手机中的传感器 如今,智能手机在生活中已经是必不可少的了,人人都能使用手机,但我们对手机中的传感器又了解了多少呢? 手机传感器是手机上通过芯片来感应的元器件,如温度值、亮度值和压力值等。 随着技术的进步,手机已经不再是一个简单的通信工具,而是具有综合功能的便携式电子设备。手机的虚拟功能,比如交互、游戏、都是通过处理器强大的计算能力来实现的,但与现实结合的功能,则是通过传感器来实现。 一、光线传感器 光线感应器也叫做亮度感应器,英文名称为Light-Sensor ,很多平板电脑和手机都配备了该感应器。一般位于手持设备屏幕上方,它能根据手持设备目前所处的光线亮度,自动调节手持设备屏幕亮度,给使用者带来最佳的视觉效果。例如在黑暗的环境下,手持设备屏幕背光灯就会自动变暗,否则很刺眼。 原理:光线感应器是由两个组件即投光器及受光器所组成,利用投光器将光线由透镜将之聚焦,经传输而至受光器之透镜,再至接收感应器,接收感应器将收到之光线讯号转变成电信号,此电信讯号更可进一步作各种不同的开关及控制动作,其基本原理即对投光器受光器间之光线做遮蔽之动作所获得的信号加以运用以完成各种自动化控制。 用途:通常用于调节屏幕自动背光的亮度,白天提高屏幕亮度,夜晚降低屏幕亮度,使得屏幕看得更清楚,并且不刺眼。也可用于拍照时自动白平衡。还可以配合下面的位移传感器检测手机是否在口袋里防止误触。 二、位移传感器 位移传感器又称为线性传感器,是一种属于金属感应的线性器件,传感器的作用是把各种被测物理量转换为电量。在生产过程中,位移的测量一般分为测量 实物尺寸和机械位移两种。按被测变量变换的形式不同,位移传感器可分为模拟 式和数字式两种。模拟式又可分为物性型和结构型两种。常用位移传感器以模拟 式结构型居多,包括电位器式位移传感器、电感式位移传感器、自整角机、电容式位移传感器、电涡流式位移传感器、霍尔式位移传感器等。数字式位移传感器的一个重要优点是便于将信号直接送入计算机系统。这种传感器发展迅速,应用日益广泛。

触摸屏原理及应用实例

触摸屏原理及应用实例 一、触摸屏的结构及工作原理 触摸屏从工作原理上可以分为电阻式、电容式、红外线式、矢量压力传感器式等,以四线电阻式触摸屏为例。 1、触摸屏的结构 典型触摸屏的工作部分一般由三部分组成,如下图所示:两层透明的阻性导体层、两层导体之间的隔离层、电极。阻性导体层选用阻性材料,如铟锡氧化物(ITO)涂在衬底上构成,上层衬底用塑料,下层衬底用玻璃。隔离层为粘性绝缘液体材料,如聚脂薄膜。电极选用导电性能极好的材料(如银粉墨)构成,其导电性能大约为ITO(一种N型氧化物半导体氧化铟锡,ITO薄膜即铟锡氧化物半导体透明导电膜,通常有两个重要的性能指标:电阻率和光透过率)的1000倍。 触摸屏结构触摸屏工作时,上下导体层相当于电阻网络,如下图所示。 2、触摸屏的测量过程工作原理

电阻式触摸屏有四线和五线两种,四线最具有代表性。 在外ITO 层的上、下两边各渡一个狭长电极,引出端为Y +、Y -,在内IT0层的左、右两边分别渡上狭长电极,引出端为X +、X -。为了获得触摸点在X 方向的位置信号,在内IT0层的两电极X +,X -上别加REF V ,0 V 电压,使内IT0层上形成了从了从0-REF V 的电压梯度,触摸点至X -端的电压为该两端电阻对REF V 的分压,分压值代表了触摸点在X 方向的位置,然后将外lT0层的一个电极(如Y -)端悬空,可从另一电极(Y +)取出这一分压,将该分压进行A/D 转换,并与REF V 进行比较,便可得到触摸点的X 坐标。 为了获得触摸点在y 方向的位置信号,需要在外ITO 层的两电极Y +,Y -上分别加REF V ,0 V 电压,将内lT0层的一个电极(X -)悬空,从另一电极上取出触摸点在y 方向的分压。 四线电阻触摸屏测量原理 测量电压与测量点关系等效电路 测量触摸点P处测量结果计算如下:212CC y V V R R R = ?+4 34 CC x V V R R R =?+

手机中常用传感器的介绍

手机中常用传感器的介绍 它们的设计者是如何想到这样的设计的呢?我们又该如何从中学习?也许我在下面介绍的会是一种可能的思路。 摇一摇和Bump等优秀的设计都是离不开一种叫做传感器的装置的,它们是实现这些功能所依赖的基础,因此我觉得开发者们有必要从人机交互设计的根源处进行思考,或许深入根源就能得到不一样的启示。 传感器(transducer/sensor)是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。国标GB7665-87对传感器的定义是:“能感受规定的被测量件并按照一定的规律(数学函数法则)转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。我们的手机中,早就装备了各种各样的微型传感器,因此有必要充分利用这些传感器给我们带来的价值!以下将简要介绍几类常见的传感器。 重力传感器 工作原理:重力传感器是根据压电效应的原理来工作的。所谓的压电效应就是“对于不存在对称中心的异极晶体加在晶体上的外力除了使晶体发生形变以外,还将改变晶体的极化状态,在晶体内部建立电场,这种由于机械力作用使介质发生极化的现象称为正压电效应”。 重力传感器就是利用了其内部的由于加速度造成的晶体变形这个特性。由于这个变形会产生电压,只要计算出产生电压和所施加的加速度之间的关系,就可以将加速度转化成电压输出。 简单来说是测量内部一片重物(重物和压电片做成一体)重力正交两个方向的分力大小,来判定水平方向。通过对力敏感的传感器,感受手机在变换姿势时,重心的变化,使手机光标变化位置从而实现选择等功能。 应用案例:手机横竖屏幕切换、翻转静音、平衡球、各种射击、赛车游戏等。 重力传感器可谓是我们最熟悉的传感器了,一些非智能机上也有安装,基于重力传感器创造的各种应用与游戏也非常的多,可以说重力传感器已经被充分开发了,但是我们仍然能看见各种基于重力传感器的创意层出不穷,因此只要肯动脑子、有创意,它还是非常值得开发者关注的。 加速度传感器

接近传感器在触摸屏手机中的应用

接近传感器(CM3652)在触摸屏手机中的应用 在触摸屏手机流行之初,用户们就发现了触摸屏的一个缺陷:当我们用最常见的姿势接起电话时,往往脸部会碰到触摸屏幕上,无意中点击到了挂机键或者免提键,造成不必要的尴尬。于是,手机厂商将接近传感器设计进了触摸屏手机,在接电话的时候自动锁屏,避免误触发。另外,锁屏的同时还可以关掉背光,可以有效节能,延长待机时间。 接近传感器的原理非常简单,如下图。它本质上是一个光电二极管,在其旁边放置一个红外光波长的LED。当有物体靠近时,红外光发射的光会被物体反射回来,被接近传感器接收到,于是就感应到了物体接近。 图1:接近传感器的工作原理 为了保证接近感应功能的正常实现,需要注意一系列的问题。 首先是选取正确波长的LED。每一个接近传感器都有其特定的响应光谱,拿Intersil公司的ISL29208A来举例。图中橙色的线是人类眼睛的波长响应曲线,其只对350-600nm波长响应。绿色的线是ISL29028A环境光感应功能的响应曲线,这里不做详细介绍。红色的线是ISL29028A接近感应功能的响应曲线,可以看到它在700-950nm范围内灵敏度较高,820nm 是其最灵敏波长。考虑到LED采购的便利性,通常选用850nm波长的LED。

图2:ISL29028A对不同波长的响应灵敏度 选定好了工作波长,还要考虑LED的发射功率。显然,功率越大,接近感应的响应距离越远。图3是用不同发射功率和不同反射物体做的测试结果。由于ISL29028A是内置ADC 的集成数字式传感器,所以纵轴表示的是ISL29028A的ADC输出值。220mA和110mA也是通过设置ISL29028A内部的寄存器来控制的输出电流。问题来了:为了接近感应的功能,手机要额外负担100-200mA的功耗吗?显然是不合理的。不过不用担心,接近传感器的设计者早就想到了这一点,我们用脉冲式的工作方式,可以将平均功耗降到100uA左右,如图4。LED发射脉宽只有100us,每隔几十到几百ms发射一次,发射间歇ISL29028A处于休眠模式。具体的间隔时间可以通过ISL29028A内部的寄存器来设置。

你的手机到底有多少传感器13种传感器的介绍和工作原理概述

你的手机到底有多少传感器13种传感器的介绍和工作原理概述摇动手机就可以控制赛车方向;拿着手机在操场散步,就能记录你走了几公里?这些你越来越熟悉的场景,都少不了天天伴你身旁的智能手机。而手机能完成以上任务,主要都是靠内部安装的传感器。你知道手机中的传感器有多少种?又是倚靠那些原理来运作? 1、光线传感器(Ambient Light Sensor) 光线传感器类似于手机的眼睛。人类的眼睛能在不同光线的环境下,调整进入眼睛的光线,例如进入电影院,瞳孔会放大来让更多光线进入眼睛。而光线传感器则可以让手机感测环境光线的强度,用来调节手机屏幕的亮度。而因为屏幕通常是手机最耗电的部分,因此运用光线传感器来协助调整屏幕亮度,能进一步达到延长电池寿命的作用。光线传感器也可搭配其他传感器一同来侦测手机是否被放置在口袋中,以防止误触。 2、距离传感器(proximity sensor) 透过红外线LED灯发射红外线,被物体反射后由红外线探测器接受,藉此判断接收到红外线的强度来判断距离,有效距离大约在10米左右。它可感知手机是否被贴在耳朵上讲电话,若是则会关闭屏幕来省电;距离传感器也可以运用在部分手机支持的手套模式中,用来解锁或锁定手机。 iPhone 4/4s与iPhone 5/5s的距离传感器与光传感器位置。 3、重力传感器(G-Sensor) 透过压电效应来实现。重力传感器内部有一块重物与压电片整合在一起,透过正交两个方向产生的电压大小,来计算出水平的方向。运用在手机中时,可用来切换横屏与直屏方向,运用在赛车游戏中时,则可透过水平方向的感应,将数据运用在游戏里,来转动行车方向。 4、加速度传感器(Accelerometer Sensor) 作用原理与重力传感器相同,但透过三个维度来确定加速度方向,功耗小但精度低。运用在手机中可用来计步、判断手机朝向的方向。

触摸屏的主要类型

按照触摸屏的工作原理和传输信息的介质,我们把触摸屏分为四种,它们分别为电阻式、电容感应式、红外线式以及表面声波式。每一类触摸屏都有其各自的优缺点,要了解那种触摸屏适用于那种场合,关键就在于要懂得每一类触摸屏技术的工作原理和特点。下面对上述的各种类型的触摸屏进行简要介绍一下: 1、电阻式触摸屏(电阻式触摸屏工作原理图) 这种触摸屏利用压力感应进行控制。电阻触摸屏的主要部分是一块与显示器表面非常配合的电阻薄膜屏,这是一种多层的复合薄膜,它以一层玻璃或硬塑料平板作为基层,表面涂有一层透明氧化金属(透明的导电电阻)导电层,上面再盖有一层外表面硬化处理、光滑防擦的塑料层、它的内表面也涂有一层涂层、在他们之间有许多细小的(小于1/1000英寸)的透明隔离点把两层导电层隔开绝缘。当手指触摸屏幕时,两层导电层在触摸点位置就有了接触,电阻发生变化,在X和Y两个方向上产生信号,然后送触摸屏控制器。控制器侦测到这一接触并计算出(X,Y)的位置,再根据模拟鼠标的方式运作。这就是电阻技术触摸屏的最基本的原理。电阻类触摸屏的关键在于材料科技,常用的透明导电涂层材料有:?? A、ITO,氧化铟,弱导电体,特性是当厚度降到1800个埃(埃=10-10米)以下时会突然变得透明,透光率为80%,再薄下去透光率反而下降,到300埃厚度时又上升到80%。ITO 是所有电阻技术触摸屏及电容技术触摸屏都用到的主要材料,实际上电阻和电容技术触摸屏的工作面就是ITO涂层。?? B、镍金涂层,五线电阻触摸屏的外层导电层使用的是延展性好的镍金涂层材料,外导电层由于频繁触摸,使用延展性好的镍金材料目的是为了延长使用寿命,但是工艺成本较为高昂。镍金导电层虽然延展性好,但是只能作透明导体,不适合作为电阻触摸屏的工作面,因为它导电率高,而且金属不易做到厚度非常均匀,不宜作电压分布层,只能作为探层。 1.1四线电阻屏 四线电阻模拟量技术的两层透明金属层工作时每层均增加5V恒定电压:一个竖直方向,一个水平方向。总共需四根电缆。特点:高解析度,高速传输反应。表面硬度处理,减少擦伤、刮伤及防化学处理。具有光面及雾面处理。一次校正,稳定性高,永不漂移。 1.2五线电阻屏 五线电阻技术触摸屏的基层把两个方向的电压场通过精密电阻网络都加在玻璃的导电工作面上,我们可以简单的理解为两个方向的电压场分时工作加在同一工作面上,而外层镍金导电层只仅仅用来当作纯导体,有触摸后分时检测内层ITO接触点X轴和Y轴电压值的方法测得触摸点的位置。五线电阻触摸屏内层ITO需四条引线,外层只作导体仅仅一条,触摸屏得引出线共有5条。特点:解析度高,高速传输反应。表面硬度高,减少擦伤、刮伤及防化学处理。同点接触3000万次尚可使用。导电玻璃为基材的介质。一次校正,稳定性高,永不漂移。五线电阻触摸屏有高价位和对环境要求高的缺点 1. 3电阻屏的局限

传感器在手机上的应用

电容式传感器的应用实例 ——电容式传感器在手机上的应用 制作人:

摘要:随着传感器不断的发展与成熟,电容式传感器广泛应用于压力、液位、位移等各种检测中,在农业、工业等领域的发展作出突出贡献。电容式传感器作为一项前途广阔的新型技术,日益受到人们的重视。 电容式感测技术在手机触摸屏中的应用 引言 电容传感技术投入应用已长达一个世纪,它具有结构简单、动态响应快、易实现非接触测量等突出的优点,具有着十分广泛的应用前景,它不仅在工业、农业、军事、环境、医疗等传统领域有具有巨大的运用价值,在未来还将在许多新兴领域体现其优越性。 电容式感测用户界面正作为手机中机械按键的一种实用的创新替代方案脱颖而出。虽然电容式传感器可被视作传统按键的简易替代方案,但该技术不仅仅是半球型开关的一种升级。当手机采用触摸式传感器来实现时,手机制造商在设计中可获得一种令人激动的崭新的外观感觉选择。 利用电容式传感器,手机按键,即键垫(key mat),无需移动式元件就可以实现,这样会形成平顺光滑的接触表面。此外,设计人员还可在机械按键顶端选用电容式感测,轻按会触发电容式传感器,重按则激活机械开关。 整合了这种技术的手机不仅能感测手指的位置,还能感测到手指对按键施加压力的轻重。轻按可能与电话号码簿翻页有关,重按则可能是往选定号码拨打电话。 近年来手机设计中出现的最引人注目的趋势之一是电容式传感器和透明导体的结合。这种透明键垫为设计人员提供了许多具创造性的选择。 手指电容 所有电容式触摸传感系统的核心部分都是一组与电场相互作用的导体。在皮肤下面,人体组织中充满了传导电解质(一种有损电介质)。正是手指的这种导电特性,使得电容式触摸传感成为可能。

手机中的主要传感器,详细版!

第六章手机中的传感器 第一节手机中的磁控传感器 一、手机中的干簧管传感器 二、手机中的霍尔传感器 第二节手机中的光线传感器 一、光敏三极管的外形及符号 二、光敏三极管的工作原理 三、光敏三极管在手机中的应用 四、手机光线传感器电路详解 第三节手机中的触摸传感器 一、电阻式触摸屏 二、电容式触摸屏 第四节手机中的摄像头 一、手机摄像头的工作原理 二、手机摄像头的结构 三、图像传感器 四、手机摄像头电路详解 第五节手机中的电子指南针 一、电子指南针工作原理 二、电子指南针电路 第六节手机中的三轴陀螺仪 一、三轴陀螺仪工作原理 二、三轴陀螺仪的应用 三、iphone手机中的三轴陀螺仪 手机中的重力传感器 补充:重力传感器 距离传感器 温度传感器

本章导读 随着技术的进步,手机已经不再是一个简单的通信工具,而是具有综合功能的便携式的电子设备。你可以用手机听音乐,看电影,拍照等。手机变得无所不能。在这种情况下,各种传感器在手机中的应用应运而生。 本章主要介绍了几种典型的传感器及其在手机中的应用,如磁控传感器、光线传感器、触摸传感器(触摸屏的典型应用)、图像传感器(手机摄像头的应用)、磁阻传感器(电子指南针)、加速传感器(iphone4的三轴陀螺仪)等。这些传感器的应用为智能手机增加感知能力,使手机能够知道自己做什么,甚至做什么的动作。 知识目标 1、了解各种传感器的工作原理; 2、掌握各种传感器功能的熟练使用; 3、了解传感器电路的功能、特点; 4、能够识别手机中使用的各种传感器电路。 技能目标 1、能简单判断各传感器电路的故障; 2、了解传感器的特性及性能; 3、能够识别传感器实物并排除简单故障。

手机中的传感器在科学教学中的应用

手机中的传感器在科学教学中的应用 发表时间:2018-02-26T16:13:49.067Z 来源:《中学课程辅导●教学研究》2017年10月下作者:毛学辉[导读] 本文主要介绍几种基于手机传感器设计的APP软件在科学教学中应用。 摘要:随着智能手机的不断更新换代和手机移动智能客户端的大量开发,APP软件越来越多地走进人们的生活中。同时,随着手机硬件功能的升级换代,手机中包含了很多种传感器,利用这些传感器设计的APP软件能直观地展示手机传感器的巨大作用。本文主要介绍几种基于手机传感器设计的APP软件在科学教学中应用。 关键词:手机; APP;科学教学 智能手机的不断更新升级和手机移动智能客户端的大量开发,生活的各个方面都有相关的APP软件为人们提供方便。学习类的APP软件也如雨后春笋般大量地诞生,其中有很多优秀的资源可以在学科教学中起到很多积极作用。因此,我们应该重视和挖掘这个资源宝库,为学科教学添砖加瓦。 一、常见传感器类APP以及其功能 手机中的传感器有十几种,有光线传感器、距离传感器、重力传感器、声音传感器、加速度传感器、磁场传感器、陀螺仪、GPS、指纹传感器、霍尔传感器、气压传感器、心率传感器、血氧传感器、紫外线传感器等。一些传感器APP软件专门从这些手机传感器中读取数据,以可视化的界面给用户提供各种信息。苹果APP STORE上可以下载的APP软件MY sensors中有加速度传感器,陀螺仪,磁力仪,气压计等,还有其他相关的APP也含有各类传感器功能。 科学教材中很多实验中都没有直接测量各种物理量,这其中与很多物理量测量所需要的仪器缺乏或者使用难度大有一定关系。很多时候更多地是用转换法来表示一些物理量。例如:用吸引大头针的数量来表示磁场强度的大小。虽然用转换法能反应出物理量大致的大小或强弱,但是如果能用仪器和工具测量出具体的数值对学生理解相关的科学规律有更有益处。 手机中有磁场传感器,很多手机的指南针APP都是读取这个传感器的数据来实现指南针的功能。APP软件My sensors磁场传感器不仅可以显示磁场方向,也能显示磁场强度。在浙教版教材科学八年级下第一章中,个别实验中磁场强弱变化不明显,用小磁针或者回形针等来展现出来比较困难,可以利用磁场传感器来直接读取一些实验中磁场的强弱和磁场的方向。APP软件My sensors中的气压计可以准确量大气压的读数,相对实验室的水银气压计和空盒气压计都要准确。在不同海拔和不同天气情况下,手机内的气压计都会显示不同的大气压值。 光线传感器是手机内的测量光照强度的工具。传感器工具箱,这个APP软件就是可以读取光照强度的软件。在初中科学实验中,涉及到光学部分的内容,例如凹透镜和凸透镜在光的会聚和发散方面的区别就可以通过测量光照强度来实现。 声音传感器能准确测量传到手机位置的声音的响度。在科学实验中声学实验的部分,涉及声音的响度部分往往都是靠学生自己的耳朵来感觉响度大小,很多时候往往都存在判断不准确的情况。 二、传感器类APP资源在科学教学应用的模式 1.利用APP软件在课堂上直接演示 探究声音的传播需要介质的实验装置中需要抽取玻璃罩中的空气。在实际操作过程中,玻璃罩的气密性往往不好很好,空气抽取的实际效果往往不好。声音最后是否变轻,在这个实验中也是需要学生去感觉的。如果实验效果不明显,往往是听不怎么出声音的变化。笔者利用APP软件分贝仪定量测量声音响度,微小的响度变化也能测量出来,使得实验结果更加有说服力。同样在探究声音响度与物体振动幅度关系时,可以用敲击鼓的鼓面轻重来让鼓面的振动幅度不同。不过,声音的响度没有使用仪器测量的话,只能用人耳朵来判断。人耳朵在响度差别不大时,判断并不灵敏,实验结果不是靠仪器和工具而是靠人的感觉,体现不出科学严谨性。因此,这个实验也可以引进分贝仪进行准确测量,也体现科学探究的严谨性。 很多涉及磁性强弱的实验都是用到转换法,并没有真正测量具体的磁场强度。个别实验中磁场强弱变化不明显,用小磁针或者回形针等来展现出来比较困难。APP软件Metal detetor读取手机中磁场传感器数据的软件,能测量磁场强度,并用单位μT表示。在通电导体周围存在磁场这个实验中,通电导体产生的磁场强度往往比较小。如果用手机的磁场传感器就能准确测量出未通电和通电情况下磁场强度。在探究电磁铁的磁性强弱与什么因素有关问题时,也能测量不同条件下磁场强度,让学生进行直观的分析。 2.利用APP软件上截取的素材在教学内容中展示 APP软件上有很多大量有助于科学教学的资源,可有些合适直接在课堂教学中展示,有些可能需要适当处理和加工后,再在课堂教学中进行使用,也往往有事半功倍的作用。如何从APP软件中截取有效的素材,在课堂教学合理使用,也是需要摸索的方面。 在学习天气和气压相关知识时,很多学生对雨天气压比较低,这个规律难以理解。于是笔者让学生利用能实时测量大气压数值的APP 晴雨表,记录晴天和雨天大气压的变化情况,在课堂上展示采集的数值和图片资料,学生对大气压和天气之间的联系就有了相对深刻印象。同样展示在学校所在山区和市区所在平原,这者不同海拔位置上所获取的大气数值。 学生能深刻体会到海拔越高,大气压越小的规律。这些通过传感器类APP软件截取的资源让学生在学习时,不只是空洞地接受知识,而是有事实的证据去说明,同时培养了学生对科学事实敢于验证乐于的精神。 三、APP软件资源对学生学习兴趣培养和课后拓展的积极意义 手机其实在学生中已经是很普及的物品。其实任何事物都有两面性,手机也是如此。如何正确引导孩子使用手机和手机内的各种APP 应该是教师和家长要思考的问题。 手机内与科学相关的APP软件不仅在科学教学中有一些应用,更多地可以让学生在课后使用。学生在这些APP中可以找到很多学习科学的乐趣,这也是现在教育最缺乏的。学生更乐意在玩中学,学中玩。同样地,传感器类的APP在课后拓展中有很多其他的用途,让学生感受到科学不仅仅在课本里,而是无处不在的。

手机里的传感器实例解析

手机里的传感器实例解析 智能手机给用户带来的体验绝对不仅仅是第三方扩展功能,还有它依靠硬件基础所实现的人机交互体验,比如说屏幕旋转,甩动手机切歌换壁纸等等。很多人都不解在听筒旁边的几个小黑点是做什么用的,其实它们就是这些人性化功能的硬件基石,这些统称为“传感器”的配备感知着智能手机对光线,距离,重力,方向等方面的变化,并能让我们获得更加智能化人性化的使用体验。

手机里的传感器实例解析

机身顶部的光线/距离感应器 今天我们就来聊聊这些众多的传感器,它们虽然不似处理器RAM内存等重要核心硬件一样被经常摆上台面,但智能手机的不少细节功能都离不开这些传感器。相信并不见得每个人都对它们了如指掌,大多数用户都是存在着一知半解的现象。接下来让我们通过实际演示和通俗解释,来为大家一一展示这些藏在手机当中的传感器究竟有什么用处,以便你能更好的掌控并使用到自己手机的最大效率。 光线/距离传感器 光线传感器:手机屏幕显示亮度忽明忽暗这个现象,很多人都碰到过甚至一度被误认为手机质量问题,其实它就是由手机的光线传感器所感知。手机当中有一个设置叫做“自动调节亮度”,如果你选择该功能之后,在光线传感器的感知下手机会自动感应当下环境光线的强弱程度,并且会自动调节屏幕显示的明暗效果。当光线强时屏幕显示就变的更加明亮,当光线弱时屏幕显示则会变得偏暗,以让用户眼睛获得更适应的视觉感观。并且相比恒定级别的亮度显示,光线传感器还可以达到节省电量的效果。

开启自动亮度利用光线传感器来调节手机亮度 光线感应器可以有效感知所处环境光线的强弱 距离传感器:当你进行通话手机放置在耳边或者脸庞时,手机屏幕会自动关闭变黑,这不是手机坏了,而是距离传感器在起作用。它会及时判断手机处于什么样的状态,当你打电话时会自动黑屏以防止你在通话过程中耳朵或者脸颊肉不小心触碰到挂断键或者产生其它操作,同时还可以有效节省电量。这点在手机普遍都是电容屏幕的当下显得尤为实用,因为在通话时人脸或者耳朵这些皮肤接触比较容易造成误操作。

触摸屏与传感器的应用

触摸屏与传感器的应用 班级:应用物理01班作者:张续猛学号:201041803028 郑孟201041803029 周辉辉201041803030 摘要:触摸屏作为一种最新的电脑输入设备,他是现在最简单、方便、自然的一种人机交互方式。本文介绍了传感器在触摸屏中的原理应用以及电阻式触摸屏和电容式触摸屏的优缺点。 关键词:触摸屏、电阻式触摸屏、电容式触摸屏、传感器 前言 随着使用电脑作为信息来源的和日俱增,人们越来越多地谈到触摸屏,因为触摸屏以其易于使用、坚固耐用、反应速度快、节省空间等长处,使得系统设计师们越来越多的感到使用触摸屏的确具备具备相当大的优越性。利用这种技术,我们用户只要用手指轻轻地碰电脑显示屏上的图符或文字就能实现对主机操作,从而使人机交互更为直截了当,这种技术大大方便了那些不懂电脑操作的用户。触摸屏出现在中国市场上至今只有短短的几年时间,这个新的多媒体设备还没有为许多人接触和了解,包括一些正打算使用触摸屏的系统设计师,还都把触摸屏当作可有可无的设备,从发达国家触摸屏的普及历程和我国多媒体信息业正处在的阶段来看,这种观念还具备一定的普遍性。事实上,触摸屏是个使多媒体信息或控制改头换面的设备,他赋予多媒体系统以崭新的面貌,是极富吸引力的全新多媒体交互设备。发达国家的系统设计师们和我国率先使用触摸屏的系统设计师们已清楚的知道,触摸屏对于各种应用领域的电脑已不再是可有可无的东西,而是必不可少的设备。他极大的简化了电脑的使用,即使是对电脑一无所知的人,也照样能够信手拈来,使电脑展现出更大的魅力。解决了公共信息市场上电脑所无法解决的问题。 随着城市向信息化方向发展和电脑网络在国民生活中的渗透,信息查询都已用触摸屏实现--显示内容可触摸的形式出现。 一、触摸屏的工作原理 为了操作上的方便,人们用触摸屏来代替鼠标或键盘。工作时,我们必须首先用手指或其他物体触摸安装在显示器前端的触摸屏,然后系统根据手指触摸的图标或菜单位置来定位选择信息输入。触摸屏由触摸检测部件和触摸屏控制器组成;触摸检测部件安装在显示器屏幕前面,用于检测用户触摸位置,接受后送触摸屏控制器;而触摸屏控制器的主要作用是从触摸点检测装置上接收触摸信息,并将他转换成触点坐标,再送给CPU,他同时能接收CPU发来的命令并加以执行。 二、触摸屏的主要类型 按照触摸屏的工作原理和传输信息的介质,我们把触摸屏分为四种,他们分别为电阻式、电容感应式、红外线式连同表面声波式。每一类触摸屏都有其各自的优缺点,要了解那种触摸屏适用于那种场合,关键就在于要懂得每一类触摸屏技术的工作原理和特点。本文主要对电阻式和电容感应式类型的触摸屏进行简要介绍: 1、电阻式触摸屏(电阻式触摸屏工作原理图) 1.1元件简介 电阻式触摸屏是一种传感器,基本上是薄膜加上玻璃的结构,薄膜和玻璃相邻的一面上均涂电阻式触摸屏

手机内置传感器揭秘

四核处理器没有用手机内置传感器揭秘去年可谓智能手机的双核年,各大手机厂商都相继推出了各自的多款双核手机,连苹果都没能免俗。而今年,我们又即将迎来多款搭载四核处理器的手机。不得不承认,手机硬件配置的提升必然会带来手机性能的提升,但是,处理器并不是决定手机性能的唯一因素。换句话说,处理器可以决定手机数据处理速度,但不能决定手机的功能。手机多种多样的功能取决于其内置的软件以及各种传感器,然而很多人在购买手机时,只关心处理器等硬件参数,对手机内置的传感器并不了解。以至于买到手机之后才发现没有自己想要的功能,今天笔者就针对手机中比较常见的传感器,进行一下简单的介绍,希望对大家有所帮助。

三轴陀螺仪 陀螺仪(Gyroscope),是一种用来传感与维持方向的装置,基于角动量守恒的理论设计出来的。陀螺仪主要是由一个位于轴心且可旋转的轮子构成。陀螺仪一旦开始旋转,由于轮子的角动量,陀螺仪有抗拒方向改变的趋向。 陀螺仪有单轴陀螺仪和三轴陀螺仪,单轴的只能测量一个方向的量,也就是一个系统需要三个陀螺仪。而三轴陀螺仪可同时测定6个方向的位置,移动轨迹,加速。所以一个三轴陀螺仪就能替代三个单轴陀螺仪。三轴陀螺仪多用于航海、航天等导航、定位系统,能够精确地确定运动物体的方位。如今也多用于智能手机当中,比如最早采用该技的苹果iPhone 4。 三轴陀螺仪工作原理图 其实iPhone 4采用的“三轴陀螺仪”,也叫微机械陀螺仪也可称作MEMS陀螺仪。芯片内部含有一块微型磁性体,可以在手机进行旋转运动时产生的科里奥力作用下向X,Y,Z

三个方向发生位移,利用这个原理便可以测出手机的运动方向。而芯片核心中的另外一部分则可以讲有关的传感器数据转换为iPhone 4可以识别的数字格式,所以,当该系统运行时,无论你将iPhone 4上移或者甩动,里面的芯片接受指令就会向iPhone 4的CPU传输数据,使得iPhone 4能够做出正确的回应。 利用三轴陀螺仪进行体感控制的游戏 目前手机中采用的三轴陀螺仪用途主要体现在游戏的操控上,有了三轴陀螺仪,我们在玩现代战争等第一人称射击游戏时,可以完全摒弃以前通过方向按键来控制游戏的操控方式,我们只需要通过移动手机相应的位置,既可以达到改变方向的目的,使游戏体验更加真实、操作更加灵活。 电子罗盘 电子罗盘,又称数字罗盘,在现代技术条件中电子罗盘作为导航仪器或姿态传感器已被广泛应用。电子罗盘与传统指针式和平衡架结构罗盘相比能耗低、体积小、重量轻、精度高、可微型化,其输出信号通过处理可以实现数码显示,不仅可以用来指向,其数字信号可直接

探析触摸屏的功能及应用

探析触摸屏的功能及应用 【摘要】本文介绍了触摸屏在工业控制领域的应用与plc在应用过程中的相关问题,最后对触摸屏画面的设计进行介绍。 【关键词】触摸屏;plc;画面设计;闭环控制 触摸屏是一种新型可编程控制终端,是新一代高科技人机界面产品,适用于现场控制,可靠性高,编程简单,使用维护方便。plc 有着运算速度高、指令丰富、功能强大、可靠性高、使用方便、编程灵活、抗干扰能力强等特点。触摸屏结合plc在闭环控制的变频节能系统中的应用是一种自动控制的趋势。触摸屏和plc在闭环控制的变频节能系统中的使用,可以让操作者在触摸屏中直接设定目标值(压力及温度等),通过plc与实际值(传感器的测量值)进行比较运算,直接向变频节能系统发出运算指令(模拟信号),调节变频器的输出频率。 一、闭环控制的变频节能系统的用途 闭环控制的变频节能系统用途很广,各种场合的变频节能系统的拖动方式及控制方式各有不同,具体应用时应根据实际情况选择设计。下面列举一些:中央空调节能:冷冻泵、冷却泵、主机、却塔风机、风机盘管等。恒压供水:水厂一、二级泵,供水管网增压泵、大厦供水水泵等。锅炉:引风机、送风机、给水泵等,变频节能系统的控制调节预处理信号由锅炉自动控制系统、dcs或多冲量控制系统给出。

二、整个闭环控制的变频节能系统的组成设备及其作用 (1)plc选用siemens公司的s7-200系列。由cpu224xp、di/do 模块、ai/ao模块组成。plc作为控制单元,是整个系统的控制核心。其主要的作用要体现以下几方面:一是完成对系统各种数据的采集以及数字量与模拟量的相互转换。二是完成对整个系统的逻辑控制及pid调节的运算。三是向触摸屏提供所采集及处理的数据,并执行触摸屏发出的各种指令。四是将pid运算的数据结果转换成模拟信号,作为调节变频器的输出频率的控制信号。五是通过通信电缆及uss4协议完成对变频器内部参数读写及控制。(2)触摸屏采用 siemens公司mp370。其主要作用如下:一是可实时显示设备和系统的运行状态。二是通过触摸向plc发出指令和数据,再通过plc 完成对系统或设备的控制。三是可做成多幅多种监控画面,替代了传统的电气操作盘及显示记录仪表等,且功能更加强大。(3)变频器。采用siemens公司440系列,通过uss4协议可由触摸屏通过plc设置其内部的部分参数,根据plc发送过来的数据(模拟量)值调节水泵或风机的转速,并将其内部运行参数反馈到plc。(4)压力、温度等传感器。将被控制系统(水系统或风系统)的实际参数值转变成电信号上传至plc。(5)电气元件。给plc、触摸屏、变频器及传感器等供电,完成各种操作及驱动等。 三、触摸屏画面设计

触摸屏的原理与应用

触摸屏的原理与应用触摸屏又称为“触控屏”、“触控面板”,是一种可接收触头等输入讯号的感应式液晶显示装置,当接触了屏幕上的图形按钮时,屏幕上的触觉反馈系统可根据预先编程的程式驱动各种连结装置,可用以取代机械式的按钮面板,并借由液晶显示画面制造出生动的影音效果。 触摸屏原理:主要由其二大特性决定。第一:绝对坐标系统,第二:传感器。 首先先来区别下,鼠标与触摸屏的工作原理有何区别?借此来认识绝对坐标系统和相对坐标系统的区别。 鼠标的工作原理是通过检测鼠标器的位移,将位移信号转换为电脉冲信号,再通过程序的处理和转换来控制屏幕上的鼠标箭头的移动,属于相对坐标定位系统。而绝对坐标系统要选哪就直接点那,与鼠标这类相对定位系统的本质区别是一次到位的直观性。绝对坐标系的特点是每一次定位坐标与上一次定位坐标没有关系,触摸屏在物理上是一套独立的坐标定位系统,每次触摸的数据通过校准数据转为屏幕上的坐标。 第二:定位传感器 检测触摸并定位,各种触摸屏技术都是依靠各自的传感器来工作的,甚至有的触摸屏本身就是一套传感器。各自的定位原理和各自所用的传感器决定了触摸屏的反应速度、可靠 性、稳定性和寿命。 通过以上两个特性,触摸屏工作时,首先用手指或其它物体触摸安装

在显示器前端的触摸屏,然后系统根据手指触摸的图标或菜单位置(即绝对坐标系统)来定位选择信息输入。触摸屏由触摸检测部件和触摸屏控制器组成;触摸检测部件安装在显示器屏幕前面,用于检测用户触摸位置,接受后送触摸屏控制器(即传感器);而触摸屏控制器的主要作用是从触摸点检测装置上接收触摸信息,并将它转换成触点坐标,再送给CPU它同时能接收CPU发来的命令并加以执行。触摸屏传感器技术从触摸屏传感器技术原理来划分:有可分为五个基本种类:矢量压力传感技术触摸屏、电阻技术触摸屏、电容技术触摸屏、红外线技术触摸屏、表面声波技术触摸屏。 其中矢量压力传感技术触摸屏已退出历史舞台;红外线技术触摸屏价格低廉,但其外框易碎,容易产生光干扰,曲面情况下失真;电容技术触摸屏设计构思合理,但其图像失真问题很难得到根本解决;电阻技术触摸屏的定位准确,但其价格颇高,且怕刮易损;表面声波触摸屏解决了以往触摸屏的各种缺陷,清晰不容易被损坏,适于各种场合,缺点是屏幕表面如果有水滴和尘土会使触摸屏变的迟钝,甚至不工作。按照触摸屏的工作原理和传输信息的介质,把触摸屏分为四种,它们分别为电阻式、电容感应式、红外线式以及表面声波式。每一类触摸屏都有其各自的优缺点,要了解哪种触摸屏适用于哪种场合,关键就在于要懂得每一类触摸屏技术的工作原理和特点。 下面对上述的各种类型的触摸屏进行简要介绍一下: 1、表面声波屏 声波屏的三个角分别粘贴着X,Y 方向的发射和接收声波的换能器(换

电容传感器在手机上的应用

电容式传感器的应用实例

——电容式传感器在手机上的应用 摘要:随着传感器不断的发展与成熟,电容式传感器广泛应用于压力、液位、位移等各种检测中,在农业、工业等领域的发展作出突出贡献。电容式传感器作为一项前途广阔的新型技术,日益受到人们的重视。 电容式感测技术在手机触摸屏中的应用 引言 电容传感技术投入应用已长达一个世纪,它具有结构简单、动态响应快、易实现非接触测量等突出的优点,具有着十分广泛的应用前景,它不仅在工业、农业、军事、环境、医疗等传统领域有具有巨大的运用价值,在未来还将在许多新兴领域体现其优越性。 电容式感测用户界面正作为手机中机械按键的一种实用的创新替代方案脱颖而出。虽然电容式传感器可被视作传统按键的简易替代方案,但该技术不仅仅是半球型开关的一种升级。当手机采用触摸式传感器来实现时,手机制造商在设计中可获得一种令人激动的崭新的外观感觉选择。 利用电容式传感器,手机按键,即键垫(key mat),无需移动式元件就可以实现,这样会形成平顺光滑的接触表面。此外,设计人员还可在机械按键顶端选用电容式感测,轻按会触发电容式传感器,重按则激活机械开关。 整合了这种技术的手机不仅能感测手指的位置,还能感测到手指对按键施加压力的轻重。轻按可能与电话号码簿翻页有关,重按则可能是往选定号码拨打电话。 近年来手机设计中出现的最引人注目的趋势之一是电容式传感器和透明导体的结合。这种透明键垫为设计人员提供了许多具创造性的选择。 手指电容 所有电容式触摸传感系统的核心部分都是一组与电场相互作用的导体。在皮肤下面,人体组织中充满了传导电解质(一种有损电介质)。正是手指的这种导电特性,使得电容式触摸传感成为可能。 简单的平行板电容器具有两个导体,其间隔着一层电介质。该系统中的大部分能量直接*在电容器极板之间。少许能量会泄露到电容器极板以外的空间,而由这些泄露能量所形成的电场被称为“边缘场”。制作实用电容式传感器的部分难题在于:需要设计一组印制导线,将上述的边缘场引导到用户易接近的有效感

相关主题
文本预览
相关文档 最新文档