当前位置:文档之家› 二次函数的四种表达式求法推导

二次函数的四种表达式求法推导

二次函数的四种表达式求法推导
二次函数的四种表达式求法推导

二次函数的四种表达式求法推导

(1)如果二次函数的图像经过已知三点,则设表达式为c bx ax y ++=2

,把已知三点坐标代入其中构造三元一次方程组求a 、b 、c 。

(2)二次函数顶点式:如果二次函数的顶点坐标为(h ,k ),则二次函数的表达式为:

k h x a y +-=2)( 推导如下:

a b ac a b x a a b ac a b x a a c

a

b a b x a a

c

a b a b x a b x a a c

x a b x a c

bx ax y 44)2(]44)2[(]

4)2[(]

)2()2([)(2

22

2

222222222-+

+=-++=+-+=+-++=++

=++= 则a

b a

c k a b h 44,22

-=-=

顶点式的变形:

设二次函数)0(2

≠++=a c bx ax y 的图像交x 轴于点A ),(1o x 和B )0,(2x ,则a

b x x -

=+21 ,a

c x x =

?21 点A 、B 的距离为d ,

a

ac b a ac b a c a b x x x x x x x x d 444)(4)()(22222

12212

1212-=

-=--=?-+=-=-= 2

2222

22222222224

1

)2(]41)2[(]44)2[(]4)2[(])2()2([)(ad a b x a d a b x a a

ac

b a b x a a

c a

b a b x a a

c

a b a b x a b x a a c x a b x a c bx ax y -+=-+=--+=+-+=+-++=++

=++= 已知二次函数与x 轴两个交点间的距离d ,则设二次函数的表达式为:)]()[(00d x x x x y +--= (3)二次函数两根式:如果二次函数的图像与x 轴交于点)0,()0,.(21x x 和,则二次函数的表达式为:

))((21x x x x a y --= 推导如下:

设二次函数的图像交x )0(2

≠++=a c bx ax y 于点),(1o x 和)0,(2x , 则21,x x 和是一元二次方程

)0(02≠=++a c x ax 的两个实数根,由一元二次方程根与系数的关系得:a b x x -=+21 ,a

c

x x =?21

所以,

)

)((])([)

(212121222x x x x a x x x x x a a

c

x a b x a c

bx ax y --=?++-=++=++=

(4)二次函数对称点式:

如果二次函数的图像过点),(),(21m x m x 和(它们关于抛物线对称轴2

2

1x x x +=对称),则可以得到二次函数的表达式对称点式:)0())((21≠+--=a m x x x x y ,推导如下:

方法1 二次函数的图像过点),(),(21m x m x 和,那么21x x 和是x 的一元二次方程

m c bx ax =++2(即02=-+m c bx ax )的两根,则有 ))((212x x x x a m c bx ax --=-++

∴))((212

m x x x x a c bx ax +--=++ 即 m x x x x a y +--=))((21

方法2 二次函数c bx ax y ++=2

的图像经过点),(),(21m x m x 和,则有

?

??++=++=c

bx ax m c bx ax m 12122

2 解得

{

)(2121x x a b m

x ax c +-=+=

代入c bx ax y ++=2

中,得

m

x x x x a m

x x x x x a m

x ax x x a ax y +--=+++-=+++-=))((])([)(212121221221

《求二次函数的表达式》练习题

3.求二次函数的表达式 类型一:已知顶点和另外一点用顶点式 已知一个二次函数的图象过点(0,1),它的顶点坐标是(8,9),求这个二次函数关系式. 练习: 已知抛物线的顶点是(-1,-2),且过点(1,10),求其解析式 类型二:已知图像上任意三点(现一般有一点在y轴上)用一般式 已知二次函数的图象过(0,1)、(2,4)、(3,10)三点,求这个二次函数的关系式. 练习: 已知抛物线过三点:(-1,2),(0,1),(2,-7).求解析式

类型三:已知图像与x轴两个交点坐标和另外一点坐标,用两根式 已知二次函数的图象过(-2,0)、(4,0)、(0,3)三点,求这个二次函数的关系式. 练习: 已知抛物线过三点:(-1,0)、(1,0)、(0,3). (1).求这条抛物线所对应的二次函数的关系式; (2)写出它的开口方向、对称轴和顶点坐标; (3)这个函数有最大值还是最小值?这个值是多少? 巩固练习: 1.已知二次函数的图象过(3,0)、(2,-3)二点,且对称轴是x=1,求这个二次函数的关系式. 2..已知二次函数的图象过(3,-2)、(2,-3)二点,且对称轴是x=1,求这个二次函数的关系式.

3.已知二次函数的图象与x轴交于A,B两点,与y轴交于点C。若AC=20,BC=15, ∠ACB=90°,试确定这个二次函数的解析式 4.已知一个二次函数当x=8时,函数有最大值9,且图象过点(0,1),求这个二次函数的关系式. 小测: 1.二次函数y=x2-2x-k的最小值为-5,则解析式为。 2.若一抛物线与x轴两个交点间的距离为8,且顶点坐标为(1, 5),则它们的解析式为。 3.已知一个二次函数的图象经过点(6,0),且抛物线的顶点是(4,-8),求它的解析式。 4.已知二次函数y=ax2+bx+c的图象顶点坐标为(-2,3),且过点(1,0),求此二次函数的解析式.

二次函数的图像及其三种表达式

二次函数的图像及其三种表达式 学生: 时间: 学习目标 1、熟悉常见的二次函数的图像; 2、理解二次函数的三种表达式 知识点分析 1、.二次函数的三种表达式 一般式:y=ax^2+bx+c (a ,b ,c 为常数,a ≠0) 顶点式:y=a(x-h)^2+k [抛物线的顶点P (h ,k )] 交点式:y=a(x-x1)(x-x2) [仅限于与x 轴有交点A (x1,0)和 B (x2,0)的抛物线] 2、一般地,自变量x 和因变量y 之间存在如下关系: y=ax^2+bx+c (a ,b ,c 为常数,a ≠0,且a 决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI 还可以决定开口大小,IaI 越大开口就越小,IaI 越小开口就越大.) 则称y 为x 的二次函数。 二次函数表达式的右边通常为二次三项式。 例题精讲 例题1已知函数y=x 2 +bx +1的图象经过点(3,2). (1)求这个函数的表达式; (2)画出它的图象,并指出图象的顶点坐标; (3)当x >0时,求使y ≥2的x 的取值范围. 例题2、一次函数y=2x +3,与二次函数y=ax 2 +bx +c 的图象交于A (m ,5)和B (3,n )两点,且当x=3时,抛物线取得最值为9. (1)求二次函数的表达式; (2)在同一坐标系中画出两个函数的图象; (3)从图象上观察,x 为何值时,一次函数与二次函数的值都随x 的增大而增大. (4)当x 为何值时,一次函数值大于二次函数值? 随堂练习 1.已知函数y=ax 2 +bx +c (a ≠0)的图象,如图①所示,则下列关系式中成立的是( ) A .0<- a b 2<1 B .0<-a b 2<2 C .1<-a b 2<2 D .-a b 2=1 图① 图② 2.函数y = 21x 2 +2x +1写成y =a (x -h)2+k 的形式是 A.y =21(x -1)2+2 B.y =21(x -1)2+2 1

九年级数学:二次函数表达式的确定练习(含解析)

九年级数学:二次函数表达式的确定练习(含解析) 1.函数y =21 x 2+2x +1写成y =a (x -h)2+k 的形式是 A.y =21 (x -1)2+2 B.y =21(x -1)2+21 C.y =21 (x -1)2-3 D.y =21 (x +2)2-1 2.抛物线y =-2x 2-x +1的顶点在第_____象限 A.一 B.二 C.三 D.四 3.不论m 取任何实数,抛物线y =a (x +m )2+m (a ≠0)的顶点都 A.在y =x 直线上 B.在直线y =-x 上 C.在x 轴上 D.在y 轴上 4.任给一些不同的实数n ,得到不同的抛物线y =2x 2+n ,如当n =0,±2时,关于这些抛物线有以下结论:①开口方向都相同;②对称轴都相同;③形状都相同;④都有最低点,其中判断正确的个数是 A.1个 B.2个 C.3个 D.4个 5.二次函数y =x 2+p x +q 中,若p+q=0,则它的图象必经过下列四点中 A.(-1,1) B.(1,-1) C.(-1,-1) D.(1,1) 图3 6.下列说法错误的是 A.二次函数y =-2x 2中,当x =0时,y 有最大值是0 B.二次函数y =4x 2中,当x >0时,y 随x 的增大而增大 C.在三条抛物线y =2x 2 ,y =-0.5x 2 ,y =-x 2 中,y =2x 2 的图象开口最大,y =-x 2 的图象开口最小 D.不论a 是正数还是负数,抛物线y =ax 2(a ≠0)的顶点一定是坐标原点 7.已知二次函数y =x 2+(2k +1)x +k 2-1的最小值是0,则k 的值是 A.43 B.-43 C.45 D.-45

二次函数表达式、图象、性质及计算(讲义)

二次函数表达式、图象、性质 及计算(讲义) 一、知识点睛 1. 一般地,形如__________________(_______________)的 函数叫做x 的二次函数. 2. 表达式、图象及性质: ①由一般式通过______________可推导出顶点式. 顶点式:________________(其中h =______,k =_________). ②二次函数的图象是_________,是________图形,对称轴是__________,顶点坐标是_____________. ③当a_______时,函数有最_____值,是____________; 当a_______时,函数有最_____值,是____________. ④当a _____时,图象以对称轴为界,当x______时,y 随x 的增大而_______,当x______时,y 随x 的增大而_______;当a_____时,图 象以对称轴为界,当x______时,y 随x 的增大而_______,当x______时,y 随x 的增大而_______. ⑤a ,b ,c 符号与图象的关系: a 的符号决定了抛物线的开口方向,当_____时,开口向____;当_____时,开口向____. c 是抛物线与_______交点的______. b 的符号:与a_____________,根据_____________可推导. 3. 二次函数图象平移: ①二次函数图象平移的本质是__________,关键在______. ②图象平移口诀:________________、________________. 平移口诀主要针对二次函数_________________. 二、精讲精练 1. 下列函数(x ,t 是自变量)是二次函数的有________.(填写序号) ①2132y x x =--;②2123y x x =-+;③21 32 y x =-+; ④2 22y x =+;⑤2y x =-;⑥231252 y x x =-+; ⑦215s t t =++;⑧2 20x y -+=. 2. 若函数7 2 )3(--a x a y =为二次函数,则a =( ) A .-3 B .3 C .±3 D .5 3. 通过配方把221213y x x =-+写成2 ()y a x h k =-+的形式( ) A .2 (3)5y x =-- B .2 (3)5y x =+- C .2 2(3)5y x =-+ D .2 2(3)5y x =--

二次函数表达式三种形式练习题

7.已知二次函数的图象经过点(﹣1,﹣5),( 0, 4)和(1,1),则这二次函数的表达式为( A .y=﹣6x 2+3x+4 B .y=﹣2x 2+3x ﹣4 C .y=x 2+2x ﹣4 D .y=2x 2+3x ﹣4 8.若二次函数 y=x 2﹣2x+c 图象的顶点在 x 轴上,则 c 等于( )A .﹣1 B .1 C . ) D .2 9.如果抛物线经过点A (2,0)和B (﹣1,0),且与y 轴交于点C ,若OC=2.则这条抛物线的解析式是( ) A . 10. A . 11. A . y=x 2﹣x ﹣2 B .y=﹣x 2﹣x ﹣2 或 y=x 2+x+2 C .y=﹣x 2+x+2 D .y=x 2﹣x ﹣2 或 y=﹣x 2+x+2 如果抛物线 y=x 2 ﹣6x+c ﹣2 的顶点到 x 轴的距离是 3,那么 c 的值等于( ) 8 B .14 C .8 或 14 D .﹣8 或﹣14 二次函数 的图象如图所示,当﹣1≤x ≤0 时,该函数的最大值是( ) 3.125 B .4 C .2 D .0 当﹣2≤x ≤1 时,二次函数 y=﹣(x ﹣m )2+m 2+1 有最大值 3,则实数 m 的值为( ) A . 或﹣ B . 或﹣ C .2 或﹣ D . 或﹣ 13.如果一条抛物线经过平移后与抛物线 y=﹣ x 2 +2 重合,且顶点坐标为(4, 的解析式为 . 14.二次函数的图象如图所示,则其解析式为 . 15.若函数 y=(m 2﹣4)x 4+(m ﹣2)x 2的图象是顶点在原点,对称轴是 y 轴的抛物线,则 m= . 16.二次函数图象的开口向上,经过(﹣3,0)和(1,0),且顶点到x 轴的距离为 2, 则该二次函数的解析式为 . 17.如图,已知抛物线 y=﹣x 2+bx+c 的对称轴为直线 x=1,且与x 轴的一个交点为(3,0), 那么它对应的函数解析式是 . 18.二次函数 y=ax 2+bx+c 的图象经过 A (﹣1,0)、 B (0,﹣3)、 C (4,5)三点,求出 抛物线解析式 . 19.二次函数图象过点(﹣3,0)、(1,0),且顶点的纵坐标为 4,此函数关系式为 20.如图,一个二次函数的图象经过点A ,C ,B 三点,点A 的坐标为(﹣1,0),点B 的坐标为 (4,0),点 C 在 y 轴的正半轴上,且 AB=OC .则这个二次函数的解析式是 . 21.坐标平面内向上的抛物线y=a (x+2)( x ﹣8)与x 轴交于A 、B 两点,与y 轴交于C 点,若 1.把二次函数 y=x 2﹣4x+5 化成 y=a (x ﹣h )2+k (a ≠0)的形式,结果正确的是( ) A .y=(x ﹣2)2+5 B .y=(x ﹣2)2+1 C .y=(x ﹣2)2+9 D .y=(x ﹣1)2+1 2.将 y=(2x ﹣1)?(x+2)+1 化成 y=a (x+m )2+n 的形式为( ) D . 3.与 y=2(x ﹣1)2+3 形状相同的抛物线为( )A .y=1+ x 2 B .y=(2x+1)2 C .y=(x ﹣1)2 D .y=2x 2 4.二次函数的图象的顶点坐标是(2,4),且过另一点(0,﹣4),则这个二次函数的解析式为( A .y=﹣2(x+2)2+4 B .y=﹣2(x ﹣2)2+4 C .y=2(x+2)2﹣4 D .y=2(x ﹣2)2﹣4 5.已知某二次函数的图象如图所示,则这个二次函数的解析式为( ) A .y=﹣3(x ﹣1)2+3 B .y=3(x ﹣1)2+3 C .y=﹣3(x+1)2+3 D .y=3(x+1)2+3 6.顶点为(6,0),开口向下,开口的大小与函数 y= x 2的图象相同的抛物线所对应的函数是( ) A .y= (x+6)2 B .y= (x ﹣6)2 C .y=﹣ (x+6)2 D .y=﹣ (x ﹣6)2 A . B . C . ) 2),则它

二次函数一般式练习题

一、基础知识复习(填空) 1、抛物线()20y ax bx c a =++的开口向______对称轴是直线_________,顶点坐标是____________。当x=_____,y 最_____=_________,当x______,y 随x 的增大而减小;当x________,y 随x 的增大而增大。 2、用待定系数法求函数解析式。 知识点回顾:待定系数法求函数解析式步骤 ①设适当的二次函数关系式,即一般式:____________或者顶点式___________或者交点式____________; ②根据已知信息,构建关于待定系数的____________; ③解方程组;把求出的待定系数的值代入所设的关系式。 3、二次函数系数a ,b ,c 及Δ的几何意义 二、培优练习题 1、二次函数y=ax 2+bx+c 的图像如图所示,则下列结论正确的是( ) A.a >0,b <0,c >0 B.a <0,b <0,c >0 C.a <0,b >0,c <0 D.a <0,b >0,c >0 2、已知正比例函数kx y =的图像如右图所示,则二次函数222k x kx y +-= 的图像大致为( ) A B C D 3、抛物线y=-2x 2-4x-5经过平移得到y=-2x 2,平移方法是( ) A.向左平移1个单位,再向下平移3个单位 B.向左平移1个单位,再向上平移3个单位 C.向右平移1个单位,再向下平移3个单位 D.向右平移1个单位,再向上平移3个单位 4、小明从右边的二次函数2y ax bx c =++图像中,观察得出了+下面的五条信息:①0a <,②0c =, ③函数的最小值为3-,④当0x <时,0y >,⑤当1202x x <<<时,12y y >(6)对称轴是直线 x=2.你认为其中正确的个数为( )A.2 B.3 C.4 D.5 5、二次函数c bx ax y ++=2对于x 的任何值都恒为负值的条件是( ) A 、0,0>?>a B 、0,0a C 、0,0>?

二次函数的图像及其三种表达式

二次函数的图像及其三种表达式 学生:时间: 学习目标 1熟悉常见的二次函数的图像; 2、理解二次函数的三种表达式 知识点分析 1、?二次函数的三种表达式 一般式:y=ax A2+bx+c (a, b, c 为常数,a老) 顶点式:y=a(x-h)A2+k [ 抛物线的顶点P (h, k)] 交点式:y=a(x-x1)(x-x2)[ 仅限于与x轴有交点A (x1 , 0)和B (x2 , 0)的抛物线] 2、一般地,自变量x和因变量y之间存在如下关系: y=axA2+bx+c (a, b, c为常数,a M),且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,lal还可以决定开口大小,lal越大开口就越小,lal越小开口就越大.) 则称y 为x的二次函数。 二次函数表达式的右边通常为二次三项式。 例题精讲 2 例题1已知函数y=x + bx +1的图象经过点(3, 2). (1)求这个函数的表达式; (2)画出它的图象,并指出图象的顶点坐标; (3)当x > 0时,求使y》2的x的取值范围. 例题2、一次函数y=2x + 3,与二次函数y=ax2+ bx + c的图象交于A ( m 5)和B (3, n)两点,且当x=3时,抛物线取得最值为9. (1)求二次函数的表达式; (2)在同一坐标系中画出两个函数的图象; (3)从图象上观察,x为何值时,一次函数与二次函数的值都随x的增大而增大. (4)当x为何值时,一次函数值大于二次函数值? 随堂练习 1.已知函数y=ax2+ bx+ c(a M0)的图象,如图①所示,则下列关系式中成立的是( b b b b ——=1

确定二次函数的表达式

2.3 确定二次函数的表达式 学习目标: 经历三种方式表示变量之间二次函数关系的过程,体会三种方式之间的联系和各自不同点;掌握变量之间的二次函数关系,解决二次函数所表示的问题;掌握根据二次函数不同的表达方式,从不同的侧面对函数性质进行研究. 学习重点: 能够根据二次函数的不同表示方式,从不同的侧面对函数进行研究.函数的综合题目,往往是三种方式的综合应用,由三种不同方式,都能把握函数性质,才会正确解题. 学习难点: 用三种方式表示二次函数的实际问题时,忽略自变量的取值范围是常见的错误. 学习过程: 一、做一做: 已知矩形周长20cm,并设它的一边长为xcm,面积为ycm2,y随x的而变化的规 律是什么?你能分别用函数表达式,表格和图象表示出来吗?比较三种表示方式, 你能得出什么结论?与同伴交流. 二、试一试: 两个数相差2,设其中较大的一个数为x,那么它们的积y是如何随x的变化而变化的? ?你能分别用函数表达式,表格和图象表示这种变化吗? 表示方法优点缺点 解析法 表格法 图像法 三者关系 【例1】已知函数y=x2+bx+1的图象经过点(3,2). (1)求这个函数的表达式; (2)画出它的图象,并指出图象的顶点坐标; (3)当x>0时,求使y≥2的x的取值范围. 【例2】一次函数y=2x+3,与二次函数y=ax2+bx+c的图象交于A(m,5)和B(3,n)两点,且当x=3时,抛物线取得最值为9. (1)求二次函数的表达式; (2)在同一坐标系中画出两个函数的图象; (3)从图象上观察,x为何值时,一次函数与二次函数的值都随x的增大而增大. (4)当x为何值时,一次函数值大于二次函数值?

二次函数的三种表达形式.

二次函数的三种表达形式: ①一般式: y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为[,] 把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。 ②顶点式: y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。 有时题目会指出让你用配方法把一般式化成顶点式。 例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。 解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。 注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。 具体可分为下面几种情况: 当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象; 当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;

当h<0,k>0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象; 当h<0,k<0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。 ③交点式: y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] . 已知抛物线与x轴即y=0有交点A(x1,0)和B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。 由一般式变为交点式的步骤: 二次函数 ∵x1+x2=-b/a,x1?x2=c/a(由韦达定理得), ∴y=ax2+bx+c =a(x2+b/ax+c/a) =a[x2-(x1+x2)x+x1?x2] =a(x-x1)(x-x2). 重要概念: a,b,c为常数,a≠0,且a决定函数的开口方向。a>0时,开口方向向上;a<0时,开口方向向下。a的绝对值可以决定开口大小。 a的绝对值越大开口就越小,a的绝对值越小开口就越大。 能灵活运用这三种方式求二次函数的解析式;

二次函数表达式三种形式练习题

二次函数表达式三种形式 一.选择题(共12小题) 1.(2015?永春县校级质检)把二次函数y=x2﹣4x+5化成y=a(x﹣h)2+k(a≠0)的形式,结果正确的是() A.y=(x﹣2)2+5 B.y=(x﹣2)2+1 C.y=(x﹣2)2+9 D.y=(x﹣1)2+1 2.(2014?XX模拟)将y=(2x﹣1)?(x+2)+1化成y=a(x+m)2+n的形式为()A.B. C.D. 3.(2015秋?XX校级期中)与y=2(x﹣1)2+3形状相同的抛物线解析式为() A.y=1+x2B.y=(2x+1)2 C.y=(x﹣1)2D.y=2x2 4.(2015秋?XX校级月考)一个二次函数的图象的顶点坐标是(2,4),且过另一点(0,﹣4),则这个二次函数的解析式为() A.y=﹣2(x+2)2+4 B.y=﹣2(x﹣2)2+4 C.y=2(x+2)2﹣4 D.y=2(x﹣2)2﹣4 5.(2015秋?禹城市校级月考)已知某二次函数的图象如图所示,则这个二次函数的解析式为() A.y=﹣3(x﹣1)2+3 B.y=3(x﹣1)2+3 C.y=﹣3(x+1)2+3 D.y=3(x+1)2+3

6.(2014秋?岳池县期末)顶点为(6,0),开口向下,开口的大小与函数y=x2的图象相同的抛物线所对应的函数是() A.y=(x+6)2B.y=(x﹣6)2C.y=﹣(x+6)2D.y=﹣(x﹣6)2 7.(2014秋?招远市期末)已知二次函数的图象经过点(﹣1,﹣5),(0,﹣4)和(1,1),则这二次函数的表达式为() A.y=﹣6x2+3x+4 B.y=﹣2x2+3x﹣4 C.y=x2+2x﹣4 D.y=2x2+3x﹣4 8.(2013秋?青羊区校级期中)若二次函数y=x2﹣2x+c图象的顶点在x轴上,则c等于()A.﹣1 B.1 C.D.2 9.(2013秋?江北区期末)如果抛物线经过点A(2,0)和B(﹣1,0),且与y轴交于点C,若OC=2.则这条抛物线的解析式是() A.y=x2﹣x﹣2 B.y=﹣x2﹣x﹣2或y=x2+x+2 C.y=﹣x2+x+2 D.y=x2﹣x﹣2或y=﹣x2+x+2 10.(2014?XX县校级模拟)如果抛物线y=x2﹣6x+c﹣2的顶点到x轴的距离是3,那么c的 值等于() A.8 B.14 C.8或14 D.﹣8或﹣14 11.(2015?XX模拟)二次函数的图象如图所示,当﹣1≤x≤0时,该函数的最大值是() A.3.125B.4 C.2 D.0 12.(2015?宜城市模拟)当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值3,则实数m的值为() A.或﹣B.或﹣C.2或﹣D.或﹣

二次函数表达式三种形式的联系与区别

二次函数表达式三种形式的联系与区别 二次函数的表达式有三种形式,即一般式、顶点式、交点式。它们之间各不相同,而又相互联系。 一、一般式:)0(2≠++=a c bx a y x 优点:二次项系数a ,一次项系数b ,常数项c ,三系数一目了然。 缺点:不容易看出顶点坐标和对称轴 二、顶点式:)0(4422)2(≠-+=+a a ac a y b a b x 优点:很容易看出顶点坐标和对称轴 缺点:不容易看出二次项系数a ,一次项系数b ,常数项c 各是多少。 三、交点式:))((2 1x x x x a y --= 优点:很容易看出图像与x 轴的交点坐标(x 1,0)和(x 2 ,0) 缺点:(1)不容易看出二次项系数a ,一次项系数b ,常数项c 各是多少。 (2)当图像不与x 轴相交时,此式不成立。 四、三种表达式之间的联系 (1)一般式转化为顶点式 利用配方法转化(一提、二配、三整理) a ac a a ac a a c a x a b a x a b a x a b a c bx a y b a b x b a b x a b a b x x x x 44444][[)2222222222)2()2()2()2(-+=+-=+-++=++ =+ =++=++(

(2)顶点式转化为一般式 展开整理即可 c bx a a ac bx a a ac a bx a a ac x a b a a a ac a y x x b b x b a b x b a b x ++=++=-+++=-+++=≠-+=+222222222224444444)4()0(44)2( (3)交点式转化为一般式 展开,利用韦达定理整理可得 二次函数)0(2≠++=a c bx a y x 与x 轴有两交点(x 1,0)和(x 2,0) 则x 1 和x 2为方程02=++c bx a x 的两个根 ] )([)())((212122121221x x x x x x x x x x x x x a x x a x x a y ++-=+--=--= 由韦达定理得: a c a b x x x x =-=+2121 代入得: c bx a a c x a b a x a y x x x x x x x ++=+--=++-=2221212])([] )([ 三种表达式视情况而定; (1)不知道特殊点的坐标时,常用一般式来表示; (2)知道顶点坐标,常用顶点式来表示; (3)如果知道图像与x 轴的交点坐标,常用交点式来表示。 上述三种情况要灵活运用才能更好地理解二次函数的解析式。

二次函数的四种表达式求法推导

二次函数的四种表达式求法推导 (1)如果二次函数的图像经过已知三点,则设表达式为c bx ax y ++=2 ,把已知三点坐标代入其中构造三元一次方程组求a 、b 、c 。 (2)二次函数顶点式:如果二次函数的顶点坐标为(h ,k ),则二次函数的表达式为: k h x a y +-=2)( 推导如下: a b ac a b x a a b ac a b x a a c a b a b x a a c a b a b x a b x a a c x a b x a c bx ax y 44)2(]44)2[(] 4)2[(] )2()2([)(2 22 2 222222222-+ +=-++=+-+=+-++=++ =++= 则a b a c k a b h 44,22 -=-= 顶点式的变形: 设二次函数)0(2 ≠++=a c bx ax y 的图像交x 轴于点A ),(1o x 和B )0,(2x ,则a b x x - =+21 ,a c x x = ?21 点A 、B 的距离为d , a ac b a ac b a c a b x x x x x x x x d 444)(4)()(22222 12212 1212-= -=--=?-+=-=-= 2 2222 22222222224 1 )2(]41)2[(]44)2[(]4)2[(])2()2([)(ad a b x a d a b x a a ac b a b x a a c a b a b x a a c a b a b x a b x a a c x a b x a c bx ax y -+=-+=--+=+-+=+-++=++ =++= 已知二次函数与x 轴两个交点间的距离d ,则设二次函数的表达式为:)]()[(00d x x x x y +--= (3)二次函数两根式:如果二次函数的图像与x 轴交于点)0,()0,.(21x x 和,则二次函数的表达式为:

05二次函数三种表达式

用待定系数法求二次函数的表达式 年级 九年级 学校 讲义编号 学生 老师 周老师 授课时间 2017..(:00——:00) 教学目标 用待定系数法求二次函数的表达式; 重 点 用待定系数法求二次函数的表达式; 难 点 用待定系数法求二次函数的表达式; 教学内容 【用待定系数法求二次函数表达式的方法】 (1)设:根据条件设函数表达式; (2)列:把已知点的坐标代入表达式,得到方程或方程组; (3)解:解方程或方程组,求出未知系数; (4)答:写出函数表达式,注意最后结果一般要化成一般式c bx ax y ++=2 二次函数解析式的表示方法 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 顶点式:k m x a y +-=2 )((a ,h ,k 为常数,0a ≠, 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 二次函数各种形式之间的变换 二次函数c bx ax y ++=2 用配方法可化成:()k m x a y +-=2 的形式,其中a b a c k a b 442m 2 -=-=,. 求抛物线的顶点、对称轴的方法 公式法:a b ac a b x a c bx ax y 44222 2 -+ ??? ? ? +=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线a b x 2-=. 配方法:运用配方的方法,将抛物线的解析式化为k m x a y +-=2 )(的形式,得到顶点为(m,k ),对称轴是直线m x =. 运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.

求二次函数的表达式练习题(含答案)

二次函数的表达式 一、选择题 1.函数y =21 x 2+2x +1写成y =a (x -h)2+k 的形式是 =21(x -1)2+2 =21(x -1)2+21 =21(x -1)2-3 =21 (x +2)2-1 2.抛物线y =-2x 2-x +1的顶点在第_____象限 A.一 B.二 C.三 D.四 3.不论m 取任何实数,抛物线y =a (x +m )2+m (a ≠0)的顶点都 A.在y =x 直线上 B.在直线y =-x 上 C.在x 轴上 D.在y 轴上 4.任给一些不同的实数n ,得到不同的抛物线y =2x 2 +n ,如当n =0,±2时,关于这些抛物线有以下结论:①开口方向都相同;②对称轴都相同;③形状都相同;④都有最低点,其中判断正确的个数是 个 个 个 个 5.二次函数y =x 2+p x +q 中,若p+q=0,则它的图象必经过下列四点中 A.(-1,1) B.(1,-1) C.(-1,-1) D.(1,1) 图3 6.下列说法错误的是 A.二次函数y =-2x 2中,当x =0时,y 有最大值是0 B.二次函数y =4x 2中,当x >0时,y 随x 的增大而增大 C.在三条抛物线y =2x 2,y =-,y =-x 2中,y =2x 2的图象开口最大,y =-x 2的图象开口最小 D.不论a 是正数还是负数,抛物线y =ax 2(a ≠0)的顶点一定是坐标原点 7.已知二次函数y =x 2+(2k +1)x +k 2-1的最小值是0,则k 的值是 A.43 B.-43 C.45 D.-45 8.小颖在二次函数y =2x 2+4x +5的图象上,依横坐标找到三点(-1,y 1),(21 ,y 2), (-321 ,y 3),则你认为y 1,y 2,y 3的大小关系应为 >y 2>y 3 >y 3>y 1 >y 1>y 2 >y 2>y 1 二、填空题 9.抛物线y =21 (x +3)2的顶点坐标是______. 10.将抛物线y =3x 2向上平移3个单位后,所得抛物线的顶点坐标是______. 11.函数y =34 x -2-3x 2有最_____值为_____. 12.已知抛物线y =ax 2+bx +c 的图象顶点为(-2,3),且过(-1,5),则抛物线的表达式为______. 13.二次函数y =mx 2+2x +m -4m 2的图象过原点,则此抛物线的顶点坐标是______. 三、解答题 14.根据已知条件确定二次函数的表达式

(一)-求二次函数的表达式

专题训练(一) 求二次函数的表达式 ? 类型一 设一般式求二次函数表达式 若给出抛物线上任意三点,通常可设一般式y =ax 2+bx +c (a ≠0). 1.如图1-ZT -1,二次函数y =x 2+bx +c 的图象过点B (0,-2),它和反比例函数y =-8 x 的图象相交于点A (m ,4),则这个二次函数的表达式为( ) 图1-ZT -1 A .y =x 2-x -2 B .y =x 2-x +2 C .y =x 2+x -2 D .y =x 2+x +2 2.二次函数y =ax 2+bx +c 的变量x 和变量y 的部分对应值如下表: x … -3 -2 -1 0 1 5 … y … 7 -5 -8 -9 7 … (1)求此二次函数的表达式; (2)写出该抛物线的顶点坐标和对称轴. 3.已知:在平面直角坐标系xOy 中,抛物线y =ax 2+bx +c 经过点A (3,0),B (2,-3),C (0,-3). (1)求抛物线的函数表达式; (2)设D 是抛物线上的一点,且点D 的横坐标为-2,求△AOD 的面积. ? 类型二 设顶点式求二次函数表达式 若给出抛物线的顶点坐标或对称轴或最值,通常可设顶点式:y =a (x -m )2+k (a ≠0),其中点(m ,k )为抛物线的顶点坐标,对称轴为直线x =m .

4.若二次函数的图象的顶点坐标为(2,-1),且过点(0,3),则该二次函数的表达式是( ) A .y =-(x -2)2-1 B .y =-1 2(x -2)2-1 C .y =(x -2)2-1 D .y =1 2 (x -2)2-1 5.已知二次函数的图象经过点(4,-3),并且当x =3时,有最大值4.求该二次函数的表达式. 6.已知抛物线y =ax 2+bx +c 和x 轴交于点A (-3,0),对称轴为直线x =-1,顶点M 到x 轴的距离为2,求此抛物线的函数表达式. 7.设抛物线y =ax 2+bx +c (a ≠0)过A (0,2),B (4,3),C 三点,其中点C 在直线x =2上,且点C 到抛物线的对称轴的距离为1,求抛物线的函数表达式. 8.如图1-ZT -2,二次函数y =ax 2+bx +c (a ≠0)的图象交x 轴于A ,B 两点,交y 轴于点D ,点B 的坐标为(3,0),顶点C 的坐标为(1,4). (1)求二次函数的表达式和直线BD 的表达式; (2)P 是直线BD 上的一个动点,过点P 作x 轴的垂线,交抛物线于点M ,当点P 在第一象限时,求线段PM 长的最大值. 图1-ZT -2 ? 类型三 设交点式求二次函数表达式 若给出抛物线和x 轴的交点,通常可设交点式:y =a (x -x 1)(x -x 2)(a ≠0),其中x 1,x 2 是抛物线和x 轴的交点的横坐标. 9.已知抛物线y =ax 2+bx +c 和x 轴的两个交点坐标为(-1,0),(3,0),其形状大小、开口方向均和抛物线y =-2x 2相同,则该抛物线的函数表达式为( ) A .y =-2x 2-x +3 B .y =-2x 2+4x +5 C .y =-2x 2+4x +8 D .y =-2x 2+4x +6

二次函数的四种表达式求法推导

爱上数学 提高素养 二次函数的四种表达式求法推导 整理于 2018.4.18 夜 (1)如果二次函数的图像经过已知三点,则设表达式为 y = ax 2 + bx + c ,把已知三点坐标代入其中构造 三元一次方程组求 a 、b 、c 。 (2)二次函数顶点式:如果二次函数的顶点坐标为(h ,k ),则二次函数的表达式为: y = a ( x - h )2 + k 推导如下: y = ax 2 + bx + c = a (x 2 + b x + c ) aa = a [x 2 + b x + ( b )2 - ( b )2 + c ] a 2a 2 a a b 2 4a c - b 2 = a ( x + ) + 2a 4a 顶点式的变形: 设二次函数y =ax 2 + bx + c (a 0)的图像交 x 轴于点 A (x 1,o ) 和 B (x 2,0),则 x 1 +x 2 =-b , 1 2 1 2 a c x 1 ? x 2 = a 点 A 、B 的距离为 d , =a (x + 2a ) -4ad 已知二次函数与x 轴两个交点间的距离d ,则设二次函数的表达式为:y =(x -x 0)[x -(x 0 +d )] a [(x + b )2 - b 2 + 2a 4a 2 c ] a =a [(x + 2a ) + 4ac - b 2 4a 2 4ac - b 2 4a d = x 2-x 1 = (x 2 - x 1) = (x 1 + x 2)2 -4x 1 ?x 2 = (-b )2 -4c aa y = ax 2 + bx + c = a (x 2 + b x + c ) aa b 2 - 4ac a 2 b 2 - 4ac = a [x 2 + b x + ( b )2 -( b )2 + c ] a 2 a 2 a a = a [(x + b )2 - b 2 + c ] 2a 4a 2 a b 2 b 2 - 4ac =a [(x + )2 - 2 ] 2a 4a 2 = a [(x + b )2 - 1 d 2 ] 2a 4 2a

专题09 一元二次函数的三种表示方式(解析版)

专题09 一元二次函数的三种表示方式 一、知识点精讲 通过上一小节的学习,我们知道,一元二次函数可以表示成以下三种形式: 1.一般式:y=ax2+bx+c(a≠0); 2.顶点式:y=a(x+h)2+k (a≠0),其中顶点坐标是(-h,k). 除了上述两种表示方法外,它还可以用另一种形式来表示.为了研究另一种表示方式, 我们先来研究二次函数y=ax2+bx+c(a≠0)的图象与x轴交点个数. 当抛物线y=ax2+bx+c(a≠0)与x轴相交时,其函数值为零,于是有ax2+bx+c=0.① 并且方程①的解就是抛物线y=ax2+bx+c(a≠0)与x轴交点的横坐标(纵坐标为零),于是,不难发现,抛物线y=ax2+bx+c(a≠0)与x轴交点个数与方程①的解的个数有关,而方程①的解的个数又与方程①的根的判别式Δ=b2-4ac有关,由此可知,抛物线y=ax2+bx+c(a≠0)与x轴交点个数与根的判别式Δ=b2-4ac 存在下列关系: (1)当Δ>0时,抛物线y=ax2+bx+c(a≠0)与x轴有两个交点;反过来,若抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,则Δ>0也成立. (2)当Δ=0时,抛物线y=ax2+bx+c(a≠0)与x轴有一个交点(抛物线的顶点);反过来,若抛物线y=ax2+bx+c(a≠0)与x轴有一个交点,则Δ=0也成立. (3)当Δ<0时,抛物线y=ax2+bx+c(a≠0)与x轴没有交点;反过来,若抛物线y=ax2+bx+c(a≠0)与x 轴没有交点,则Δ<0也成立.于是,若抛物线y=ax2+bx+c(a≠0)与x轴有两个交点A(x1,0),B(x2,0), 则x1,x2是方程ax2+bx+c=0的两根,所以x1+x2= b a -,x1x2= c a ,即 b a =-(x1+x2), c a =x1x2.所 以,y=ax2+bx+c=a(2b c x x a a ++) = a[x2-(x1+x2)x+x1x2]=a(x-x1) (x-x2).由上面的推导过程可以得到下面结论: 若抛物线y=ax2+bx+c(a≠0)与x轴交于A(x1,0),B(x2,0)两点,则其函数关系式可以表示为y=a(x-x1) (x-x2) (a≠0).这样,也就得到了表示二次函数的第三种方法: 3.交点式:y=a(x-x1) (x-x2) (a≠0),其中x1,x2是二次函数图象与x轴交点的横坐标. 今后,在求二次函数的表达式时,我们可以根据题目所提供的条件,选用一般式、顶点式、交点式这三种表达形式中的某一形式来解题. 二、典例精析 【典例1】已知某一元二次函数的最大值为2,图像的顶点在直线y=x+1上,并且图象经过点(3,-1),

二次函数表达式

课题: 2.3.2确定二次函数的表达式 课型:新授课 年级:九年级 学习目标: 1.会用待定系数法确定二次函数的表达式. 2.会求简单的实际问题中的二次函数表达式. 教学重点与难点: 重点:会用待定系数法确定二次函数的表达式. 难点:会求简单的实际问题中的二次函数表达式. 教学过程: 一、复习回顾 1.二次函数表达式有哪几种表达方式? 一般式:y=ax 2+bx+c 顶点式:y=a(x-h)2+k [a ≠0,(h ,k )是抛物线的顶点坐标]; 2. 如何求二次函数的表达式? (1)已知二次函数表达式中的一个字母系数和图像上的一个点的坐标,可用一般式代入求其表达式. (2)已知二次函数顶点坐标和图像上的一个点的坐标,可设顶点式代入求其表达式. 设计意图:上述两个问题是上一节课的问题,通过对这两个问题的回顾,学生自然会产生寻求其他求解方法的欲望,符合学生的学习心理。适当的回顾也是引导学生不仅要学会解决问题的不同方法,而且还应该关注对该数学问题进行正确的解答。 二、知识讲解 问题:二次函数一般式中的三个字母都不知道,需要几个条件可求出表达是呢? 例2 已知一个二次函数的图象过(-1,10),(1,4),(2,7)三点,求这个函数的表达式,并写出它的对称轴和顶点坐标. 处理方式:先找学生口述方法,再板演书写过程.过程中出现的错误学生自行解决. 可能出现的问题有:1.代入出现系数错误.2.三元一次方程不会解或解不对.3. 解后忘记带回关系式. 注意:老师可帮助学生一起解三元一次方程组,让学生体会消元思想。 解:设所求的二次函数的表达式为2y ax bx c =++.将三点A (-1,10),B (1,4),C

相关主题
文本预览
相关文档 最新文档