当前位置:文档之家› 原子物理学 量子力学导论 (3.1.2)--3.1玻尔理论的困难

原子物理学 量子力学导论 (3.1.2)--3.1玻尔理论的困难

量子力学导论第6章答案

第六章 中心力场 6.1) 利用6.1.3节中式(17)、(18),证明下列关系式 相对动量 ()21121p m p m M r p -==? μ (1) 总动量 1p p R M P +==? (2) 总轨迹角动量p r P R p r p r L L L ?+?=?+?=+=221121 (3) 总动能 μ 22222 22 221 21p M P m p m p T + =+= (4) 反之,有 ,11r m R r μ+ = r m R r 2 2μ-= (5) p P m p +=2 1μ ,p P m p -= 1 2μ (6) 以上各式中,()212121 ,m m m m m m M +=+=μ 证: 2 12 211m m r m r m R ++= , (17) 21r r r -=, (18) 相对动量 ()211221212 11p m p m M r r m m m m r p -=??? ? ??-+= =? ?? μ (1’) 总动量 ()212 1221121p p m m r m r m m m R M P +=+++==? ?? (2’) 总轨迹角动量 221121p r p r L L L ?+?=+= )5(2211p r m u R p r m u R ???? ? ??-+????? ?? += () () 2112 211p m p m M r p p R -? ++?= ) 2)(1(p r P R ?+?= 由(17)、(18)可解出21,r r ,即(5)式;由(1’)(2’)可解出(6)。 总动能()22 11 2 262221212222m p P m m p P m m p m p T ??? ? ??-+ ? ?? ? ??+=+= μμ 2 12 2 2 2 2 122 11 2 2 2 2 12 2222m m p P u m p P m m u m m p P u m p P m m u ?- + + ?+ + =

量子力学导论 答案

第六章 中心力场 6.1) 利用6.1.3节中式(17)、(18),证明下列关系式 相对动量 ()21121p m p m M r p -==? μ (1) 总动量 1p p R M P +==? (2) 总轨迹角动量p r P R p r p r L L L ?+?=?+?=+=221121 (3) 总动能 μ 22222 22 221 21p M P m p m p T + = + = (4) 反之,有 ,11r m R r μ+ = r m R r 2 2μ-= (5) p P m p += 2 1μ ,p P m p -= 1 2μ (6) 以上各式中,()212 121 ,m m m m m m M +=+=μ 证: 2 12211m m r m r m R ++= , (17) 21r r r -=, (18) 相对动量 ()211221212 11p m p m M r r m m m m r p -=??? ? ??-+= =? ?? μ (1’) 总动量 ()212 1221121p p m m r m r m m m R M P +=+++==? ?? (2’) 总轨迹角动量 221121p r p r L L L ?+?=+= )5(2211p r m u R p r m u R ????? ? ?-+????? ?? += () () 2112 211p m p m M r p p R -? ++?= ) 2)(1(p r P R ?+?= 由(17)、(18)可解出21,r r ,即(5)式;由(1’)(2’)可解出(6)。 总动能()2 2 11 2 262221212222m p P m m p P m m p m p T ??? ? ??-+ ? ?? ? ??+=+= μμ 2 12 2 2 2 2 122 11 2 2 2 2 12 2222m m p P u m p P m m u m m p P u m p P m m u ?- + + ?+ + =

最新量子力学导论期末考试试题内含答案

量子力学试题(1)(2005) 姓名 学号 得分 一. 简答题(每小题5分,共40分) 1. 一粒子的波函数为()()z y x r ,,ψψ=? ,写出粒子位于dx x x +~间的几率。 2. 粒子在一维δ势阱 )0()()(>-=γδγx x V 中运动,波函数为)(x ψ,写出)(x ψ'的跃变条件。 3. 量子力学中,体系的任意态)(x ψ可用一组力学量完全集的共同本征态)(x n ψ展开: ∑=n n n x c x )()(ψψ, 写出展开式系数n c 的表达式。 4. 给出如下对易关系: [][][] ?,? ,? ,===z x y z L L p x p z 5. 何谓几率流密度?写出几率流密度),(t r j ? ?的表达式。 6. 一维运动中,哈密顿量)(22 x V m p H +=,求[][]?,?,==H p H x 7. 一质量为μ的粒子在一维无限深方势阱?? ?><∞<<=a x x a x x V 2,0, 20,0)( 中运动,写出其状态波函数和能级表达式。 8. 已知厄米算符A 、B 互相反对易:{}0,=+=BA AB B A ;b 是算符B 的本征态: b b b B =,本征值 0≠b 。求在态b 中,算符A 的平均值。

二. 计算和证明题 1. 设粒子限制在长、宽、高分别为c b a ,,的箱内运动,试用量子化条件求粒子能量的可能取值。 2. 考虑如下一维波函数:0/0()n x x x x A e x ψ-?? = ??? , 其中0,,A n x 为已知常数。利用薛定谔 方程求位势()V x 和能量E 。对于它们,该波函数为一本征函数(已知当,()0x V x →∞→)。 3.一质量为m 的粒子沿x 正方向以能量E 向0=x 处 的势阶运动。当0≤x 时,该势为0;当0>x 时,该势为 E 4 3 。问在0=x 处粒子被反射的的几率多大?(15分) 0 X 4.设粒子处于()?θ,lm Y 状态下, 1)证明在的本征态下,0==y x L L 。(提示:利用x y z z y L i L L L L η=-, []y L i η=-=z x x z x z L L L L L ,L 求平均。) 2)求()2 x L ?和() 2 y L ? (附加题)5. 设),(p x F 是p x ,的整函数,证明 [][]F , F,,p i F x x i F p ?? =?? -=η η 整函数是指),(p x F 可以展开成∑∞ ==0 ,),(n m n m mn p x C p x F 。

量子力学导论习题答案(曾谨言)

第五章 力学量随时间的变化与对称性 5.1)设力学量A 不显含t ,H 为本体系的Hamilton 量,证明 [][]H H A A dt d ,,2 2 2 =- 证.若力学量A 不显含t ,则有[]H A i dt dA ,1 =, 令[]C H A =, 则 [][]H C H C i dt C d i dt A d ,1 ,112 22 -===, [][]H H A A dt d ,, 2 2 2 =-∴ 5.2)设力学量A 不显含t ,证明束缚定态,0=dt dA 证:束缚定态为::() () t iE n n n e t -=ψψ,。 在束缚定态()t n ,ψ,有()()()t E t t i t H n n n n ,,,ψψψ=?? = 。 其复共轭为()()()t r E e r t i t r H n n t iE n n n ,,** * * ψψψ=?? -= 。 ??? ??=n n dt dA dt dA ψψ,()??? ??-??? ??-=??n n n n n n A A A dt d ψψψψψψ,,, ?? ? ??-??? ??-= n n n n H i A A H i dt dA ψψψψ 1,,1 []()()n n n n AH i HA i H A i t A ψψψψ,1 ,1,1 -++??= []()()n n HA AH i H A i ψψ--= ,1,1 [][]() 0,,1=-=A H H A i 。 5.3)(){} x x iaP x a a D -=? ?? ??? ??-=exp exp 表示沿x 方向平移距离a 算符.证明下列形式波函数(Bloch 波函数)()()x e x k ikx φψ=,()()x a x k k φφ=+ 是()a D x 的本征态,相应的本征值为ika e - 证:()()()() ()a x e a x x a D k a x ik x +=+=+φψψ ()()x e x e e ika k ikx ika ψφ=?=,证毕。

[波谱学讲义-核磁共振]ch2-核磁共振的理论描述(S1量子力学基础)

[波谱学讲义-核磁共振]ch2-核磁共振的理论描述(S1量子力学基础)

核磁共振波谱学 第二章核磁共振的理论描述 同Bloch方程不同,density matrix formalism 可以严格描述核自旋体系的动力学过程。 2.1 量子力学基础 一基本假设 第一条基本假设: 微观体系的状态被一个波函数完全描述,从这个波函数可得出体系的所有性质。波函数一般应满足连续性、有限性和单值性。 第二条基本假设: 力学量用厄密算符表示。 1 算符:运算符号,作用于函数,结果还是函数 2 如果在经典力学中有相应的力学量,则在量子力学中表示这个力学量的算符,由经典表达式中将动量p换成算符i ?得出。 L r p L r p i r =?→=?=-??

3 厄密算符满足:对于任意的两个函数,ψ,φ ψφψφ* * ??= ( )F dx F dx 4 本征值方程: F φλφ= F 在本征态中的观察值为其本征值。本征函数族满足正交性,厄密算符的本征函数族有完备性。 厄密算符的本征值为实数。 第三条假设: 态迭加原理:当φ1、φ2、…φn …是体系的可能状态时,它们的线性迭加ψ也是体系的一个可能的状态;也可以说,当体系处于态ψ时,体系部分地处在φ1、φ2、…φn …中。 将体系的状态波函数ψ用厄密算符 F 的本征函数φn 展开 ( F n n n φλφ=): ψ=∑c n n n φ 则在态ψ中测量力学量F 得到结果为λn 的几率是c n 2,力学量F 的平均值为 F F d d c n n n ==** ??∑ψψτψψτ λ 2 第四条基本假设: 体系的状态波函数满足薛定谔方程:i t H ?ψ?ψ= H 是体系的哈密顿算符。

量子力学教程课后习题答案

量子力学习题及解答 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 1 833 -? =πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)()(5-?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλλ λρλρ ρ 这里的λρ的物理意义是黑体波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86 ' =???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλ πρ

? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m =λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=h v , λ h P = 如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ

量子力学知识总结

量子力学基础知识总结 一.微观粒子的运动特征 1.黑体辐射和能量量子化 黑体:一种能全部吸收照射到它上面的各种波长辐射的物体 普朗克提出能量量子化假设:定温下黑体辐射能量只与辐射频率有关,频率为ν的能量,其数值是不连续的,只能是hν的整数倍,称为能量量子化。 2.光电效应与光子学说 爱因斯坦将能量量子化概念用于电磁辐射,并用以解释光电效应。其提出了光子学说,圆满解释了光电效应。 光子学说内容: ①光是一束光子流,每一种频率的的光的能量都有一个最小单位,称为光子 光子能量ε=hν/c ②光子质量m=hν/c2 ③光子动量p=mc=hν/c= h/λ ④光的强度取决于单位体积内光子的数目,即光子密度。光电效应: hν= W+E K =hν +2 1 mv2,W为脱出功,E k 为光电子的动能。 3.实物微粒的波粒二象性 德布罗意提出实物微粒也具有波性:E=hν p=h/λ 德布罗意波长:λ=h/p=h/(mv) 4. 测不准原理:?x?x p≥h?y?p y ≥h?z?p y ≥h?tE≥h 二、量子力学基本假设 1. 假设1:对于一个量子力学体系,可以用坐标和时间变量的函数ψ(x,y,z,t)来描述,它包括体系的全部信息。这一函数称为波函数或态函数,简称态。 不含时间的波函数ψ(x,y,z)称为定态波函数。在本课程中主要讨论定态波函数。 由于空间某点波的强度与波函数绝对值的平方成正比,即在该点附近找到粒子的几率正比于ψ*ψ,所以通常将用波函数ψ描述的波称为几率波。在原子、分子等体系中,将ψ称为原子轨道或分子轨道;将ψ*ψ称为几率密度,它就是通常所说的电子云;ψ*ψdτ为空间某点附近体积元dτ中电子出现的几率。 对于波函数有不同的解释,现在被普遍接受的是玻恩(M. Born)统计解释,这一解释的基本思想是:粒子的波动性(即德布罗意波)表现在粒子在空间出现几率的分布的波动,这种波也称作“几率波”。 波函数ψ可以是复函数, 合格(品优)波函数:单值、连续、平方可积。 2. 假设2:对一个微观体系的每一个可观测的物理量,都对应着一个线性自厄算符。 算符:作用对象是函数,作用后函数变为新的函数。

最新量子力学导论习题答案(曾谨言)(1)

第九章 力学量本征值问题的代数解法 9—1) 在8.2节式(21)中给出了自旋(2 1)与轨迹角动量(l )耦合成总角动量j 的波函数j ljm φ,这相当于2 1,21===s j l j 的耦合。试由8.2节中式(21)写出表9.1(a )中的CG 系数 jm m m j 21121 解:8.2节式(21a )(21b ): ()21),0( 21+=≠-=m m l l j j j ljm φ???? ??-+++=+11121 lm lm Y m l Y m l l () ????? ??-++---+=+=21,2121,212121,21j j m j j m j j Y m j Y m j j m j m l j (21a ) ()21-= j l j ljm φ???? ??++---=+11121 lm lm Y m l Y m l l () ????? ??+++--+++-++=≠-=21,2121,211122121),0( 21j j m j j m j j Y m j Y m j j m j m l l j (21b ) ()21++j l 此二式中的l 相当于CG 系数中的1j ,而2 12==s j ,21,~,,~21±=m m m m j 。 因此,(21a )式可重写为 jm ∑=222112 211m jm m j m j m j m j 2 12121212121212111111111--+=m j jm m j m j jm m j ??????? ? ??-???? ??++-???? ??++++=+=212112212121122111211111211121121),21(m j j m j m j j m j j l j a (21a ’) 对照CG 系数表,可知:当21121+=+=j j j j ,212=m 时 , 21111112212121??? ? ??++=+j m j jm m j 而2 12-=m 时,

量子力学中要用到的数学知识大汇总

第一章矩阵 1.1矩阵的由来、定义和运算方法 1.矩阵的由来 2.矩阵的定义 3.矩阵的相等 4.矩阵的加减法 5.矩阵和数的乘法 6.矩阵和矩阵的乘法 7.转置矩阵 8.零矩阵 9.矩阵的分块 1.2行矩阵和列矩阵 1.行矩阵和列矩阵 2.行矢和列矢 3.Dirac符号 4.矢量的标积和矢量的正交 5.矢量的长度或模 6.右矢与左矢的乘积 1.3方阵 1.方阵和对角阵 2.三对角阵 3.单位矩阵和纯量矩阵 4.Hermite矩阵 5.方阵的行列式,奇异和非奇异方阵 6.方阵的迹 7.方阵之逆 8.酉阵和正交阵 9.酉阵的性质 10.准对角方阵 11.下三角阵和上三角阵 12.对称方阵的平方根 13.正定方阵 14.Jordan块和Jordan标准型 1.4行列式求值和矩阵求逆 1.行列式的展开 https://www.doczj.com/doc/3f11979104.html,place展开定理 3.三角阵的行列式 4.行列式的初等变换及其性质 5.利用三角化求行列式的值 6.对称正定方阵的平方根 7.平方根法求对称正定方阵的行列之值 8.平方根法求方阵之逆 9.解方程组法求方阵之逆 10.伴随矩阵

11.伴随矩阵法求方阵之逆 1.5线性代数方程组求解 1.线性代数方程组的矩阵表示 2.用Cramer法则求解线性代数方程组 3.Gauss消元法解线性代数方程组 4.平方根法解线性代数方程组 1.6本征值和本征矢量的计算 1.主阵的本征方程、本征值和本征矢量 2.GayleyHamilton定理及其应用 3.本征矢量的主定理 4.Hermite方阵的对角化——计算本征值和本征矢量的Jacobi法1.7线性变换 1.线性变换的矩阵表示 2.矢量的酉变换 3.相似变换 4.等价矩阵 5.二次型 6.标准型 7.方阵的对角化 参考文献 习题 第二章量子力学基础 2.1波动和微粒的矛盾统一 1.从经典力学到量子力学 2.光的波粒二象性 3.驻波的波动方程 4.电子和其它实物的波动性——de Broglie关系式 5.de Broglie波的实验根据 6.de Broglie波的统计意义 7.态叠加原理 8.动量的几率——以动量为自变量的波函数 2.2量子力学基本方程——Schrdinger方程 1.Schrdinger方程第一式 2.Schrdinger方程第一式的算符表示 3.Schrdinger方程第二式 4.波函数的物理意义 5.力学量的平均值(由坐标波函数计算) 6.力学量的平均值(由动量波函数计算) 2.3算符 1.算符的加法和乘法 2.算符的对易 3.算符的平方 4.线性算符 5.本征函数、本征值和本征方程

量子力学导论习题答案(曾谨言)

第三章一维定态问题 3.1)设粒子处在二维无限深势阱中, ?? ?∞<<<<=其余区域 ,0,0 ,0),(b y a x y x V 求粒子的能量本征值和本征波函数。如b a = ,能级的简并度如何? 解:能量的本征值和本征函数为 m E y x n n 222π = )(2 22 2b n a n y x + ,2,1, ,sin sin 2== y x y x n n n n b y n a x n ab y x ππψ 若b a =,则 )(22 22 22y x n n n n ma E y x +=π a y n a x n a y x n n y x ππψsin sin 2= 这时,若y x n n =,则能级不简并;若y x n n ≠,则能级一般是二度简并的(有偶然简并情况,如5,10==y x n n 与2,11' ' ==y x n n ) 3.2)设粒子限制在矩形匣子中运动,即 ? ??∞<<<<<<=其余区域 ,0,0,0 ,0),,(c z b y a x z y x V 求粒子的能量本征值和本征波函数。如c b a ==,讨论能级的简并度。 解:能量本征值和本征波函数为 )(222 2 222 22c n b n a n m n n n E z y x z y x + +=π , ,3,2,1,, , sin sin sin 8 == z y x z y x n n n c z n b y n a x n abc n n n z y x πππψ 当c b a ==时, )(2222222z y x n n n ma n n n E z y x ++=π a y n a y n a x n a n n n z y x z y x πππψsin sin sin 22 3 ??? ??= z y x n n n ==时,能级不简并; z y x n n n ,,三者中有二者相等,而第三者不等时,能级一般为三重简并的。

曾谨言《量子力学导论》习题解答

曾谨言《量子力学导论》习题解答第三章一维定态问题 3.1)设粒子处在二维无限深势阱中, ,,,,0, 0xa,0yb,V(x,y), ,,, 其余区域, a,b求粒子的能量本征值和本征波函数。如,能级的简并度如何, 解:能量的本征值和本征函数为 2222nn,,yx(,)E, nn22xy2mab ny,nx,2yx,sinsin, n,n,1,2,? ,nnxyxyabab 22,,22a,bE,(n,n)若,则 nnxy2xy2ma ny,nx,2yx,sinsin ,nnxyaaa n,10,n,5这时,若n,n,则能级不简并;若n,n,则能级一般是二度简并的(有偶然简并情况,如xyxyxy ''n,11,n,2与) xy 3.2)设粒子限制在矩形匣子中运动,即 ,,,,,,0, 0xa,0yb,0zc,,V(x,y,z) ,,, 其余区域, a,b,c求粒子的能量本征值和本征波函数。如,讨论能级的简并度。 解:能量本征值和本征波函数为 22222nnn,,yxzE, ,(,,)222nnnm2abcxyz ny,nxnz,,8yxz,sinsinsin,,nnn abcabcxyz n,n,n,1,2,3,?xyz a,b,c当时, 22,,222 E,(n,n,n)xyz2nnn2maxyz 32ny,nxny,,2,,yxz ,sinsinsin,,,nnnaaaaxyz,,

n,n,n时,能级不简并; xyz n,n,n三者中有二者相等,而第三者不等时,能级一般为三重简并的。 xyz 三者皆不相等时,能级一般为6度简并的。 n,n,nxyz 222222,5,6,8,3,4,10(1,7,9),(1,3,11)如 ,22222210,12,16,6,8,20(1,5,10),(3,6,9), 3.3)设粒子处在一维无限深方势阱中, 0, 0,x,a,V(x,y), ,,, x,0,x,a, 证明处于定态的粒子 ,(x)n 2aa62x,,,, (x-x)(1) 22212n,讨论的情况,并于经典力学计算结果相比较。n , , 证:设粒子处于第n个本征态,其本征函数 ,2n(x),sinx. ,naa 2aa2n,a分部2 (1) ,,sin xxdxxxdx,n,,002aa 2a2a2222(,),,,,, xxxxxdxn,04 2a212n,xa2,,(1,cos), xdx ,024aa 2a6,,(1) (2) 22n,12 在经典情况下,在区间粒子除与阱壁碰撞(设碰撞时间不计,且为弹性碰撞,即粒子碰撞后仅运动方向改,,0, a dxxxdx,,变,但动能、速度不变)外,来回作匀速运动,因此粒子处于范围的几率为,故 a adxa , (3) ,,,xx,02a 2adxa22,,,xx, ,03a 222aa22() (4) x,x,x,x,,34 当时,量子力学的结果与经典力学结果一致。 n,,

量子力学和经典力学的区别与联系

量子力学和经典力学在的区别与联系 摘要 量子力学是反映微观粒子结构及其运动规律的科学。它的出现使物理学发生了巨大变革,一方面使人们对物质的运动有了进一步的认识,另一方面使人们认识到物理理论不是绝对的,而是相对的,有一定局限性。经典力学描述宏观物质形态的运动规律,而量子力学则描述微观物质形态的运动规律,他们之间有质的区别,又有密切联系。本文试图通过解释、比较,找出它们之间的不同,进一步深入了解量子力学,更好的理解和掌握量子力学的概念和原理。 经过量子力学与经典力学的对比我们可以发现,量子世界真正的基本特性:如果系统真的从状态A跳跃到B的话,那么我们对着其中的过程一无所知。当我们进行观察的时候,我们所获得的结果是有限的,而当我们没有观察的时候系统正在做什么,我们都不知道。量子理论可以说是一门反映微观运动客观规律的学说。经典物理与量子物理的最根本区别就是:在经典物理中,运动状态描述的特点为状态量都是一些实验可以测量得的,即在理论上这些量是描述运动状态的工具,实际上它们又是实验直接可测量的量,并可以通过测量这些状态量来直接验证理论。在量子力学中,微观粒子的运动状态由波函数描述,一切都是不确定的。但是当微观粒子积累到一定量是,它们又显现出经典力学的规律。 关键字:量子力学及经典力学基本内容及理论量子力学及经典力学的区别与联系

目录 三、目录 摘要 (1) 关键字 (1) 正文 (3) 一、量子力学及经典力学基本内容及理论……………………………………………… 3 经典力学基本内容及理论 (3) 量子力学的基本内容及相关理论 (3) 二、量子力学及经典力学在表述上的区别与联系 (4) 微观粒子和宏观粒子的运动状态的描述 (4) 量子力学中微观粒子的波粒二象性 (5) 三、结论:量子力学与经典力学的一些区别对比 (5) 参考文献 (6)

量子力学基本原理

量子力学基本原理 量子力学的基本原理包括量子态的概念,运动方程、理论概念和观测物理量之间的对应规则和物理原理。 状态函数 物理体系的状态由状态函数表示,状态函数的任意线性叠加仍然代表体系的一种可能状态。状态随时间的变化遵循一个线性微分方程,该方程预言体系的行为,物理量由满足一定条件的、代表某种运算的算符表示;测量处于某一状态的物理体系的某一物理量的操作,对应于代表该量的算符对其状态函数的作用;测量的可能取值由该算符的本征方程决定,测量的期望值由一个包含该算符的积分方程计算。(一般而言,量子力学并不对一次观测确定地预言一个单独的结果。取而代之,它预言一组可能发生的不同结果,并告诉我们每个结果出现的概率。也就是说,如果我们对大量类似的系统作同样地测量,每一个系统以同样的方式起始,我们将会找到测量的结果为A出现一定的次数,为B出现另一不同的次数等等。人们可以预言结果为A或B的出现的次数的近似值,但不能对个别测量的特定结果做出预言。)状态函数的模平方代表作为其变量的物理量出现的几率。根据这些基本原理并附以其他必要的假设,量子力学可以解释原子和亚原子的各种现象。 根据狄拉克符号表示,状态函数,用<Ψ|和|Ψ>表示,状态函数的概率密度用ρ=<Ψ|Ψ>表示,其概率流密度用(?/2mi)(Ψ*▽Ψ-Ψ▽Ψ*)表示,其概率为概率密度的空间积分。 状态函数可以表示为展开在正交空间集里的态矢比如 ,其中|i>为彼此正交的空间基矢, 为狄拉克函数,满足正交归一性质。态函数满足薛定谔波动方程, ,分离变数后就能得到不显含时状态下的演化方程 ,En是能量本征值,H是哈密顿算子。 于是经典物理量的量子化问题就归结为薛定谔波动方程的求解问题。

量子力学基础

量子力学基础 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

第一章量子力学基础 一、教案目的: 通过本章学习,掌握微观粒子运动的特征、量子力学的基本假设,并初步学习运用薛定谔方程去分析和计算势箱中粒子运动的有关问题:b5E2RGbCAP 二、教案内容: 1、微观粒子的运动特征 黑体辐射和能量量子化;光电效应和光子学说;实物粒子的波粒二相性;不确定关系; 2、量子力学基本假设 波函数和微观粒子的状态;物理量和算符;本征态、本征值和薛定谔方程;态叠加原理;泡利原理; 3、箱中粒子的薛定谔方程及其解 三、教案重点 微观粒子运动的特征、量子力学的基本假设 四、教案难点: 量子力学的基本假设 五、教案方法及手段 课堂教案 六、课时分配: 微观粒子的运动特征 2学时 量子力学基本假设 4学时

箱中粒子的薛定谔方程及其解 2学时 七、课外作业 课本p20~21 八、自学内容 1-1微观粒子的运动特征 1900年以前,物理学的发展处于经典物理学阶段<由Newton的经典力学,Maxwell的的电磁场理论,Gibbs的热力学和Boltzmann的统计物理学),这些理论构成一个相当完善的体系,对当时常见的物理现象都可以从中得到说明。p1EanqFDPw 在经典物理学取得上述成就的同时,通过实验又发现了一些新现象,它们是经典物理学无法解释的。如黑体辐射、光电效应、电子波性等实验现象,说明微观粒子具有其不同于宏观物体的运动特征。DXDiTa9E3d 电子、原子、分子和光子等微观粒子,它们表现的行为在一些场合显示粒性,在另一些场合又显示波性,即具有波粒二象性的运动特征。人们对这种波粒二象性的认识是和本世纪物理学的发展密切联系的,是二十世纪初期二十多年自然科学发展的集中体现。RTCrpUDGiT 1.1.1黑体辐射和能量量子化——普朗克< planck)的量子假 说:量子说的起源 黑体是一种能全部吸收照射到它上面的各种波长的光,同时也能在同样条件下发射最大量各种波长光的物体。 带有一个微孔的空心金属球,非常接近于黑体,进入金属球小孔的辐射,经过多次吸收、反射,使射入的辐射全部被吸收。当空腔受热时,空腔壁会发出辐射,极小部分通过小孔逸出。5PCzVD7HxA

第一章 量子力学基础

第一章 量子力学基础知识 一、概念题 1、几率波:空间一点上波的强度和粒子出现的几率成正比,即,微粒波的强度 反映粒子出现几率的大小,故称微观粒子波为几率波。 2、测不准关系:一个粒子不能同时具有确定的坐标和动量 3、若一个力学量A 的算符A ?作用于某一状态函数ψ后,等于某一常数a 乘以ψ,即,ψψa A =?,那么对ψ所描述的这个微观体系的状态,其力学量A 具有确定的数值a ,a 称为力学量算符A ?的本征值,ψ称为A ?的本征态或本征波函数,式ψψa A =?称为A ?的本征方程。 4、态叠加原理:若n ψψψψ,,,,321????为某一微观体系的可能状态,由它们线性组 合所得的ψ也是该体系可能存在的状态。其中: ∑=+??????+++=i i i n n c c c c c ψψψψψψ332211,式中n c c c c ,,,,321???为任意常 数。 5、Pauli 原理:在同一原子轨道或分子轨道上,至多只能容纳两个电子,这两个 电子的自旋状态必须相反。或者说两个自旋相同的电子不能占据相同的轨道。 6、零点能:按经典力学模型,箱中粒子能量最小值为0,但是按照量子力学箱中粒子能量的最小值大于0,最小的能量为228/ml h ,叫做零点能。 二、选择题 1、下列哪一项不是经典物理学的组成部分? ( ) a. 牛顿(Newton)力学 b. 麦克斯韦(Maxwell)的电磁场理论 c. 玻尔兹曼(Boltzmann)的统计物理学 d. 海森堡(Heisenberg)的测不准关系 2、下面哪种判断是错误的?( ) a. 只有当照射光的频率超过某个最小频率时,金属才能发身光电子

量子力学基本概念及理解

量子力学基本理论及理解 基本概念 概率波 量子力学最基础的东西就是概率波了,但我认为对概率波究竟是什么样一种“波”,却并不是很容易理解的,这个问题直到理查德,费恩曼(而不是海森伯或者伯恩)提出了单电子实验,才让我们很清楚的看到什么是概率波?有为什么是概率波。 什么是概率波?为什么是概率波? 要回答这些问题,其实很简单,我们只需看下费恩曼的理想电子双缝干涉实验(刚开始时理想实验,不过后来都已经过证明了)就行了,我相信大家都会明白的。 下面我们再看一下费恩曼给出了什么结果: 1.单独开启缝1或者缝2都会得到强度分布P1或者P2符合衍射的图样, 缝1和缝2都开启时得到强度P12符合干涉图样 2.由两个单缝的图样无论如何得不到双缝的图样,即P12≠P1+P2 3.每次让一个电子通过,长时间的叠加后就得到一个与一次让很多电 子通过双缝完全相同的图案 4.每次得到的是“一个”电子 其实从这些结果中我们很容易得到为什么必须是概率波,并且我们也很容易去除那些对概率波不对的理解,也就是所谓的向经典靠拢的理解,从而得到必须是概率波的事实。 概率波从字面上来理解,也就是这种波表示的是一种概率分布,还是在双缝干涉中我们看一下很简单的一些表现,若果是概率波的话,我们很关心的就是这个粒子分布的具体形状,粒子位置的期望值等,在这里我们可以看出来波函数经过归一化之后,就是说电子还是只有那一个电子,但是它的位置不确定了,这才形成在一定的范围内的一个云状分布,你要计算某一个范围内的电荷是多少,这样你会得到一个分数的电荷量,但这只能告诉你电子在你研究的范围内分布的概率有多大,并不是说在这一范围内真正存在多少电子。

量子力学导论第8章答案

第八章 自旋 8.1) 在z σ表象中,求x σ的本征态。 解:在z σ表象中,x σ的矩阵表示为:x σ ??? ? ? ?=0110 设x σ的本征矢(在z σ表象中)为??? ? ??b a ,则有??? ? ??=???? ?????? ??b a b a λ0110 可得a b λ=及b a λ= 1,12±==∴λλ 。 ,1=λ 则; b a = ,1-=λ 则b a -= 利用归一化条件,可求出x σ的两个本征态为 ,1=λ ;1121???? ?? ,1-=λ ??? ? ??-1121 。 8.2) 在z σ表象中,求n ?σ的本征态,()??θ?θcos ,sin sin ,cos sin n 是()?θ,方向的单位矢. 解:在z δ表象中,δ的矩阵表示为 x σ ??? ? ? ?=0110, y σ??? ? ? ?-=00 i i , z σ??? ? ? ?-=1001 (1) 因此, z z y y x x n n n n n σσσσσ++=?= ??? ? ??-=???? ?? -+-=-θθθθ ?? cos sin sin cos i i z y x y x z e e n in n in n n (2) 设n σ的本征函数表示为Φ??? ? ??=b a ,本征值为λ,则本征方程为 ()0=-φλσn ,即 0cos sin sin cos =? ??? ?????? ??----b a e e i i λθθθλ θ? ? (3) 由(3)式的系数行列式0=,可解得1±=λ。 对于1=λ,代回(3)式,可得 x y x y x x i i n in n in n n e e b a --=++==-=--112sin 2cos cos 1sin ?? θθ θθ 归一化本征函数用()?θ,表示,通常取为 ()???? ? ?=? θθ ?θφi e 2sin 2cos ,1或??? ? ? ? ?-222sin 2cos ? ? θθi i e e (4)

第三章 量子力学导论

闽江学院 教案 课程名称:原子物理 课程代码: 21100430 授课专业班级: 2010级物理学(师范类)授课教师:翁铭华 系别:电子系 2012年8 月30 日

第三章量子力学导论 教学目的和要求: 1.了解量子化物质波粒二象性的概念。 2.理解测不准原理; 3.掌握波函数及物理意义; 4.了解薛定谔方程;了解量子力学问题的几个简例; 5.了解氢原子的薛定谔方程;了解量子力学对氢原子的描述。 教学重点和难点: 1. 教学重点:波函数及统计解释 2.教学难点:波函数及统计解释 教学内容: 1. 玻尔理论的困难 2. 波粒二象性 3. 不确定关系 4. 波函数及其统计解释 5. 薛定谔方程及应用 19世纪末的三大发现(1896年发现放射性,1897年发现电子,1900年提出量子化概念)为近代物理学的序幕。1905年爱因斯坦在解释光电效应时提出光量子概念,1913年玻尔将普朗克-爱因斯坦量子概念用于卢瑟福模型,提出量子态观念,成功地解释了氢光谱。此外,利用泡利1925年提出的不相容原理和同年乌仑贝克、古兹米特提出的电子自旋假说,可很好地解释元素周期性、塞曼效应的一系列实验事实。至此形成的量子论称为旧量子论,有严重的缺陷。 在“物质粒子的波粒二象性”思想的基础上,于1925-1928年间由海森堡、玻恩、薛定谔、狄拉克等人建立了量子力学,它与相对论成了近代物理学的两大理论支柱。 量子力学的本质特征在1927年海森堡提出的不确定关系中得到明确的反映,它是微观客体波粒二象性的必然结果。量子力学的主要内容:1)相关的几个重要实验;2)有别于经典物理的新思想; 3)解决具体问题的方法。 §3-1玻尔理论的困难 玻尔理论将微观粒子视为经典力学中的质点,把经典力学的规律用于微观粒子,使其理论中有难以解决的内在矛盾,故有重大缺陷。如:为什么核与电子间的相互作用存在,但处于定态的加速电子不辐射电磁波?电子跃迁时辐射(或吸收)电磁波的根本原因何在?……(薛定谔的非难“糟透的跃迁”:在两能级间跃迁的电子处于什么状态?) 玻尔理论在处理实际问题时也“力不从心”,如无法解释氢光谱的强度及精细结构,无法解释简单程度仅次于氢原子的氦光谱,无法说明原子是如何组成分子及构成液体和固体。…… §3-2波粒二象性 1.经典物理中的波和粒子 经典物理学中,波和粒子各自独立,在逻辑上不允许同时用这两个概念描写同一现象。粒子可视为质点,具有定域性,有确定的质量、动量、速度和电荷等,波可以在空间无限扩展,波有确定

量子力学的世纪大论战(诺贝尔物理学期中)

量子力学的世纪大论战 量子力学与相对论是现代物理学的两大支柱.量子力学是20世纪20年代创立的阐述微观世界物质运动规律的一门学科. 几十年来,量子力学理论已经被无数实验事实所证实,至今还没有一个实验结果与量子力学理论发生矛盾.量子力学理论获得了伟大的成功,并且在量子力学的基础上发展了许多相关的子学科.量子力学的正统的物理诠释是哥本哈根学派的诠释,其主要内容是波函数的几率解释、不确定原理和玻尔提出的互补原理,其代表人物是玻尔、海森堡、玻恩等人.今天的大多数物理学家都是在哥本哈根学派诠释的基础上来理解和阐述量子力学的,也是在此基础上来进行有关的科研工作的. 然而,在哥本哈根学派提出量子力学的几率诠释之初,就遭到了爱因斯坦的尖锐批评,引起了一场大论战,这场论战推动了量子力学理论的进一步完善和发展,对整个物理学的发展和自然科学的哲学问题也产生了深远的影响. 爱因斯坦与玻尔关于量子力学解释的不同观点之间的大论战是量子力学创建和发展过程中最具有代表性意义的一场争论. 爱因斯坦认为以几率诠释为基础的量子力学理论是不完备的.从1927年到1955年爱因斯坦逝世,玻尔和爱因斯坦多次对量子力学完备性问题展开激烈的辩论,最终他们谁也没有说服对方.此后,关于量子力学的物理诠释的争论仍在继续进行,一直延续到21世纪的今天,所以这一场争论可以称为跨世纪之争.在爱因斯坦之后,在这一场争论中发生的最重要的事件是隐变量理论和贝尔不等式的提出. 1920年4月,玻尔到爱因斯坦所在的德国柏林访问,第一次与爱因斯坦会面.他们两人就量子理论的发展交换了意见,谈话的主题是关于光的波粒二象性的认识问题.看起来,这次争论好象是爱因斯坦主张,完备的光理论必须以某种方式将波动性和粒子性结合起来,而玻尔却固守光的经典波动理论,否认光子理论基本方程的有效性.然而,仔细分析就会发现玻尔强调需要同经典力学的观念作彻底的决裂,而爱因斯坦则虽赞成光的波粒二象性,但却坚信波和粒子这两个侧面可以因果性地相互联系起来.爱因斯坦坚决反对量子力学的概率解释,不赞成抛弃因果性和决定性的概念.他坚信基本理论不应当是统计性的.他说,“上帝是不会掷骰子的.”他认为在概率解释的后面应当有更深一层的关系,把场作为物理学更基本的概念,而把粒子归结为场的奇异点,他还试图把量子理论纳入一个基于因果性原理和连续性原理的统一场论中去,因此他在第五届索尔威会议上支持德布罗意的导波理论,并且在发言中强调量子力学不能描写单个体系的状态,只能描写许多全同体系的一个系综的行为,因而是不完备的理论. 爱因斯坦精心地设计了一系列理想实验,企图超越不确定关系的限制来揭露量子力学理论的逻辑矛盾.玻尔和海森伯等人则把量子理论同相对论做比较,有力地驳斥了爱因斯坦.1930年10月第六届索尔威会议上,爱因斯坦又绞尽脑汁提出了一个“光子箱”的理想实验,向量子力学提出了严重的挑战.玻尔经过一个不眠之夜的紧

量子力学发展简史

量子力学发展简史 摘要: 相对论是在普朗克为了克服经典理论解释黑体辐射规律的困难,引入能量子概念的基础上发展起来的,爱因斯坦提出光量子假说、运用能量子概念使量子理论得到进一步发展。玻尔、德布罗意、薛定谔、玻恩、狄拉克等人为解决量子理论遇到的困难,进行了开创性的工作,先后提出电子自旋概念,创立矩阵力学、波动力学,诠释波函数进行物理以及提出测不准原理和互补原理。终于在1925年到1928年形成了完整的量子力学理论,与爱因斯坦的相对论并肩形成现代物理学的两大理论支柱。 关键词:量子力学,量子理论,矩阵力学,波动力学,测不准原理量子力学是研究微观粒子(如电子、原子、分子等)的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础,是现代物理学的两大基本支柱。经典力学奠定了现代物理学的基础,但对于高速运动的物体和微观条件下的物体,牛顿定律不再适用,相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。量子力学认为在亚原子条件下,粒子的运动速度和位置不可能同时得到精确的测量,微观粒子的动量、电荷、能量、粒子数等特性都是分立不连续的,量子力学定律不能描述粒子运动的轨道细节,只能给出相对机率,为此爱因斯坦和玻尔产生激烈争论,并直至去世时仍不承认量子力学理论的哥本哈根诠释。 量子力学是一个物理学的理论框架,是对经典物理学在微观领域的一次革命。它有很多基本特征,如不确定性、量子涨落、波粒二象性等,在原子和亚原子的

微观尺度上将变的极为显著。爱因斯坦、海森堡、玻尔、薛定谔、狄拉克等人对其理论发展做出了重要贡献。原子核和固体的性质以及其他微观现象,目前已基本上能从以量子力学为基础的现代理论中得到说明。现在量子力学不仅是物理学中的基础理论之一,而且在化学和许多近代技术中也得到了广泛的应用。上世纪末和本世纪初,物理学的研究领域从宏观世界逐渐深入到微观世界;许多新的实验结果用经典理论已不能得到解释。大量的实验事实和量子论的发展,表明微观粒子不仅具有粒子性,同时还具有波动性(参见波粒二象性),微观粒子的运动不能用通常的宏观物体运动规律来描写。德布罗意、薛定谔、海森堡,玻尔和狄拉克等人逐步建立和发展了量子力学的基本理论。应用这理论去解决原子和分子范围内的问题时,得到与实验符合的结果。因此量子力学的建立大大促进了原子物理。固体物理和原子核物理等学科的发展,它还标志着人们对客观规律的认识从宏观世界深入到了微观世界。量子力学是用波函数描写微观粒子的运动状态,以薛定谔方程确定波函数的变化规律,并用算符或矩阵方法对各物理量进行计算。因此量子力学在早期也称为波动力学或矩阵力学。量子力学的规律用于宏观物体或质量和能量相当大的粒子时,也能得出经典力学的结论。在解决原子核和基本粒子的某些问题时,量子力学必须与狭义相对论结合起来(相对论量子力学),并由此逐步建立了现代的量子场论。 量子力学的发展简史 量子力学是在旧量子论的基础上发展起来的。旧量子论包括普朗克的量子假说、爱因斯坦的光量子理论和玻尔的原子理论。 1900年,普朗克提出辐射量子假说,假定电磁场和物质交换能量是以间断

相关主题
文本预览
相关文档 最新文档