当前位置:文档之家› 新型功能材料阳离子纤维素的研究进展_施文健

新型功能材料阳离子纤维素的研究进展_施文健

新型功能材料阳离子纤维素的研究进展_施文健
新型功能材料阳离子纤维素的研究进展_施文健

新型功能材料阳离子纤维素的研究进展*

施文健,张元璋,秦 琴,陈 轩

(上海理工大学环境与建筑学院,上海200093)

摘要 总结了制备阳离子纤维素的主要方法,介绍了纤维素阳离子化改性所用的单体类型,评价了制备阳离子纤维素方法的特点。综述了国内外阳离子纤维素应用于日化用品、纺织印染、生物医学和环境保护等领域的研究进展,并讨论了该功能材料的发展趋势,指出阳离子纤维素将会在医疗和环保领域得到广泛的应用。

关键词 阳离子纤维素 制备 应用

Research Progress in Novel Functional Materials ———Cationic Cellulose

SHI Wenjian ,ZHANG Yuanzhang ,QIN Qin ,CHEN Xuan

(Scho ol of Env ir onme nt and A rchitectur e ,U nive rsity o f Sha ng hai for Scie nce and T echno lo gy ,Shang hai 200093)Abstract T he methods of preparation o f cationic cellulo se are summa rized in this pape r .T he main ty pe s of mo no mer and their g rafting way s used in the cationization o f cellulo se a re int roduced .T he cha racteristics of the me -tho ds ofprepar ation of cationic cellulose a re ev aluated .T he research pr og ress made in the applicatio n of catio nic cellu -lose in pe rsonal ca re commo dity ,tex tile dyeing ,biomedicine and enviro nmental pro tection is rev iewed and the develop -ment tendencies o f this functio nal materia l are discussed .Catio nic cellulo se will be widely used in the field of biomedi -cine and env ir onmental pro tectio n in the future .

Key words cationic cellulo se ,prepa ratio n ,application

 *上海市世博重大科技专项资助项目(06dz05809)

 施文健:男,1957年生,教授,主要从事环境化学和环境功能材料的开发和研究 E -mail :Shiwjusst @msn .com

纤维素是地球上最丰富的可再生资源,具有廉价、可降解和对生态环境不产生污染等优点,在解决人类所面临的能源、资源和环境问题方面都有着重要的意义[1]。然而纤维素不能在水和一般有机溶剂中溶解,也缺乏热可塑性,这对其成形加工极为不利,因此常对其进行化学改性[2]。

阳离子纤维素是一种重要的高分子功能材料,主要通过纤维素羟基上的衍生化反应引入阳离子基团来制备。阳离子纤维素的最初发明是用作二合一香波的调理添加剂,进一步的研究发现其在其它日化用品中也有着特殊的功能。随着科技的不断发展,阳离子纤维素已分别在纺织印染、生物医学等领域取得了一定成果,而其作为一种新型环境友好吸附材料应用于环保领域的研究也已展开。本文将总结采用化学改性制备阳离子纤维素的方法并介绍近年来其在相关领域应用取得的进展。

1 阳离子纤维素的制备

有关纤维素阳离子化改性的报道国内外有很多,其改性

所用阳离子化试剂的单体性能十分重要。按单体结构的不同可将阳离子纤维素的制备方法归结为3类:(1)反应型阳离子单体的醚化接枝;(2)不饱和阳离子单体的自由基接枝共聚;(3)中间单体的阳离子功能化。

1.1 反应型阳离子单体的醚化接枝

醚化接枝是制备阳离子纤维素最常用的方法。在一定条件下,纤维素分子链中的羟基能与一些特定的官能团(氯代基或环氧基)发生典型的有机化学反应[3]

:

反应型阳离子单体通常是含有氯代基或环氧基的阳离

子单体,与纤维素高分子链上的基团进行醚化反应后,就能在纤维素分子链上接枝带正电荷的基团。最为常用的反应型阳离子单体是3-氯-2-羟丙基三甲基氯化铵(CH PAC ),它是一种廉价、反应性好且毒性低的试剂,由环氧氯丙烷与盐酸三甲胺溶液反应制得[4]。CH PAC 通过碱化处理环氧化后[5],再与纤维素分子发生碱催化烷氧基化反应即可将季铵基阳离子基团接枝到纤维素分子链上,反应如下:

王少敏等[6]以硝化纤维素、Schw arzinger 等[7]

以棉纤维、

Zhou 等[8]以羟乙基纤维素为原料与CH PAC 反应,制得了不同功能的季铵型阳离子纤维素。其他的反应型阳离子单体

还有2,3-环氧丙烷三甲基(或三乙基)氯化铵[9]

和二甲基苄基氯化铵[10]等,这些单体都是基于上述反应原理将阳离子基团接枝到纤维素分子链上。

1.2 不饱和阳离子单体的自由基接枝共聚

该方法是在引发剂的作用下将不饱和阳离子单体通过自由基聚合反应连接到纤维素表面。该方法的引发剂主要有Fenton 试剂、过氧化苯甲酰和过硫酸钾等,其引发机理是由链转移引发体系产生自由基,并通过基团转移反应,生成纤维素大分子自由基。以Fenton 试剂(Fe 2+-H 2O 2)为例,其引发历程如下

[11]

:

最终纤维素大分子自由基会被不饱和阳离子单体捕获,生成阳离子纤维素共聚物。不饱和阳离子单体所带的正电荷一般是季铵基阳离子,如三甲基烯丙基氯化铵、二甲基(或乙基)二烯丙基氯化铵、三甲基(2-甲基丙烯酰氧乙基)氯化铵和乙烯基苄基三甲基氯化铵等[12]。

1.3 中间单体的阳离子功能化

这种方法实际上是前2种方法的综合使用,阳离子纤维素还可以通过纤维素与一些非阳离子单体一步或分步经叔胺化、季铵功能化制得[3,13]

。这就是纤维素阳离子化的第三类单体———中间单体。最常用的中间单体是丙烯酰胺。Un -nit han 等[14]

通过聚丙烯酰胺接枝椰壳纤维制备了含有

-N H 3+Cl -官能团的吸附剂。其它中间单体还有丙烯腈、丙烯酸酯、乙烯基吡啶和叔胺类单体。Sokker [15]以木质纸浆中的纤维素接枝丙烯腈形成叔胺化合物后,与苯甲基氯反应制备了季铵型阴离子交换剂;Chauhan 等[16]通过聚4-乙烯基吡啶接枝纤维素合成了高分子阳离子纤维素。

综上所述,采用醚化接枝制备阳离子纤维素的优点是制备工艺简单,成本低廉,反应较简单,产物提取分离比较容易,缺点是生成的侧链较短;纤维素自由基接枝共聚能保留纤维素固有的特点不被破坏而同时赋予其新的性能,但制备工艺复杂,可供选择的阳离子单体种类少,成本高,且接枝物与单体的均聚物或共聚物的分离、提纯较困难;中间单体的阳离子功能化相对而言步骤更加繁琐,国内外虽然对丙烯酰胺制备阳离子纤维素的报道较多,但其它中间单体的相关文献很少。

2 阳离子纤维素的应用研究

2.1 日用化学品

阳离子纤维素是阳离子高聚物家族中最重要的代表之一,在美国化妆品、盥洗和香料工业协会(C TFA )注册的人体保护品用阳离子聚合物中,它的用量居首位,已广泛应用于洗发香波、液体香皂等日化用品中。

PQ -10是最早在调理香波中使用的阳离子聚合物,我国常称它为(季铵盐型)阳离子羟乙基纤维素(醚),是由羟乙基

纤维素与2,3-环氧丙烷三甲基氯化铵反应生成的季铵盐[9]

。PQ -10分子内带正电荷的季铵基可以吸附头发上的负电荷,使头发光滑、减少摩擦、难生静电、容易梳妆;此外,PQ -10的

刺激性较低,安全性较好;而且,季铵盐遇阴离子型洁发组分能避免产生难溶、非电离的复合盐,不会丧失阴离子型洁发组分的去污、发泡功能。PQ -10的溶液能扩散到角质层形成透气性、无过量积聚的保护薄膜,可将这个功能广泛用于洗发香波、液体香皂、洗面奶、剃须膏、润肤液、防晒霜、定型摩丝及护发素的配制中。

除了阳离子纤维素聚合物所带来的直接调理效果外,更有研究显示出它在吸附头发负电荷的过程中与硅油有协同效应[17]。阳离子纤维素能防止硅油沉积,不会使头发失去体感,不会产生油腻感,达到理想、全面的调理效果。

2.2 纺织印染

纤维素纤维在纺织工业中占有重要地位。而染色方面最重要、最有潜力的染料是活性染料。活性染料以色谱齐全、应用简便、成本低廉而著称。目前,世界上纤维素纤维上染的活性染料年产量约达20万t ,约占世界染料年产量的

20%[18]

。但纤维素纤维在染浴中带负电荷,阴离子活性染料因其静电斥力难以上染。在传统的染色过程中要加入大量的电解质盐,但染料的相对利用率还是较低,约35%的原染料残留在水体中,严重污染了环境[19]。而通过纤维素的改性引入阳离子基团,可增强纤维素纤维与染料的反应性,以提高上染率和固色率。

纤维素染色改性的阳离子化试剂分子中常带有胺基或可质子化的氮原子。常用的阳离子化改性剂是环氧基三甲胺的季铵化合物(国外商品名为Glytac A ),改性后纤维素纤维的上染率甚至可接近85%~98%,活性染料可以在中性和无盐的条件下染色[20]。由于考虑到环氧化物的健康和安全问题,近年来主要采用含氯代均三嗪类、3-氯-2-羟基-N ,N ,N -三甲氨丙烷氯化物和氢氧化钠的混合物来对纤维素进行改性。在美国,工厂里大都采用这种方法对棉纤维进行改性,改性后的棉纤维可在无盐的条件下用特定的活性染料染

色,固色率接近100%[21]

Kitkulnumchai 等[19]利用壳聚糖对纤维素表面进行改性,对含一氯均三嗪和乙烯砜基团的新型阴离子活性染料进行吸附性能研究,改性后的材料能有效地吸附这些染料,所用的染料量减少1/2,盐用量减少14%,上染率增强。但是活性染料对含氨基的纤维素纤维固色率不高,这是因为壳聚糖只能包附在纤维表面,所以染色的牢度不强。

2.3 生物医学

卢滇楠等[22]合成了一种新型的季铵盐型抗菌阳离子单

体甲基丙烯酰氧乙基-苄基-二甲基氯化铵,以大肠杆菌JM 105为典型致病菌体系,研究了接枝该单体后抗菌纤维的

抗菌能力及其机理。Xing 等[23]

以纤维素和苄基二甲基(2-甲基丙烯酰氧乙基)氯化铵接枝共聚,改性后的纤维素也可有

效抑制大肠杆菌。王格慧[24]

以棉花为原料,将环氧基长链季铵盐接枝到棉纤维上,制备了同时具有杀菌、吸附金属离子双功能基的棉纤维。该材料可在50min 内完全杀灭大肠杆菌和金黄色葡萄球菌,具有快速、强效的杀菌能力。Annis 等[25]在合成抗菌材料的过程中添加了改性疏水性季铵阳离子纤维素醚,可抑制假单胞菌等微生物的生长。

王少敏[6]在硝化纤维素CN-1.15中引入带部分正电荷的季铵基团,制得的季铵型硝化纤维素可用于吸附肌酸肝(Cre)以治疗慢性肾功能衰竭。研究发现季铵型硝化纤维素的吸附性能(pH=11.0,吸附率为81%)优于广泛应用的临床口服球形多孔炭微粒吸附剂AS T-120,有望作为无毒、高效、pH值稳定且无明显副作用的治疗慢性肾功能衰竭的特异性口服Cre吸附材料。

此外,PQ-10还有望用作基因转染的基因载体。基因转染[26]是指将目的基因片断(DNA、RNA或反义核酸等)通过适宜技术输送到细胞浆或细胞核等部位。由于核酸相对分子质量大、水溶性高以及带有很强的负电荷,故不能通过细胞膜。因此,基因转染必须借助于一定的载体。Fayazpour 等[27]研究了PQ-10的DN A基因转染性能,将PQ-10的DN A基因转染性能与常用的基因载体聚乙烯亚胺(PE I)对比后发现,PQ-10能自发地与粒径200nm的DNA颗粒相互作用。通过凝胶电泳和荧光脱猝灭实验发现,PQ-10与DN A的作用力强于PEI,但其DNA基因转染性能比PEI 差。若对PQ-10分子的结构特点进行深入研究,将有望进一步增强它的DNA基因转染性能。

2.4 环境保护

我国印染行业废水排放量约占工业废水总排放量的1/10,其COD质量浓度能达到2000mg/L,印染废水的综合治理已成为一个急需解决的问题[28]。姚士芹等[29]以脱脂棉为原料与醚化剂CH PAC反应制备了阳离子纤维素吸附材料,改性后吸附材料对酸性嫩黄G、直接湖兰5B和酸性红B 的饱和吸附容量分别为1.13mm ol/g、1.01mm ol/g和0.94mm ol/g。马凤国等[28,30]以羧甲基纤维素接枝共聚聚丙烯酰胺,制备了季铵化阳离子树脂。研究发现,该树脂对以直接湖蓝5B、直接大红4BS为代表的水溶性直接染料的脱色率高达98%;对活性蓝P-3R、活性艳蓝R、活性黑B和活性红P2-B的脱色率达90%~98%。阳离子纤维素在处理高浓度染料废水方面具有很大潜力。

阳离子纤维素可用于水体中重金属Cr(Ⅵ)的去除。Wartelle等[31]以农副产品豆皮、蔗渣、玉米秸为原料,制得了季铵型阴离子交换树脂。以豆皮、蔗渣、玉米秸改性后的树脂对C rO42-的吸附量分别为1.97m mol/g、1.61mm ol/g和1.12mm ol/g。在中性条件下,对阴离子态A s、C r和Se的氧化物的竞争吸附研究发现,C rO42-比其它离子优先吸附。通过成本估算,该树脂的价格也远低于市场上的阴离子交换树脂QA-52和IRA-400。Abdel-H alim等[32]以木质纸浆为原料,与环氧氯丙烷和二甲胺反应制得了一种新型吸附剂,也可用于水溶液中C r(Ⅵ)的去除。对C r(Ⅵ)的吸附性能研究发现,p H值对吸附影响很大,在pH=3时,饱和吸附容量可达588.24mg/g。

水体中持久性有机污染物一直是环保水处理的难点。Alouloua等[33]首先将4种不同疏水链长(C12、C14、C16、C18)的阳离子表面活性剂吸附到洗净的纤维素上,并对酚类、有机氯和芳香族这些高毒性有机物进行吸附性能研究。改性后的纤维素对这些水溶性污染物的吸附能力大大增强,且表面活性剂的疏水链越长,吸附量越大。在最优化条件下,该材料对苯的饱和吸附量为390μm ol/L,对氯苯的饱和吸附量为310μm ol/L,对2-萘酚的饱和吸附量为290μm ol/ L。这些活性剂资源丰富,成本低廉,但吸附不牢固。之后Alou-loua等[34]又针对纤维素进行了化学改性,通过纤维素羟基的酯化反应接枝直链烷基克服了这个缺点。

表面活性剂每年全球产量约几百万吨,除用于居家用品如清洁剂和杀虫剂等,更多的用于工业加工,如造纸、采矿、日化用品和食物加工等。但这些物质通常会污染水体,且难以生物降解,对水生动植物造成危害。Rosó 等[35]以羟丙基纤维素与N-乙烯甲酰胺接枝共聚,合成了阳离子电解质,研究了其与典型阴离子表面活性剂十二烷基硫酸钠(SDS)之间的作用力。通过光散射和荧光光谱分析发现,该材料与SDS 之间作用力很强,较易形成聚合物/表面活性剂的复合物体系。该反应很灵敏,pH值影响较大,在pH=2.5和pH= 6.5时该体系的临界缔合浓度分别约为10-6mol/L和10-5 mol/L。Terada等[36]也做了阳离子羟乙基纤维素(Polym er JR-400)和疏水改性阳离子纤维素(Quat risof t LM-200)对SDS的相关吸附性能的研究,发现疏水性强的后者对SDS的吸附容量远大于前者,阳离子纤维素有望应用于水体中阴离子表面活性剂的处理。

3 展望

随着科学技术的发展,阳离子功能材料的需求量将越来越多,应用范围也越来越广,而人们对功能化材料的要求也越来越高,既要求功能性与经济性的统一,又必须符合环境和人体健康要求。阳离子纤维素在日化用品和印染的应用工艺方面已基本趋于成熟。现代医疗技术发展十分迅猛,绿色环保的阳离子纤维素在抗菌材料、生物医药等医学领域的研究将会得到广泛的应用。随着再生资源的日益短缺和诸多环境问题的不断恶化,人们的环保意识已逐渐增强。经改性后制得的季铵型阳离子纤维素带有较高密度的正电荷,作为一种新型吸附材料对含有磺酸基、羧基、羟基官能团的染料废水、有机中间体、表面活性剂等持久性污染物都有较大的饱和吸附容量,对带有共平面大分子结构的污染物也有较好的物理吸附,且具有吸附速度快、不污染环境、工艺简单、成本低廉等特点。因此季铵型阳离子纤维素必将成为环保领域中研究的热点。对于今后阳离子功能材料的研究可以从以下3方面着手。

(1)利用分子设计手段,采用生物合成技术和精细化学合成技术,合成出具有特定分子结构、链结构和超分子结构的新型阳离子纤维素功能材料,这是研究的主要发展方向。

(2)采用微波、超声等现代技术手段,进一步研究纤维素材料的物理和化学改性的新方法和新技术,在维持材料机械强度的基础上进一步提高材料的阳离子取代度,使正电荷更加集中,优化材料的功能性并拓宽其应用领域。

(3)加强阳离子纤维素在环保领域的应用,通过吸附动力学和热力学相关实验研究其对含有不同官能团和不同分子结构的持久性污染物的吸附规律和机理,为阳离子纤维素

在环保领域的实际应用提供基础性指导。

参考文献

1 陈殉,程凌燕,张玉梅,等.以离子液体为反应介质制备纤维素衍生物的研究进展[J].材料导报,2007,21(12):47

2 叶代勇,黄洪,傅和青,等.纤维素化学研究进展[J].化工学报,2006,57(8):1782

3 万顺,邵自强,谭惠民.羧甲基纤维素阳离子化衍生物的研究现状[J].纤维素科学与技术,2002,10(4):53

4 Liu Z T,Yang Y,et al.Study o n the catio nic modifica tion and dy eing o f ramie fiber[J].Cellulose,2007,14(4):337

5 H ashem M,H auser P,Smith B.Reactio n efficiency for cel-lulo se cationization using3-chlor o-2-hy drox ypro py l trime-thyl ammonium chloride[J].T ex t Res J,2003,73(1):1017 6 王少敏,于九皋.季铵型硝化纤维素的合成及应用[J].应用化学,2004,21(5):493

7 Schw arzinge r C,P feifer A,Schmidt H.De te rminatio n o f the nitro gen co nte nt o f ca tionic cellulose fibers by analytical py ro ly sis[J].M onatsh Chem,2002,133(1):1

8 Z ho u S Q,Xu C,Wang J,e t a l.Phase behavio r o f ca tionic hy drox yethy l cellulose-so dium dodecy l sulfa te mix tures: Effects of molecula r w eig ht and ethylene ox ide side chain length of po lyme rs[J].Lang muir,2004,20(20):8482

9 梁亚琴,胡志勇,曹端林.阳离子化羟乙基纤维素醚的合成与溶液性质[J].日用化学工业,2006,36(4):213

10Ko telnikov a N E,Panarin E F.Cellulo se modificatio n by biologically active sunbstances for bio medical applicatio ns [J].Ce llul Chem T echn,2005,39(5-6):437

11Liang J,K omaro v S,Hay ashi H,e t al.Recent trends in the decomposition o f chlo rinated aroma tic hydro ca rbo ns by ul-tr aso und ir radiatio n and F enton′s regent[J].J M ater Cy cles W aste M anag,2007,9(1):47

12Kumar V,Bhardwaj Y K,Jamdar S N,et al.P repara tion o f an anion-e xchang e abso rbent by the radiatio n-induced g raf-ting of vinylbenzy ltrimethy lammonium chlo ride onto co tton cellulo se and its a pplica tion for pro tein adsor ption[J].J A p-pl Polym Sci,2006,102(6):5512

13Anirudhan T S,Jalajamo ny S,et al.Improv ed per for mance o f a cellulo se-based anio n ex changer w ith tertia ry amine functionality fo r the adso rptio n o f chro mium(Ⅵ)fr om aqueo us solutions[J].Colloids Surf A,2009,335(1-3):107 14U nnitha n M R,V inod V P,A nirudhan T S.Synthesis, cha racterizatio n,and application a s a chro mium(Ⅵ)adso r-bent of amine-modified polyacry lamide-g rafted coconut coir pith[J].Ind Eng Chem Res,2004,43(9):2247

15So kker H H.G raf ted w oo d pulp containing quater nary am-mo nium g roup and its application in the remov al o f different

a nio ns f rom aqueous so lutio n[J].J A ppl Po ly m Sci,2007,

103(5):3120

16Chauhan G S,Singh B,D himan S K.Func tionalization o f po ly(4-v inyl py ridine)gr afted cellulo se by qua te rniza tion reactionsand a study o n the pr opertie s of postquaternized co-

po ly mers[J].J A ppl P olym Sci,2004,91(4):2454

17Gamez-Ga rcia M.Polycatio n substantivity to hair[J].I F-SCC,2001,4:99

18章杰.现代活性染料技术进展[J].印染,2004(2):37

19K itkulnumchai Y,A jav ako m A,et al.T reatment o f o xidized cellulo se fabric w ith chitosan and its surface ac tivity tow ards anionic r eactive dy es[J].Cellulose,2008,15(4):599

20Blackbur n R S,Burkinshaw S M.T reatment of cellulose w ith cationic,nucleo philic poly mer s to enable reactiv e dyeing at neutr al pH witho ut electro ly te additio n[J].J Ap-pl P oly m Sci,2003,89(4):1026

21L ewis D M著,郑敏译.活性染料的研究进展:化学和应用工艺[J].国外纺织技术,2002(2):33

22卢滇楠,周轩榕,邢晓东,等.表面接枝季铵盐型聚合物的纤维素纤维-灭菌机理研究[J].高分子学报,2004(1):107

23Xing X D,Wang X G,Zeng H B,e t al.Q ua te rnary ammo-nium salts(Q A S)g rafted cellulo se fiber with novel a nti-bac-terial functions[J].Polym P repr,2003,44(2):881

24王格慧,宋湛谦.含杀菌、吸附双功能基棉纤维的制备与性能[J].应用化学,2001,18(10):831

25A nnis I,G ar tner C D.Antimicrobial co mpo sitio n co mprising cationic polymer s:U S2005-730142P[P].2005-10-25

26陈海靓,吴伟,梁文权.脂质组分对阳离子脂质体介导的基因转染的影响[J].中国药学杂志,2006,41(3):232

27Fay azpour F,Lucas B,et al.Phy sico chemical and tr asfection pro per ties of catio nic hydr oxy ethylce llulose/DN A nano par ti-cles[J].Biomacro-mo lecules,2006,7(10):2856

28马凤国,谭惠民.季铵化羧甲基纤维素接枝聚丙烯酰对直接染料的吸附脱色性能[J].现代化工,2006,26(2):101

29姚士芹,施文健,陈肖云,等.季铵型纤维素的红外光谱及对持久性有机污染物的吸附特征[J].光谱学与光谱分析, 2009,29(9):2370

30马凤国,谭惠民.CM C-g-CP AM对活性染料的吸附脱色性能[J].印染,2006,32(15):14

31Wa rtelle L H,et al.Chro mate io n adsor ption by ag ricultural bypro ducts modified w ith dimethy lodihydr oxy ethylene ur ea and choline chloride[J].W ater Res,2005,39(13):2869

32A bdel-Halim E S,A bou-Okeil A,Hashem A.Adsor ption of Cr(Ⅵ)o xy anions onto mo dified wo od pulp[J].Po ly m P last T echn Eng,2006,45(1):71

33A lo ulou F,Bo ufi S,et al.Adsor ption of catio nic surfactants and subseque nt adsolubilization o f or ganic compounds o nto cellulo se fiber s[J].Collo id Po lym Sci,2004,283(3):344

34A lo uloua F,Bo ufi S,L abidi J.M odified cellulo se fibres for adso rptio n o f or ganic compound in aqueous so lutio n[J].Sep Purif T echn,2006,52(2):332

35Ro só K,e t al.Inte ractions o f a smart catio nic poly electr o-ly te ba sed on hy drox y pr opylcellulo se with an anionic surfac-tant[J].J Appl Po ly m Sci,2008,107(5):3184

36T erada E,et al.Adsor ption of cationic cellulo se de riva tive/

a nio nic surfactant complex es o nto solid surfaces.Ⅱ.Hy-

dro phobized silica surfaces[J].Lang muir,2004,20(16):69

(责任编辑 曾文婷)

功能高分子材料研究进展

功能高分子材料研究进展 摘要 功能高分子材料是高分子学科中的一个重要分支,它是研究各种功能性高分子材料的分子设计和合成、结构和性能关系以及作为新材料的应用技术,它的重要性在于所包含的每一类高分子都具有特殊的功能。它主要包括化学功能高分子材料、光功能高分子材料、电、磁功能高分子材料、声功能高分子材料、高分子液晶、医用高分子材料几部分,这一领域的研究主要包括研究分子结构、组成与形成各种特殊功能的关系,也就是从宏观乃至深入到微观,以及从半定量深入到定量,从化学组成和结构原理来阐述特殊功能的规律性,从而探索和合成出新的功能性材料。本文主要论述了在工程上应用较广和具有重要应用价值的一些功能高分子材料,如吸附分离功能高分子、反应型功能高分子、光功能高分子、电功能高分子、医用功能高分子、液晶高分子、高分子功能膜材料等。 关键词:高分子材料;功能高分子;功能材料; Abstract Functional polymer materials is an important branch of polymer science, it is the study of various functional polymer molecular design and synthesis of relationship between structure and properties and application technology as a new material. its importance is that contains every kind of polymer has special function it light functional polymer materials mainly include chemical functional polymer materials electric magnetic functional polymer materials acoustic functional polymer materials, polymer liquid crystal sections medical polymer materials, the research of this field mainly includes the study of the function of the molecular structure and formation of various sorts of special relationship, which is from the macro and go deep into the micro, and from the quantitative and semi-quantitative into from the chemical composition and structure principle to explain the special function of regularity, to explore and this paper mainly discusses the synthesis of new functional materials. Keywords:high polymer materials; functional polymer; functional Materials;

微晶纤维素USP

Microcrystalline Cellulose Cellulose [9004-34-6]. DEFINITION Microcrystalline Cellulose is purified, partially depolymerized cellulose prepared by treating alpha cellulose, obtained as a pulp from fibrous plant material, with mineral acids. IDENTIFICATION ? A. Procedure Iodinated zinc chloride solution: Dissolve 20 g of zinc chloride and 6.5 g of potassium iodide in 10.5 mL of water. Add 0.5 g of iodine, and shake for 15 min. Sample: 10 mg Analysis: Place the Sample on a watch glass, and disperse in 2 mL of Iodinated zinc chloride solution. Acceptance criteria: The substance takes on a violet-blue color. 氯化锌碘试液:取氯化锌20g、碘化钾6.5g,加水10.5ml。再加碘0.5g,振摇15min。 测定:取本品10mg,置表面皿上,加氯化锌碘试液2ml。 标准规定:应变为蓝紫色。 Change to read: ? B. Procedure Sample: 1.3 g of Microcrystalline Cellulose, accurately weighed to 0.1 mg Analysis: Transfer the Sample to a 125-mL conical flask. Add 25.0 mL of water and 25.0 mL of 1.0 M cupriethylenediamine hydroxide solution. Immediately purge the solution with nitrogen, insert the stopper, and shake on a wrist-action shaker, or other suitable mechanical shaker, until completely dissolved. Transfer an appropriate volume of the Sample solution to a calibrated number 150 Cannon-Fenske, or equivalent, viscometer. Allow the solution to equilibrate at 25 ±0.1 for NLT 5 min. Time the flow between the two marks on the viscometer, and record the flow time, t1, in s. 取本品1.3g,精密称定,置125mL具塞锥形瓶中,精密加入水25ml,再精密加入1mol/L 双氢氧化乙二胺铜溶液25ml,立即通入氮气以排除瓶中空气,密塞,强力振摇,使微晶纤维素溶解;取适量,置25±0.1℃水浴中,约5min后,移至刻度为150的坎农-芬斯克毛细管粘度计或同等的黏度计内(毛细管内径为0.7 ~1.0mm,选用适宜粘度计常数K1 ),照黏度测定法,于25±0.1℃水浴中测定。记录供试品溶液流经黏度计上下两刻度时的时间t1,按下式计算供试品溶液的运动黏度。 Calculate the kinematic viscosity, (KV)1, of the Microcrystalline Cellulose taken: 微晶纤维素的运动黏度(KV)1按下式计算: Result = t1 × k1 t1 = flow time (s) k1 = viscometer constant (see Viscosity—Capillary Methods 911 (CN 1-May-2015) ) Obtain the flow time, t2, for 0.5 M cupriethylenediamine hydroxide solutions using a number 100 Cannon-Fenske, or equivalent, viscometer.

无机纳米相_纳米纤维素杂化纳米材料的研究进展

第48卷第1期 2014年1月生物质化学工程Biomass Chemical Engineering Vol.48No.1 Jan.2014 doi :10.3969/j.issn.1673-5854.2014.01.006 ·综述评论———生物质材料· 无机纳米相-纳米纤维素杂化纳米材料的研究进展 收稿日期:2013-09-16 基金项目:国家自然科学基金(31000276);福建省高校杰出青年人才基金(JA11071);福建省高校新世纪优秀人才基金(JA12088); 福建农林大学杰出青年人才基金(xjq201208) 作者简介:吴巧妹(1987—),女,福建三明人, 硕士生,主要从事植物纳米纤维素复合材料的研究*通讯作者:陈燕丹,博士,副教授,硕士生导师,主要研究方向是生物质材料的制备与功能化设计;E- mail :fjaucyd@163.com 。吴巧妹,陈燕丹*,黄彪,陈学榕 (福建农林大学材料工程学院,福建福州350002) 摘要:分别介绍了近年来利用贵金属纳米粒子、无机陶瓷纳米相(包括金属氧化物、金属硫化物、黏土类、纳米羟基磷灰石和纳米碳酸钙)、磁性纳米纤维素、 碳纳米相与纳米纤维素进行复合的研究进展,并建议加强对纳米纤维素基杂化材料的基础理论研究,改进现有制备方法并开发出更加节能减耗的新方法,以及更多极具应用前景的无机纳米材料实现优势互补的分子级复合,定向设计合成出适用不同场合、满足不同需求的高性能、多功能新型先进复合材料。 关键词:纳米纤维素;杂化纳米材料;无机纳米粒子;碳纳米相 中图分类号:TQ35;O636.1文献标识码:A 文章编号:1673- 5854(2014)01-0028-09Advances in Inorganic-nanocellulose Hybrid Nanomaterials WU Qiao-mei ,CHEN Yan-dan ,HUANG Biao ,CHEN Xue-rong (College of Materials Engineering ,Fujian Agriculture and Forestry University ,Fuzhou 350002,China ) Abstract :This paper summarized the recent R&D progresses on nanocellulose hybrid composites incorporated with noble metal nanoparticles ,nano ceramic compounds (including metal oxides ,metal sulfides ,nano-clay ,nano-hydroxyapatite ,nano-calcium carbonate ),magnetic nanoparticles and nano-carbon materials ,respectively.An overview on the challenge and development prospects of the nanocellulose-based hybrid composites was discussed ,too. Key words :nanocellulose ;hybrid nanocomposites ;inorganic nanoparticles ;nano-carbon materials 无机-有机杂化纳米材料是继单组分材料、复合材料和梯度功能材料之后的第四代新材料[1]。纳米纤维素是一种新型的生物纳米材料,具有特殊的结构特点和优良的性能。无机纳米相-纳米纤维素杂化纳米材料因兼具或超越了纳米纤维素和无机纳米材料单一组分的性能优点,而成为纳米纤维素复合材料的研究热点。利用物理、化学、生物方法制备获得的天然纳米纤维素依次为微纤丝化纤维素(MFC )或纳纤丝化纤维素(NFC )、纳米晶体纤维素(NCC )和细菌纳米纤维素(BNC )。以纳米纤维素作为结构增强相和兼具生物大分子模板效应的天然高分子基体,在绿色高性能纳米复合材料的设计组装中日益扮演重要角色。在过去的十几年里,国内外针对纳米纤维素的制备、表征、表面修饰及其复合材料开展了较多的研究工作[2-4]。目前,交叉结合纳米科学、化学、物理学、材料学、生物学及仿生学等学科,利用共混法、溶胶-凝胶法、插层法、模板组装法、非共价弱相互作用复合法和仿生矿化等方法,进一步将纳米纤维素优越的机械性能与功能性无机纳米材料进行优势互补,构筑结构可塑、稳定,集轻质和强韧于一身的新型无机纳米相-纳米纤维素杂化纳米材料,正在成为国内外科学家竞相开展的研究课题。本文主要针对国内外纳米纤维素与各种无机纳米相杂化复合,制备功能型纳米纤维素新材料的研究进展进行综述。

微晶纤维素制备、应用及市场前景的研究

微晶纤维素制备、应用及市场前景的研究 曲阜天利药用辅料有限公司生产技术部,山东曲阜273105 摘要:纤维素是自然界中最丰富的天然高分子材料。对解决目前世界面临的资源短缺、环境恶化、可持续发展等问题具有重要意义。纤维素在一定条件下进行酸水解,当聚合度下降到趋于平衡时所得到的产品称为微晶纤维素( micro.crystalline cellulose,MCC)。微晶纤维素为白色或类白色、无臭、无味的多孔性微晶状颗粒或粉末,具有高度可变形性,是可自由流动的纤维素晶体组成的天然聚合物,通常 MCC的粒径大小一般在20-80微米之间,它广泛用于食品、医药及其他工业领域。 关键词:微晶纤维素;MCC;制备;应用;市场前景。 Microcrystalline cellulose preparation, application and market prospect of research QuFuTianLi medicinal materials co., LTD., production technology department shandong qufu 273105 Abstract:Cellulose is the most abundant natural polymer materials in the nature。To solve the shortage of resources in the world, the problem such as environmental degradation, sustainable development is of great significance。Cellulose under certain conditions with acid hydrolysis,When the polymerization degree decline to tend to balance the resulting product is called the microcrystalline cellulose(micro.crystalline cellulose,MCC)。Microcrystalline cellulose is white or kind of white, odorless, tasteless porous micro crystalline granular or powder,With high deformability,Is the free flow of natural polymer composed of cellulose crystal,Usually the particle size of MCC generally between 20 to 80 microns,It is widely used in food, medicine and other industrial fields。 Key words: microcrystalline cellulose, MCC. Preparation; Application; Market prospect 正文:微晶纤维素[1]为白色或类白色无臭、无味的多孔性微晶状颗粒或粉末,具有高度可变形性 ,对主药具有较大的容纳性 ,可作为片剂的填充剂、干燥粘合剂 ,同时具有崩解作用 ,广泛应用于医药、食品、轻工业等国民经济各部门。 在生产微晶纤维素时国外主要采用木材为原材料[2],先收集木浆纤维素酸部分水解后的结晶部分,再经干燥粉碎而得到聚合度约200的结晶纤维素,我国棉花产量较高,成本较木材低,因此国内多以棉浆为原材料。决定微晶纤维素性能的主要因素[3]是制备方法和产品的质量控制标准。随着科技的发展,为了更大程

新型功能材料发展趋势

新型功能材料发展趋势 功能材料是一大类具有特殊电、磁、光、声、热、力、化学以及生物功能的新型材料,是信息技术、生物技术、能源技术等高技术领域和国防建设的重要基础材料,同时也对改造某些传统产业,如农业、化工、建材等起着重要作用。功能材料种类繁多,用途广泛,正在形成一个规模宏大的高技术产业群,有着十分广阔的市场前景和极为重要的战略意义。功能材料按使用性能分,可分为微电子材料、光电子材料、传感器材料、信息材料、生物医用材料、生态环境材料、能源材料和机敏(智能)材料。由于我们已把电子信息材料单独作为一类新材料领域,所以这里所指的新型功能材料是除电子信息材料以外的主要功能材料。 功能材料是新材料领域的核心,对高新技术的发展起着重要的推动和支撑作用,在全球新材料研究领域中,功能材料约占 85 % 。随着信息社会的到来,特种功能材料对高新技术的发展起着重要的推动和支撑作用,是二十一世纪信息、生物、能源、环保、空间等高技术领域的关键材料,成为世界各国新材料领域研究发展的重点,也是世界各国高技术发展中战略竞争的热点。 鉴于功能材料的重要地位,世界各国均十分重视功能材料技术的研究。 1989年美国200多位科学家撰写了《90年代的材料科学与材料工程》报告,建议政府支持的6类材料中有5类属于功能材料。从1995年至2001年每两年更新一次的《美国国家关键技术》报告中,特种功能材料和制品技术占了很大的比例。2001年日本文部省科学技术政策研究所发布的第七次技术预测研究报告中列出了影响未来的100项重要课题,一半以上的课题为新材料或依赖于新材料发展的课题,而其中绝大部分均为功能材料。欧盟的第六框架计划和韩国的国家计划等

纤维素的结构及性质

一.结构 纤维素是一种重要的多糖,它是植物细胞支撑物质的材料,是自然界最非丰富的生物质资源。在我们的提取对象-农作物秸秆中的含量达到450-460g/kg。纤维素的结构确定为β-D-葡萄糖单元经β-(1→4)苷键连接而成的直链多聚 体,其结构中没有分支。纤维素的化学式:C 6H 10 O 5 化学结构的实验分子式为 (C 6H 10 O 5 ) n 早在20世纪20年代,就证明了纤维素由纯的脱水D-葡萄糖的重复 单元所组成,也已证明重复单元是纤维二糖。纤维素中碳、氢、氧三种元素的比例是:碳含量为44.44%,氢含量为6.17%,氧含量为49.39%。一般认为纤维素分子约由8000~12000个左右的葡萄糖残基所构成。 O O O O O O O O O 1→4)苷键β-D-葡萄糖 纤维素分子的部分结构(碳上所连羟基和氢省略)二.天然纤维素的原料的特征 做为陆生植物的骨架材料,亿万年的长期历史进化使植物纤维具有非常强的自我保护功能。其三类主要成分-纤维素、半纤维素和木质素本身均为具有复杂空间结构的高分子化合物,它们相互结合形成复杂的超分子化合物,并进一步形成各种各样的植物细胞壁结构。纤维素分子规则排列、聚集成束,由此决定了细胞壁的构架,在纤丝构架之间充满了半纤维素和木质素。天然纤维素被有效利用的最大障碍是它被难以降解的木质素所包被。 纤维素和半纤维素或木质素分子之间的结合主要依赖于氢键,半纤维素和木质素之间除了氢键外还存在着化学健的结合,致使半纤维素和木质素之间的化学健结合主要在半纤维素分子支链上的半乳糖基和阿拉伯糖基与木质素之间。 表:植物细胞壁中纤维素、半纤维素、和木质素的结构和化学组成

微晶纤维素的研究进展_何耀良

基金项目:广西科学基金资助项目(桂科自0991024Z);广西培养新世纪学术和技术带头人专项资金资助项目(2004224) 收稿日期:2009-06-19 综述与进展 微晶纤维素的研究进展 何耀良1,廖小新2,3,黄科林1,6,吴 睿4,王 5 ,刘宇宏1,黄尚顺1,李卫国1 (1.广西化工研究院,广西南宁 530001;2.广西大学商学院,广西南宁 530004; 3.广西桂林市建筑设计研究院,广西桂林 541002; 4.广西民族大学化学与生态工程学院,广西南宁 530006; 5.广西大学化学化工学院,广西南宁 530004; 6.广西新晶科技有限公司,广西南宁 530001) 摘 要:微晶纤维素是天然纤维素水解至极限聚合度得到的一种聚合物,广泛用于食品、医药及其他工业领域,本文综述了国内外微晶纤维素的制备研究进展。 关键词:微晶纤维素;研究进展;制备 中图分类号:T Q 352 文献标识码:A 文章编号:1671-9905(2010)01-0012-05 微晶纤维素(Microcrystalline cellulose,M CC)是天然纤维素经稀酸水解至极限聚合度(LOOP)的可自由流动的极细微的短棒状或粉末状多孔状颗粒,颜色为白色或近白色,无臭、无味,颗粒大小一般在20~80L m,极限聚合度(LODP)在15~375;不具纤维性而流动性极强。不溶于水、稀酸、有机溶剂和油脂,在稀碱溶液中部分溶解、润涨,在羧甲基化、乙酰化、酯化过程中具有较高的反应性能。由于具有较低聚合度和较大的比表面积等特殊性质,微晶纤维素被广泛应用于医药、食品、化妆品以及轻化工行业。 自1875年Girard 首次将纤维素稀酸水解的固体产物命名为/水解纤维素0后,100多年以来,微晶纤维素的研究,一直是纤维素高分子领域中的一个热点课题。美国粘胶纤维公司于1957年研究出微晶纤维素的生产方法,于1961年获得原始专利并工业化生产。美国FMC 公司于1961年研究开发生产微晶纤维素,目前已经是全美甚至世界上最大生产公司[1]。我国在微晶纤维素研究方面起步较晚,但从20世纪70年代开始我国在微晶纤维素方面生产已初见成效,20世纪80年代国内厂家生产的微晶纤维素逐步取代国外如西方石油公司、日本等公司的产品,到20世纪90年代我国研制的微晶纤维素质量达到国外同类产品的质量标准。 随着科技的发展,为了更大程度降低成本,有效利用资源和加强环保,人们也在不断研究采用更好的原料和更好的方法来生产微晶纤维素,并进一步探究其可能的用途。本文主要根据国内外的有关文献报道综述了利用不同原料制备微晶纤维素的研究进展。 1 国内微晶纤维素研究进展 111 甘蔗渣微晶纤维素的制备研究 甘蔗渣纤维素的聚合度(DP)一般在500~700之间,水解后的平衡聚合度(DP)在100~200之间。甘蔗渣由于灰分高、白度低(灰分为112%~118%,白度为70%~80%),因此要用它来制备微晶纤维素必须进行增白和降低灰分处理。罗素娟[2]选择盐酸(工业级)来催化水解制备微晶纤维素,其流程见图1。其中固液比为1B 15,水解进行35min,即达到平衡聚合度。研究表明以甘蔗渣浆粕为原料生产微晶纤维素是可行的,产品质量符合标准要求,其中得率为82118%,聚合度为120,其颗粒数量分布较均匀,粒径较小,中位粒径1112L m,小于25L m 的产品占9211%,水分2142%,灰分0113%,白度90198%,经应用试验,效果良好,母液可以循环使用。生产废水经处理后达到排放要求。 第39卷 第1期2010年1月 化 工 技 术 与 开 发Technology &Development of Chemical Industry Vol 139 No 11 Jan 12010

功能材料课程简介

课程编号:02014925 课程名称:功能材料/Functional Materials 学分:2 学时:32 开课单位:材料科学与工程学院金属材料工程系 课程负责人:张庆安 先修课程:物理化学、材料科学基础 考核方式:开卷笔试 主要教材:功能材料概论,殷景华等主编,哈尔滨工业大学出版社,2002.9. 参考书目:现代功能材料,陈玉安等编,重庆大学出版社,2008.6. 课程简介: 《功能材料》是材料科学与工程等材料类专业的一门专业课,重点介绍具有特殊电、磁、光、声、热、力、化学以及生物功能的新型功能材料发展状况、基本原理以及应用情况。通过本课程学习,使学生对特种功能材料,如新能源材料、形状记忆合金、非晶态合金、磁性材料、纳米材料、半导体材料、超导材料等的研究现状及其应用有一定的了解,掌握各种特种功能材料的基本原理。

课程编号:02014925 课程名称:功能材料/Functional Materials 学分:2 学时:32 开课单位:材料科学与工程学院金属材料系 适用专业:材料科学与工程等材料类专业 先修课程:物理化学、材料科学基础 一、课程性质、目的与任务 《功能材料》是金属材料工程专业选修课,重点介绍当今各种特种功能材料的发展状况、基本原理以及应用情况。通过本课程学习,使学生对特种功能材料,如新能源贮氢材料、形状记忆合金、非晶态合金、磁性材料、纳米材料、半导体材料、超导材料等的研究现状及其应用有一定的了解,掌握各种特种功能材料性能的基本原理。 二、教学内容、基本要求及学时分配(按章节列出内容要求学时等,实验上机项目要列在课程内容一栏)

(教学基本要求:A-熟练掌握;B-掌握;C-了解) 三、能力培养要求 了解各种功能材料的基本原理、用途和制备方法,开阔学生视野,拓宽知识面。 四、教学方法与教学手段 以课堂讲授为主,采用多媒体教学手段进行教学。 五、教材与主要参考书目 1.功能材料概论,殷景华等主编,哈尔滨工业大学出版社,2002.9. 2.现代功能材料,陈玉安等编,重庆大学出版社,2008.6. 六、考核方式 开卷笔试。 七、大纲编写的依据与说明 本大纲依据“安徽工业大学材料类专业本科指导性培养方案(2016版)”编写。

微晶纤维素

微晶纤维素是一种白色、无臭、无味、多孔、易流动粉末,不溶于水、烯酸、氢氧化钠溶液及一般有机溶剂。聚合度约220,结晶度高。为高度多孔颗粒或粉末。 一、微晶纤维素主要有三大特性: 1、吸附性:为多孔性微细粉末,可以吸附其他物质如水、油及药物等。比表面积随无定形 区比例的增大而增大。 2、分散性:微晶纤维素在水中经剧烈搅拌,易于分散生成奶油般的凝胶体。胶态微晶纤维 素因含有亲水性分散剂,在水中能形成稳定的悬浮液,程不透明的“奶油”状或凝胶状。 3、反应性能:在稀碱液中少部分溶解,大部分膨化,表现出较高的反应性能。 二、微晶纤维素在国内应用领域: 1、医药卫生:①微晶纤维素分子之间存在氢键,受压时氢键缔合,故具有高度的可压性, 常被用作于粘合剂;压制的片剂遇到液体后,水分迅速进入含有微晶纤维素的片剂内部,氢键即刻断裂,因此可做为崩解剂。此外微晶纤维素的密度较低,比溶剂较大,粒度分布较宽,又常被用作稀释剂。②医药行业中MCC主要被用在两个方面,一是利用他在水中强搅拌下易于形成凝胶的特性,用于制备膏状或悬浮状类药物;二是利用其成型作用,而用于医用压片的赋形剂。目前医药行业中压片赋形剂可分为两类,一是传统方法使用淀粉赋形剂;第二类是利用新型的纤维素赋形剂。使用淀粉的工艺必须经过造粒阶段,而使用MCC则因为其流动性好,本身具有一定的粘合性直接压片,因此能工艺简化,生产效率得以提高,例外使用MCC还有服用后崩解效果好、药效快、分散好等优点,因此使用MCC在压片赋形剂上得以广泛推广应用。 2、微晶纤维素在食品工业领域的应用:

微晶纤维素作为食品添加剂的主要作用有:泡沫稳定性;高温稳定性;液体的胶化剂; 悬浮剂;乳化稳定性等。其中乳化稳定性是微晶纤维素在食品工业领域最主要的功能。 3、微晶纤维素在轻工化工领域的应用: ①陶瓷业:陶瓷厂在陶土中添加微晶纤维素,不仅能增湿坯强度,提高半成品率,而 且焙烧时烧除微晶纤维质使陶瓷具有质轻透明的特色。 ②玻璃业:微晶纤维素胶液能在玻璃表面形成极黏的膜涂层,能为玻璃纤维提供纤维 素的表层,使其能用一般的纺织机器加工。 ③涂料业:在涂料中添加微晶纤维素,能使涂料具有触变性,以控制涂料的粘度、流 动性及涂刷性能。 4、微晶纤维素在日常化学工业中的应用: ①某些等级的微晶纤维素用于化妆及皮肤护理品的制造,甚至包含尿素这样难以掺和 的配料,同起耐热稳定剂的作用。 ②微晶纤维素与细砂、高岭土等混合,可制成含磨料的卫浴、厨房及手部皮肤的清洁 剂。 ③将微晶纤维素与羧甲基纤维素钠盐、有机物及水混合,可制成服装洗涤过程的保护 性胶体。 三、医药行业中微晶纤维素用于粉末直接压片的特点: ①可以使易吸潮的药物(土霉素、食母生、酵母片等)避免湿热的阴影,克服粘冲、 劣片的现象,有利于提高片剂的质量。

新型功能材料论文

新型功能材料——红外材料的性能及应用 前景 作者: 摘要:红外辐射位于电磁波谱的中央,其波长覆盖四个数量级。在整个电磁波 谱中,不管是哪一个波段,其传播速度都是光速c,波长为λ(厘米),每秒振动数称为频率ν(秒-1)。 1. 红外辐射材料 理论上,在0K以上时,任何物体均可辐射红外线,故红外线是一种热辐射,有时也叫热红外。但工程上,红外辐射材料只指能吸收热物体辐射而发射大量红外线的材料。红外辐射材料可分为热型、“发光”型和热—“发光”混合型三类。红外加热技术主要采用热型红外辐射材料。 (1)红外材料的特性 红外辐射材料的辐射特性决定于材料的温度和发射率。而发射率是红外辐射材料的重要特征值,它是相对于热平衡辐射体的概念。热平衡辐射体是指当一个物体向周围发射辐射时,同时也吸收周围物体所发射的辐射能,当物体与外界进行能量交换慢到使物体在任何短时间内仍保持确定温度时,该过程可以看作是平衡的。 当红外辐射辐射到任何一种材料的表面上时,一部分能量被吸收,一部分能量被反射,还有一部分能量被透过。由于能量守恒,吸收率、反射率、透过率之间有如下关系 根据基尔霍夫定律,任何辐射体的辐射出射度和吸收率之比相同并恒等于同温度下黑体的辐射出射度,且只和温度有关,可得: 式中 为发射率,也叫比辐射率。这说明影响材料反射、透射和辐射性能的有关因素必然会在其发射率的变化规律中反映出来。材料发出辐射是因组成材料的原子、分子或离子体系在不同能量状态间跃迁产生的。 这种发出的辐射在短波段主要与其电子的跃迁有关,在长波段则与其晶格振动特性有关。红外加热技术中的多数辐射材料,发出辐射的机制是由于分子转动

或振动而伴随着电偶矩的变化而产生的辐射。因此,组成材料的元素、化学键形式、晶体结构以及晶体中存在缺陷等因素都将对材料的发射率发生影响 (a) 材料本身结构对其发射率的影响 一般说金属导电体的值较小,电介质材料的值较高。存在这种差异的原因与构成金属和电介质材料的带电粒子及其运动性直接有关。带电粒子的特性不同,材料的电性和发射红外辐射的性能就不一样,而这往往与材料的晶体结构有关。 例如:氧化铝、氧化硅等电介质材料属于离子型晶体,它主要靠正、负离子的静电力结合在一起;碳化硅、硼化锆、氮化锆等材料属于共价晶体,它们是靠两个原子各自贡献自旋相反的电子,共同参与两个原子的束缚作用;铝等金属晶体的结构可以看作是正离子晶格内自由电子把它们约束在一起。显然,在晶格中存在杂质、缺陷时,都会影响晶体的结构参数,使材料的发射率发生变化。 (b) 材料的发射率随辐射波长的变化 如前所述,多数红外辐射材料,其发射红外线的性能,在短波主要与电子在价带至导带间的跃迁有关;在长波段主要与晶格振动有关。晶格振动频率取决于晶体结构、组成晶体的元素的原子量及化学键特性。图7.1-1 纯SiC的单色发射率与波长的关系 图7.1-1为600℃和1025℃情况下碳化硅的单色发射率曲线。由图可见,SiC在12μm附近有一个显著的发射率特征带,这是Si-C基态振动的位置。 (c) 原材料预处理工艺对发射率的影响 同一种原材料因预处理工艺条件不同而有不同的发射串值。例如,经700℃空气气氛处理与经1400℃煤气气氛处理的氧化钛的常温发射率分别为0.81和0.86。

植物纤维素化学试题

浙江理工大学 二O一O年硕士学位研究生招生入学考试试题 考试科目:植物纤维化学代码:963 (*请考生在答题纸上答题,在此试题纸上答题无效) 一、名词解释(3×5=15分) 1. 亲电试剂 2. 玻璃转化点 3. 结晶度 4. 剥皮反应 5. —纤维素 二、选择题(2×10=20分(1-6单选,7-10多选)) 1. 针叶材的管胞约占木质部细胞总容积的二-1。 A 45-50%B90-95%C60-70%D30-50% 2. 我们所得到的分离木素中二-2木素和原本木素结构是一样的。 A磨木B Brauns C 硫酸 D 没有一种 3. 无论是碱法还是亚硫酸盐法制浆、脱木素化学过程主要是一种二-3反应。 A 亲电 B 氧化 C 磺化 D 亲核 4. 用NaClO2处理无抽提物木粉、使木素被氧化而除去,剩下的产物为:二-4。 A 综纤维素 B β-纤维素 C 克-贝纤维素 D 氧化纤维素 5. 碱法制浆中、部分木素结构单元的α-醚键断裂后形成二-5中间产物。 A 亚甲基醌 B 正碳离子 C 酚型结构 D 非酚型结构 6. 木素生物合成过程中、不属于首先合成的木素结构单元是:二-6。 A 香豆醇 B 紫丁香醇 C 松柏醇 D 芥子醇 7. 在酸性亚硫酸盐制浆中、木素的缩合方式主要有:二-7。 A Cβ-C5 B Cα-C6 C Cα-C1 D Cβ-C1 E Cβ-C2 8. 半纤维素上的功能基主要有:二-8。 A 羰基 B 羧基 C 乙酰基 D 羟基 E 甲氧基

9. 半纤维素又可称为:二-9。 A 非纤维素的碳水化合物 B 木聚糖 C 结壳物质 D 填充物质 E 骨架物质 10. 一般树皮都含有较多的二-10,故不宜造纸。 A 灰分 B 鞣质 C 木栓质 D 果胶质 E 木素 三、判断题(2×10=20分,正确的打“T”,错误的打“F”) 1. 纤维素单位晶胞的Meyer-Misch模型和Blackwell模型的主要区别在于前者没有考虑纤维素的椅式构象和分子内氢键。 2. 一般来说,吡喃式配糖化物中,β型的酸水解速率低于α型的。 3. 各种碱对纤维素的润胀随着碱浓度的增大,其润胀能力增大。 4. 纤维素的氢键对纤维素纤维及纸张的性质影响不大。 5. 木材在碱法蒸煮过程中木素与氢氧化钠的反应,非酚型结构如在α-碳原子上连有OH基的β-芳基醚键也可以断裂,形成环氧化合物的中间物以及苯环上芳基甲基醚键断裂。 6. 在木素大分子中,大约有60%-70%的苯丙烷单元是以醚键的形式联接到相邻的单元上的,其余30%-40%的结构单元之间以碳-碳键联接。 7. 木材在碱法蒸煮过程中,木素与氢氧化钠的反应首先通过木素大分子中酚型结构基团的α-芳基醚键、α-烷基醚键断裂,形成亚甲基醌中间物。 8. 针叶木的半纤维素主要是己糖,而阔叶木的半纤维素主要是戊糖。 9. 超过纤维饱和点再增加的水称为饱和水。 10. 从木素浓度来看:次生壁>复合胞间层> 细胞角隅胞间层。 四、填空题(每空1×25=25分) 1. 木素分子中存在多种功能基,如(四-1 )、(四-2 )、(四-3 )等,这些功能基影响着木素的化学性质和反应性能。 2. 使原料中的木素溶出转入溶液,(四-4 )的同时,还必须(四-5 ),才能达到目的。 3. 木素分子的生色基团(发色基团)有:(四-6 )、(四-7 )、(四-8 )、(四-9 )等。 4.纤维素分子量和聚合度的测定方法有(四-10 )、(四-11 )、(四-12 )等。(三种即可) 5. 半纤维素的碱性降解包括(四-13 )和(四-14 )。 6. 针叶木的有机溶剂抽出物主要成分是(四-15 ),阔叶木的有机溶剂抽出物主要成分是(四-16 ),而草类的有机溶剂抽出物主要成分是(四-17 )。 7. 木素的化学反应类型有:(四-18 )和(四-19 )。

微晶纤维素2015版中国药典标准

微晶纤维素 Weijing Xianweisu Microcrystalline Cellulose C 6n H 10n+2O 5n+1 [9004-34-6] 本品系含纤维素植物的纤维浆制得的α-纤维素,在无机酸的作用下部分解聚,纯化而得。 【性状】本品为白色或类白色粉末或颗粒状粉末;无臭,无味。 本品在水、乙醇、乙醚、稀硫酸或5%氢氧化钠溶液中几乎不溶。 【鉴别】(1)取本品lO mg,置表面皿上,加氣化锌碘试液2ml,即变蓝色。 (2)取本品约1.3g ,精密称定,置具塞锥形瓶中,精密加25ml ,振摇使微晶纤维素分散并润湿,通入氮气以排除瓶中的空气,在保持通氮气的情况下,精密加lmol/L 双氢氧化乙二胺铜溶液25ml ,除去氮气管,密塞,强力振摇,使微晶纤维素溶解,作为供试品溶液;取适量,置25℃士0.1℃ :水浴中,约5分钟后,移至乌氏黏度计内(毛细管内径为 0.7?1.0mm ,选用适宜黏度计常数),照黏度测定法(通则 0633第二法),于25℃士0.1℃ 水浴中测定。记录供试品溶液流经黏度计上下两刻度时的时间A ,按下式计算供试品溶液的运动黏度ν1: ν1=t 1 × K 1 分别精密量取水和lmol/L 双氢氧化乙二胺铜溶液各25ml ,混匀,作为空白溶液,取适量,置25℃士0.1℃水浴中,约5分钟后,移至乌氏黏度计内(毛细管内径为0.5?0.6mm,黏度计常数约为0.01),照黏度测定法(通则0633第二法),于25℃士0.1℃水浴中测定。记录空白溶液流经黏度计上下两刻度时的时间按下式计算空白溶液的运动黏度v2: ν1=t 2× K 2 照下式计算微晶纤维素的相对黏度: ηrel =ν1/ν2 根据计算所得的相对黏度值(ηrel ),査附表,得〔特性黏数[>](ml/g)和浓度C(g/100ml)的乘积〕,计算聚合度(P),应不得过350。 式中m 为供试品取样量,g ,以干燥品计算。

微晶纤维素的研究进展

微晶纤维素的研究进展

微晶纤维素的研究进展 高分子材料2班刘卓君 20080402B020 摘要:微晶纤维素是可自由流动的纤维素晶体组成的天然聚合物,它是天然纤维素经稀酸水解并经一系列处理后得到的极限聚合度的产物。广泛用于食品、医药及其他工业领域,本文综述了微晶纤维素的特性、理化性质、制备方法以及国内外微晶纤维素的研究进展。 关键词:微晶纤维素;结晶度;聚合度;可压性;流动性;制备;研究进展 正文:微晶纤维素(MCC)是由天然纤维素经稀无机酸水解达到极限聚合度的极细微的白色短棒状或无定形结晶粉末,无臭、无味。颗粒大小一般在20-80微米,极限聚合度(L0DP)在15~375;不具纤维性而流动性极强。不溶于水、稀酸、有机溶剂和油脂,在稀碱溶液中部分溶解、润涨,在羧甲基化、乙酰化、酯化过程中具有较高的反应性能。由于具有较低聚合度和较大的比表面积等特殊性质,微晶纤维素被广泛应用于医药、食品、化妆品以及轻化工行业。

微晶纤维素有两种主要形式:细粉末和胶体状。前者用于吸附剂或粘合剂,后者作为液体中的分散剂。粉末状微晶纤维素的应用范围是作为抗结块剂,它有防结块和帮助流动的作用。另外,微晶纤维素还是食品中非营养部分,用作健康食品中的食用纤维。作为功能食用纤维,微晶纤维素可起到诸多保健作用。微晶纤维素有吸油特性,所以粉末化的微晶纤维素还被用作香精和香料油的载体。另外,它常被用于某些挤出食品的助流剂。胶体状微晶纤维素的多功能性表现在:乳化和泡沫稳定性;高温下稳定性;非营养性填充物和增稠剂;液体的稳定和胶化剂;改善食品结构;悬浮剂;冷冻甜食中控制冰晶形成。 随着科技的发展,为了更大程度降低成本,有效利用资源和加强环保,人们也在不断研究采用更好的原料和更好的方法来生产微晶纤维素,并进一步探究其可能的用途。 1.微晶纤维素的理化性质 MCC 的用途广泛,用以描述的指标很多,主要有聚合度、结晶度、粒度、吸水值、润湿热、比表面积、填积密度、过滤指数和特性粘数等。

纤维素结构

纤维素结构 structure of cellulose 包括纤维素的化学结构和物理结构。 纤维素的化学结构纤维素是由D-吡喃型葡萄糖基(失水葡萄糖)组成。简单分子式 为[kg2](C H10O);化学结构式可用下二式表示: 霍沃思式是由许多D-葡萄糖基(1-5结环),藉1-4,β-型联结连接起来的,而且连接在环上碳原子两端的OH和H位置不相同,所以具有不同的性质。式中为聚合度。在天然纤维素中,聚合度可达10000左右;再生纤维素的聚合度通常为200~800。在一个样品中,各个高分子的聚合度可以不同,具有多分散性。 [1045-05] 椅式由于内旋转作用,使分子中原子的几何排列不断发生变化,产生了各种内旋转异构体,称为分子链的构象。纤维素高分子中,6位上的碳-氧键绕5和6位之间的碳-碳键旋转时,相对于5位上的碳-氧键和5位与4位之间的碳-氧键可以有三种不同的构象。如以g表示旁式,t表示反式,则三种构象为gt、tg、和gg(图1[C(6位)上O H基团的 构象]H基团的构象" class=image>)。多数人认为,天然纤维素是gt构象,再生纤维素是tg构象。 [1045-06] 在纤维素分子链中,存在着氢键。这种氢键把链中的O(6位上的氧)与O2'以及O与

O5'连接起来使整个高分子链成为带状,从而使它具有较高的刚性。在砌入晶格以后, 一个高分子链的O与相邻高分子的O之间也能生成链间氢键(图2[纤维素高分子的链中 和链间氢键])。 纤维素的物理结构晶胞及其参数具有一定构象的纤维素高分子链按一定的秩序堆砌,便成为纤维素的微晶体,微晶体的组成单元称为晶胞。代表晶胞尺寸的参数可以从纤维素的宽角X射线图象(图3[纤维素的宽角X射线纤维图 象])直接算出。 在纤维素中存在着化学组成相同,而单元晶胞不同的同质多晶体(结晶变体),常见的结晶变体有四种,即纤维素Ⅰ、Ⅱ、Ⅲ、Ⅳ。四种结晶变体的晶胞参数见表[纤维素的各种结晶变体的晶胞参

微晶纤维素简介

片剂常用辅料——微晶纤维素(MCC)简介 北京大学药学院微晶纤维素( Microcrystalline cellulose, MCC) 是天然纤维素经稀酸水解至极限聚合度( LOOP) 的可自由流动的极细微的短棒状或粉末状多孔状颗粒,颜色为白色或近白色, 无臭、无味, 颗粒大小一般在20~ 80 L m, 极限聚合度( LODP) 在15~ 375; 不具纤维性而流动性极强。不溶于水、稀酸、有机溶剂和油脂, 在稀碱溶液中部分溶解、润涨, 在羧甲基化、乙酰化、酯化过程中具有较高的反应性能。由于具有较低聚合度和较大的比表面积等特殊性质, 微晶纤维素被广泛应用于医药、食品、化妆品以及轻化工行业。1 评价微晶纤维素性质的物化指标有很多。常用的主要有结晶度、聚合度、结晶形态、吸水值、润湿热、粒度、容重、比表值、流动性、凝胶性能、反应性能、学成分等。2在制药工业中,微晶纤维素常用作吸附剂、助悬剂、稀释剂、崩解剂。微晶纤维素广泛应用于药物制剂,主要在口服片剂和胶囊中用作稀释剂和粘合剂,不仅可用于湿法制粒也可用于干法直接压片。还有一定的润滑和崩解作用,在片剂制备中非常有用。 由于微晶纤维素分子之间存在氢键,受压时氢键缔合,故具有高度的可压性,,常被用作于黏合剂;压制的片剂遇到液体后,,水分迅速进入含有微晶纤维素的片剂内部, 氢键即刻断裂, 所以可作为崩解剂。因此, 它是片剂生产中广泛使用的一种辅料, 能够提高片剂的硬度。例如,在制备利福平药片中可用MCC与淀粉(6.25:1质量比) 和各种原料混合均匀后直接压片, 产品在lm in 内崩散成雾状. 而且在有效期内含量不变,并能很好地提高药物稳定性。又如, 由于加人微晶纤维素, 醋酸泼尼松与醋酸黄连素(盐酸小劈碱) 片剂的溶出度提高到80% 以上。用微晶纤维素做辅料压片时不需经过传统的造粒过程, 例如在制备咳必清药片中由于加人了MCC , 解决了咳必清湿法造粒压片易吸潮而出现的严重黏冲现象, 并且崩解迅速。 微晶纤维素也可用作药品的缓释剂。缓释过程是由活性物质进人载体的多孔结构. 活性物质被分子间氢键包含, 干燥后活性物质被固定。活性物质释放时由于水在聚合物载体的毛细管系统内扩散引起润胀, 载体经基和被固定的活性物质之间的化合键被破坏, 活性物质缓慢地释放出来。 微晶纤维素粉末在水中能形成稳定的分散体系, 将其与药物配合可制成奶油状或悬浮状的药液, 同时还可用作胶囊剂。微晶纤维素在水中经强力搅拌生成凝胶,也可用于制造膏 1何耀良,廖小新,黄科林,吴睿等微晶纤维素的研究进展化工技术与开发2010 年1 月 2曹永梅,黄科林等微晶纤维素的性质、应用及市场前景企业科技与发展2009年第12 期

相关主题
文本预览
相关文档 最新文档