当前位置:文档之家› 发电机励磁系统的数学模型教学文稿

发电机励磁系统的数学模型教学文稿

发电机励磁系统的数学模型教学文稿
发电机励磁系统的数学模型教学文稿

发电机励磁系统的数

学模型

课程设计报告

课程名称电力系统自动装置原理设计题目发电机励磁系统数学建模

及PID控制仿真

设计时间2016-2017学年第一学期专业年级电气133班

姓名姚晓

学号 2012012154

提交时间 2016年12月30日

成绩

指导教师陈帝伊谭亲跃

水利与建筑工程学院

发电机励磁系统数学建模及PID控制仿真

摘要:本文主要进行了发电机励磁系统的数学建模和PID控制仿真。励磁系统在电力系统的规划与控制领域都有非常重要的作用,精确的模型结构与参数是选择有效控制手段和整个电力系统仿真准确性的基础。文中通过对励磁系统建模及仿真的研究,在整理系统稳定性判断理论发展的基础上,运用MATLAB 软件仿真,论证了PID励磁调节可有效地改进励磁控制品质,仿真试验是调整励磁系统参数的有效措施。

关键字:电力系统、励磁系统、根轨迹、PID、仿真

目录

第一章绪论 (5)

1.1本课题研究意义 (5)

1.2本文主要内容 (6)

第二章发电机励磁系统的数学模型 (8)

2.1励磁系统数学模型的发展 (8)

2.2发电机励磁系统原理与分类 (9)

2.3发电机励磁系统的数学模型 (11)

2.3.1励磁机的传递函数 (11)

2.3.2励磁调节器各单元的传递函数 (12)

2.3.3同步发电机的传递函数 (14)

2.3.4励磁稳定器 (14)

2.4励磁控制系统的传递函数 (15)

第三章励磁控制系统的稳定性 (16)

3.1传统方法绘制根轨迹 (16)

3.2用MATLAB绘制根轨迹 (19)

第四章 PID在发电机励磁系统中的应用 (21)

4.1同步发电机的励磁系统的动态指标 (21)

4.2无PID调节的励磁系统 (21)

4.2.1源程序 (22)

4.2.2数值计算结果 (24)

4.3有PID调节的励磁系统 (25)

4.3.1源程序 (26)

4.3.2数值计算结果 (28)

第五章总结与体会 (31)

参考文献 (32)

第一章绪论

1.1本课题研究意义

供给同步发电机励磁电流的电源及其附属设备统称为励磁系统。它一般由励磁功率单元和励磁调节器两个主要部分组成。励磁功率单元向同步发电机转子提供励磁电流;而励磁调节器则根据输入信号和给定的调节准则控制励磁功率单元的输出。励磁系统的自动励磁调节器对提高电力系统并联机组的稳定性具有相当大的作用。尤其是现代电力系统的发展导致机组稳定极限降低的趋势,也促使励磁技术不断发展。在电力系统正常运行或事故运行中,同步发电机的励磁控制系统起着重要的作用。优良的励磁控制系统不仅可以保证发电机可靠运行,提供合格的电能,而且还可有效地提高系统的技术指标。

励磁控制系统承担着如下重要任务:(1)维持发电机端电压在给定值,当发电机负荷发生变化时,通过调节磁场的强弱来恒定机端电压。(2)合理分配并列运行机组之间的无功分配。(3)提高电力系统的稳定性,包括静态稳定性和暂态稳定性及动态稳定性。(4)改善电力系统的运行条件。(5)水轮发电机组的强行减磁[1]。

同步发电机的励磁控制系统是一个自动控制系统。一般说来,对于自动控制系统的基本要求是:首先,系统必须是稳定的;其次是系统的暂态性能应满足生产工艺所要求的暂态性能指标;其三是系统的稳态误差要满足生产的工艺要求[2]。其中,稳定性是控制系统的首要条件,一个不稳定的系统是无法完成预期控制任务

的。因此,如何判别一个系统是否稳定以及怎样改善其稳定性乃是系统分析与设计的一个首要问题。

在经典控制理论中,对于单输入单输出线形定常系统,应用劳斯判据和胡维茨判据等代数方法间接判定系统的稳定性,而用根轨迹法及频域中的奈奎斯特判据和波德图则是更为有效的方法,它不仅用于判定系统是否稳定,还能指明改善系统稳定性的方向。但这些方法在绘图和计算时需要花费大量的时间和精力。MATLAB是1980年推出的用于工程计算和数值分析的交互式语言。经过多年的完善,它已成为当前最受流行的软件,集数值分析、矩阵运算、信号处理和图形显示于一体[3]。MATLAB有很强的绘图功能,只要写两三句代码就能得到所需要的图形。

1.2本文主要内容

本课题通过对电力系统的基本知识的学习,和以往电力系统励磁控制方法的学习、总结、研究,提出了基于matlab的同步发电机励磁控制系统的仿真,文章的主要内容是:

第一章,具体说明了同步发电机励磁控制系统的重要作用及其稳定性研究的意义。

第二章,通过查阅资料和之前所学过自动控制原理的基本知识,构建本文所采用的同步发电机励磁控系统数学模型,即建立了分析发电机励磁系统稳定性的传递函数。

第三章,利用控制理论中的根轨迹法研究励磁系统的稳定性。

第四章, 采用文中建立的模型,进行仿真研究数值分析,是本文的重点。

第五章, 对本文所做工作进行了总结并指出了本文存在的一些不足之处和下一步需要继续工作的方向。

第二章发电机励磁系统的数学模型

2.1励磁系统数学模型的发展

励磁控制对电力系统输送功率的能力和电力系统稳定性有着重要的影响。人们对励磁控制系统的认识,是随着电力系统的不断扩大、计算机技术、控制理论等的不断进步而逐渐加深的。

在20世纪30年代,北美创建了第一个大型水电站,长距离的输电线以及慢速的动作的继电器和线路开关,使得稳定问题突出。当时,前苏联、美国和加拿大等国都对此进行了深入的研究,但都没有考虑控制系统的影响,发电机是利用暂态电抗表示的,这一方法一直沿用了许多年。

从40年代到50年代,前苏联和北美的学者在研究励磁调节器对系统的影响时,用一阶惯性环节的比例放大器来模拟实际的励磁调节系统。到了50年代末期,数字计算机的出现,使计算速度得到了很大的提高,虽然当时仍用暂态电抗后的恒定电势来表示发电机,但却可以计算更多的发电机和更大规模的电网。

进入60年代后,随着计算程序和计算机技术的发展,人们用更符合实际、更精确的发电机模型代替了以前的恒定电势,但同时却出现了许多不同标准的数学模型。在此基础上,美国电气电子工程师学会(IEEE)电力生产委员会励磁系统分委会进行了大量的工作,提出了用于模拟当时存在的各种不同励磁控制系统的计算机模型和通用的专业术语,并于1968年在IEEE的学术刊物上发表。

60年代以后对励磁系统模型的研究有了更大的发展。因为随着时代的进步出现了许多新型的励磁调节器,也采用了新的控制策略,已有的模型已不能满足要求,新的模型就不断被开发出来。为此,IEEE于1981年又推出了新一版的励磁系统数学模型。它比1968年版的数学模型更加详细、准确,同时也推出了新的交流励磁机模型。1992年,IEEE的标准委员会再次对模型进行了更新,提出了附加控制特性的模型,并用标准推荐的准则将这些模型规格化。

我国在80年代前一直采用E恒定的模型,没有励磁系统模型。N80年代初,中国电力科学研究院在电力系统分析综合程序里,开发了两种励磁模型,不但能模拟一般的直流励磁机励磁系统,也能模拟自并励和它励可控硅励磁系统。由于IEEE的模型并不完全适合我国的情况,因此,中国电机工程学会大电机专委会励磁分委会,于1989年成立了励磁系统数学模型专家小组,对国内的大型发电机励磁系统的数学模型进行了深入、广泛的研究,在1991年发表了适合于我国电力系统稳定计算的励磁系统数学模型。又在1997年颁布了《同步电机励磁系统电力系统研究用模型》,此后,电科院又结合实际,提出了一组更为通用的新型励磁系统模型,EFM-FV共10种励磁模型。新模型吸收了IEEE模型的精华,并溶入了新的东西,形成了自己独特的风格。这些模型已被编进了中国版的BPA暂态稳定程序和PSASP电力系统分析综合程序里,成为电力分析计算的基础[4]。

2.2发电机励磁系统原理与分类

根据我国国家标准,同步发电机励磁系统是指“向同步发电机提供励磁的所有部件的总和”。励磁系统分为直流励磁机励磁系统、交流励磁机励磁系统和静止励磁机励磁系统三类。静止励磁机系统即是(晶闸管)励磁系统、与电力系

统稳定计算有关的部件有励磁机、功率整流器(可控和不可控)、自动电压调节器(AVR )、电力系统稳定器(PSS )及各种限制和保护。例如过磁通(伏赫)限制、低励磁限制和保护,过励磁限制和保护,高起始励磁系统的励磁机磁场电流瞬时过流限制等。励磁系统数学模型由各个部件的模型组合而成。发电机励磁系统的调节原理框图如图2-1所示。

按不同的分类标准,励磁系统有不同的种类。按励磁系统电源供给方式的不同,励磁系统可分为三类:

(1)直流励磁机励磁系统:包括他励和自励励磁系统。

(2)交流励磁机励磁系统:又可分为他励静止整流器方式和他励旋转整流器方式。这一类励磁系统采用与主机同轴的交流电机作为交流励磁电源,经可控硅整流后供给励磁绕组励磁电流,由于励磁电源来自主机以外的独立电源,故又称他励励磁系统。

(3)静止励磁系统:又可分为交流侧自并励方式和交流侧串并联自复励方式。

2.3发电机励磁系统的数学模型

通常将励磁功率单元(励磁电源)和励磁调节器叫做励磁系统,而同步发电

机和励磁系统组成同步发电机励磁控制系统。建立同步发电机励磁控制系统的

数学模型,是为了分析它本身的稳定性和动、静态性能,以及励磁系统的整定

调试;特别是为了分析计算励磁控制系统对电力系统稳定性的影响,附加励磁

控制(PSS)的设计及其参数的整定调试。

为简单起见,我们建立直流励磁机励磁系统的传递函数。

2.3.1励磁机的传递函数

以他励直流励磁机为例,假设其转速恒定。

励磁调节器的输出加于励磁绕组输

入端、输出为励磁机电压,如图2-2所

示。励磁机绕组两端的电压方程为

(2-1)

式中—励磁机励磁绕组的磁链

图2-2他励直流励磁机—励磁机励磁绕组的电阻

—励磁机励磁绕组的电流

—励磁机励磁绕组的输入电

用磁通代换磁链,并且假定磁通与N匝键链,则可得

(2-2)

对应不同的运行点,采用饱和系数S E来表达i EE与u EE之间的非线性关系。

通常用图2-3所示的励磁机的饱和特性曲线来计及其饱和影响。定义饱和函数

B

B

A

E I

I

I

S

-

= (2-3)

S E随运行点而变,时非线性的,在整个运行范围内可用某一线性函数来近似的表示。如果气隙特性的斜率是1/G,则可写

出励磁机电压与励磁电流间的关系式,即

G

U

S

i

E

E

EE

)

1(+

= (2-4)

在恒定转速下,电压与气隙磁通成正比,即

a

E

K

= (2-5)

又有

a

E

φ)

1(+

= (2-6)

故可得

EE

E

EE

E

E

E

u

U

GR

S

dt

du

T=

+

+)

1( (2-7)

表示为典型的传递函数为

(2-8)

所以他励直流机的传递函数框图如图2-4所示。

2.3.2励磁调节器各单元的传递函数

励磁调节器主要由、综合放大及功率放大等单元组成。这里以电子模拟式励磁调节器为例。

(一)电压测量比较单元的传递函数

图2-4他励直流机的传递函数

图2-3饱和特性曲

电压测量比较单元由测量变压器、整流滤波电路及测量比较电路组成。其中电压测量的整流滤波电路略有延时,可用一阶惯性环节来近似描述。比较电路一般可以忽略它们的延时。因此,测量比较电路的传递函数可表示为

(2-9)

式中—电压比例系数;

—电压测量回路的时间常数。

(二)综合放大单元的传递函数

综合放大单元在在电子型调节器中是由运算放大器组成,在电磁型调节器中则采用磁放大器。它们的传递函数通常都可视为放大系数为的一阶惯性环节,其传递函数为

(2-10)

式中—电压放大系数;

—放大器的时间常数。

对于运算放大器,由于其响应快,可近似地认为。此外,放大器具有一定的工作范围,输出电压

综合放大单元的框图和工作特性如图2-5所示。

(三)功率放大单元的传递函数

图2-5励磁控制系统结构框图

电子型励磁调节器的功率放大单元是晶闸管整流器。包括触发器在内的晶闸管整流器的传递函数为

(2-11)

可展开为泰勒级数,略去高次项得到简化后的传递函数

(2-12)

2.3.3同步发电机的传递函数

同步发电机是电力系统中物理过程最复杂的的元件,既有机械运动过程又有电磁暂态过程,并且包含变量众多。因此只能是根据某种目的,按照某种要求来建立相应的数学模型,这里要建立的是分析发电机励磁控制系统所用的传递函数,故发电机的近似传递函数为:

(2-13)

表示发电机的放大倍数,表示其时间常数,忽略饱和现象。

2.3.4励磁稳定器

为了提高励磁控制系统的稳定性,改善其调节品质,通常设有串、并联校正单元。串联校正单元又叫做PID调节器。

模拟式PID传递函数为:

(2-14)

为积分环节(亦称滞后环节),它可以提高稳态增益,保证发电机的电压精度。为微分环节(亦称超前环节),可以提高励磁电压初始上升速度,低频震荡区增益较低,可以提高励磁控制系统的稳定性。

数字式PID传递函数为:

(2-15)

并联校正单元又称为励磁系统稳定器

(ESS ),其模型如图2-6所示。其输入信号可以

是发电机的励磁电压(仅用于有刷励磁系统)或交

图2-6并联校正单元

流励磁机的励磁电流 (有刷或无刷系统均有使用)。输出信号的嵌入点可因调节器的不同而不同。

并联校正单元模型参数有两个和。都应通过测量或辨识取得。

2.4励磁控制系统的传递函数

求得励磁控制系统各单元的传递函数后,可组成励磁控制系统的传递函数框图,如图2-7所示。

图2-7 励磁控制系统的传递函数框图

忽略励磁机的饱和特性和放大器的饱和限制,则由图2-7可得

()()()()()()()R

G A R d E E A R G A REF G K K K s T s T s T K s T s T K K s U s U ++'++++=11110 (2-16) 上式即为空载时同步发电机励磁控制系统的传递函数。

第三章 励磁控制系统的稳定性

1948年,W.R.Evans 提出了一种求特征根的简单方法,并且在控制系统的分析与设计中得到广泛的应用。这一方法不直接求解特征方程,用作图的方法表示特征方程的根与系统某一参数的全部数值关系,当这一参数取特定值时,对应的特征根可在上述关系图中找到。这种方法叫根轨迹法。根轨迹法具有直观的特点,利用系统的根轨迹可以分析结构和参数已知的闭环系统的稳定性和瞬态响应特性,还可分析参数变化对系统性能的影响。在设计线性控制系统时,可以根据对系统性能指标的要求确定可调整参数以及系统开环零极点的位置,即根轨迹法可以用于系统的分析与综合。

3.1传统方法绘制根轨迹

设某励磁控系统的参数如下:

A T =0s ,'0d T =8.38s ,E T =0.69s ,R T =0.04s ,E K =1,G K =1

由图2-7得系统的开环传递函数为

)

25)(45.1)(12.0(32.4)()(+++=s s s K K K s H s G R G A )

25)(45.1)(12.0(+++=s s s K 其中=K R A G K K K 32.4

开环极点为:s=-0.12, s=-1.45, s=-25

为了确定根轨迹的形状,根据根轨迹绘制原则,进行以下计算步骤:

1、根轨迹的连续性

电气工程及其自动化专业本科毕业论文

电气工程及其自动化专业 本科毕业论文 Last revision date: 13 December 2020.

可控励磁发电系统综合性实验的设计 摘要 现代电力系统的发展,对同步发电机励磁控制提出了更高要求。发电机在正常工作情况下,负载总在不断地变化着。而不同容量的负载,以及负载的不同功率因数,对同步发电机励磁磁场的反映作用是不同的,要维持同步发电机端电压为一定水平,就必须根据负载的大小及负载的性质随时调节同步发电机的励磁。在各类电站中,励磁系统是保证同步发电机正常工作,提高电网稳定水平的关键设备。同步发电机励磁的自动控制在保证电能质量、无功功率的合理分配和提高电力系统运行的可靠性方面都起着十分重要的意义。 本文主要对可控励磁发电系统进行了实验设计,首先对可控励磁发电系统做了相关简介并探讨了可控励磁发电系统的国内外未来发展形势。本文着重在可控励磁系统中的过励限制方面作了重点分析,并设计了相关的一个过励限制特性试验,对过励限制系统加深了了解。 关键词电力系统;励磁控制系统;过励限制

Integrated power system excitation control design of experiment Abstract The development of modern power system, synchronous generator excitation control on a higher requirement. Generators in normal circumstances, the total load is constantly changing. And different load capacity and load of different power factor, synchronous generator excitation field on the reflection of the role is different, to maintain the synchronous generator terminal voltage to a certain level, it must be based on load size and the nature of the load regulation at any time synchronization power generator. In various power plant, synchronous generator excitation system is to ensure that work to improve the level of power and stability of key equipment. Synchronous generator excitation control in power quality assurance, rational allocation of reactive power and improve reliability of power system operations and play an important role. This paper mainly controlled experimental excitation power system design, first generation system as a controllable excitation profile and the related power system excitation control of the future development of the situation at home and abroad. This article focuses on the controlled excitation system overexcited restrictions were analyzed, and design-related characteristics of an overexcited limit test, the system had exciting limit to deepen understanding. Keywords:power system;excitation control system;overexcited limit

励磁系统建模危险点预控措施表(新版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 励磁系统建模危险点预控措施表 (新版)

励磁系统建模危险点预控措施表(新版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 作业名称 励磁系统建模 序号 危险点 控制措施 检查执行情况(工作负责人填写) 1 人员思想状态不稳 班组长或工作负责人要对言行、情绪表现非正常状况的成员进行沟通、谈心,帮助消除或平息思想上的不正常波动,保持良好的工作心态,否则不能进入生产现场进行作业 2 人员精神状态不佳 班组长或工作负责人要观察、了解成员精神状态,对酒后上班、

睡眠不足、过度劳累、健康欠佳等成员严禁进入工作现场3 工作票 1、工作票上所填写的安全措施应完善; 2、工作票上的安全措施确已正确执行,并确认无误; 3、工作负责人应向工作班成员交待安全注意事项; 4、外协人员或厂家工作人员必须在监护下进行作业。 4 人身触电 1.试验设备摆放时应轻起轻放,避免碰撞。 2.远离带电设备,对高压设备保持一定的距离(10kV及以下的带电设备应保持0.7米的安全的距离、20kV/35kV应保持1.0米的安全距离、110kV及以下的应保持1.5米的安全距离、220kV应保持 3.00米得安全距离) 3.接线时严格参照试验接线图。 4.接线完成以后由试验负责人检查核实。 5.严禁试验中人员私自改动接地线 5

发电机静态励磁系统

发电机静态励磁系统 发电机静态励磁系统(参考EXC —9000 型)发电机励磁系统的主要任务是向发电机的励磁绕组提供一个可调的直流电流,以满足发电机正常运行的需要。无论在稳定运行或暂态过程中,同步发电机运行状态在很大程度上与励磁有关。对发电机的励磁进行的调节和控制,不仅可以保证发电机运行的可靠性和稳定性,而且可以提高发电机及其电力系统的技术经济指标。 WX21Z —085LLT 150MW 发电机采用的是静态励磁方式,也称为机端自并励励磁系统,指的是发电机出口处装设有一台降压的励磁变压器通过晶闸管向发电机提供受控的励磁电流,其显著特点是整个励磁装置中没有旋转的励磁机部分,电源来自静止的变压器所以又称为静态励磁系统。这种系统没有转动部分,励磁系统接线相对简单,维护简单,造价低,而且是一种高起始响应系统。但这种系统也有缺点,当发生发电机机端短路时,励磁电压会严重下降,以至完全消失。实际证明,在短路开始的0.5S 内,静态励磁与它励方式的励磁能力是很接近的,只是在短路0.5S 以后才明显下降。因此,只要发变组装设了动作时间小于0.5S 的快速保护,就能满足静态励磁系统的要求。 自动励磁调节器概述自动励磁调节器是发电机励磁控制系统中的控制设备,其基本任务是检测和综合励磁控制系统运行状态的信息,即发电机的端电压、静子电流、转子电流、有功功率、无功功率、发电机

频率等,并产生相应的控制信号,控制励磁功率单元的输出,以达到自动调节励磁、满足发电机及系统安全稳定运行的需要。自动励磁系统主要作用分析 1、控制发电机机端电压 在系统正常运行条件下,励磁调节系统供给同步发电机所需要的励磁功率,根据不同的负荷情况,自动调节励磁电流,以维持机端或系统某点电压在给定水平上。根据发电机的外特性曲线可知,造成发电机空载电势与端电压差值的主要原因是负荷电流中无功电流的大小,如果发电机的励磁电流保持不变时,当负荷的无功电流越大时,端电压降低也越严重,发电机的外特性曲线就是保持发电机转速不变,发电机的负载和负载功率因数为常数的情况下,发电机端电压随负载变化的曲线。我们所说的负载一共可以分为三类,即电感性负载、电容性负载、电阻性负载,发电机在接带这三种不同的负载时所对应的外特性曲线是不一样的,容性负载的增大使发电机端电压上升,而阻性和感性负载的增大使发电机端电压下降。从电力系统实际情况来看,负载都是阻性与感性的一种综合,当发电机接带这种综合负载时,发电机电枢反应的结果是将发电机气隙磁场削弱并扭曲,这就必然会使发电机的感应电势减小,因而使发电机的端电压降低,就必须增加转子励磁电流以增强主磁场,从而补偿由于电枢反应引起气隙磁场被削弱的程度。 2、控制无功功率分配发电机输出的无功功率和励磁电流有关,调节励磁可改变发电机输出的无功功率。在实际运行中,改变励磁会使端电压和输出无功功率都发生变化,但端电压变化较小,而输出的无

发电机自并励励磁自动控制系统方案

辽宁工业大学 电力系统自动化课程设计<论文) 题目:发电机自并励励磁自动控制系统设计<4) 院<系):电气项目学院 专业班级:电气085 学号: 学生姓名: 指导教师:<签字) 起止时间:2018.12.26—2018.01.06

课程设计<论文)任务及评语 院<系):电气项目学院教研室:电气项目及其自动化 注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算 摘要

同步发电机励磁控制系统承担着调节发电机输出电压、保障同步发电机稳定运行的重要责任。优良的励磁控制系统不仅可以保证发电机运行的可靠性和稳定性,为电网提供合格的电能,而且还可有效地改善电力系统静态与暂态稳定性。要实现这个目的,就必须根据负载的大小和性质随时调节发电机的励磁电流。 本文采用自励系统中接线最简单的自并励励磁系统,针对同步发电机论述了自并励励磁自动控制系统的特点及发展现状,分析了自并励励磁自动控制的原理和实现方法,提出了基于AT89C51单片机的同步发电机自并励自动控制系统的设计思路,对于所设计的单片机最小系统经过经济性与技术性的比较后,选用了按键电平复位电路和内部时钟电路,并在此基础上设计了励磁装置的硬件系统和软件系统。最后又对整个系统进行了MATLAB仿真,以用来对比运用算法所得结果与仿真所得结果是否在误差允许范围内。 关键词:自并励励磁自动控制系统;AT89C51单片机;MATLAB仿真 目录 第1章绪论1 1.1励磁控制系统简况1 1.2本文主要内容1 第2章发电机自并励励磁自动控制系统硬件设计3 2.1发电机自并励励磁自动控制系统总体设计方案3 2.2单片机最小系统设计3 2.3发电机自并励励磁自动控制系统模拟量检测电路设计6 2.4直流稳压电源电路设计7 第3章自并励励磁控制系统软件设计10 3.1软件实现功能总述10 3.2流程图设计10 3.3程序清单12 第4章 MATLAB建模仿真分析13 4.1M ATLAB软件简介13 4.2系统仿真模型的设计13 第5章课程设计总结16

同步电动机励磁系统常见故障分析

同步电动机励磁系统常见故障分析 作者:陆业志 本文结合KGLF11型励磁装置,对其在运行中的常见故障进行分析。 1 常见故障分析 (1)开机时调节6W,励磁电流电压无输出。 原因分析:励磁电流电压无输出,肯定是晶闸管无触发脉冲信号,而六组脉冲电路同时无触发脉冲很可能是移相插件接触不良,或者同步电源变压器4T损坏,造成没有移相给定电压加到六组脉冲电路的1V1基极回路上,从而六组脉冲电路无脉冲输出导致晶闸管不导通。 (2)励磁电压高而励磁电流偏低。 原因分析:这是个别触发脉冲消失或是个别晶闸管损坏的缘故。个别触发脉冲消失可能是脉冲插件接触不良。另外图1中三极管1V1、单极晶体管2VU及小晶闸管9VT损坏,或者是电容2C严重漏电或开路。如果主回路中晶闸管1VT~6VT中有某一个开路或是触发极失灵,同样会导致输出励磁电流偏低的现象。 (3)合励磁电路主开关时,励磁电流即有输出。 原因分析:这是由于图1所示脉冲电路中的三极管1V1集电极-发射极之间漏电,即使移相电路还未送来正确的控制电压,也会导致1C充电到2VU导通的程度。2VU即输出触发使小晶闸管9VT导通,2C经9VT放电而发出脉冲令1VT、3VT、6VT之一触发导通,使转子励磁电路中流过直流电流。 (4)同步电动机起动时,励磁不能自行投入。 原因分析:励磁不能自行投入。肯定是自动投励通道电路中断或工作不正常,因此可能是投励插件与插座间接触不良,或是图2所示投励电路中的三极管3V1、单结晶体管4VU工作不正常,电容5C漏电、电位器W′损坏。另外是移相插件同样有接触不良现象,或者是图3所示移相电路的小晶闸管10VT损坏等等。 (5)运行过程中励磁电流电压上下波动。 原因分析:引起励磁电流电压输出不稳的原因很多,主要有1)脉冲插件可能存在接触不良,造成个别触发脉冲时有时无。2)图1所示脉冲电路的电位器4W松动,使三极管1V1电流负反馈发生变化,造成放大器工作点不稳定,从而影响晶闸管主回路输出的稳定性。另外,如果电容2C漏电或单结晶体管2VU及三极管1V1性能不良,也会引起触发脉冲相位移动。3)图3所示移相电路的电位器6W松动或接触不良,将会使移相控制电压Ed间歇性消失,引起励磁电流电压输出大幅度波动。另外,如果稳压管7VS、8VS损坏,都会使Ey随电网电压波动而波动,使Ed输出波动,造成晶闸管主回路直流输出不稳。 (6)励磁装置输出电压调不到零位。

励磁系统建模试验方案资料

励磁系统建模试验方案

目录 1.试验目的 (1) 2.试验内容 (1) 3.试验依据 (1) 4.试验条件 (1) 5.设备概况及技术数据 (2) 6.试验内容 (4) 7.试验分工 (5) 8.环境、职业健康安全风险因素辨识和控制措施 (6) 9.试验设备 (6)

1.试验目的 对被测试机组的励磁系统进行频率响应以及动态响应测试,确认励磁系统模型参数和特性,为电力系统分析计算提供可信的模型数据。 2.试验内容 2.1励磁系统模型传递函数静态验证试验。 2.2发电机空载特性测量及空载额定状态下定子电压等各物理量的测量。 2.3发电机时间常数测量。 2.4 A VR比例放大倍数测量试验。 2.5系统动态响应测试(阶跃试验)。 2.6 20%大干扰阶跃试验。 2.7对发电机进行频率响应测试。 3.试验依据 Q/GDW142-2012《同步发电机励磁系统建模导则》 设备制造厂供货资料及有关设计图纸、说明书。 4.试验条件 4.1资料准备 励磁调节器制造厂应提供AVR和PSS模型和参数。 电机制造厂应提供发电机的有关参数和特性曲线。 4.2设备状态要求 被试验发电机组励磁系统已完成全部常规的检查和试验,调节器无异常,具备开机条件。

5.设备概况及技术数据 容量为135MW,励磁系统形式为自并励励磁方式,励磁调节器采用南瑞电控公司生产的NES6100型数字励磁调节器。其励磁系统结构框图如图1: 图1 励磁系统框图 5.1励磁调节器模型: 图2 励磁调节器模型

5.2发电机: 生产厂家:南京汽轮机电机厂 型号:QFR-135-2 额定视在功率:158.8 MV A 额定有功功率:135 MW 额定定子电压:13.8 kV 额定定子电流:6645 A 额定功率因数:0.85 额定励磁电流:893 A 额定励磁电压:403 V 额定空载励磁电流:328 A 额定空载励磁电压:147 V 额定转速:3000 r/min 发电机轴系(发电机+燃气轮机)转动惯量(飞轮转矩):18.91t.m2 转子绕组电阻:0.3073Ω(15℃)0.3811Ω(75℃), 0.4179Ω(105℃试验值) 转子绕组电感: 直轴同步电抗Xd(非饱和值/饱和值):219.04/197.15 直轴瞬变电抗Xd’(非饱和值/饱和值):30.02/27.02 直轴超瞬变电抗Xd”(非饱和值/饱和值):19.63/17.67 横轴同步电抗Xq(非饱和值/饱和值):205.96/182.36 横轴瞬变电抗Xq’(非饱和值/饱和值):36.03/32.42 横轴超瞬变电抗Xq”(非饱和值/饱和值):23.1/20.79 直轴开路瞬变时间常数Td0’ : 9.8 秒 横轴开路瞬变时间常数Tq0’ : 1.089秒 直轴开路超瞬变时间常数Td0” : 0.06秒 横轴开路超瞬变时间常数Tq0” : 0.054秒

同步发电机励磁系统的建模及仿真

同步发电机励磁系统的建模及仿真 发电机的三分之一故障来自于同步发电机的励磁系统,所以研究同步发电机励磁系统对于电力系统有举足轻重的作用。所谓同步发电机励磁系统就是向励磁绕组供给励磁电流的整套装置。按照励磁功率产生的方式不同,同步发电机的励磁方式可以分为自励式和他励式两种。自励式是将发电机发出的交流电经过整流后输送到同步发电机的励磁侧,而他励式是同步发电机的励磁侧单独采用直流励磁机或交流励磁机作为电源供电。 以单机―无穷大系统为模型进行研究。单机―无穷大系统模型是简单电力系统分析中最简单最常用的研究对象,其示意图如图1所示,该仿真系统由同步励磁发电机、变压器、双回路输电线和无穷大系统构成。其中,同步励磁发电机参数为200MVA、13800V、112.5r/min、50Hz,变压器参数为Y―Y型210MVA。 图1单机―无穷大系统示意图 建模及其仿真步骤如下。 1.选择模块 首先建立一个Simulink 模型窗口,然后根据系统的描述选择合适的模块添加至模型窗口中,建立模型所需的模块如下:

1)选择Machines 模块库下的Synchronous Machine pu Standard 模块作为同步励磁发电机、Excitation System 模块作为励磁控制器。 2)选择Elements 模块库下的Three-Phase Transformer (Two Windings) 模块作为三相升压变压器、Three-Phase Series RLC Load 模块作为三相并联RLC 负载接地、Three-Phase Fault 模块作为任意相之间或者任意相与地之间的短路、Ground 模块作为接地。 3)选择Electrical Source 模块库下的Three-Phase Source 模块作为无穷大系统。 4)选择Measurements 模块库下的Voltage Measurement 模块作为电压测量。 5)选择Math Operation 模块库下的Gain 模块。 6)选择Sources 模块库下的Constant 模块。 7)选择Signal Routing 模块库下的Bus Selector 模块作为输出信号选择器。 8)选择Sinks 模块库下的Scope 模块。 2. 搭建模块 将模块放在合适的位置,将模块从输入端至输出端进行连接,搭建完的Simulink 励磁系统模型如图2 所示。 图2 Simulink 励磁系统模型

2.1同步发电机数学模型及运行特性

2.1同步发电机数学模型及运行特性 本节主要阐述同步发电机稳态数学模型及运行特性:包括向量图、等值电路与功率方程以及功角特性。 2.1.1 同步发电机稳态数学模型 理想电机假设: 1)电机铁心部分的导磁系数为常数; 2)电机定子三相绕组完全对称,在空间上互差120度,转子在结构上对本身的直轴和交轴完全对称; 3)定子电流在空气隙中产生正弦分布的磁势,转子绕组和定子绕组间的互感磁通也在空气隙中按正弦规率分布; 4)定子及转子的槽和通风沟不影响定子及转子的电感,即认为电机的定子及转子具有光滑的表面。 同步电动机是一种交流电机,主要做发电机用,也可做电动机用,一般用于功率较大,转速不要求调节的生产机械,例如大型水泵,空压机和矿井通风机等。近年由于永磁材料和电子技术的发展,微型同步电机得到越来越广泛的应用。同步电动机的特点之一是稳定运行时的转速n与定子电流的频率f1之间有严格不变的关系,即同步电动机的转速n与旋转磁场的转速n0相同。“同步”之名由此而来。 同步发电机是电力系统中的电源,它的稳态特性与暂态行为在电力系统中具有支配地位。虽然在电机学中已经学过同步电机,但那时侧重于基本电磁关系,而现在则从系统运行的角度审视发电机组。 1.同步发电机的相量图 设发电机以滞后功率因数运行,三相同步发电机正常运行时,定子某一相空载电势Eq,输出电压或端电压U和输出电流I间的相位关系如图2-1所示。δ是Eq领先U的角度,称为功角,是功率因数角,即U与I的相位差, Eq与q轴(横轴或交轴)重合,d为纵轴或直轴。U和I的d、q分量为: 图 2-1电势电压相量图 电机学课程中已经讨论过,端电压和电流的分量与Eq间的关系为: (2-3)

励磁系统题库

励磁系统题库 填空题:2选择题:5判断题:6问答题:8

填空题: 1、同步发电机励磁系统的基本任务是(维持发电机电压在给定水平)和(稳定 地分配机组间的无功功率)。 2、可控硅元件导通的条件是①(阳极与阴极之间须加正向电压),②(控制极 上加正向触发电压)。 3、发电机正常停机采用(逆变)方式灭磁,事故时采用(跳灭磁开关)方式灭 磁。调节器具有五种励磁限制:(反时限过励磁电流限制/强励限制)、(过无功限制)、(欠励限制)、(功率柜故障限制)、(伏赫限制/过磁通限制)。 4、在三相全控桥中,共阴极组在(正)半周导通;共阳极组在(负)半周导通。 5、PID调节方式就是(比例积分微分)调节方式。 6、在励磁调节器中,控制发电机电压的通道,称为(自动),控制励磁电流的 通道,称为(手动)。 7、励磁调节器发生 PT 断线,则运行中的通道(退出)运行,即切换,同时该 通道由(发电机电压/自动)调节方式转化为(励磁电流/手动)调节方式。 8、励磁调节器发生过励或低励,调节器就由(发电机电压)调节方式转化为 (无功)调节方式。 9、接触器铁芯上的(短路)环,可防止衔铁振动。 10、一般来说,交流发电机的励磁绕组是转子绕组,而直流发电机的励磁绕 组是(定子)绕组。 11、发电机在旋转的转子磁场中发电,把(机械)能转化为(电能),在发电 机并网前(空载),调节发电机的(励磁电流),作用于调节发电机的机端电压,发电机并网后,调节发电机的(励磁电流),作用于调节发电机的无功负荷(无功电流),有功不变,调节主汽门作用于有功功率(有功电流)的变化,与励磁电流的大小无关。 12、应用电磁理论,导体在磁场中(切割磁力线)产生电动势(电压):ξ=BLV (B:磁场强度,L:导体长度,V:切割速度)。简单的讲就是:导体在磁场中做切割(磁力线)运动,就产生感应电动势,当形成(闭合回路时),就会感生出电流。

发电机励磁系统建模及参数测试现场试验方案

发电机励磁系统建模及参数测试现场试验方案 1.概述 电网“四大参数”中发电机励磁系统模型和参数是电力系统稳定分析的重要组成部分,要获得准确、可信度较高的模型和参数,现场测试是重要的环节。根据发电机励磁系统现场交接试验的一般习惯和行业标准规定的试验内容,本文选择了时域法进行发电机励磁系统的参数辨识及模型确认试验。这种试验方法的优点在于可充分利用现有设备,在常规性试验中获取参数且物理概念清晰明了容易掌握。发电机励磁参数测试确认试验的内容包括:1)发电机空载、励磁机空载及负载试验;2)发电机、励磁机时间常数测试;3)发电机空载时励磁系统阶跃响应试验;4)发电机负载时动态扰动试验等。现场试验结束后,有关部门要根据测试结果,对测试数据进行整理和计算,针对制造厂提供的AVR等模型参数,采用仿真程序或其他手段,验证原始模型的正确性,在此基础上转换为符合电力系统稳定分析程序格式要求的数学模型。为电力系统计算部门提供励磁系统参数。 2.试验措施编制的依据及试验标准 1)《发电机励磁系统试验》 2)《励磁调节器技术说明书》及《励磁调节器调试大纲》 3) GB/T7409.3-1997同步电机励磁系统大、中型同步发电机励磁系统技术要求 4) DL/T650-1998 大型汽轮发电机自并励静止励磁系统技术条件 3 试验中使用的仪器设备 便携式电量记录分析仪,8840录波仪,动态信号分析仪以及一些常规仪表。 4 试验中需录制和测量的电气参数 1)发电机三相电压UA、UB、UC(录波器录制); 2)发电机三相电流IA、IB、IC(录波器录制); 3)发电机转子电压和转子电流Ulf、Ilf(录波器录制); 对于三机常规励磁还应测量: 1)交流励磁机定子电压(单相)Ue(标准仪表监视) 2)交流励磁机转子电压和转子电流Uef、Ief(录波器录制); 3)永磁机端电压Upmg(录波器录制和中频电压表监视); 4)发电机端电压给定值Vref(由数字AVR直读); 5)励磁机用可控硅触发角(由数字AVR自读); 对于无刷励磁系统除发电机电压电流外,仅需测量励磁机励磁电压电流;但需制造厂家提供励磁机空载饱和特性曲线及相关参数。 5.试验的组织和分工 参加发电机励磁系统模型参数确认试验的单位有:发电厂、励磁调节器制造厂、山东电力调度中心、山东电力研究院等。因有关方面提供的机组参数不完整或不正确,使励磁系统参数测试工作有一定的难度和风险性,为保证试验工作的正常顺利进行和机组的安全,应建立完善的组织机构,各部门的职责和分工如下: 1)电厂生技部负责整个试验的组织和协调。 2)电厂继电保护班负责试验的接线及具体安全措施。 3)电厂运行人员负责常规的操作及机组运行状态的监视。

无刷直流电机数学模型(完整版)

电机数学模型 以二相导通星形三相六状态为例,分析BLDC的数学模型及电磁转矩等特性。为了便于分析,假定: a)三相绕组完全对称,气隙磁场为方波,定子电流、转子磁场分布皆对称; b)忽略齿槽、换相过程和电枢反应等的影响; c)电枢绕组在定子内表面均匀连续分布; d)磁路不饱和,不计涡流和磁滞损耗。 则三相绕组的电压平衡方程可表示为: 错误!未找到引用源。(1) 式中:错误!未找到引用源。为定子相绕组电压(V);错误!未找到引用源。为定子相绕组电流(A);错误!未找到引用源。为定子相绕组电动势(V);L为每相绕组的自感(H);M为每相绕组间的互感(H);p为微分算子p=d/dt。 三相绕组为星形连接,且没有中线,则有 错误!未找到引用源。(2) 错误!未找到引用源。(3) 得到最终电压方程: 错误!未找到引用源。(4) e c c 图.无刷直流电机的等效电路 无刷直流电机的电磁转矩方程与普通直流电动机相似,其电磁转矩大小与磁通和电流幅值成正比 错误!未找到引用源。(5) 所以控制逆变器输出方波电流的幅值即可以控制BLDC电机的转矩。为产生恒定的电磁转矩,要求定子电流为方波,反电动势为梯形波,且在每半个周期内,方波电流的持续时间为120°电角度,梯形波反电动势的平顶部分也为120°

电角度,两者应严格同步。由于在任何时刻,定子只有两相导通,则:电磁功率可表示为: 错误!未找到引用源。(6) 电磁转矩又可表示为: 错误!未找到引用源。(7) 无刷直流电机的运动方程为: 错误!未找到引用源。(8) 其中错误!未找到引用源。为电磁转矩;错误!未找到引用源。为负载转矩;B为阻尼系数;错误!未找到引用源。为电机机械转速;J为电机的转动惯量。 传递函数: 无刷直流电机的运行特性和传统直流电机基本相同,其动态结构图可以采用直流电机通用的动态结构图,如图所示: 图2.无刷直流电机动态结构图 由无刷直流电机动态结构图可求得其传递函数为: 式中: K1为电动势传递系数,错误!未找到引用源。,Ce 为电动势系数; K2为转矩传递函数,错误!未找到引用源。,R 为电动机内阻,Ct 为转矩系数;T m为电机时间常数,错误!未找到引用源。,G 为转子重量,D 为转子直径。基于MATLAB的BLDC系统模型的建立 在Matlab中进行BLDC建模仿真方法的研究已受到广泛关注,已有提出采用节点电流法对电机控制系统进行分析,通过列写m文件,建立BLDC仿真模型,

可控励磁发电系统综合性实验的设计毕业论文

山东大学网络教育学院 题目 姓名 年级 层次 专业 学习中心

可控励磁发电系统综合性实验的 设计 摘要 现代电力系统的发展,对同步发电机励磁控制提出了更高要求。发电机在正常工作情况下,负载总在不断地变化着。而不同容量的负载,以及负载的不同功率因数,对同步发电机励磁磁场的反映作用是不同的,要维持同步发电机端电压为一定水平,就必须根据负载的大小及负载的性质随时调节同步发电机的励磁。在各类电站中,励磁系统是保证同步发电机正常工作,提高电网稳定水平的关键设备。同步发电机励磁的自动控制在保证电能质量、无功功率的合理分配和提高电力系统运行的可靠性方面都起着十分重要的意义。 本文主要对可控励磁发电系统进行了实验设计,首先对可控励磁发电系统做了相关简介并探讨了可控励磁发电系统的国内外未来发展形势。本文着重在可控励磁系统中的过励限制方面作了重点分析,并设计了相关的一个过励限制特性试验,对过励限制系统加深了了解。 关键词:电力系统;励磁控制系统;过励限制

目录 摘要...................................................................................................................... I Abstract. (Ⅱ) 第1章绪论 (1) 1.1 发电机励磁控制系统简介 (1) 1.2励磁控制系统的作用 (2) 1.2.1维持发电机端电压在给定水平 (2) 1.2.2提高电力系统的静态稳定性 (2) 1.2.3改善电力系统的暂态稳定性 (3) 1.2.4改善电力系统的动态稳定性 (4) 1.2.5在并列运行的发电机间合理分配无功功率 (5) 1.3自动励磁调节器的组成及功能 (5) 1.3.1基本工作电路 (5) 1.3.2辅助工作电路 (5) 1.4同步发电机励磁控制方式研究现状 (6) 1.4.1基于单变量控制方式 (6) 1.4.2基于现代控制理论的多变量控制方式 (6) 1.4.3非线性多变量励磁控制方式 (8) 1.4.4智能控制方法 (9) 1.5国外研究及发展状况 (10) 第2章励磁系统的过励限制 (13) 2.1 过励限制的主要特性 (13) 2.2限制过程 (13) 2.3级差 (14) 2.4以励磁机磁场电流作为过励限制控制量的过励限制整定 (15) 2.5无发电机转子过负荷保护的处理 (15) 2.6过热量的释放和再次过励的条件 (15) 2.7过励保护 (16) 2.7.1顶值电流保护 (16) 2.7.2过励反时限保护 (16) 2.7.3过励报警信号 (16) 第3章可控励磁发电系统实验装置操作及维护 (17) 3.1 实验装置操作说明 (17) 3.2实验的基本要求 (18)

发电机励磁系统的数学模型教学文稿

发电机励磁系统的数 学模型

课程设计报告 课程名称电力系统自动装置原理设计题目发电机励磁系统数学建模 及PID控制仿真 设计时间2016-2017学年第一学期专业年级电气133班 姓名姚晓 学号 2012012154 提交时间 2016年12月30日 成绩 指导教师陈帝伊谭亲跃 水利与建筑工程学院

发电机励磁系统数学建模及PID控制仿真 摘要:本文主要进行了发电机励磁系统的数学建模和PID控制仿真。励磁系统在电力系统的规划与控制领域都有非常重要的作用,精确的模型结构与参数是选择有效控制手段和整个电力系统仿真准确性的基础。文中通过对励磁系统建模及仿真的研究,在整理系统稳定性判断理论发展的基础上,运用MATLAB 软件仿真,论证了PID励磁调节可有效地改进励磁控制品质,仿真试验是调整励磁系统参数的有效措施。 关键字:电力系统、励磁系统、根轨迹、PID、仿真

目录 第一章绪论 (5) 1.1本课题研究意义 (5) 1.2本文主要内容 (6) 第二章发电机励磁系统的数学模型 (8) 2.1励磁系统数学模型的发展 (8) 2.2发电机励磁系统原理与分类 (9) 2.3发电机励磁系统的数学模型 (11) 2.3.1励磁机的传递函数 (11) 2.3.2励磁调节器各单元的传递函数 (12) 2.3.3同步发电机的传递函数 (14) 2.3.4励磁稳定器 (14) 2.4励磁控制系统的传递函数 (15) 第三章励磁控制系统的稳定性 (16) 3.1传统方法绘制根轨迹 (16) 3.2用MATLAB绘制根轨迹 (19) 第四章 PID在发电机励磁系统中的应用 (21) 4.1同步发电机的励磁系统的动态指标 (21) 4.2无PID调节的励磁系统 (21) 4.2.1源程序 (22) 4.2.2数值计算结果 (24) 4.3有PID调节的励磁系统 (25) 4.3.1源程序 (26) 4.3.2数值计算结果 (28) 第五章总结与体会 (31) 参考文献 (32)

(12)Std 421.5-1992 IEEE推荐的电力系统稳定研究用励磁系统数学模型要点

NARI IEEE推荐的电力系统稳定研究用 励磁系统数学模型 IEEE Std 421.5-1992 IEEE电力工程学会 能源开发和发电委员会提出 IEEE标淮局1992,3,19批准 国电自动化研究院 电气控制技术研究所译 2003年7月

目录 1.范围 (3) 2.参考文献 (3) 3.同步电机励磁系统在型励磁系统模型研究中的表示法 (4) 4.同步电机端电压变送器和负荷补偿器模型 (5) 5.DC型直流励磁机 (6) 5.1DC1A型励磁系统模型 (6) 5.2DC2A型励磁系统模型 (7) 5.3DC3A型励磁系统模型 (8) 6.AC型交流励磁机-整流器励磁系统模型 (9) 6.1AC1A型励磁系统模型 (9) 6.2AC2A型励磁系统模型 (10) 6.3AC3A型励磁系统模型 (11) 6.4AC4A型励磁系统模型 (11) 6.5AC5A型励磁系统模型 (13) 6.6AC6A型励磁系统模型 (14) 7. ST型励磁系统模型 (15) 7.1 ST1A型励磁系统模型 (15) 7.2 ST2A 型励磁系统模型 (16) 7.3 ST3A型励磁系统模型 (17) 8. 电力系统稳定器 (18) 8.1 PSS1A型电力系统稳定器 (18) 8.2 PSS2A型电力系统稳定器 (19) 9. 断续作用励磁系统 (20) 9.1 DEC1A型断续作用励磁系统 (20) 9.2 DEC2A型断续作用励磁系统 (22) 9.3 DEC3A型断续作用励磁系统 (22) 10. 文献目录 (23) 附录A 符号表 (23) 附录B 相对(标么)单位制 (25) 附录C 励磁机饱和负荷效应 (26) 附录D 整流器调整率 (27) 附录E 限制的表示 (28) 附录F 用消除快反馈环避免计算问题 (30) 附录G 同步电机内感应反向磁场电流流通路径 (35) 附录H 励磁限制器 (36) 附录I 采样数据…………………………………………………37--- ..46

发电机励磁系统的数学模型

发电机励磁系统的数学模型

课程设计报告 课程名称电力系统自动装置原理 设计题目发电机励磁系统数学建模 及PID控制仿真 设计时间2016-2017学年第一学期 专业年级电气133班 姓名姚晓 学号2012012154 提交时间2016年12月30日 成绩 指导教师陈帝伊谭亲跃 水利与建筑工程学院

发电机励磁系统数学建模及PID控制仿真 摘要:本文主要进行了发电机励磁系统的数学建模和PID控制仿真。励磁系统在电力系统的规划与控制领域都有非常重要的作用,精确的模型结构与参数是选择有效控制手段和整个电力系统仿真准确性的基础。文中通过对励磁系统建模及仿真的研究,在整理系统稳定性判断理论发展的基础上,运用MATLAB软件仿真,论证了PID励磁调节可有效地改进励磁控制品质,仿真试验是调整励磁系统参数的有效措施。 关键字:电力系统、励磁系统、根轨迹、PID、仿真

目录 第一章绪论 (6) 1.1本课题研究意义 (6) 1.2本文主要内容 (6) 第二章发电机励磁系统的数学模型 (8) 2.1励磁系统数学模型的发展 (8) 2.2发电机励磁系统原理与分类 (9) 2.3发电机励磁系统的数学模型 (9) 2.3.1励磁机的传递函数 (9) 2.3.2励磁调节器各单元的传递函数 (11) 2.3.3同步发电机的传递函数 (11) 2.3.4励磁稳定器 (12) 2.4励磁控制系统的传递函数 (12) 第三章励磁控制系统的稳定性 (13) 3.1传统方法绘制根轨迹 (13) 3.2用MATLAB绘制根轨迹 (15) 第四章 PID在发电机励磁系统中的应用 (16) 4.1同步发电机的励磁系统的动态指标 (16) 4.2无PID调节的励磁系统 (16) 4.2.1源程序 (16) 4.2.2数值计算结果 (20) 4.3有PID调节的励磁系统 (21) 4.3.1源程序 (22) 4.3.2数值计算结果 (25) 第五章总结与体会 (27) 参考文献 (28)

励磁系统在电力中的作用1

励磁系统在电力中的作用1 励磁系统是发电机的重要组成部分,它对发电机本身及电力系统的安全稳定运行有着重要的作用。 励磁系统在电力系统中的作用: a. 维持电力系统某点电压的恒定。 b. 调整各个并联运行机组之间的无功分配。 c. 提高电力系统的静态稳定和动态稳定。 d. 故障切除后,可以缩短电动机自启动的时间。 e. 提高带延时的继电保护的明确性。 在电力系统正常运行或事故运行中,同步发电机的励磁控制系统起着重要作用。优良的励磁控制系统不仅可以靠运行并提供合格的电能,而且还可有效地提高系统的技术指标。根据运行方式的要求,励磁控制系统的任务① 电压控制 电力系统在正常运行时,负荷总是经常波动的,同步发电机的功率就相应变化。由于发电机内部压降的存在,动,机端电压就会相应的发生变化,这就需要对励磁电流进行调节以维持机端或系统中某点的电压在给定的水控制系统担负了维持电压水平的任务。 ② 控制无功功率的分配 与无限大容量电网并联运行的机组,调节它的励磁电流可以改变发电机无功功率的数值。但是,在实际运行中联运行的母线并不是无限大母线,即系统的等值阻抗不等于零。它的电压将随着负荷波动而改变,改变其中一磁电流不但影响它的电压和无功功率,而且也将影响与之并联运行机组的无功功率,其影响程度与系统情况有步发电机的励磁自动控制系统还担负着并联运行机组间的无功功率合理分配的任务。 ③ 提高同步发电机并联运行的稳定性 保持同步发电机稳定运行是保证电力系统可靠供电的首要条件,电力系统在运行中随时都可能遭受各种干扰,发电机组能够恢复到原来的运行状态或过渡到另一个新的运行状态,则称系统是稳定的,其主要标志是在暂态同步发电机能维持或恢复同步运行。 电力系统稳定分为静态稳定和暂态稳定两类。所谓静态稳定是指电力系统在正常运行状态下,经受微小扰动后行状态的能力。而暂态稳定是指电力系统在某一正常运行方式下突然遭受大扰动后,能够过渡到一个新的稳定者恢复到原来运行状态的能力。这里所说的大扰动是指电力系统发生某种事故,如高压电网发生短路或发电机在分析电力系统稳定性问题时,不论静态稳定或暂态稳定,在数字模型表达式中总含有发电机空载电势E,而有关。可见,励磁自动控制系统是通过改变励磁电流从而改变E值来改善系统稳定性的。 ④ 改善电力系统的运行条件 当电力系统由于种种原因,出现短时低电压时,励磁自动控制系统可以发挥其强励功能,即大幅度地增加励磁压,这在一定条件下可以改善系统的运行条件。 2.无刷励磁系统的技术特点 由无刷励磁机组、励磁(电压)调节器以及相应的操作设备组成的整体称为发电机的无刷励磁系统。它连同被控机构成的电压反馈控制称为无刷励磁控制系统。励磁系统向发电机励磁绕组供电以建立磁场,并根据发电机运节励磁电流以维持机端和系统的电压水平,并且决定着电力系统中并联机组间无功功率的分配。 无刷励磁机组由一台永磁发电机(交流付励磁机),一台交流主励磁机及装在发电机轴上的旋转整流装置组成。取消了大电流集电环及其碳刷装置,从而克服了常规的直流励磁机在高速换向器制造和发电机大电流集电环通明显存在的严重困难。交流主励磁机的工作原理几乎与直流发电机相同,其差别只是直流发电机利用换向器作电枢绕组内交流电变成直流电输出,而无刷励磁机则利用装在发电机轴上的旋转二极管整流从而同样将电枢绕

发电机励磁系统故障分析及处理

设备管理与维修2019翼2 (上 )发电机励磁系统故障分析及处理 高长松 (徐州润源热力有限公司,江苏徐州 221116) 摘要:针对发电厂发电机励磁系统不同的故障类型,重点解决发电机无法起励升压故障。以SMER-C 型微机励磁调节器为例,分析微机励磁调节器原理、励磁系统设备、励磁回路,从运行、检修、设计角度提出处理方法。关键词:发电机;励磁系统;故障处理 中图分类号:TM712文献标识码: B DOI : 10.16621/https://www.doczj.com/doc/3e3510181.html,ki.issn1001-0599.2019.02.291问题 某发电厂发电机在起励磁时无法升压。尤其在在机组停运 时间较长时尤为明显,影响机组启动的时间及可靠性。2无法励磁的主要原因 (1)灭磁开关、主励刀闸未合闸,回路开路。励磁回路电缆有 断线,滑环电刷位置接触不良。(2)硅整流器故障。可控硅电阻击穿、过热。 (3)启励继电器故障。起励磁继电器线圈及触点故障,导致起励无法正常,微机励磁无法保证。(4)微机励磁调节器建压设置不正确。未按定设置空载建压值。 (5)微机励磁调节器出现故障。3处理措施 (1)对励磁回路全面检查、测量。检查灭磁开关是否合闸。励磁刀闸是否合好。检查校正电压互感器一次、二次回路是否良好,测量发电机校正电压互感器二次电压应为1V , (2)检查可控硅的阻值正常应在几十赘。如电阻为0,则表示已经击穿。需要进行更换。 (3)起励继电器故障处理。发电机在在启励时如果按启动按钮3次以上(1耀2)s 还无法启动励磁可以检查励磁调节柜的微机励磁触摸屏上的“给定电压”是否在90%,如果不是则测量励磁调节柜上的断路器常闭点是否闭合,直流电阻应该为通路。检查、测量励磁调节柜启励磁继电器是否闭合,线圈直流电阻,发现损坏立即进行更换。如启励后电压不到9kV ,或只到3kV 或其他电压、过电压等检查方法同以上。调整励磁调节器的钮子开关设置位置。用于设定空载建压值的高低。向上拨时,选择空载建压值为90%U e ,其中,U e 为发电机额定值电压;向下拨时,选择空载建压值为17%U e ,一般用于机组检 修后进行升压试验。发电机开机前选择空载建压值为90%U e 。 监视励磁调节器状态。开机前监视调节器面板上有一只“正常”运行指示灯。程序正常运行时,每1s 改变一次亮、暗状态。因此“正常”运行,指示灯亮1s 暗1s 地不停闪动,表明程序运行正常。 当发电机未转动时,由于机端残压值为0。无同步电压信号,程序无法运行,这时“正常”运行指示灯不闪动或无规律闪动 并不表明调节器故障。发电机转速达到约30%n e 以上时,“正常”运行指示灯就会闪动。4发电机启动励磁注意事项 (1)起励磁时要严密监视发电机的电压表,当电压在2000 V 时就应该释放按钮,如果长期按住,会烧坏起励回路。(2)发电机起励前严密监视,转速3000r/min 时,微机励磁显示参数:给定电压90%,可控硅开放角度134毅,机端电压0。 (3)禁止励磁调节器“微机失磁灯亮”。 (4)运行中励磁调节器电源开关禁止切开,否则会失去励磁跳闸。 5设计及运行建议 (1)设计人员在励磁调节器选型时选择性能可靠、稳定的。(2)选用起励磁继电器,触点容量及线圈质量要可靠。(3)实际监测发电机起励磁前励磁系统设备正常,处于良好备用,避免开机后发生突发异常。 (4)发电机开机前按照试验规程,做好发电机假同期并列试验、灭磁联跳主油试验。 (5)技术专业人员检测发电机主油开关的辅助常闭触点可靠闭合,为微机励磁调节器做好逻辑判断。 (6)对发电机励磁系统建立定期大、小修制度,及时发现处理存在的缺陷。 (7)设计人员选用可靠的起励磁按钮,保证一次接触良好。(8)针对励磁调节器、可控硅选择厂家、根据实际情况,选择励磁调节器生产质量较好的厂家。使用成本低、减少故障发生,确实保证使用周期。 参考文献 [1]卓乐友,董柏林.电力工程电气设计手册[M ].北京:中国电力出版 社, 1991.[2]许正亚.电力系统自动装置[M ].北京:中国电力出版社, 1990.[3]高有权,高华,魏燕,等.发电机变压器继电保护设计及整定计算 [M ].北京:中国电力出版社, 2011.[4]郭延秋.大型火电机组检修实用技术丛书电气分册[M ].北京:中国 电力出版社,2004. 〔编辑凌瑞 〕

相关主题
文本预览
相关文档 最新文档