当前位置:文档之家› 刚体的转动答案

刚体的转动答案

刚体的转动答案
刚体的转动答案

刚体的定轴转动1 选择题

一自由悬挂的匀质细棒AB ,可绕A 端在竖直平面内自由转动,现给B 端一初速v0,则棒在向上转动过程中仅就大小而言 [ B ]

A 、角速度不断减小,角加速度不断减少;

B 、角速度不断减小,角加速度不断增加;

C 、角速度不断减小,角加速度不变;

D 、所受力矩越来越大,角速度也越来越大。 分析:合外力矩由重力提供,1

sin 2

M mgl θ=

,方向与初角速度方向相反,所以角速度不断减小,随着θ的增加,重力矩增大,所以角加速度增加。

今有半径为R 的匀质圆板、圆环和圆球各一个,前二个的质量都为m ,绕通过圆心垂直于圆平面的轴转动;后一个的质量为

2

m

,绕任意一直径转动,设在相同的力矩作用下,获得的角加速度分别是β1、β2、β3,则有 A 、β3<β1<β2 B 、β3>β1<β2 C 、β3<β1>β2 D 、β3>β1>β2 [ D ] 分析:质量为m ,半径为R 的圆板绕通过圆心垂直于圆平面的轴的转动惯量为211

2

J mR =

;圆环的转动惯量为2

2J mR =,圆球质量为

2

m

,绕任意一直径转动的转动惯量为232

5

J mR =

,根据转动定律,M J β=,所以在相同力矩下,转动惯量大的,获得的的角加速度小。213J J J >>,所以选择 D 。

一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m1和m2的物体(m1<m2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力

(A) 处处相等. (B) 左边大于右边.

(C) 右边大于左边. (D) 哪边大无法判断. [ C ] 一轻绳跨过两个质量均为m 、半径均为R 的匀质圆盘状定滑轮。绳的两端系着质量分别为m 和2m 的重物,不计滑轮转轴的摩擦。将系统由静止释放,且绳与两滑轮间均无相对滑动,则两滑轮之间绳的张力为。

A 、mg ;

B 、3mg/2;

C 、2mg ;

D 、11mg/8。 [ D ]

解:对2m ,m 和两个滑轮受力分析得:

122mg T ma -= ○1 2T mg ma -=○2 2112T R TR mR β-=

3 221

2

TR T R mR β-= ○4a R β= ○

5 联立以上五个公式可得 4g

R

β=

,将其带入公式○2○4,可以求得两滑轮之间绳子的张力为11mg/8。 填空

质量为m ,长为l 的匀质细杆,可绕其端点的水平轴在竖直平面内自由转动。如果将细杆置

于水平位置,然后让其由静止开始自由下摆,则开始转动的瞬间,细杆的角加速度为32g

l ,

细杆转动到竖直位置时角速度为

3g

l

解:从水平位置开始转动的瞬间,重力矩提供合外力矩1

2

M mgl =, 角加速度22332M mgl g J ml l

β=

==; 22113223k l g mg

E ml l

ωω=?=?= 一定滑轮质量为M 、半径为R ,对水平轴的转动惯量J =

2

1

MR2.在滑轮的边缘绕一细绳,绳的下端挂一物体.绳的质量可以忽略且不能伸长,滑轮与轴承间无摩擦.物体下落的加速度为a ,则绳中的张力T =_____

1

2

Ma ____________. 解: 设绳子对物体(或绳子对轮轴)的拉力为T , 则根据牛顿运动定律和转动定律, 得

dv

mg T ma m

dt

-== , TR =Jβ,

dv

R dt

β= 则1

2

T Ma =

一根质量为m 、长为l 的均匀细杆,可在水平桌面上绕通过其一端的竖直固定轴转动.已知细杆与桌面的滑动摩擦系数为,则杆转动时受的摩擦力矩的大小为________mgl μ2

1

=

________ 。 r g dm dM ???=μ)1(解: r g dr l m ??=μ rdr l

m

μ=

??==l rdr l m dM M 0μ mgl μ2

1

=

三、计算

一根质量为m 、长度为L 的匀质细直棒,平放在水平桌面上。若它与桌面间的滑动摩擦系数为μ,在t=0时,该棒绕过其一端的竖直轴在水平桌面上旋转,其初始角速度为0ω,则棒停止转动所需时间为多少?

用一细绳跨过定滑轮,在绳的两端各悬质量为m1 和m2的物体,其中m1>m2,设绳不可伸长,质量可忽略,它与滑轮之间无相对滑动;滑轮的半径为R ,质量m ,且分布均匀,求它们的加速度及绳两端的张力T1 和T2.。 解:受力分析如图所示,

111m g T m a -= ○1 222T m g m a -=○2 2121

2

T R T R mR β-=

3 a R β= ○

4 联立以上四个公式可得 12122

m g m g

a m m m -=

++ ,将其带入公式○1○2,可以求得绳子两端的张力

21111222()2m m T m g a m g

m m m +=-=++ 12221222

()2

m m T m g a m g m m m +=+=++

刚体的定轴转动2 选择题

一质量为60kg 的人站在一质量为60kg 、半径为l m 的匀质圆盘的边缘,圆盘可绕与盘面相垂直的中心竖直轴无摩擦地转动。系统原来是静止的,后来人沿圆盘边缘走动,当人相对圆盘的走动速度为2m/s 时,圆盘角速度大小为

A 、1rad/s ;

B 、2rad/s ;

C 、2/3rad/s ;

D 、4/3rad/s 。 [ D ] 分析:角动量守恒2

111'222

mvr mr

v r v ωω=?== 而'2v v +=

4'3v =

即'4

/3

v rad s r ω== 对一个绕固定水平轴O 匀速转动的转盘,沿图示的同一水平直线从相反方向射入两颗质量相同、速率相等的子弹,并停留在盘中,则子弹射入后转盘

的角速度应 [ B ] 增大; B 、减小;

C 、不变;

D 、无法确定。

一根长为l 、质量为M 的匀质棒自由悬挂于通过其上端的光滑水平轴上。现有一质量为m 的子弹以水平速度0υ射向棒的中心,并以2/0υ的水平速度穿出棒,此后棒的最大偏转角恰为?90,则0υ的大小为 [ A ]

A 、

34gl m M ; B 、2gl ; C 、gl m M 2; D 、2

2316m

gl

M 。

两个小球质量分别为m 和2m ,由一长为L 的细杆相连(杆质量不计)。该系统以通过两球中心且垂直于细杆的轴作恒定角速度w 转动,则两球的转动惯量及转动动能总和为 [ D ]

O

v v

A 、

22231,43mL mL ω B 、223,8mL mL ω C 、2221,4mL mL ω D 、2233

,48

mL mL ω 分析:22211111

()()2224J m l m l ml =+=

22221111

2()()2222J m l m l ml =+=

234

J ml =

转动动能22213

28

J mL ωω=

二、填空

长为l 、质量为m 的匀质细杆,以角速度ω绕过杆端点垂直于杆的水平轴转动,则杆绕转动轴的动能为 ml2ω2 /6 ,动量矩为 ml2 ω/3 。 分析:

2221126J m l ωω=,动量矩21

3

L J m l ωω== 匀质圆盘状飞轮,质量为20kg ,半径为30cm ,当它以每分钟60转的速率绕通过圆心并与

盘面垂直的轴旋转时,其动能为 1.8π2 J=17.75J 。 分析:2222111

1.817.75222

J m R J ωωπ=?== M k

O θ

一人站在转动的转台中央,在他伸出的两手中各握有一个重物,若此人向着胸部缩回他的双

手及重物,忽略所有摩擦,则系统的转动惯量 减小 ,系统的转动角速度增加 ,系统的角动量 不变 ,系统的转动动能 增加 。(填增大、减小或保持不变) 定滑轮半径为r ,转动惯量为J ,弹簧倔强系数为k ,开始时处于自然长度.物体的质量为M ,开始时静止,固定斜面的倾角为(斜面及滑轮轴处的摩擦可忽略,而绳在滑轮上不打滑).物体被释放后沿斜面下滑距离为x 时的速度值为v =

2

2

2sin mgx kx M J r

θ-+ 。 分析:机械能守恒:以最低点势能零点,以弹簧原长为弹性势能0,则

2221110sin 222

mgx mv J kx θω+=

++ 三、计算

电风扇在开启电源后,经过t1时间达到了额定转速,此时相应的角速度为0ω。当关闭电源后,经过t2时间风扇停转。已知风扇转子的转动惯量为J ,并假定摩擦阻力矩和电机的电磁

力矩均为常数,推算电机的电磁力矩。 解:

1

101

21t J M M αωα==-

2

2022t 0J M αωα=-=-

1

0201

21t J t J J M M ωωα+=+=

质量为m 长为l =85 cm 的均匀细杆,如图放在倾角为=45°的光滑斜面上,可以绕通过杆

上端且与斜面垂直的光滑轴O 在斜面上转动.要使此杆能绕轴转动一周,至少应使杆以多大的初始角速度

0转动?(参考答案

()l g /sin 60αω≥

O

B α

解:机械能守恒

02022

001sin 2

11sin 23

(6sin )J mgl ml mgl g l

ωωαωα

ωα≥?≥∴≥

转动惯量公式表

常见几何体]转动惯量公式表

对于细杆 当回转轴过杆的中点并垂直于杆时;J=m(L^2)/12 其中m是杆的质量,L是杆的长度。 当回转轴过杆的端点并垂直于杆时:J=m(L^2)/3 其中m是杆的质量,L是杆的长度。

对于圆柱体 当回转轴是圆柱体轴线时;J=m(r^2)/2 其中m是圆柱体的质量,r是圆柱体的半径。 对于细圆环 当回转轴通过中心与环面垂直时,J=mR^2; 当回转轴通过边缘与环面垂直时,J=2mR^2; R为其半径 对于薄圆盘 当回转轴通过中心与盘面垂直时,J=﹙1/2﹚mR^2; 当回转轴通过边缘与盘面垂直时,J=﹙3/2﹚mR^2; R为其半径 对于空心圆柱 当回转轴为对称轴时,J=﹙1/2﹚m[(R1)^2+(R2)^2]; R1和R2分别为其内外半径。 对于球壳 当回转轴为中心轴时,J=﹙2/3﹚mR^2; 当回转轴为球壳的切线时,J=﹙5/3﹚mR^2; R为球壳半径。 对于实心球体 当回转轴为球体的中心轴时,J=﹙2/5﹚mR^2; 当回转轴为球体的切线时,J=﹙7/5﹚mR^2; R为球体半径 对于立方体 当回转轴为其中心轴时,J=﹙1/6﹚mL^2; 当回转轴为其棱边时,J=﹙2/3﹚mL^2; 当回转轴为其体对角线时,J=(3/16)mL^2; L为立方体边长。 只知道转动惯量的计算方式而不能使用是没有意义的。下面给出一些(绕定轴转动时)的刚体动力学公式。 角加速度与合外力矩的关系:

角加速度与合外力矩 式中M为合外力矩,β为角加速度。可以看出这个式子与牛顿第二定律是对应的。 角动量: 角动量 刚体的定轴转动动能: 转动动能 注意这只是刚体绕定轴的转动动能,其总动能应该再加上质心动能。 只用E=(1/2)mv^2不好分析转动刚体的问题,是因为其中不包含刚体的任何转动信息,里面的速度v 只代表刚体的质心运动情况。由这一公式,可以从能量的角度分析刚体动力学的问题。 转动惯量(Moment of Inertia)是刚体绕轴转动时惯性(回转物体保持其匀速圆周运动或静止的特性)的量度,用字母I或J表示。其量值取决于物体的形状、质量分布及转轴的位置。转动惯量只决定于刚体的形状、质量分布和转轴的位置,而同刚体绕轴的转动状态(如角速度的大小)无关。形状规则的匀质刚体,其转动惯量可直接用公式计算得到。而对于不规则刚体或非均质刚体的转动惯量,一般通过实验的方法来进行测定,因而实验方法就显得十分重要。转动惯量的表达式为I=∑ mi*ri^2,若刚体的质量是连续分布的,则转动惯量的计算公式可写成I=∫r^2dm=∫r^2ρdV(式中mi表示刚体的某个质元的质量,ri表示该质元到转轴的垂直距离,ρ表示该处的密度,求和号(或积分号)遍及整个刚体。)转动惯量的量纲为L^2M,在SI单位制中,它的单位是kg·m^2。 平行轴定理 平行轴定理:设刚体质量为m,绕通过质心转轴的转动惯量为Ic,将此轴朝任何方向平行移动一个距离d,则绕新轴的转动惯量I为: I=Ic+md^2 这个定理称为平行轴定理。 一个物体以角速度ω绕固定轴z轴的转动同样可以视为以同样的角速度绕平行于z轴且通过质心的固定轴的转动。也就是说,绕z轴的转动等同于绕过质心的平行轴的转动与质心的转动的叠加

【大题】工科物理大作业04_刚体定轴转动

04 04 刚体定轴转动 班号 学号 姓名 成绩 一、选择题 (在下列各题中,均给出了4个~5个答案,其中有的只有1个是正确答案,有的则有几个是正确答案,请把正确答案的英文字母序号填在题后的括号内) 1.某刚体绕定轴作匀变速转动,对刚体上距转轴为r 处的任一质元来说,在下列关于其法向加速度n a 和切向加速度τa 的表述中,正确的是: A .n a 、τa 的大小均随时间变化; B .n a 、τa 的大小均保持不变; C .n a 的大小变化,τa 的大小保持恒定; D .n a 的大小保持恒定,τa 大小变化。 (C ) [知识点]刚体匀变速定轴转动特征,角量与线量的关系。 [分析与题解] 刚体中任一质元的法向、切向加速度分别为 r a n 2 ω=,r a τβ= 当 恒量时,t βωω+=0 ,显然r t r a n 2 02)(βωω+==,其大小随时间而变, r a τβ=的大小恒定不变。 2. 两个均质圆盘A 和B ,密度分别为 A 和 B ,且B ρρ>A ,但两圆盘的质量和厚度相同。若 两盘对通过盘心且与盘面垂直的轴的转动惯量分别为A I 和B I ,则 A . B I I >A ; B. B I I ,所以2 2B A R R < 且转动惯量22 1 mR I = ,则B A I I <

刚体的转动惯量专题

刚体的转动惯量专题 1.刚体的转动惯量的三要素 刚体对某轴的转动惯量,是描述刚体在绕该轴的转动过程中转动惯性的物理量. 有转动惯量的定义式2i i I m r =∑可看出,刚 体的转动惯量是与下列三个因素有关的. (1)与刚体的质量有关. 例如半径相同的两个圆柱体,而它们的质量不同,显然,对于相应的转轴,质量大的转动惯量也较大.

(2)在质量一定的情况下,与质量的分布有关. 例如,质量相同、半径也相同的圆盘与圆环,二者的质量分布不同,圆环的质量集中分布在边缘,而圆盘的质量分布在整个圆面上,所以,圆环的转动惯量较大. (3)还与给定转轴的位置有关,即同一刚体对于不同的转轴,其转动惯量的大小也是不等的. 例如,同一细长杆,对通过其质心且垂直于杆的转轴和通过其一端且垂直于杆的转轴,二者的转动惯量不相同,且后者较大. 这是由于转轴的位置不同,从而也就影响了转动惯量的大小.

刚体的转动惯量的三要素:刚体的总质量、刚体的质量分布情况、转轴的位置. 2.转动惯量的普遍公式 (1)转动惯量的定义式 2 i i I m r =∑ ·········○1 可知,对于形状规则、质量均匀分布的连续刚体,其对特殊轴的转动惯量的计算可借助于定积分. 这是,可设想将刚体分成

许多小线元、面元、体元. d d d d d d m x m S m V λσρ=== 于是 222222d d d d d d l S V I r m r x I r m r S I r m r V λσρ======?????? 一般说来,这是个三重的体积分,但对于有一定对称性的物体,积分的重数可以减少,甚至不需要积分. (2)刚体对某轴的转动惯量 刚体对z 轴的转动惯量

大学物理-刚体的定轴转动-习题及答案

第4章 刚体的定轴转动 习题及答案 1.刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度?是否有法向加速度?切向和法向加速度的大小是否随时间变化? 答:当刚体作匀变速转动时,角加速度β不变。刚体上任一点都作匀变速圆周运动,因此该点速率在均匀变化,v l ω=,所以一定有切向加速度t a l β=,其大小不变。又因该点速度的方向变化, 所以一定有法向加速度2 n a l ω=,由于角速度变化,所以法向加速度的大小也在变化。 2. 刚体绕定轴转动的转动定律和质点系的动量矩定理是什么关系? 答:刚体是一个特殊的质点系,它应遵守质点系的动量矩定理,当刚体绕定轴Z 转动时,动量矩定理的形式为z z dL M dt = ,z M 表示刚体对Z 轴的合外力矩,z L 表示刚体对Z 轴的动量矩。()2z i i L m l I ωω==∑,其中()2i i I m l =∑,代表刚体对定轴的转动惯量,所以 ()z z dL d d M I I I dt dt dt ω ωβ= ===。既 z M I β=。 所以刚体定轴转动的转动定律是质点系的动量矩定理在刚体绕定轴转动时的具体表现形式, 及质点系的动量矩定理用于刚体时在刚体转轴方向的分量表达式。 3.两个半径相同的轮子,质量相同,但一个轮子的质量聚集在边缘附近,另一个轮子的质量分布比较均匀,试问:(1)如果它们的角动量相同,哪个轮子转得快?(2)如果它们的角速度相同,哪个轮子的角动量大? 答:(1)由于L I ω=,而转动惯量与质量分布有关,半径、质量均相同的轮子,质量聚集在边缘附近的轮子的转动惯量大,故角速度小,转得慢,质量分布比较均匀的轮子转得快; (2)如果它们的角速度相同,则质量聚集在边缘附近的轮子角动量大。 4.一圆形台面可绕中心轴无摩擦地转动,有一玩具车相对台面由静止启动,绕轴作圆周运动,问平台如何运动?如小汽车突然刹车,此过程角动量是否守恒?动量是否守恒?能量是否守恒? 答:玩具车相对台面由静止启动,绕轴作圆周运动时,平台将沿相反方向转动;小汽车突然刹车过程满足角动量守恒,而能量和动量均不守恒。 5.一转速为1200r min 的飞轮,因制动而均匀地减速,经10秒后停止转动,求: (1) 飞轮的角加速度和从开始制动到停止转动,飞轮所转过的圈数; (2) 开始制动后5秒时飞轮的角速度。 解:(1)由题意飞轮的初角速度为 0240()n rad s ωππ== 飞轮作均减速转动,其角加速度为 20 0404/10 rad s t ωωπ βπ--= = =-? 故从开始制动到停止转动,飞轮转过的角位移为 201 2002 t t rad θωβπ?=?+?= 因此,飞轮转过圈数为

刚体转动习题解答

作业07(刚体转动1) 1. 两个均质圆盘A 和B 的密度分别为A ρ和B ρ,若B A ρρ>,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面的转动惯量各为A J 和B J ,则[ ]。 A. B A J J > B. B A J J < C. B A J J = 答:[B ] 解: 由V m =ρ,B A ρρ> ,B A m m =, B A V V <∴,B A R R <∴ 又:22 1mR =ρ B A J J <∴ 2. 几个力同时作用在一个具有固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体 [ ]。 A. 必然不会转动 B. 转速必然不变 C. 转速必然改变 D. 转速可能不变,也可能改变 答:[D ] 解:几个力的矢量和为零,不一定外力矩为零,因此,刚体不一定不转动。但和外力为零,刚体不会平动。 3. 有两个力作用在一个有固定转轴的刚体上: (1). 这两个力都平行于轴作用时,它们对轴的合力矩一定是零。 (2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零。 (3). 这两个力合力为零时,它们对轴的合力矩一定是零。 (4). 这两个力对轴的合力矩为零时,它们的合力一定是零。 在上述说法中是正确的是[ ]。 A. 只有(1)是正确的 B. (1)(2)正确(3)(4)错误 C. (1)(2)(3)都正确,(4)错误 D. (1)(2)(3)(4)都正确 答:[B ] 解:如图所示 (1)由)(a )(b )(c 可见,21//?//F k F ,则它们对轴的力矩 0?)(111=??=k F r L z ,0?)(222=??=k F r L z ,对轴的合力矩为零。(1)是正确的。 (2)由)(d )(e )(f 可见,由21?F k F ⊥⊥,则它们对轴的力矩 0?)(111=??=k F r L z ,0?)(222=??=k F r L z ,对轴的合力矩为零; 由)(g )(i )(j 可见,21?F k F ⊥⊥,则它们对轴的力矩

刚体转动惯量计算方法

刚体绕轴转动惯性的度量。其数值为J=∑ mi*ri^2, 式中mi表示刚体的某个质点的质量,ri表示该质点到转轴的垂直距离。 ;求和号(或积分号)遍及整个刚体。转动惯量只决定于刚体的形状、质量分布和转轴的位置,而同刚体绕轴的转动状态(如角速度的大小)无关。规则形状的均质刚体,其转动惯量可直接计得。不规则刚体或非均质刚体的转动惯量,一般用实验法测定。转动惯量应用于刚体各种运动的动力学计算中。 描述刚体绕互相平行诸转轴的转动惯量之间的关系,有如下的平行轴定理:刚体对一轴的转动惯量,等于该刚体对同此轴平行并通过质心之轴的转动惯量加上该刚体的质量同两轴间距离平方的乘积。由于和式的第二项恒大于零,因此刚体绕过质量中心之轴的转动惯量是绕该束平行轴诸转动惯量中的最小者。 还有垂直轴定理:垂直轴定理 一个平面刚体薄板对于垂直它的平面轴的转动惯量,等于绕平面内与垂直轴相交的任意两正交轴的转动惯量之和。 表达式:Iz=Ix+Iy 刚体对一轴的转动惯量,可折算成质量等于刚体质量的单个质点对该轴所形成的转动惯量。由此折算所得的质点到转轴的距离,称为刚体绕该轴的回转半径κ,其公式为_____,式中M为刚体质量;I为转动惯量。 转动惯量的量纲为L^2M,在SI单位制中,它的单位是kg·m^2。 刚体绕某一点转动的惯性由更普遍的惯量张量描述。惯量张量是二阶对称张量,它完整地刻画出刚体绕通过该点任一轴的转动惯量的大小。 补充对转动惯量的详细解释及其物理意义: 先说转动惯量的由来,先从动能说起大家都知道动能E=(1/2)mv^2,而且动能的实际物理意义是:物体相对某个系统(选定一个参考系)运动的实际能量,(P势能实际意义则是物体相对某个系统运动的可能转化为运动的实际能量的大小)。 E=(1/2)mv^2 (v^2为v的2次方) 把v=wr代入上式(w是角速度,r是半径,在这里对任何物体来说是把物体微分化分为无数个质点,质点与运动整体的重心的距离为r,而再把不同质点积分化得到实际等效的r) 得到E=(1/2)m(wr)^2 由于某一个对象物体在运动当中的本身属性m和r都是不变的,所以把关于m、r的变量用一个变量K代替, K=mr^2 得到E=(1/2)Kw^2 K就是转动惯量,分析实际情况中的作用相当于牛顿运动平动分析中的质量的作用,都是一般不轻易变的量。 这样分析一个转动问题就可以用能量的角度分析了,而不必拘泥于只从纯运动角度分析转动问题。 为什么变换一下公式就可以从能量角度分析转动问题呢? 1、E=(1/2)Kw^2本身代表研究对象的运动能量 2、之所以用E=(1/2)mv^2不好分析转动物体的问题,是因为其中不包含转动物体的任何转动信息。 3、E=(1/2)mv^2除了不包含转动信息,而且还不包含体现局部运动的信息,因为里面的速度v只代表那个物体的质 心运动情况。 4、E=(1/2)Kw^2之所以利于分析,是因为包含了一个物体的所有转动信息,因为转动惯量K=mr^2本身就是一种积 分得到的数,更细一些讲就是综合了转动物体的转动不变的信息的等效结果K=∑ mr^2 (这里的K和上楼的J一样) 所以,就是因为发现了转动惯量,从能量的角度分析转动问题,就有了价值。 若刚体的质量是连续分布的,则转动惯量的计算公式可写成K=∑ mr^2=∫r^2dm=∫r^2σdV 其中dV表示dm的体积元,σ表示该处的密度,r表示该体积元到转轴的距离。 补充转动惯量的计算公式 转动惯量和质量一样,是回转物体保持其匀速圆周运动或静止的特性,用字母J表示。 对于杆: 当回转轴过杆的中点并垂直于轴时;J=mL^2/12 其中m是杆的质量,L是杆的长度。 当回转轴过杆的端点并垂直于轴时:J=mL^2/3 其中m是杆的质量,L是杆的长度。 对与圆柱体: 当回转轴是圆柱体轴线时;J=mr^2/2 其中m是圆柱体的质量,r是圆柱体的半径。 转动惯量定理:M=Jβ

大学物理上练习册 第2章《刚体定轴转动》答案-2013

第2章 刚体定轴转动 一、选择题 1(B),2(B),3(C),4(C),5(C) 二、填空题 (1). 62.5 1.67s (2). 4.0 rad/ (3). 0.25 kg ·m 2 (4). mgl μ21参考解:M =?M d =()mgl r r l gm l μμ2 1 d /0=? (5). 2E 0 三、计算题 1. 如图所示,半径为r 1=0.3 m 的A 轮通过皮带被半径为r 2=0.75 m 的B 轮带动,B 轮以匀角加速度π rad /s 2由静止起动,轮与皮带间无滑动发生.试求A 轮达到转速3000 rev/min 所需要的时间. 解:设A 、B 轮的角加速度分别为βA 和βB ,由于两轮边缘的切向加速度相同, a t = βA r 1 = βB r 2 则 βA = βB r 2 / r 1 A 轮角速度达到ω所需时间为 ()75 .03.060/2300021?π?π?=== r r t B A βωβωs =40 s 2.一砂轮直径为1 m 质量为50 kg ,以 900 rev / min 的转速转动.撤去动力后,一工件以 200 N 的正压力作用在轮边缘上,使砂轮在11.8 s 内停止.求砂轮和工件间的摩擦系数.(砂轮轴的摩擦可忽略不计,砂轮绕轴的转动惯量为 2 1 mR 2,其中m 和R 分别为砂轮的质量和半径). 解:R = 0.5 m ,ω0 = 900 rev/min = 30π rad/s , 根据转动定律 M = -J β ① 这里 M = -μNR ② μ为摩擦系数,N 为正压力,22 1 mR J = . ③ 设在时刻t 砂轮开始停转,则有: 00=+=t t βωω 从而得 β=-ω0 / t ④ 将②、③、④式代入①式,得 )/(2 1 02t mR NR ωμ-= - ∴ m =μR ω0 / (2Nt )≈0.5 r

刚体的转动答案

刚体的定轴转动1 选择题 一自由悬挂的匀质细棒AB ,可绕A 端在竖直平面内自由转动,现给B 端一初速v0,则棒在向上转动过程中仅就大小而言 [ B ] A 、角速度不断减小,角加速度不断减少; B 、角速度不断减小,角加速度不断增加; C 、角速度不断减小,角加速度不变; D 、所受力矩越来越大,角速度也越来越大。 分析:合外力矩由重力提供,1 sin 2 M mgl θ= ,方向与初角速度方向相反,所以角速度不断减小,随着θ的增加,重力矩增大,所以角加速度增加。 今有半径为R 的匀质圆板、圆环和圆球各一个,前二个的质量都为m ,绕通过圆心垂直于圆平面的轴转动;后一个的质量为 2 m ,绕任意一直径转动,设在相同的力矩作用下,获得的角加速度分别是β1、β2、β3,则有 A 、β3<β1<β2 B 、β3>β1<β2 C 、β3<β1>β2 D 、β3>β1>β2 [ D ] 分析:质量为m ,半径为R 的圆板绕通过圆心垂直于圆平面的轴的转动惯量为211 2 J mR = ;圆环的转动惯量为2 2J mR =,圆球质量为 2 m ,绕任意一直径转动的转动惯量为232 5 J mR = ,根据转动定律,M J β=,所以在相同力矩下,转动惯量大的,获得的的角加速度小。213J J J >>,所以选择 D 。 一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m1和m2的物体(m1<m2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力 (A) 处处相等. (B) 左边大于右边. (C) 右边大于左边. (D) 哪边大无法判断. [ C ] 一轻绳跨过两个质量均为m 、半径均为R 的匀质圆盘状定滑轮。绳的两端系着质量分别为m 和2m 的重物,不计滑轮转轴的摩擦。将系统由静止释放,且绳与两滑轮间均无相对滑动,则两滑轮之间绳的张力为。 A 、mg ; B 、3mg/2; C 、2mg ; D 、11mg/8。 [ D ] 解:对2m ,m 和两个滑轮受力分析得: 122mg T ma -= ○1 2T mg ma -=○2 2112T R TR mR β-= ○ 3 221 2 TR T R mR β-= ○4a R β= ○ 5 联立以上五个公式可得 4g R β= ,将其带入公式○2○4,可以求得两滑轮之间绳子的张力为11mg/8。 填空 质量为m ,长为l 的匀质细杆,可绕其端点的水平轴在竖直平面内自由转动。如果将细杆置

《刚体定轴转动》答案讲课教案

《刚体定轴转动》答 案

第2章 刚体定轴转动 一、选择题 1(B),2(B),3(A),4(D),5(C),6(C),7(C),8(C),9(D),10(C) 二、填空题 (1). v ≈15.2 m /s ,n 2=500 rev /min (2). 62.5 1.67s (3). g / l g / (2l ) (4). 5.0 N ·m (5). 4.0 rad/s (6). 0.25 kg ·m 2 (7). Ma 2 1 (8). mgl μ21参考解:M =?M d =()mgl r r l gm l μμ2 1d /0=? (9). ()21 2 mR J mr J ++ω (10). l g /sin 3θω= 三、计算题 1. 有一半径为R 的圆形平板平放在水平桌面上,平板与水平桌面的摩擦系数为μ,若平板绕通过其中心且垂直板面的固定轴以角速度ω0开始旋转,它将在旋转几圈后停止?(已知圆形平板的转动惯量22 1mR J =,其中m 为圆形平板的质量) 解:在r 处的宽度为d r 的环带面积上摩擦力矩为 r r r R mg M d 2d 2 ?π?π=μ 总摩擦力矩 mgR M M R μ3 2d 0==? 故平板角加速度 β =M /J 设停止前转数为n ,则转角 θ = 2πn 由 J /Mn π==4220 θβω 可得 g R M J n μωωπ16/342020=π=

2. 如图所示,一个质量为m 的物体与绕在定滑轮上的绳子相联,绳 子质量可以忽略,它与定滑轮之间无滑动.假设定滑轮质量为M 、 半径为R ,其转动惯量为221MR ,滑轮轴光滑.试求该物体由静止开始下落的过程中,下落速度与时间的关系. 解:根据牛顿运动定律和转动定律列方程 对物体: mg -T =ma ① 对滑轮: TR = J β ② 运动学关系: a =R β ③ 将①、②、③式联立得 a =mg / (m +21M ) ∵ v 0=0, ∴ v =at =mgt / (m +2 1M ) 3. 为求一半径R =50 cm 的飞轮对于通过其中心且与盘面垂直的固定转轴的转动惯量,在飞轮上绕以细绳,绳末端悬一质量m 1=8 kg 的重锤.让重锤从高2 m 处由静止落下,测得下落时间t 1=16 s .再用另一质量m 2=4 kg 的重锤做同样测量,测得下落时间t 2=25 s .假定摩擦力矩是一个常量,求飞轮的转动惯量. 解:根据牛顿运动定律和转动定律,对飞轮和重物列方程,得 TR -M f =Ja / R ① mg -T =ma ② h =221at ③ 则将m 1、t 1代入上述方程组,得 a 1=2h /21t =0.0156 m / s 2 T 1=m 1 (g -a 1)=78.3 N J =(T 1R -M f )R / a 1 ④ 将m 2、t 2代入①、②、③方程组,得 a 2=2h /22t =6.4×10-3 m / s 2 T 2=m 2(g -a 2)=39.2 N J = (T 2R -M f )R / a 2 ⑤ 由④、⑤两式,得 J =R 2(T 1-T 2) / (a 1-a 2)=1.06×103 kg ·m 2 a

刚体的定轴转动(带答案)

刚体的定轴转动 一、选择题 1、(本题3分)0289 关于刚体对轴的转动惯量,下列说法中正确的是 [ C ] (A)只取决于刚体的质量,与质量的空间分布和轴的位置无关。 (B)取决于刚体的质量和质量的空间分布,与轴的位置无关。 (C)取决于刚体的质量、质量的空间分布和轴的位置。 (D)只取决于转轴的位置,与刚体的质量和质量的空间分布无关。 2、(本题3分)0165 均匀细棒OA可绕通过某一端O而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下降,在棒摆到竖直位置的过程中,下述说法哪一种是正确的? (A)角速度从小到大,角加速度从大到小。 (B)角速度从小到大,角加速度从小到大。 (C)角速度从大到小,角加速度从大到小。 (D)角速度从大到小,角加速度从小到大。 3. (本题3分)5640 一个物体正在绕固定的光滑轴自由转动,则 [ D ] (A)它受热或遇冷伸缩时,角速度不变. (B)它受热时角速度变大,遇冷时角速度变小. (C)它受热或遇冷伸缩时,角速度均变大. (D)它受热时角速度变小,遇冷时角速度变大. 4、(本题3分)0292 一轻绳绕在有水平轴的定滑轮上,滑轮质量为m,绳下端挂一物体,物体所受重力为P,滑轮的角加速度为β,若将物体去掉而以与P相等的力直接向下拉绳子,滑轮的角加速度β将[ C ] (A)不变(B)变小(C)变大(D)无法判断

5、(本题3分)5028 如图所示,A 、B 为两个相同的绕着 轻绳的定滑轮,A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F=Mg , 设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦, 则有 [ C ] (A )βA =βB (B )βA >βB (C )βA <βB (D )开始时βA =βB ,以后βA <βB 6、(本题3分)0294 刚体角动量守恒的充分而必要的条件是 [ B ] (A )刚体不受外力矩的作用。 (B )刚体所受合外力矩为零。 (C )刚体所受的合外力和合外力矩均为零。 (D )刚体的转动惯量和角速度均保持不变。 7、(本题3分)0247 如图示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂。现有一个小球自左方水平打击细杆,设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统 [ C ] (A )只有机械能守恒。 (B )只有动量守恒。 (C )只有对转轴O 的角动量守恒。 (D )机械能、动量和角动量均守量。 8、(本题3分)0677 一块方板,可以绕通过其一个水平边的光滑固定转轴自由转动,最初板自由下垂,今有一小团粘土,垂直板面撞击方板,并粘在方板上,对粘土和方板系统,如果忽略空气阻力,在碰撞中守恒的量是 [ B ] (A )动能 (B )绕木板转轴的角动量 (C )机械能 (D )动量 9、(本题3分)0228 质量为m 的小孩站在半径为R 的水平平台边缘上,平台可以绕通过其中心的竖直光滑固定

实验名称刚体转动惯量的测量

实验名称:刚体转动惯量的测量 姓 名 学 号 班 级 桌 号 同组人 本实验指导教师 实验地点:基教1208教室 实验日期 20 年 月 日 时 段 一、实验目的: 1. 用实验方法检验刚体的转动定律; 2. 掌握利用刚体转动定律测定刚体转动惯量的实验方法; 3. 学习曲线改直的方法; 4. 学习用ORIGIN 软件处理实验数据。 二、实验仪器与器件 刚体转动惯量仪一套,毫秒计时器一台,铝圆环一个,请自带计算器。 三、实验原理: 当砝码以加速度a 加速下落带动转动体系运动时,在a <

(b )若ω00=,则有 βθ= 22t , m g r M I t -=μθ 22 m I gr t M gr k t C =?+=?+21122θμ 改变m ,测得不同的 1 2t ,由线性回归法求出k ,可得转动惯量 I = 。 测量铝环绕轴的转动惯量,可先测量承载时的转动惯量I ,再测量空载时的转动惯量I 0,则其转动惯量 =x I 。 四、实验内容: 1. 用计算法测量铝环对中心轴的转动惯量 (1) 测承载时的转动惯量I 把铝环放在承物台上,取m 为9个砝码质量,r =2.50cm (第3个塔轮半径),取θθ12,分别为2π和8π,所对应的时间t 1和t 2,即由毫秒计分别读出所对应的时间t 1和t 2。重复五次。取m 为3个砝码质量,其余条件不变,由毫秒计分别读出所对应的时间' 1t 和' 2t 。重复五次。 (2) 测空载时的转动惯量I 0 把铝环从承物台上取下,重复上述步骤,得t 1,t 2,' 1t ,' 2t ,重复五次。 2. 用最小二乘法处理数据,测铝环对中心轴的转动惯量 需要满足ω00=(怎样操作?),为此,挡光柱初始位置应在光电门处,使体系一开始转动就开始计时。 (1)测量I

05刚体的定轴转动习题解答

第五章刚体的定轴转动 一选择题 1.一绕定轴转动的刚体,某时刻的角速度为-,角加速度为二则其转动加 快的依据是:() A._::> 0 B. ■ > 0, _:: > 0 C. ■ < 0,二> 0 D. - ■ > 0,二< 0 解:答案是B。 2.用铅和铁两种金属制成两个均质圆盘,质量相等且具有相同的厚度,则 它们对过盘心且垂直盘面的轴的转动惯量。() A.相等; B.铅盘的大; C.铁盘的大; D.无法确定谁大谁小解:答案是C。 简要提示:铅的密度大,所以其半径小,圆盘的转动惯量为:J二Mr 2/2。 3.一轻绳绕在半径为r的重滑轮上,轮对轴的转动惯量为J,一是以力F向 下拉绳使轮转动;二是以重量等于F的重物挂在绳上使之转动,若两种情况使 轮边缘获得的切向加速度分别为a i和a2,则有:() A. a i = a 2 B. a i > a 2 C. a i< a 2 D.无法确定 解:答案是B。 简要提示:(1)由定轴转动定律,Fr 和q ,得:a1 =Fr2/J mg -T 二ma2 (2)受力分析得:Tr=J「2 ,其中m为重物的质量,T为绳子的张力。 a2=「二2 得:a2 =Fr2 /(J mr2),所以a 1 > a 2。 4.一半径为R,质量为m的圆柱体,在切向力F作用下由静止开始绕轴线 作定轴转动,则在2秒内F对柱体所作功为:() 2 2 2 2 A.4 F / m B. 2 F / m C. F / m D. F / 2 m 解:答案是A。

简要提示:由定轴转动定律:FR = 1 MR?〉,得:-1 it? =4F 2 2 mR 所以:W =M.d -4F2/m 5.一电唱机的转盘正以-■ 0的角速度转动,其转动惯量为J i,现将一转动惯 量为J2的唱片置于转盘上,则共同转动的角速度应为:() A . Ji o B. 良0 C.出0 D. 土0 J^i +J2J1J2J1解:答案是A。 简要提示:角动量守恒 6.已知银河系中一均匀球形天体,现时半径为R,绕对称轴自转周期为T, 由于引力凝聚作用,其体积不断收缩,假设一万年后,其半径缩小为r,则那时该天体的:() A.自转周期增加,转动动能增加; B.自转周期减小,转动动能减小; C.自转周期减小,转动动能增加; D.自转周期增加,转动动能减小。解:答案是C。 简要提示:由角动量守恒,-MR2o ^2Mr 2',得转动角频率增大,所以 5 5 1 2 1 2 转动周期减小。转动动能为E k0=-2MR2E k=-2Mr 2,2可得E k > E ko。 2 5 2 5 7.绳子通过高处一固定的、质量不能忽略的滑轮,两端爬着两只质量相等 的猴子,开始时它们离地高度相同,若它们同时攀绳往上爬,且甲猴攀绳速度为 乙猴的两倍,贝U () A.两猴同时爬到顶点 B.甲猴先到达顶点 C.乙猴先到达顶点 D.无法确定谁先谁后到达顶点 解:答案是B。 简要提示:考虑两个猴子和滑轮组成的系统,滑轮所受的外力(重力和支撑力)均通过滑轮质心,由于甲乙两猴的重量(质量)相等,因此在开始时系统对于通过滑轮质心并与轮面垂直的转轴的合外力矩为零,而在两猴攀绳过程中,系

大学物理刚体的转动惯量的研究实验报告

大学物理仿真实验报告 电子3班 实验名称:刚体得转动惯量得研究 实验简介 在研究摆得重心升降问题时,惠更斯发现了物体系得重心与后来欧勒称之为转动惯量得量。转动惯量就是表征刚体转动惯性大小得物理量,它与刚体得质量、质量相对于转轴得分布有关。 本实验将学习测量刚体转动惯量得基本方法,目得如下: 1.用实验方法验证刚体转动定律,并求其转动惯量; 2。观察刚体得转动惯量与质量分布得关系 3.学习作图得曲线改直法,并由作图法处理实验数据。 实验原理 1。刚体得转动定律 具有确定转轴得刚体,在外力矩得作用下,将获得角加速度β,其值与外力矩成正比,与刚体得转动惯量成反比,即有刚体得转动定律: M= Iβ(1) 利用转动定律,通过实验得方法,可求得难以用计算方法得到得转动惯量。 2.应用转动定律求转动惯量 如图所示,待测刚体由塔轮,伸杆及杆上得配重物组成。刚体将在砝码得拖动下绕竖直轴转动。

设细线不可伸长,砝码受到重力与细线得张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落得高度为h=at2/2。刚体受到张力得力矩为T r与轴摩擦力力矩Mf。由转动定律可得到刚体得转动运动方程:T r—Mf= Iβ。绳与塔轮间无相对滑动时有a= rβ,上述四个方程得到: m(g - a)r - Mf = 2hI/rt2(2) M f与张力矩相比可以忽略,砝码质量m比刚体得质量小得多时有a<<g, 所以可得到近似表达式: mgr = 2hI/ rt2(3) 式中r、h、t可直接测量到,m就是试验中任意选定得。因此可根据(3)用实验得方法求得转动惯量I。 3.验证转动定律,求转动惯量 从(3)出发,考虑用以下两种方法: A.作m – 1/t2图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r与砝码下落高度h,(3)式变为: M = K1/ t2(4) 式中K1= 2hI/ gr2为常量。上式表明:所用砝码得质量与下落时间t得平方成反比。实验中选用一系列得砝码质量,可测得一组m与1/t2得数据,将其在直角坐标系上作图,应就是直线.即若所作得图就是直线,便验证了转动定律。 从m–1/t2图中测得斜率K1,并用已知得h、r、g值,由K1= 2hI/ gr2求得刚体得I. B.作r – 1/t图法:配重物得位置不变,即选定一个刚体,取砝码m与下落高度h为固定值。将式(3)写为:

05刚体的定轴转动习题解答

第五章 刚体的定轴转动 一 选择题 1. 一绕定轴转动的刚体,某时刻的角速度为ω,角加速度为α,则其转动加快的依据是:( ) A. α > 0 B. ω > 0,α > 0 C. ω < 0,α > 0 D. ω > 0,α < 0 解:答案是B 。 2. 用铅和铁两种金属制成两个均质圆盘,质量相等且具有相同的厚度,则它们对过盘心且垂直盘面的轴的转动惯量。 ( ) A. 相等; B. 铅盘的大; C. 铁盘的大; D. 无法确定谁大谁小 解:答案是C 。 简要提示:铅的密度大,所以其半径小,圆盘的转动惯量为:2/2Mr J =。 3. 一轻绳绕在半径为r 的重滑轮上,轮对轴的转动惯量为J ,一是以力F 向下拉绳使轮转动;二是以重量等于F 的重物挂在绳上使之转动,若两种情况使轮边缘获得的切向加速度分别为a 1和a 2,则有: ( ) A. a 1 = a 2 B. a 1 > a 2 C. a 1< a 2 D. 无法确定 解:答案是B 。 简要提示:(1) 由定轴转动定律,1αJ Fr =和11αr a =,得:J Fr a /21= (2) 受力分析得:?? ???===-2222ααr a J Tr ma T mg ,其中m 为重物的质量,T 为绳子的张力。 得:)/(222mr J Fr a +=,所以a 1 > a 2。 4. 一半径为R ,质量为m 的圆柱体,在切向力F 作用下由静止开始绕轴线作定轴转动,则在2秒内F 对柱体所作功为: ( ) A. 4 F 2/ m B. 2 F 2 / m C. F 2 / m D. F 2 / 2 m 解:答案是A 。

刚体转动惯量的测定_实验报告

实验三刚体转动惯量的测定 转动惯量是刚体转动中惯性大小的量度。它与刚体的质量、形状大小和转轴的位置有关。形状简单的刚体,可以通过数学计算求得其绕定轴的转动惯量;而形状复杂的刚体的转动惯量,则大都采用实验方法测定。下面介绍一种用刚体转动实验仪测定刚体的转动惯量的方法。 实验目的: 1、理解并掌握根据转动定律测转动惯量的方法; 2、熟悉电子毫秒计的使用。 实验仪器: 刚体转动惯量实验仪、通用电脑式毫秒计。 仪器描述: 刚体转动惯量实验仪如图一,转动体系由十字型承物台、绕线塔轮、遮光细棒等(含小滑轮)组成。遮光棒随体系转动,依次通过光电门,每π弧度(半圈)遮光电门一次的光以计数、计时。塔轮上有五个不同半径(r)的绕线轮。砝码钩上可以放置不同数量的砝码,以获得不同的外力矩。 实验原理: 空实验台(仅有承物台)对于中垂轴OO’的转动惯量用J o表示,加上试样(被测物体)后的总转动惯量用J表示,则试样的转动惯量J1: J1 = J –J o (1) 由刚体的转动定律可知:

T r – M r = J α (2) 其中M r 为摩擦力矩。 而 T = m(g -r α) (3) 其中 m —— 砝码质量 g —— 重力加速度 α —— 角加速度 T —— 张力 1. 测量承物台的转动惯量J o 未加试件,未加外力(m=0 , T=0) 令其转动后,在M r 的作用下,体系将作匀减速转动,α=α1,有 -M r1 = J o α1 (4) 加外力后,令α =α2 m(g –r α2)r –M r1 = J o α2 (5) (4)(5)式联立得 J o = 21 2212mr mgr ααααα--- (6) 测出α1 , α2,由(6)式即可得J o 。 2. 测量承物台放上试样后的总转动惯量J ,原理与1.相似。加试样后,有 -M r2=J α3 (7) m(g –r α4)r –Mr 2= J α4 (8) ∴ J = 23 4434mr mgr ααααα--- (9) 注意:α1 , α3值实为负,因此(6)、(9)式中的分母实为相加。 3. 测量的原理 设转动体系的初角速度为ωo ,t = 0 时θ= 0 ∵ θ=ωo t + 2 2 1t α (10) 测得与θ1 , θ2相应的时间t 1 , t 2 由 θ1=ωo t 1 + 2121t α (11) θ2=ωo t 2 + 2 22 1t α (12) 得 22112 22112) (2t t t t t t --= θθα (13) ∵ t = 0时,计时次数k=1(θ=л时,k = 2) ∴ []2 2 11222112)1()1(2t t t t t k t k ----= πα (14) k 的取值不局限于固定的k 1 , k 2两个,一般取k =1 , 2 , 3 , …,30,…

大学物理_刚体的定轴转动_习题及答案

第4章 刚体的定轴转动 习题及答案 1.刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度是否有法向加速度切向和法向加速度的大小是否随时间变化 答:当刚体作匀变速转动时,角加速度β不变。刚体上任一点都作匀变速圆周运动,因此该点速率在均匀变化,v l ω=,所以一定有切向加速度t a l β=,其大小不变。又因该点速度的方向变化, 所以一定有法向加速度2 n a l ω=,由于角速度变化,所以法向加速度的大小也在变化。 2. 刚体绕定轴转动的转动定律和质点系的动量矩定理是什么关系 答:刚体是一个特殊的质点系,它应遵守质点系的动量矩定理,当刚体绕定轴Z 转动时,动量矩定理的形式为z z dL M dt = ,z M 表示刚体对Z 轴的合外力矩,z L 表示刚体对Z 轴的动量矩。()2z i i L m l I ωω==∑,其中()2i i I m l =∑,代表刚体对定轴的转动惯量,所以 ()z z dL d d M I I I dt dt dt ω ωβ= ===。既 z M I β=。 所以刚体定轴转动的转动定律是质点系的动量矩定理在刚体绕定轴转动时的具体表现形式, 及质点系的动量矩定理用于刚体时在刚体转轴方向的分量表达式。 3.两个半径相同的轮子,质量相同,但一个轮子的质量聚集在边缘附近,另一个轮子的质量分布比较均匀,试问:(1)如果它们的角动量相同,哪个轮子转得快(2)如果它们的角速度相同,哪个轮子的角动量大 答:(1)由于L I ω=,而转动惯量与质量分布有关,半径、质量均相同的轮子,质量聚集在边缘附近的轮子的转动惯量大,故角速度小,转得慢,质量分布比较均匀的轮子转得快; (2)如果它们的角速度相同,则质量聚集在边缘附近的轮子角动量大。 4.一圆形台面可绕中心轴无摩擦地转动,有一玩具车相对台面由静止启动,绕轴作圆周运动,问平台如何运动如小汽车突然刹车,此过程角动量是否守恒动量是否守恒能量是否守恒 答:玩具车相对台面由静止启动,绕轴作圆周运动时,平台将沿相反方向转动;小汽车突然刹车过程满足角动量守恒,而能量和动量均不守恒。 5.一转速为1200r min 的飞轮,因制动而均匀地减速,经10秒后停止转动,求: (1) 飞轮的角加速度和从开始制动到停止转动,飞轮所转过的圈数; (2) 开始制动后5秒时飞轮的角速度。 解:(1)由题意飞轮的初角速度为 0240()n rad s ωππ== 飞轮作均减速转动,其角加速度为 20 0404/10 rad s t ωωπ βπ--= = =-? 故从开始制动到停止转动,飞轮转过的角位移为 201 2002 t t rad θωβπ?=?+?= 因此,飞轮转过圈数为

刚体转动惯量的测定实验报告

刚体转动惯量的测定 物本1001班 张胜东(201009110024) 李春雷(201009110059) 郑云婌(201009110019)

刚体转动惯量的测定实验报告 【实验目的】 1.熟悉扭摆的构造、使用方法和转动惯量测试仪的使用。 2.用扭摆测定弹簧的扭转常数K和几种不同形状的物体的转动惯量,并与理论值进行比较。 3.验证转动定理和平行轴定理。 【实验仪器】 (1)扭摆(转动惯量测定仪)。 (2)实心塑料圆柱体、空心金属圆桶、细金属杆和两个金属块及支架。 (3)天平。 (4)游标卡尺。 (5)HLD-TH-II转动惯量测试仪(计时精度0.001ms)。 【实验原理】 1.扭摆 扭摆的构造如图所示,在垂直轴1 上装有一根薄片状的螺旋弹簧2,用以产生恢复力矩。在轴的上方可以装上各种待测物体。垂直轴与支座间装有轴承,以降低磨擦力矩。3 为水平仪,用来调整系统平衡。 将物体在水平面内转过一角度θ后,在弹簧的恢复力矩作用下物体就开始绕垂直轴作往返扭转运将物体在水平面内转过一角度θ后,在弹簧的恢复力矩作用下物体就开始绕垂直轴作往返扭转运动。根据虎克定律,弹簧受扭转而产生的恢复力矩M与所转过的角度θ成正比,即

b M =-K θ (1) 式中,K 为弹簧的扭转常数,根据转动定律 M =I β 式中,I 为物体绕转轴的转动惯量,β为角加速度,由上式得 I M = β (2) 令 L K = 2 ω ,忽略轴承的磨擦阻力矩,由(1)、(2)得 θωθθβ2 2 2-=-==I K dt d (3) 上述方程表示扭摆运动具有角简谐振动的特性,角加速度与角位移成正比,且方向相反。此方程的解为: θ=Acos(ωt +φ) (4) 式中,A 为谐振动的角振幅,φ为初相位角,ω为角速度,此谐振动的周期为 K I T π ω π 22== (5) 由(5)可知,只要实验测得物体扭摆的摆动周期,并在I 和K 中任何一个量已知时即可计算出另一个量。 本实验用一个几何形状规则的物体,它的转动惯量可以根据它的质量和几何尺寸用理论公式直接计算得到,再算出本仪器弹簧的K 值。若要测定其它形状物体的转动惯量,只需将待测物体安放在本仪器顶部的各种夹具上,测定其摆动周期,由公式(3)即可算出该物体绕转动轴的转动惯量。 2.弹簧的扭转系数 实验中用一个几何形状规则的物体(塑料圆柱体),它的转动惯量可以根据它的质量和集合尺寸用理论公式直接计算得到,再由实验数据算出本一起弹簧的K 值。方法如下: (1)测载物盘摆动周期T 0,由(5)式得其转动惯量为: (2)塑料圆柱放在载物盘上,测出摆动周期T 1,由(5)式其总惯量为:

相关主题
文本预览
相关文档 最新文档