Smith 2009 - Sources and evolution of mineralising fluids in IOCG systems
- 格式:pdf
- 大小:739.75 KB
- 文档页数:15
Thesourcesandevolutionofmineralisingfluidsiniron
oxide–copper–goldsystems,Norrbotten,Sweden:Constraints
fromBr/ClratiosandstableClisotopesoffluidinclusion
leachates
S.A.Gleesona,*,M.P.Smithb
aDepartmentofEarth&AtmosphericSciences,UniversityofAlberta,Edmonton,Alta.,CanadaT6G2E3bSchooloftheEnvironment,UniversityofBrighton,CockcroftBuilding,LewesRoad,BrightonBN24GJ,UK
Received25February2009;acceptedinrevisedform11June2009;availableonline16June2009
Abstract
Wehaveanalysedthehalogenconcentrationsandchlorinestableisotopecompositionoffluidinclusionleachatesfrom
threespatiallyassociatedFe-oxide±Cu±AumineralisingsystemsinNorrbotten,Sweden.Fluidinclusionsinlate-stage
veinsinFe-oxide–apatitedepositscontainsalinebrinesandhaveawiderangeofBr/Clmolarratios,from0.2to
1.1Â10À3andd37ClvaluesfromÀ3.1&toÀ1.0&.LeachatesfromsalinefluidinclusionsfromtheGreenstoneandPorphyry
hostedCu–AuprospectshaveBr/Clratiosthatrangefrom0.2to0.5Â10À3andd37ClvaluesfromÀ5.6&toÀ1.3&.Finally,
theCu–AudepositshostedbytheNautanenDeformationZone(NDZ)haveBr/Clmolarratiosfrom0.4to1.1Â10À3and
d37ClvaluesthatrangefromÀ2.4&to+0.5&,althoughthebulkofthedatafallwithin0&±0.5&.
TheBr/Clratiosofleachatesareconsistentwiththederivationofsalinityfrommagmaticsourcesorfromthedissolution
ofhalite.MostoftheisotopicdatafromtheFe-oxide–apatiteandGreenstonedepositsareconsistentwithamantlederived
sourceofthechlorine,withtheexceptionofthefoursampleswiththemostnegativevalues.Theoriginofthelowd37Clvalues
inthesesamplesisunknownbutwesuggestthattheremayhavebeensomemodificationoftheCl-isotopesignaturedueto
fractionationbetweenthemineralisingfluidsandCl-richsilicateassemblagesfoundinthealterationhaloesaroundthedepos-
its.Ifsuchaprocesshasoccurredthenamodifiedcrustalsourceofthechlorineforallthesamplescannotberuledout
althoughtheamountoffractionationnecessarytogeneratethelowd37Clvalueswouldbesignificantlylarger.
ThesourceofClintheNDZdepositshasacrustalsignature,whichsuggeststheClinthissystemmaybederivedfrom
(meta-)evaporitesorfrominputfromcrustalmeltssuchasgraniticpegmatitesoftheLinaSuite.
Ó2009ElsevierLtd.Allrightsreserved.
1.INTRODUCTION
Theironoxide–copper–gold(IOCG)depositclasshas
attractedmuchattentioninrecentyears,bothintermsof
academicresearchandexplorationactivity.Thedeposits
arecharacterisedbyCu-sulphides±Auhydrothermalores
withabundantmagnetiteorhematiteandoccurin
rocksrangingfromLateArchaentotheCenozoicinage(Williamsetal.,2005).IOCGdepositsdonothaveaclear
spatialassociationwithigneousrocks,havedisputedtec-
tonicsettingsandvariablegeologicalcharacteristics.Also,
thesourcesofthemajorcomponentsinmanyofthedepos-
itsareunknown.However,allthedeposittypesarecom-
monlyfoundinsequenceswhichhaveundergonelarge
scalesodicalterationandcontainCl-richsilicateminerals
suchasscapolite,biotiteandamphiboles.
TherelationshipbetweenFe-oxide–apatite(e.g.Kiruna-
type)andtheIOCGdepositshasalsobeenacontentious
pointintheliterature.Thecommonspatialrelationship
0016-7037/$-seefrontmatterÓ2009ElsevierLtd.Allrightsreserved.doi:
10.1016/j.gca.2009.06.005*Correspondingauthor.E-mailaddress:sgleeson@ualberta.ca(S.A.Gleeson).
www.elsevier.com/locate/gcaAvailable online at www.sciencedirect.com
GeochimicaetCosmochimicaActa73(2009)
5658–5672ofthesedeposittypes(andinsomecasestheirdirectsuper-
position)hasleadtosuggestionsthattheyarepartofthe
samedepositclassorthattherearegeneticlinksbetween
thetwo(Hitzmanetal.,1992).Thisissupportedbyearly
stagemagnetitealterationinmanyIOCGdeposits(e.g.
Smithetal.,2007),thelate-stageoccurrenceofpyrite,chal-
copyriteandgoldinandnearmassivemagnetitedeposits,
andthecommonfeaturesinalterationassociatedwithboth
deposittypes(Sillitoe,2003).However,recentworkhas
highlightedasignificantdifferenceintimingofthetwode-
posittypesinsomeareas(Hitzman,2000)indicatingthata
directgeneticlinkbetweenthetwomaynotexist.
Oneofmaindifficultiesinconstructingageneticmodel
forthesedepositsisdeterminingthefluidsourcesatdiffer-
entstagesofmineralisation,inpartduetothemodification
offluidstableisotopecharacteristicsbywater–rockinterac-
tioninthedepositclassasawhole(Haynes,2000).Anum-
berofdifferentgeneticmodelshavebeensuggestedforthe
depositclassincluding(1)amagmaticsourcefortheminer-
alisingfluids(e.g.Pollard,2000,2006);(2)amagmatic
sourcethathasbeenmodifiedbylargescalefluidcircula-
tionformingtheregionalsodicalterationandaddingmet-
alstothemineralisingfluid(e.g.Oliveretal.,2004);(3)a
non-magmatic,evaporiteornear-surfacecontinentalbrine
derivedoriginforthefluids(BartonandJohnson,1996,
2000;Xavieretal.,2008);(4)ametamorphicsourcefor
thefluids(FisherandKendrick,2008);(5)amixedmag-
matic–basinalbrineorigin(Chiaradiaetal.,2006;Baker
etal.,2008;Kendricketal.,2008).Metamorphismofevap-
oriteshasalsobeeninvokedtoexplaintheregionaldistri-
butionofsodicalterationintheKirunadistrict,
Norrbotten,SwedenalthoughnoFennoscandianevaporitic
sedimentsarepreserved(Frietschetal.,1997).However,it
hasbeensuggestedthatsomeoccurrencesofapparently
stratigraphicallyrestrictedscapoliteintheGreenstone
grouphavearerelatedtoformerevaporitebeds(Martins-
son,1997).Itisnowrecognisedthattheclassrepresentsa
diversegroupwiththepotentialforawiderangeofpoten-
tialfluidsources(Williamsetal.,2005).
InNorrbottenbothdepositshostedbytheGreenstone
andPorphyryGroupmetavolcanicrocks,anddeposits
hostedregionallysignificantdeformationzonessuchas
theNautanenDeformationZone(NDZ),havebeenpro-
posedtobelongtotheIOCGclass.Theyarelinkedby
theubiquitouspresenceofmagnetiteasanalterationphase,
andthecommonoccurrenceofscapoliteinalteration
assemblages,despiteothervariations.Itis,therefore,perti-
nenttoexaminethedepositstogetherinordertoinvestigate
therangeofbrinesourcesoperatingovertimeinthearea,
andinparticulartoinvestigateifcommonsourcesperiodi-
callysuppliedfluidaccountingforthegeochemicalsimilar-
itiesinthedeposittypes.Inthisstudy,weexaminetheCl
andBrconcentrationsand,usinganon-linemassspectro-
metrictechnique,thestablechlorineisotopiccomposition
ofdiluteleachates(>20ppmtotalchloride)derivedfrom
microthermometricallywellcharacterisedveinquartzsam-
ples.WecomparethesourceofClinKiruna-typeFe-
oxide–apatiteandIOGCdepositsoftheNorrbottendis-
trict,Swedenandprovidenewconstraintsonthefluid
sourceandwater–rockinteractionhistoryindepositsandprospectsinthisimportantmetallogenicprovince.Bulk
leachatesarecurrentlytheonlywaytoexaminethechlorine
stableisotopechemistryofinclusionfluids.
2.BACKGROUNDGEOLOGY
ThemajorironoreprovinceofnorthernSwedenislo-
catedinNorrbottenCountyandismainlyhostedbyPalae-
oproterozoicrocks(seereviewsbyCarlon(2000)and
Bergmanetal.(2001)).ThesedepositsaremainlyKarelian
(2.5–2.0Ga)andSvecofennian(1.9–1.88Ga)inage(Fig.1)
andarepreservedindeformedandmetamorphosedbelts,
intrudedbyarangeofgranitoidplutons.Metamorphic
conditionspeakedatuppergreenschistorloweramphibo-
litefaciesduringtheSvecofennianOrogenyfrom1.9to
1.8Ga(Skio¨ld,1987).Adetailedlithostratigraphyofthese
rockshasbeenproposedbyMartinsson(1997).TheGreen-
stoneGroup(>1.9Ga),consistingofmainlytholeiitic(Ek-
dahl,1993)tokomatiitic(Martinsson,1997)volcanicrocks
overliesArchaeanbasement.Theseareoverlainfirstbythe
MiddleSedimentGroup(Witschard,1984),andthenbythe
PorphyryGroup,whichconsistsofvolcanicandsub-volca-
nicrocks,subdividedintheKirunaareaintothedomi-
nantlyandesiticPorphyriteGroup,andthesyeniticand
quartz-syeniticKirunaPorphyrieswhichhosttheKiruna-
vaaramagnetite–apatitedeposit.Inviewoftheirproximity
totheKirunaavaaradepositstheKirunaporphyriesmay
haveacquiredtheirsyeniticcharacterviaalkalimetamor-
phism,anditislikelythattheoriginalvolcanicrockswere
calc-alkalineincharacter.TheHaparandaandPerthite–
monzonitecalc-alkalineandalkali-calcicgranitesuitesin-
trudedtheserocksbetween1.9and1.8Ga(Skio¨ld,1987)
followedbytheLinaSuitegranitoidsataround1.79Ga
(Skio¨ld,1987;Bergmanetal.,2001).Theyoungestplutonic
rocksintheareaareTIB2granitoids,ataround1.71Gain
age,exposedattheSwedish–Norwegianborder(Romer
etal.,1994).Theareaiscross-cutbyaseriesoflargescale
shearsystemsincludingtheNDZ,whichisnotableforits
associationwithmineralisation.ItisaNNWtrendingtec-
tonicstructurewherestronglyschistoseormyloniticrocks
occurinseveralhighstrainbranchesinazoneupto3km
wide(MartinssonandWanhainen,2004).
ThePalaeoproterozoicrocksofNorrbottenareaareaf-
fectedbyscapoliteandalbitealterationatboththeregional
anddepositscale,wheretheyareassociatedwithbothiron
oxideandCu–(Au)mineralisation(Frietschetal.,1997).
Samplesforthisstudyweretakenfromthreegroupsof
mineralisingsystems;late-stagequartzveinscuttingFe-
oxide–apatitedepositsandassociatedalteration;minerali-
sation-relatedquartzveinsfromCu–(Au)prospectshosted
bytheGreenstoneandPorphyryGroups,andmineralisa-
tion-relatedquartzveinsfromtheheavilydeformedmeta-
volcanicrocksoftheNDZ.
Dataonthetimingofthescapolizationoftheareaare
limited,butSmithetal.(inpress)reportaU–Pbtitanite
ageof1903±8Mafortitaniteinascapolitealtereddiorite
atNunasvaara.TheFe-oxide–apatitedepositatKiirunava-
arahasbeendatedasformingbetween1884±6and
1875±9Ma(Romeretal.,1994),whilstStoreyetal.
(2007)showedthattitanitefromLuossavaarahaddistinctChlorineisotopesinironoxide–copper–golddepositsSweden5659