当前位置:文档之家› 高数8多元函数的极限与连续

高数8多元函数的极限与连续

高数8多元函数的极限与连续
高数8多元函数的极限与连续

二元函数的极限

二元极限存在常用夹逼准则证明

例1 14)23(lim 2

12=+→→y x y x 例2 函数??

???+=01sin 1sin ),(,x y y x y x f .00=≠xy xy ,在原点(0,0)的极限是0. 二元极限不存在常取路径

例3 证明:函数)),(,,00)(()y (442≠+=y x y

x y x x f 在原点(0,0)不存在极限. 与一元函数极限类似,二元函数极限也有局部有限性、极限保序性、四则运算、柯西收敛准则等. 证明方法与一元函数极限证法相同,从略.

上述二元函数极限)(lim 0

0y x f y y x x ,→→是两个自变量x 与y 分别独立以任意方式无限趋近于0x 与0y .这是个二重极限. 二元函数还有一种极限:

累次极限

定义 若当a x →时(y 看做常数),函数)(y x f ,存在极限,设当b y →时,)(y ?也存在极限,设

B y x f y a

x b y b y ==→→→)(lim lim )(lim ,?, 则称B 是函数)(y x f ,在点)(b a P ,的累次极限.同样,可定义另一个不同次序的累次极限,即

C y x f b

y a x =→→)(lim lim ,. 那么二重极限与累次极限之间有什么关系呢?一般来说,它们之间没有蕴含关系. 例如:

1)两个累次极限都存在,且相等,但是二重极限可能不存在. 如上述例3.

2)二重极限存在,但是两个累次极限可能都不存在. 如上述的例2.

多重极限与累次极限之间的关系

定理 若函数)(y x f ,在点),000(y x P 的二重极限与累次极限(首先0→y ,其次0→x )都存在,则

)(lim lim (lim 0

000y x f y x f y y x x y y x x ,),→→→→=.

二元函数的连续性

定理 若二元函数)(P f 与()P g 在点0P 连续,则函数)()(P g P f ±,)()(P g P f ,)

()(P g P f (0)(0≠P g )都在点0P 连续

定理 若二元函数)(y x u ,?=,)(y x v ,ψ=在点)(000y x P ,连续,并且二元函数)(v u f ,在点[])()()(000000y x y x v u ,,,,,ψ?=连续,则复合函数[])()(0000y x y x f ,,,,ψ? 在点)(000y x P ,连续.

1. 用极限定义证明下列极限:

1)19)34(lim 212=+→→y x y x ; 2)01sin 1sin )(lim 00=+→→y

x y x y x ; 3)0lim 2220

0=+→→y x y x y x . (提示:应用.1222≤+y x xy ) 2. 证明:若)0()(≠++-=y x y

x y x y x f ,,,则 1)(lim lim 00=??????→→y x f y x , 与 []

1)(lim lim 00-=→→y x f x y ,. 3. 设函数3244

4)

()(y x y x y x f +=,,证明:当点)(y x ,沿通过原点的任意直线 )(mx y =趋于(0,0)时,函数)(y x f ,存在极限,且极限相等. 但是,此函数在原点不存在极限. (提示:在抛物线2

x y =上讨论.) 4. 若将函数222

2)(y x y x y x f +-=,限制在区域{}

2)(x y y x D <=,,则函数)(y x f ,在原点(0,0)存在极限(关于D).

5. 求下列极限:

1)2221lim y xy x y x y x +-+→→; 2)x xy y x sin lim 4

0→→; 3))()(lim 2

200y x In y x y x ++→→; (提示:设??sin cos r y r x ==,)

4)222200321)61)(41(lim y x y x y x +-++→→.

高等数学函数极限与连续习题及答案

1、函数 ()12 ++=x x x f 与函数()11 3--=x x x g 相同. 错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。 ∴()12 ++=x x x f 与()11 3--=x x x g 函数关系相同,但定义域不同,所以()x f 与 ()x g 是不同的函数。 2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。 3、如果数列有界,则极限存在. 错误 如:数列()n n x 1-=是有界数列,但极限不存在 4、a a n n =∞ →lim ,a a n n =∞ →lim . 错误 如:数列()n n a 1-=,1)1(lim =-∞ →n n ,但n n )1(lim -∞ →不存在。 5、如果()A x f x =∞ →lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。 6、如果α~β,则()α=β-αo . 正确 ∵1lim =α β ,是 ∴01lim lim =?? ? ??-=-αβαβα,即βα-是α的高阶无穷小量。 7、当0→x 时,x cos 1-与2x 是同阶无穷小. 正确 ∵2122sin 412lim 2sin 2lim cos 1lim 2 02 2020=????? ? ????==-→→→x x x x x x x x x 8、 01 sin lim lim 1sin lim 000=?=→→→x x x x x x x . 错误 ∵x x 1 sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。 9、 e x x x =?? ? ??+→11lim 0 . 错误 ∵e x x x =?? ? ??+∞ →11lim 10、点0=x 是函数x x y =的无穷间断点. 错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→x x x ∴点0=x 是函数x x y =的第一类间断点. 11、函数()x f x 1 =必在闭区间[]b a ,内取得最大值、最小值.

一、多元函数、极限与连续解读

一、多元函数、极限与连续 ㈠二元函数 1 .二元函数的定义:设 D 是平面上的一个点集,如果对于每个点 P (x,y)∈ D ,变量按照 一定法则总有确定的值与它对应,则称是变量 x 、y 的二元函数(或点 P 的函数),记为 (或),点集 D 为该函数的定义域, x 、y 为自 变量,为因变量,数集为该函数值域。由此也可定义三元函数以及三元以上的函数。二元函数的图形通常是 一张曲面。例如是球心在原点,半径为 1 的上半球面。 ㈡二元函数的极限 ⒈设函数 f(x,y)在开区域(或闭区域) D 内有定义, 是 D 的内点或边界点,如果对于任意给定的正数,总存在正 数,使得对于适合不等式的一切点 ,都有成立,则称常数 A 为函数f(x,y)当 时的极限,记作或, 这里 。为了区别一元函数的极限,我们把二元函数的极限叫做二重极限。

⒉注意:二重极限存在是指沿任意路径趋于,函数 都无限接近 A 。因此,如果沿某一特殊路径,例如沿着一 条定直线或定曲线趋于时,即使函数无限接近于某一确定值,我们也不能由此判定函数的极限存在。 ㈢多元函数的连续性 1 .定义:设函数 f(x,y)在开区间(或闭区间) D 内有定 义,是 D 的内点或边界点且。如果 ,则称函数 f(x,y)在点连续。如果函数 f(x,y)在开区间(或闭区间) D 内的每一点连续,那么就称函数 f(x,y)在 D 内连续,或者称 f(x,y)是 D 内的连续函数。 2 .性质 ⑴一切多元初等函数在其定义域内是连续的; ⑵在有界闭区域 D 上的多元连续函数,在 D 上一定有最大值和最小值; ⑶在有界闭区域 D 上的多元连续函数,如果在 D 上取两个不同的函数值,则它在 D 上取得介于这两

第十三章 多元函数的极限与连续性习题(学生用)

班级:_______________ 学号:______________ 姓名:________________ 第十三章 多元函数的极限与连续性 §1. 平面点集 1.判别下列平面点集哪些是开集、闭集、有界集和区域,并分别指出它们的聚点: (1)(){}2 ,|E x y y x =<; (2)(){}2 2,|1E x y x y =+≠;(3)(){},|0E x y xy =≠; (4)(){},|0E x y xy ==;(5)(){},|02,222E x y y y x y =≤≤≤≤+;(6)()1,|sin ,0E x y y x x ?? ==>???? ; (7)(){}2 2,|10,01E x y x y y x =+==≤≤或; (8)(){},|,E x y x y =均为整数. 2.证明:平面点列{}n P 收敛的充要条件是:任给正数ε,存在正整数 N ,使得当n N >时,对一切正整数p ,都有(,)n n p P P ρε+<. (其中(,)n n p P P ρ+表,n n p P P +之间的距离)

§2. 多元函数的极限和连续性 1.求下列极限(包括非正常极限): (1) 2200lim x y x y x y →→++; (2) ()332200 sin lim x y x y x y →→++; (3) 2200 x y →→; (4) ()22 00 1 lim sin x y x y x y →→++; (5) ()2 2 2 2 lim ln x y x y x y →→+; (6) 00lim cos sin x y x y e e x y →→+-; (7) 3 2 2 4200 lim x y x y x y →→+; (8) ()02 sin lim x y xy x →→; (9) 10 ln y x y x e →→+ (10) 12 1 lim 2x y x y →→-; (11) 4400 1 lim x y xy x y →→++; (12) 2222001lim x y x y x y →→+++;

大一高数第一章--函数、极限与连续

第一章 函数、极限与连续 由于社会和科学发展的需要,到了17世纪,对物体运动的研究成为自然科学的中心问题.与之相适应,数学在经历了两千多年的发展之后进入了一个被称为“高等数学时期”的新时代,这一时代集中的特点是超越了希腊数学传统的观点,认识到“数”的研究比“形”更重要,以积极的态度开展对“无限”的研究,由常量数学发展为变量数学,微积分的创立更是这一时期最突出的成就之一.微积分研究的基本对象是定义在实数集上的函数. 极限是研究函数的一种基本方法,而连续性则是函数的一种重要属性.因此,本章内容是整个微积分学的基础.本章将简要地介绍高等数学的一些基本概念,其中重点介绍极限的概念、性质和运算性质,以及与极限概念密切相关的,并且在微积分运算中起重要作用的无穷小量的概念和性质.此外,还给出了两个极其重要的极限.随后,运用极限的概念引入函数的连续性概念,它是客观世界中广泛存在的连续变化这一现象的数学描述. 第一节 变量与函数 一、变量及其变化范围的常用表示法 在自然现象或工程技术中,常常会遇到各种各样的量.有一种量,在考察过程中是不断变化的,可以取得各种不同的数值,我们把这一类量叫做变量;另一类量在考察过程中保持不变,它取同样的数值,我们把这一类量叫做常量.变量的变化有跳跃性的,如自然数由小到大变化、数列的变化等,而更多的则是在某个范围内变化,即该变量的取值可以是某个范围内的任何一个数.变量取值范围常用区间来表示.满足不等式a x b ≤≤的实数的全体组成的集合叫做闭区间,记为,a b ????,即 ,{|}a b x a x b =≤≤????; 满足不等式a x b <<的实数的全体组成的集合叫做开区间,记为(,)a b ,即 (,){|}a b x a x b =<<; 满足不等式a x b <≤(或a x b ≤<)的实数的全体组成的集合叫做左(右)开右(左)闭区间,记为 (,a b ?? (或),a b ??),即 (,{|}a b x a x b =<≤?? (或),{|}a b x a x b =≤

高等数学(同济五版)第一章 函数与极限知识点

第一章函数与极限 一、对于函数概念要注意以下几点: (1) 函数概念的本质特征是确定函数的两个要素:定义域和对应法则。定义域是自变量和因变量能相互联系构成函数关系的条件,无此条件,函数就没意义。对应法则是正确理解函数概念的关键。函数关系不同于一般的依赖关系,“y是x的函数”并不意味着y随x的变化而变化。函数关系也不同于因果关系。例如一昼夜的气温变化与时间变化是函数关系,但时间变化并不是气温变化的实际原因。y=f(x)中的“f”表示从x到y的对应法则,“f”是一个记号,不是一个数,不能把f(x)看作f乘以x。如果函数是用公式给出的,则“f”表示公式里的全部运算。 (2) 函数与函数表达式不同。函数表达式是表示函数的一种形式,表示函数还可以用其他的形式,不要以为函数就是式子。 (3) f(x)与f(a)是有区别的。f(x)是函数的记号,f(a)是函数值的记号,是f(x)当x=a时的函数值。 (4)两个函数,当其定义域相同,对应法则一样时,此二函数才是相同的。 二、函数的有界性、单调性、周期性和奇偶性: 对函数的有界性、单调性、周期性和奇偶性的学习应注意以下几点: (1) 并不是函数都具有这些特性,而是在研究函数时,常要研究函数是否具有这些特性。 (2) 函数是否“有界”或“单调”,与所论区间有关系。 (3) 具有奇、偶性的函数,其定义域是关于原点对称的。如果f(x)是奇函数,则f(0)=0。存在着既是奇函数,又是偶函数的函数,例f(x)=0。f(x)+f(-x)=0是判别f(x)是否为奇函数的有效方法。 (4) 周期函数的周期通常是指其最小正周期,但不是任何周期函数都有最小周期。

第十五章多元函数的极限与连续性§1平面点集

第十五章 多元函数的极限与连续性 §1 平面点集 1.设(){} ,n n n P x y =是平面点列,()000,P x y =是平面上的点. 证明0lim n n P P →∞=的充要条件是0lim n n x x →∞=,且0lim n n y y →∞ =. 2. 设平面点列{}n P 收敛,证明{}n P 有界. 3. 判别下列平面点集哪些是开集、闭集、有界集和区域,并分别指出它们的聚点: (1)(){}2,|E x y y x = <; (2)(){}22,|1E x y x y = +≠; (3)(){},|0E x y xy = ≠; (4)(){},|0E x y xy = =; (5)(){},|02,222E x y y y x y =≤≤≤≤+; (6)()1,|sin ,0E x y y x x ? ?==>????; (7)(){}22,|10,01E x y x y y x = +==≤≤或; (8)(){},|,E x y x y =均为整数. 4.设F 是闭集,G 是开集,证明\F G 是闭集,\G F 是开集. 5.证明开集的余集是闭集. 6.设E 是平面点集. 证明0P 是E 的聚点的充要条件是E 中存在点列{}n P ,满足 ()01,2,n P P n ≠= 且0lim n n P P →∞ =. 7.用平面上的有限覆盖定理证明致密性定理. 8.用致密性定理证明柯西收敛原理. 9.设E 是平面点集,如果集合E 的任一覆盖都有有限子覆盖,则称E 是紧集. 证明紧集是有界闭集. 10.设E 是平面上的有界闭集,()d E 是E 的直径,即 ()()',''sup ',''P P E d E r P P ∈=.

考研数学高数公式:函数与极限解读

考研数学高数公式:函数与极限 第一章:函数与极限 第一节:函数 函数属于初等数学的预备知识,在高数的学习中起到铺垫作用,直接考察的内容比较少,但是如果这章节有所缺陷对以后的学习都会有所影响。 基础阶段: 1.理解函数的概念,能在实际问题的背景下建立函数关系; 2.掌握并会计算函数的定义域、值域和解析式; 3.了解并会判断函数的有界性、单调性、周期性、奇偶性等性质; 4.理解复合函数和反函数的概念,并会应用它们解决相关的问题; 强化阶段: 1.了解函数的不同表现形式:显式表示,隐式表示,参数式,分段表示; 2.掌握基本初等函数的性质及其图形,了解初等函数的概念。 冲刺阶段: 1.综合应用函数解决相关的问题; 2.掌握特殊形式的函数(含极限的函数,导函数,变上限积分,并会讨论它们的相关性质。 第二节:极限

极限可以说是高等数学的基础,极限的计算也是高等数学中最基本的运算。在考试大纲中明确要求考生熟练掌握的基本技能之一。虽在考试中站的分值不大。但是在其他的试题中得到广泛应用。因此这部分学习直接营销到整个学科的复习结果 基础阶段 1.了解极限的概念及其主要的性质。 2.会计算一些简单的极限。 3.了解无穷大量与无穷小量的关系,了解无穷小量的比较方法,记住常见的等价无穷小量。 强化阶段: 1.理解极限的概念,理解函数左右极限的概念及其与极限的关系(数一数二/了解数列 极限和函数极限的概念(数三; ▲2.掌握计算极限的常用方法及理论(极限的性质,极限的四则运算法则,极限存在的两个准则,两个重要极限,等价无穷小替换,洛必达法则,泰勒公式; 3.会解决与极限的计算相关的问题(确定极限中的参数; 4.理解无穷大量和无穷小量的概念及相互关系,会进行无穷小量的比较,记住常见的等价无穷小量并能在计算极限时加以应用(数一数二/理解无穷小量的概念,会进行无穷小量的比较,记住常见的等价无穷小量并能在计算极限时加以应用,了解无穷大量的概念及其与无穷小量的关系(数三。 冲刺阶段: 深入理解极限理论在微积分中的中心地位,理解高等数学中其它运算(求导,求积分与极限之间的关系,建立完整的理论体系。

(整理)多元函数的极限与连续习题.

多元函数的极限与连续习题 1. 用极限定义证明:14)23(lim 1 2=+→→y x y x 。 2. 讨论下列函数在(0,0)处的两个累次极限,并讨论在该点处的二重极限的存在性。 (1)y x y x y x f +-=),(; (2) y x y x y x f 1s i n 1s i n )(),(+=; (3) y x y x y x f ++=23 3),(; (4) x y y x f 1 s i n ),(=。 3. 求极限 (1)2 20 ) (lim 22 y x x y x y +→→; (2)1 1lim 2 2 220 0-+++→→y x y x y x ; (3)2 20 01 sin )(lim y x y x y x ++→→; (4)22220 0) sin(lim y x y x y x ++→→。 4. 试证明函数?? ???=≠+=0 0)1ln(),(x y x x xy y x f 在其定义域上是连续的。

1. 用极限定义证明:14)23(lim 2 1 2=+→→y x y x 。 因为1,2→→y x ,不妨设0|1|,0|2|<-<-y x , 有54|2||42||2|<+-≤+-=+x x x , |22123||1423|2 2 -+-=-+y x y x |1|2|2|15|1|2|2||2|3-+-<-++-≤y x y x x |]1||2[|15-+-?ε,要使不等式 ε<-+-<-+|]1||2[|15|1423|2 y x y x 成立 取}1,30 min{ ε δ=,于是 0>?ε, 0}1,30 min{ >=?ε δ,),(y x ?:δδ<-<-|1|,|2|y x 且 )1,2(),(≠y x ,有ε<-+|1423|2 y x ,即证。 2. 讨论下列函数在(0,0)处的两个累次极限,并讨论在该点处的二重极限的存在性。 (1)y x y x y x f +-= ),(; 1lim lim 00=+-→→y x y x y x , 1l i m l i m 00-=+-→→y x y x x y , 二重极限不存在。 或 0l i m 0=+-=→y x y x x y x , 3 1l i m 20-=+-=→y x y x x y x 。

大一高等数学总结

第一讲函数、连续与极限 一、理论要求 1.函数概念与性质函数的基本性质(单调、有界、奇偶、周期) 几类常见函数(复合、分段、反、隐、初等函数) 2.极限极限存在性与左右极限之间的关系 夹逼定理和单调有界定理 会用等价无穷小和罗必达法则求极限 3.连续函数连续(左、右连续)与间断 理解并会应用闭区间上连续函数的性质(最值、有界、介值) 二、题型与解法 A.极限的求法(1)用定义求 (2)代入法(对连续函数,可用因式分解或有理化消除零因子) (3)变量替换法 (4)两个重要极限法 (5)用夹逼定理和单调有界定理求 (6)等价无穷小量替换法 (7)洛必达法则与Taylor级数法 (8)其他(微积分性质,数列与级数的性质) 1. (等价小量与洛必达) 2.已知

(洛必达) 3. (重要极限) 4.已知a、b为正常数, (变量替换)5. 解:令 6. (变量替换)

7.已知在x=0连续,求a 解:令(连续性的概念) 三、补充习题(作业) 1.(洛必达) 2.(洛必达或Taylor) 第二讲导数、微分及其应用 一、理论要求 1.导数与微分导数与微分的概念、几何意义、物理意义 会求导(基本公式、四则、复合、高阶、隐、反、参数方程求导) 会求平面曲线的切线与法线方程 2.微分中值定理理解Roll、Lagrange、Cauchy、Taylor定理 会用定理证明相关问题 3.应用会用导数求单调性与极最值、凹凸性、渐进线问题,能画简图 会计算曲率(半径) 二、题型与解法

A.导数微分的计 算 基本公式、四则、复合、高阶、隐函数、参数方程求导 1.决定,求 2.决定,求 解:两边微分得x=0时,将x=0代入等式得y=1 3.决定,则 B.曲线切法线问题5.f(x)为周期为5的连续函数,它在x=1可导,在x=0的某邻域内满足f(1+sinx)-3f(1-sinx)=8x+o(x)。求f(x)在(6,f(6))处的切线方程。 解:需求,等式取x->0的极限有:f(1)=0 C.导数应用问题 6.已知, ,求点的性质。 解:令,故为极小值点。 7.,求单调区间与极值、凹凸区间与拐点、渐进线。 解:定义域

大学高等数学函数极限和连续

第一章 函数、极限和连续 §1.1 函数 一、 主要内容 ㈠ 函数的概念 1. 函数的定义: y=f(x), x ∈D 定义域: D(f), 值域: Z(f). 2.分段函数: ?? ?∈∈=21)()(D x x g D x x f y 3.隐函数: F(x,y)= 0 4.反函数: y=f(x) → x=φ(y)=f -1(y) y=f -1 (x) 定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数: y=f -1(x), D(f -1)=Y, Z(f -1)=X 且也是严格单调增加(或减少)的。 ㈡ 函数的几何特性 1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2), 则称f(x)在D 内单调增加( ); 若f(x 1)≥f(x 2), 则称f(x)在D 内单调减少( ); 若f(x 1)<f(x 2),

则称f(x)在D 内严格单调增加( ); 若f(x 1)>f(x 2), 则称f(x)在D 内严格单调减少( )。 2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x) 3.函数的周期性: 周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数 4.函数的有界性: |f(x)|≤M , x ∈(a,b) ㈢ 基本初等函数 1.常数函数: y=c , (c 为常数) 2.幂函数: y=x n , (n 为实数) 3.指数函数: y=a x , (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con x y=tan x , y=cot x y=sec x , y=csc x 6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数 1.复合函数: y=f(u) , u=φ(x) y=f[φ(x)] , x ∈X 2.初等函数:

高数8多元函数的极限与连续

二元函数的极限 二元极限存在常用夹逼准则证明 例1 14)23(lim 2 12=+→→y x y x 例2 函数?? ???+=01sin 1sin ),(,x y y x y x f .00=≠xy xy ,在原点(0,0)的极限是0. 二元极限不存在常取路径 例3 证明:函数)),(,,00)(()y (442≠+=y x y x y x x f 在原点(0,0)不存在极限. 与一元函数极限类似,二元函数极限也有局部有限性、极限保序性、四则运算、柯西收敛准则等. 证明方法与一元函数极限证法相同,从略. 上述二元函数极限)(lim 0 0y x f y y x x ,→→是两个自变量x 与y 分别独立以任意方式无限趋近于0x 与0y .这是个二重极限. 二元函数还有一种极限: 累次极限 定义 若当a x →时(y 看做常数),函数)(y x f ,存在极限,设当b y →时,)(y ?也存在极限,设 B y x f y a x b y b y ==→→→)(lim lim )(lim ,?, 则称B 是函数)(y x f ,在点)(b a P ,的累次极限.同样,可定义另一个不同次序的累次极限,即 C y x f b y a x =→→)(lim lim ,. 那么二重极限与累次极限之间有什么关系呢?一般来说,它们之间没有蕴含关系. 例如: 1)两个累次极限都存在,且相等,但是二重极限可能不存在. 如上述例3. 2)二重极限存在,但是两个累次极限可能都不存在. 如上述的例2. 多重极限与累次极限之间的关系 定理 若函数)(y x f ,在点),000(y x P 的二重极限与累次极限(首先0→y ,其次0→x )都存在,则 )(lim lim (lim 0 000y x f y x f y y x x y y x x ,),→→→→=. 二元函数的连续性 定理 若二元函数)(P f 与()P g 在点0P 连续,则函数)()(P g P f ±,)()(P g P f ,) ()(P g P f (0)(0≠P g )都在点0P 连续

(整理)多元函数的极限与连续

数学分析 第16章多元函数的极限与连续计划课时: 1 0 时

第16章 多元函数的极限与连续 ( 1 0 时 ) § 1 平面点集与多元函数 一. 平面点集: 平面点集的表示: ),(|),{(y x y x E =满足的条件}. 余集c E . 1. 常见平面点集: ⑴ 全平面和半平面 : }0|),{(≥x y x , }0|),{(>x y x , }|),{(a x y x >, }|),{(b ax y y x +≥等. ⑵ 矩形域: ],[],[d c b a ?, 1||||),{(≤+y x y x }. ⑶ 圆域: 开圆 , 闭圆 , 圆环,圆的一部分. 极坐标表示, 特别是 }cos 2|),{(θθa r r ≤和}sin 2|),{(θθa r r ≤. ⑷ 角域: }|),{(βθαθ≤≤r . ⑸ 简单域: -X 型域和-Y 型域. 2. 邻域: 圆邻域和方邻域,圆邻域内有方邻域,方邻域内有圆邻域. 空心邻域和实心邻域 , 空心方邻域与集 }||0 , ||0|),{(00δδ<-<<-

二元函数的极限与连续5页word文档

§2.3 二元函数的极限与连续 定义设二元函数在点的某邻域内有意义, 若存在 常数A,,当(即)时,都有 则称A是函数当点趋于点时的极限,记作 或 或或。必须注意这个极限值与点趋于点的方式无关,即不论P 以什么方 向和路径(也可是跳跃式地,忽上忽下地)趋向。只要P与充分接近, 就能 使与A 接近到预先任意指定的程度。注意:点P趋于点点方式可有无穷多 种,比一元函数仅有左,右两个单侧极限要复杂的多(图8-7)。 图8-7 同样我们可用归结原则,若发现点P按两个特殊的路径趋于点时,极限 存在,但不相等, 则可以判定在该点极限不存在。这是判断多元函数极限不 存在的重要方法之一。 一元函数极限中除了单调有界定理外,其余的有关性质和结论, 在二

元函数极 限理论中都适用,在这里就不一一赘述了。 例如若有, 其中 求多元函数的极限, 一般都是转化为一元函数的极限来求, 或利用夹逼定理 来计算。例4 求。解由于 而,根据夹逼定理知 ,所以 例5求(a≠0)。解。例6求。解由于且 ,所以根据夹逼定理知 . 例7 研究函数在点处极限是否存在。解当x2+y2≠0时,我们研究函数,沿x→0,y=kx→0这一方式趋于 (0,0)的极限,有,。很显然,对于不同的k值,可得到不同的极

限值,所以极限不存在,但 。注意:的区别, 前面两个求极限方式的 本质是两次求一元函数的极限, 我们称为累次极限, 而最后一个是求二元函数的 极限,我们称为求二重极限。 例8 设函数。它关于原点的两个累次极限都不存在,因 为对任何,当时,的第二项不存在极限;同理对任何 时,的第 一项也不存在极限,但是, 由于, 因此 由例7知, 两次累次极限存在, 但二重极限不存在。由例8可知,二重极限存 在,但二个累次极限不存在。我们有下面的结果: 定理1若累次极限和二重极限 都存在,则 三者相等(证明略)。推论若存在但

高等数学函数及极限教案

第一章函数与极限 教学目的: 1、理解函数的概念,掌握函数的表示方法,并会建立简单应用问题中的函数关系 式。 2、了解函数的奇偶性、单调性、周期性和有界性。 3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念。 4、掌握基本初等函数的性质及其图形。 5、理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左、右极 限之间的关系。 6、掌握极限的性质及四则运算法则。 7、了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极 限的方法。 8、理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。 9、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。 10、了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有 界性、最大值和最小值定理、介值定理),并会应用这些性质。 教学重点: 1、复合函数及分段函数的概念; 2、基本初等函数的性质及其图形; 3、极限的概念极限的性质及四则运算法则; 4、两个重要极限; 5、无穷小及无穷小的比较; 6、函数连续性及初等函数的连续性; 7、区间上连续函数的性质。 教学难点: 1、分段函数的建立与性质; 2、左极限与右极限概念及应用; 3、极限存在的两个准则的应用; 4、间断点及其分类; 5、闭区间上连续函数性质的应用。 §1. 1 映射与函数 一、集合 1. 集合概念 集合(简称集): 集合是指具有某种特定性质的事物的总体. 用A, B, C….等表示. 元素: 组成集合的事物称为集合的元素. a是集合M的元素表示为a M. 集合的表示:

列举法: 把集合的全体元素一一列举出来. 例如A ={a , b , c , d , e , f , g }. 描述法: 若集合M 是由元素具有某种性质P 的元素x 的全体所组成, 则M 可表示为 A ={a 1, a 2, ? ? ?, a n }, M ={x | x 具有性质P }. 例如M ={(x , y )| x , y 为实数, x 2+y 2=1}. 几个数集: N 表示所有自然数构成的集合, 称为自然数集. N ={0, 1, 2, ???, n , ???}. N +={1, 2, ?? ?, n , ???}. R 表示所有实数构成的集合, 称为实数集. Z 表示所有整数构成的集合, 称为整数集. Z ={???, -n , ???, -2, -1, 0, 1, 2, ???, n , ???}. Q 表示所有有理数构成的集合, 称为有理数集. },|{互质与且q p q Z p q p +∈∈=N Q 子集: 若x ∈A , 则必有x ∈B , 则称A 是B 的子集, 记为A ?B (读作A 包含于B )或B ?A . 如果集合A 与集合B 互为子集, A ?B 且B ?A , 则称集合A 与集合B 相等, 记作A =B . 若A ?B 且A ≠B , 则称A 是B 的真子集, 记作A ≠?B . 例如, N ≠?Z ≠?Q ≠?R . 不含任何元素的集合称为空集, 记作?. 规定空集是任何集合的子集. 2. 集合的运算 设A 、B 是两个集合, 由所有属于A 或者属于B 的元素组成的集合称为A 与B 的并集(简称并), 记作A ?B , 即 A ? B ={x |x ∈A 或x ∈B }. 设A 、B 是两个集合, 由所有既属于A 又属于B 的元素组成的集合称为A 与B 的交集(简称交), 记作A ?B , 即 A ? B ={x |x ∈A 且x ∈B }. 设A 、B 是两个集合, 由所有属于A 而不属于B 的元素组成的集合称为A 与B 的差集(简称差), 记作A \B , 即 A \ B ={x |x ∈A 且x ?B }. 如果我们研究某个问题限定在一个大的集合I 中进行, 所研究的其他集合A 都是I 的子集. 此时, 我们称集合I 为全集或基本集. 称I\A 为A 的余集或补集, 记作A C . 集合运算的法则: 设A 、B 、C 为任意三个集合, 则 (1)交换律A ?B =B ?A , A ?B =B ?A ; (2)结合律 (A ?B )?C =A ?(B ?C ), (A ?B )?C =A ?(B ?C ); (3)分配律 (A ?B )?C =(A ?C )?(B ?C ), (A ?B )?C =(A ?C )?(B ?C ); (4)对偶律 (A ?B )C =A C ?B C , (A ?B )C =A C ?B C .

高数函数-极限和连续总结

第一章 函数.极限和连续 第一节 函数 1. 决定函数的要素:对应法则和定义域 2. 基本初等函数:(六类) (1) 常数函数(y=c );(2)幂函数(y=x a ); (3)指数函数(y=a x ,a>0,a ≠1);(4)对数函数(y=log a x ,a>0,a ≠1) (5)三角函数;(6)反三角函数。 注:分段函数不是初等函数。特例:y =√x 2是初等函数 《 3.构成复合函数的条件:内层函数的值域位于外层函数的定义域之内。 4.复合函数的分解技巧:对照基本初等函数的形式。 5.函数的几种简单性质:有界性,单调性,奇偶性,周期性。 第二节 极限 1.分析定义 ?&>0(任意小) ??>0 当|x |>e(或0<|x ?x 0| 称 lim x →∞f (x )=0 (或lim x →x0f (x )=A ) 2.极限存在的充要条件 lim x →x0f (x )=A ?lim x →x 0+f (x )=lim x →x 0 ?f (x )=A 3.极限存在的判定准则 (1)夹逼定理 f 1(x )≤f (x )?f 2(x ) ,且 lim x →x0f 1(x )=A = lim x →x0f 2(x ) 所以lim x →x0f (x )=A (2)单调有界准则 · 单调有界数列一定有极限。 4.无穷小量与无穷大量 ,则称 时,f (x )为无穷小量 , 则称 时,f (x )为无穷大量 注:零是唯一的可作为无穷小的常数。 性质1 有限多个无穷小的代数和或乘积还是无穷小。 注:无限个无穷小量的代数和不一定是无穷小量 性质2 有界变量或常数与无穷小的乘积还是无穷小。 ~ 5. 定义 设 是同一极限过程中的无穷小, 则 ∞=→)(lim 0x f x x ) (或∞→→x x x 00)(lim 0=→x f x x )(或∞→→x x x 0 )(,)(x x ββαα==, 0)(≠x β且, 0lim =βα

多元函数的概念极限与连续性

§5.1 多元函数的概念、极限与连续性 一、多元函数的概念 1. 二元函数的定义及其几何意义 设D 是平面上的一个点集,如果对每个点()p x y D ∈,,按照某一对应规则f ,变量z 都有一个值与之对应,则称z 是变量x y ,的二元函数,记以()z f x y =,,D 称为定义域。 二元函数()z f x y =,的图形为空间一块曲面,它在xy 平面上的投影区域就是定义域D 。 例如 22: 1z D x y =+≤二元函数的图形为以原点为球心,半径为1 的上半球面,其定义域D 就是xy 平面上以原点为圆心, 半径为1的闭圆。 2. 三元函数与n 元函数。 ()()u f x y z x y z =∈ΩΩ,,,,,,为空间一个点 集则称()u f x y z =,,为三元函数 ()12n u f x x x =,,,,称为n 元函数。 它们的几何意义不再讨论,在偏导数和全微分中会用到三元函数。条件极值中,可能会遇到超过三个自变量的多元函数。 【例1】 求函数arcsin 3 x z = 解 要求13 x ≤,即33x -≤≤; 又要求0xy ≥即00x y ≥≥,或00x y ≤≤, 综合上述要求得定义域300x y -≤≤??≤?或030 x y ≤≤??≥?

【例2】 求函数()2ln 21z y x =-+的定义域。 解 要求2240x y --≥和2210y x -+> 即 2222212x y y x ?+≤??+>?? 函数定义域D 在圆2222x y +≤的内部 (包括边界)和抛物线212y x +=的左侧(不包括抛物线上的点) 【例3】 设()22 f x y x y x y y +-=+,,求()f x y ,。 解 设x y u x y v +=-=,解出()()1122 x u v y u v = +=-, 代入所给函数化简 ()()()()221184 f u v u v u v u v +-+-,= 故 ()()()()221184f x y x y x y x y +-+-,= 【例4】 设()22 35f x y xy x xy y ++++,=,求()f x y ,。 解 ()22223525x xy y x xy y xy +++=++++ ()25x y xy =+++ ∴ ()25f x y x y =++, 二、 二元函数的极限 设()f x y ,在点()00x y ,的去心邻域内有定义;如果对任意0ε>,存在0δ>,只要 0δ<,就有()f x y A ε-<, 则记以()00lim x x y y f x y A →→=,或()() ()00lim x y x y f x y A →=,,, 称当()x y ,趋于()00x y ,时,()f x y ,的极限存在,极限值为A ,否则,称为极限不存在.

大一经典高数复习资料全面

高等数学(本科少学时类型) 第一章 函数与极限 第一节 函数 ○函数基础(高中函数部分相关知识)(★★★) ○邻域(去心邻域)(★) (){} ,|U a x x a δδ=-< (){},|0U a x x a δδ=<-, ∴()N g ε=???? 2.即对0>?ε,()N g ε?=????,当N n >时,始终有不等式n x a ε-<成立, ∴{}a x n x =∞ →lim 第三节 函数的极限 ○0x x →时函数极限的证明(★) 【题型示例】已知函数()x f ,证明()A x f x x =→0 lim 【证明示例】δε-语言 1.由()f x A ε-<化简得()00x x g ε<-<, ∴()εδg = 2.即对0>?ε,()εδg =?,当00x x δ<-<时,始终有不等式()f x A ε-<成立, ∴()A x f x x =→0 lim ○∞→x 时函数极限的证明(★) 【题型示例】已知函数()x f ,证明()A x f x =∞ →lim 【证明示例】X -ε语言 1.由()f x A ε-<化简得()x g ε>, ∴()εg X = 2.即对0>?ε,()εg X =?,当X x >时,始终有不等式()f x A ε-<成立, ∴()A x f x =∞ →lim 第四节 无穷小与无穷大 ○无穷小与无穷大的本质(★) 函数()x f 无穷小?()0lim =x f 函数()x f 无穷大?()∞=x f lim ○无穷小与无穷大的相关定理与推论(★★) (定理三)假设()x f 为有界函数,()x g 为无穷小,则()()lim 0f x g x ?=???? (定理四)在自变量的某个变化过程中,若()x f 为无穷大,则()1f x -为无穷小;反之,若()x f 为无穷小,且()0f x ≠,则()x f 1 -为无穷大 【题型示例】计算:()()0 lim x x f x g x →???? ?(或∞→x ) 1.∵()f x ≤M ∴函数()f x 在0x x =的任一去心邻域()δ,0x U ο 内是有界的; (∵()f x ≤M ,∴函数()f x 在D x ∈上有界;) 2.()0lim 0 =→x g x x 即函数()x g 是0x x →时的无穷小; (()0lim =∞→x g x 即函数()x g 是∞→x 时的无穷小;) 3.由定理可知()()0 lim 0x x f x g x →?=???? (()()lim 0x f x g x →∞ ?=????) 第五节 极限运算法则 ○极限的四则运算法则(★★) (定理一)加减法则 (定理二)乘除法则 关于多项式()p x 、()x q 商式的极限运算 设:()()?????+?++=+?++=--n n n m m m b x b x b x q a x a x a x p 1 101 10 则有()()???????∞=∞→0 lim 0 b a x q x p x m n m n m n >=< ()()() ()000lim 0 0x x f x g x f x g x →?? ??=∞????? ()()()()()0000000,00g x g x f x g x f x ≠=≠== (特别地,当()()00 lim 0 x x f x g x →=(不定型)时,通常分 子分母约去公因式即约去可去间断点便可求解出极限值,也可以用罗比达法则求解) 【题型示例】求值2 3 3 lim 9 x x x →--

多元函数及其极限与连续

第5讲 多元函数及其极限与连续 本节主要内容: 第一节 多元函数的基本概念 1 领域 2 平面区域的概念 3 聚点与孤立点 4 n 维空间的概念 5 多元函数的概念 6 二元函数的极限 7 多元函数的连续性 8 二元初等函数 9 闭区域上连续函数的性质 讲解提纲: 第八章 多元函数微分法及其应用 第一节 多元函数的基本概念 在第一至第六章中,我们讨论的函数都只有一个自变量,这种函数称为一元函数. 但在许多实际应用问题中,我们往往要考虑多个变量之间的关系,反映到数学上,就是要考虑一个变量(因变量)与另外多个变量(自变量)的相互依赖关系. 由此引入了多元函数以及多元函数的微积分问题. 本章将在一元函数微积分学的基础上,进一步讨论多元函数的微积分学. 讨论中将以二元函数为主要对象,这不仅因为有关的概念和方法大都有比较直观的解释,便于理解,而且这些概念和方法大都能自然推广到二元以上的多元函数. 一、平面点集,邻域,点集E 的内点、外点、边界点、聚点、开集、闭集、连通集、区域、 闭区域、有界集、无界集等概念. 点集},|||{),(00δδ<=PP P P U 称为点0P 的邻域. 平面区域的概念:连通 的开集称为区域或开区域;开区域连同它的边界一起所构成的点集称为闭区域. 如果对于任意给定的0>δ,点P 的去心邻域),(0 δP U 内总有E 中的点,则称P 为E 的聚点;如果存在),(0δP U ,使得φδ=E P U ),(0 ,则称P 为E 的孤立点.. 二、n 维空间中的线性运算,距离, n 维空间的概念. n 元有序数组),,,(21n x x x 的全体称为n 维空间 三、多元函数的概念 设非空点集,n R D ?映射R D f →:称为定义在D 上的n 元函数,记作 ;),(),,,(21D P P f u x x x f u n ∈==或 称点集D 为函数的定义域,数集 }),(|{D P P f u u ∈=为函数的值域. 四、二元函数的极限 设二元函数),()(y x f P f =的定义域为D ,),(000y x P 为D 的聚点. 如果存

相关主题
文本预览
相关文档 最新文档