当前位置:文档之家› 用水量对溶胶-凝胶法制备氮掺杂纳米二氧化钛的影响

用水量对溶胶-凝胶法制备氮掺杂纳米二氧化钛的影响

用水量对溶胶-凝胶法制备氮掺杂纳米二氧化钛的影响
用水量对溶胶-凝胶法制备氮掺杂纳米二氧化钛的影响

徐驰等:铜/钨酸锆功能梯度薄膜的热应力场特征有限元分析· 97 ·第38卷第1期

用水量对溶胶–凝胶法制备氮掺杂纳米二氧化钛的影响

胡裕龙1,2,刘宏芳1,郭兴蓬1

(1. 华中科技大学化学与化工学院,武汉 430074;2. 海军工程大学理学院,武汉 430033)

摘要:采用两种用水量的溶胶–凝胶工艺制备了氮掺杂二氧化钛(N-TiO2)纳米颗粒粉末,对样品进行了X射线衍射、透射电子显微镜、X射线光电子能谱及紫外–可见漫反射谱分析,并以甲基橙的光催化降解实验研究了样品的可见光催化性能。结果表明:采用用水多的溶胶–凝胶工艺可获得可见光催化活性高的N-TiO2,且N-TiO2的颗粒粒径较小;由于溶胶中过量的N掺杂剂可在N-TiO2前驱体凝胶离心分离时被去除,可进行较低温度的煅烧,易于获得N掺杂浓度较高的N-TiO2。另外,采用用水多的工艺时,氮掺杂剂对TiO2颗粒的氮化及凝胶化过程也有很大的影响,有些含氮化合物作为掺杂剂可能会明显降低N-TiO2的可见光催化活性。

关键词:用水量;溶胶–凝胶法;氮掺杂;二氧化钛;可见光光催化活性

中图分类号:O643.1 文献标志码:A 文章编号:0454–5648(2010)01–0097–08

EFFECT OF WATER DOSAGE ON SYNTHESIS OF NITROGEN DOPED TITANIA

NANOPARTICLES BY SOL–GEL METHOD

HU Yulong1,2,LIU Hongfang1,GUO Xingpeng1

(1. School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074;

2. College of Science, Naval University of Engineering, Wuhan 430033, China)

Abstract: Nitrogen doped titania (N-TiO2) nanoparticles were prepared by sol–gel processes at different water dosages. The particles obtained were characterized by X-ray diffraction, transmission electron microscope, X-ray photoelectron spectroscopy, and ultravio-let–visible diffuse reflectance spectrum. The visible light photocatalytic activities were evaluated by photocatalytic oxidation of methyl orange. It was found that N-TiO2 with a high visible light photocatalytic activity can be obtained by the sol–gel process at a great amount of water. When a great amount of water was used in the sol–gel process, the as-prepared N-TiO2 had smaller nanocrys-tallite grain size. Since the excess of nitrogen dopant in sol could be removed during the centrifugation process of N-TiO2 precursor gel, the calcination process could be performed at a lower temperature, which facilitates to obtain N-TiO2 at a high nitrogen doping level. Besides, the nitrogen dopant had an effect on nitridation reaction and gelation process of titania nanoparticles during the syn-thesis process at a great amount of water. Some compounds with nitrogen as dopant might depress a visible light photocatalytic activ-ity of the N-TiO2 nanoparticles.

Key words: water dosage; sol–gel process; nitrogen doping; titania; visible light photocatalytic activity

溶胶–凝胶技术所需实验设备相对简单,实验条件较容易控制,被广泛用于制备纳米材料。溶胶–凝胶法制备N-TiO2时,通常是通过Ti前驱体水解获得TiO2纳米颗粒溶胶,然后再对TiO2纳米颗粒溶胶进行氮化处理并使溶胶凝胶化。在Ti前驱体水解时,有两种典型的工艺:一是用少量的水,H2O与Ti的摩尔比通常小于5;[1–3]另一种工艺是用较大量的水,典型的是Burda等[4–6]采用的工艺,H2O与Ti的摩尔比约为3000,采用该法制备的TiO2纳米颗粒溶胶进行氮化处理并使溶胶凝胶化后,可获得高的N掺杂浓度。由于目前还没有标准、统一的光催化活性的测试装置及方法,它们之

收稿日期:2009–07–20。修改稿收到日期:2009–10–12。

基金项目:材料化学与服役失效湖北省重点实验室开放基金(200802)和煤燃烧国家重点实验室开放课题(FSKLCC0809)资助项目。第一作者:胡裕龙(1973—),男,博士研究生。

通讯作者:刘宏芳(1968—),女,博士,教授。Received date:2009–07–20. Approved date: 2009–10–12.

First author: HU Yulong (1973–), male, postgraduate student for doctor degree.

E-mail: huyl1217@https://www.doczj.com/doc/3e15010717.html,

Correspondent author: LIU Hongfang (1968–), female, Ph.D., professor.

E-mail: liuhf2003@https://www.doczj.com/doc/3e15010717.html,

第38卷第1期2010年1月

硅酸盐学报

JOURNAL OF THE CHINESE CERAMIC SOCIETY

Vol. 38,No. 1

January,2010

溶胶-凝胶法制备纳米二氧化钛及其性质研究

溶胶-凝胶法制备纳米二氧化钛及其性质研究 实验目的 1.溶胶-凝胶法合成纳米级半导体材料TiO2 2.复习及综合应用无机化学的水解反应理论,物理化学的胶体理论 3.了解纳米粒性和物性 4.研究纳米二氧化钛光催化降解甲基橙水溶液 5.通过实验,进一步加深对基础理论的理解和掌握,做到有目的合成,提高实 验思维与实验技能 实验原理 纳米粉体是指颗粒粒径介于1~100 nm之间的粒子。由于颗粒尺寸的微细化,使得纳米粉体在保持原物质化学性质的同时,与块状材料相比,在磁性、光吸收、热阻、化学活性、催化和熔点等方面表现出奇异的性能。 纳米TiO2具有许多独特的性质。比表面积大,表面张力大,熔点低,磁性强,光吸收性能好,特别是吸收紫外线的能力强,表面活性大,热导性能好,分散性好等。基于上述特点,纳米TiO2具有广阔的应用前景。利用纳米TiO2作光催化剂,可处理有机废水,其活性比普通TiO2(约10 μm)高得多;利用其透明性和散射紫外线的能力,可作食品包装材料、木器保护漆、人造纤维添加剂、化妆品防晒霜等;利用其光电导性和光敏性,可开发一种TiO2感光材料。如何开发、应用纳米TiO2,已成为各国材料学领域的重要研究课题。目前合成纳米二氧化钛粉体的方法主要有液相法和气相法。由于传统的方法不能或难以制备纳米级二氧化钛,而溶胶-凝胶法则可以在低温下制备高纯度、粒径分布均匀、化学活性大的单组分或多组分分子级纳米催化剂[1~3],因此,本实验采用溶胶-凝胶法来制备纳米二氧化钛光催化剂。 制备溶胶所用的原料为钛酸四丁脂(Ti(O-C4H9)4)、水、无水乙醇(C2H5OH)以及冰醋酸。反应物为Ti(O-C4H9)4和水,分相介质为C2H5OH,冰醋酸可调节体系的酸度防止钛离子水解过速。使Ti(O-C4H9)4在C2H5OH中水解生成Ti(OH)4,脱水后即可获得TiO2。在后续的热处理过程中,只要控制适当的温度条件和反应时间,就可以获得金红石型和锐钛型二氧化钛。

溶胶凝胶法制备纳米材料

利用溶胶凝胶法制备纳米材料的基本原理学院:材料学院班号:1109102 学号:1110910209 姓名:袁皓 摘要:本文介绍了纳米材料的性能用途以及制备方法,主要是新兴的制备纳米材料低温工艺——溶胶凝胶法,在文中详细说明了溶胶凝胶法的类型和特征,重点描述了利用溶胶凝胶法制备纳米材料的类型,基本原理以及简略的操作流程。 关键词:纳米材料溶胶凝胶基本原理 一溶胶凝胶法的基本原理 溶胶凝胶(sol-gel)法是一种制备超细粉末的一种湿化学法,它是以液体的化学试剂配制成金属有机或无机化合物或者是金属醇盐前驱物,前驱物溶于溶剂中形成均匀的溶液,溶质与溶剂产生水解或是醇解反应,反应生成物在液相下均匀混合,均匀反应,生成稳定且无沉淀的溶胶体系,放置一段时间后或是干燥处理溶胶之后转变为凝胶,在凝胶中通常含有大量的液相物质,需要利用萃取或蒸发除去液体介质,并在远低于传统的烧结温度下热处理,最后形成相应物质化合物粉体,利用溶胶凝胶法还可以制备其他形态的材料包括单晶、纤维、图层、薄膜材料等。 表2-1 对于制备纳米材料的溶胶凝胶法类型和特征 1.1 溶剂化 能电离的前驱物-金属盐的金属阳离子M z+吸引水分子形成溶剂单元(M(H2O)n)z+(z 为M 离子的价数),为保持它的配位数而具有强烈的释放H+的趋势。 (M(H2O)n)z+==(M(H2O)n-1(OH))(z-1)++H+ 1.2 水解反应 非电离式分子前驱物,如金属醇盐M(OR)n(n 为金属M 的原子价,R 代表烷基),与水反应,反应可延续进行,直至生成M(OH)n。 M(OR)n+xH2O→M(OH)x(OR)n-x+xROH 1.3 缩聚反应 可分为失水缩聚:-M-OH+HO-M→M-O-M-+H2O 失醇缩聚:-M-OR+HO-M→-M-O-M+ROH

微乳液法制备纳米材料

微乳液法制备纳米材料 仇乐乐 摘要:本文介绍了使用微乳液法制备纳米材料的一些基本理论和应用。从微乳液的定义、形成和稳定性理论方面简单的介绍了微乳液。又从微乳液制备纳米材料的原理和制备出的纳米粒子的特点方面介绍了微乳液法的一些基本知识。接着又着重讲述了从微乳液法制备纳米材料的影响因素和应用。最后对微乳液法制备纳米材料做了总结和展望。 关键词:微乳液,纳米材料,影响因素,应用 一、引言 微乳液是两种不互溶液体形成的热力学稳定的、各向同性的、外观透明或半透明的分散体系,微观上由表面活性剂界面膜所稳定的一种或两种液体的微滴所构成。它的特点是使不相混溶的油、水两相在表面活性剂(有时还要有助表面活性剂)存在下,可以形成稳定均匀的混合物。因而在医药、农药、化妆品、洗涤剂、燃料等方面得到了广泛的应用。微乳可将类型广泛的物质增溶在一相中的能力已被作为反应介质用于无机、有机各类反应。当在微乳中聚合时,可得到纳米级的热力学稳定的胶乳,微乳质点的纳米级范围使得能够利用微乳技术制备所要求的大小和形状的超细粒子。实验装置简单,操作容易,已引起人们的重视。 二、微乳液内超细颗粒的形成机理 用来制备纳米粒子的微乳液往往是W /O 型体系,该体系的水核是一个“微型反应器”,或叫纳米反应器,水核内超细颗粒的形成机理有三种情况:(1)将两个分别增溶有反应物的微乳液混合,由于胶团颗粒间的碰撞,发生了水核内物质相互交换或传递,引起核内的化学反应。由于水核半径是固定的,不同水核内的物质交换不能实现。于是在其中生成的粒子尺寸也就得到了控制。由此可见,水核的大小控制了超细微粒的最终粒径;(2)一种反应物在增溶的水核内,另一种以水溶液的形式与前者混合。这时候,水相内反应物穿过微乳液界面膜进入水核内,与另一反应物作用产生晶核并生长,产物粒子的最终粒径是由水核尺寸决定的。超细颗粒形成后,体系分为两相,其中微乳相含有生成的粒子,可进一步分离得到超细粒子;(3)一种反应物在增溶的水核内,另一种为气体。将气体通入液相中,充分混合使二者发生反应。反应仍然局限在胶团内。 三、微乳液的形成和稳定性理论 描述微乳液形成的一个简单形式是把分散相部分考虑成很小的液滴构型熵发生变化,ΔS conf 可近似的表示为: 其中n 为分散相的液滴数,k B 为Boltzmann 常数,φ是分散相的体积分数。缔合自由能的改 变可表示为增加的新界面面积所需的自由能ΔA γ12,和构型熵之和: 其中,ΔA 是界面面积A 的改变量 (半径为r 的液滴面积为4πr 2 ),γ12 是在温度T (Kelvin)的1 相和2相(如油相和水相)之间界面张力。 分散时小液滴数增加且ΔS conf 是正值,如果表面活性

实验溶胶凝胶法制备纳米二氧化钛实验

实验八溶胶-凝胶法制备纳米二氧化钛实验 一、实验目的 1、掌握溶胶-凝胶法制备纳米粒子的原理。 2、了解TiO 2 纳米粒子光催化机理。 二、实验原理 溶胶-凝胶法(Sol-Gel法)是指无机物或金属醇盐经过溶液、溶胶、凝胶而固化,再经热处理而成的氧化物或其它化合物固体的方法。 溶胶凝胶法制备TiO 2 纳米粒子是通过钛酸四丁酯的水解和缩聚反应来实现的,其分步水解方程式为: Ti(OR)n+H 2O Ti(OH)(OR) n-1 +ROH Ti(OH)(OR)n-1+H 2O Ti(OH) 2 (OR) n-2 +ROH …… 反应持续进行,直到生成Ti(OH)n. 缩聚反应: —Ti—OH+HO—Ti——Ti—O—Ti+H 2 O —Ti—OR+HO—Ti——Ti—O—Ti+ROH 最后获得氧化物的结构和形态依赖于水解与缩聚反应的相对反应程度,当金属-氧桥-聚合物达到一定宏观尺寸时,形成网状结构从而溶胶失去流动性,即凝胶形成。 三、原料及设备仪器 1、原料:钛酸正四丁脂(分析纯)、无水乙醇(分析纯)、冰醋酸(分析纯)、盐酸(分析纯)、蒸馏水 2、设备仪器:电磁搅拌器、恒温干燥箱、高温炉 四、实验步骤 以钛酸正丁酯[Ti(OC 4H 9 ) 4 ]为前驱物,无水乙醇(C 2 H 5 OH)为溶剂,冰醋酸(CH 3 COOH)为螯合剂, 从而控制钛酸正丁酯均匀水解,减小水解产物的团聚,得到颗粒细小且均匀的二氧化钛溶胶。 1、室温下量取10 mL钛酸丁酯,缓慢滴入到35 mL无水乙醇中,用磁力搅拌器强力搅拌10 min,混合均匀,形成黄色澄清溶液A。 2、将2 mL冰醋酸和10 mL蒸馏水加到另35 mL无水乙醇中,剧烈搅拌,得到溶液B,滴入2-3滴盐酸,调节pH值使pH=3。 3、室温水浴下,在剧烈搅拌下将溶液A缓慢滴入溶液B中。 4、滴加完毕后得浅黄色溶液,40℃水浴搅拌加热,约1 h后得到白色凝胶(倾斜烧瓶凝胶不流动)。 5、置于80 ℃下烘干,大约20 h,得黄色晶体,研磨,得到淡黄色粉末。 6、在 600 ℃下热处理2 h,得到二氧化钛(纯白色)粉体。 五、思考题 1、溶胶-凝胶法制备材料有哪些优点? 2、纳米二氧化钛粉体有哪些用途? 六、实验报告要求 实验报告按照学校统一模板书写,包括下列内容: 1、实验名称、目的和实验步骤。 2、解答思考题。

用水量对溶胶-凝胶法制备氮掺杂纳米二氧化钛的影响

徐驰等:铜/钨酸锆功能梯度薄膜的热应力场特征有限元分析· 97 ·第38卷第1期 用水量对溶胶–凝胶法制备氮掺杂纳米二氧化钛的影响 胡裕龙1,2,刘宏芳1,郭兴蓬1 (1. 华中科技大学化学与化工学院,武汉 430074;2. 海军工程大学理学院,武汉 430033) 摘要:采用两种用水量的溶胶–凝胶工艺制备了氮掺杂二氧化钛(N-TiO2)纳米颗粒粉末,对样品进行了X射线衍射、透射电子显微镜、X射线光电子能谱及紫外–可见漫反射谱分析,并以甲基橙的光催化降解实验研究了样品的可见光催化性能。结果表明:采用用水多的溶胶–凝胶工艺可获得可见光催化活性高的N-TiO2,且N-TiO2的颗粒粒径较小;由于溶胶中过量的N掺杂剂可在N-TiO2前驱体凝胶离心分离时被去除,可进行较低温度的煅烧,易于获得N掺杂浓度较高的N-TiO2。另外,采用用水多的工艺时,氮掺杂剂对TiO2颗粒的氮化及凝胶化过程也有很大的影响,有些含氮化合物作为掺杂剂可能会明显降低N-TiO2的可见光催化活性。 关键词:用水量;溶胶–凝胶法;氮掺杂;二氧化钛;可见光光催化活性 中图分类号:O643.1 文献标志码:A 文章编号:0454–5648(2010)01–0097–08 EFFECT OF WATER DOSAGE ON SYNTHESIS OF NITROGEN DOPED TITANIA NANOPARTICLES BY SOL–GEL METHOD HU Yulong1,2,LIU Hongfang1,GUO Xingpeng1 (1. School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074; 2. College of Science, Naval University of Engineering, Wuhan 430033, China) Abstract: Nitrogen doped titania (N-TiO2) nanoparticles were prepared by sol–gel processes at different water dosages. The particles obtained were characterized by X-ray diffraction, transmission electron microscope, X-ray photoelectron spectroscopy, and ultravio-let–visible diffuse reflectance spectrum. The visible light photocatalytic activities were evaluated by photocatalytic oxidation of methyl orange. It was found that N-TiO2 with a high visible light photocatalytic activity can be obtained by the sol–gel process at a great amount of water. When a great amount of water was used in the sol–gel process, the as-prepared N-TiO2 had smaller nanocrys-tallite grain size. Since the excess of nitrogen dopant in sol could be removed during the centrifugation process of N-TiO2 precursor gel, the calcination process could be performed at a lower temperature, which facilitates to obtain N-TiO2 at a high nitrogen doping level. Besides, the nitrogen dopant had an effect on nitridation reaction and gelation process of titania nanoparticles during the syn-thesis process at a great amount of water. Some compounds with nitrogen as dopant might depress a visible light photocatalytic activ-ity of the N-TiO2 nanoparticles. Key words: water dosage; sol–gel process; nitrogen doping; titania; visible light photocatalytic activity 溶胶–凝胶技术所需实验设备相对简单,实验条件较容易控制,被广泛用于制备纳米材料。溶胶–凝胶法制备N-TiO2时,通常是通过Ti前驱体水解获得TiO2纳米颗粒溶胶,然后再对TiO2纳米颗粒溶胶进行氮化处理并使溶胶凝胶化。在Ti前驱体水解时,有两种典型的工艺:一是用少量的水,H2O与Ti的摩尔比通常小于5;[1–3]另一种工艺是用较大量的水,典型的是Burda等[4–6]采用的工艺,H2O与Ti的摩尔比约为3000,采用该法制备的TiO2纳米颗粒溶胶进行氮化处理并使溶胶凝胶化后,可获得高的N掺杂浓度。由于目前还没有标准、统一的光催化活性的测试装置及方法,它们之 收稿日期:2009–07–20。修改稿收到日期:2009–10–12。 基金项目:材料化学与服役失效湖北省重点实验室开放基金(200802)和煤燃烧国家重点实验室开放课题(FSKLCC0809)资助项目。第一作者:胡裕龙(1973—),男,博士研究生。 通讯作者:刘宏芳(1968—),女,博士,教授。Received date:2009–07–20. Approved date: 2009–10–12. First author: HU Yulong (1973–), male, postgraduate student for doctor degree. E-mail: huyl1217@https://www.doczj.com/doc/3e15010717.html, Correspondent author: LIU Hongfang (1968–), female, Ph.D., professor. E-mail: liuhf2003@https://www.doczj.com/doc/3e15010717.html, 第38卷第1期2010年1月 硅酸盐学报 JOURNAL OF THE CHINESE CERAMIC SOCIETY Vol. 38,No. 1 January,2010

微乳液法制备纳米材料的研究进展

微乳液法制备纳米材料的研究进展 201200110038 李吉相 摘要:综述了微乳液法制备纳米材料的基本原理和影响因索,回顾了微乳液在金属、金属卤化物、金属硫化物、金属碳酸盐、金属和非金属氧化物等纳米微粒制备中的应用,展望了这一领域的发展方向。 关键词:微乳液;纳米微粒;制备 纳米材料是指由极细晶粒组成,特征纬度尺寸在纳米数量级(~100nm)的固体材料【1】。其制备方法多种多样【2】,一般来说,制备较大量的纳米晶固体的方法有三种,这些方法简单而又经济,且都保证了粒子的小尺寸和窄的分布。它们是:1) 用脉冲电子沉积法制备金属或合金的纳米晶: 2) 在微乳液中运用沉淀法制备氟化物的纳米晶,如在反相(w /O)微乳液中合成NH.M nF。; 3) 在微乳液中运用溶胶一凝胶水解法制得金属氧化物的纳米晶,其中后两种方法都使用了微乳液制备法。这也说明微乳液法在纳米材料制备科学中占有极为重要的地位。在合成时使用微乳液法,在纳米微粒的表面有一层表面活性剂膜,故在制作电镜样品的抽真空、蒸发溶剂的过程中,纳米微粒保持分散状态而不发生凝聚。微乳液通常是由表面活性剂、助表面活性剂(通常为醇类)、油(通常为碳氢化合物)和水(或电解质水溶液)组成的透明的、各相同性的热力学稳定体系【3】。微乳液中,微小的“水池”被表面活性剂和助表面活性剂所组成的单分子层界面所包围而形成微乳颗粒,其大小可控制在几十至几百个之间。微小的“水池,尺度小且彼此分离,因而构不成水相【4】,通常称之为“准相”。微乳液是热力学稳定体系,其水核是一个“微型反应器”,这个“微型反应器”拥有很大的界面,在其中可以增溶各种不同的化合物,是非常好的化学反应介质。微乳液的水核尺寸是由增溶水的量决定的,随增溶水量的增加而增大。因此,在水核内进行化学反应制备超细颗粒时,由于反应物被限制在水核内,最终得到的颗粒粒径将受到水核大小的控制。 微乳液用来作为合成纳米微粒的介质,是因为它能提供一个特定的水核,水溶性反应物在水核中发生化学反应可以得到所要制备的纳米微粒。影响纳米微粒制备的因素主要有以下三方面: (1)微乳液组成的影响 纳米微粒的粒径与微乳液的水核半径有关,水核半径是由W一[HzO]/E表面活性剂]决定的。微乳液组成的变化将导致水核的增大或减小,水核的大小直接决定超细颗粒的尺寸。一般说来,超细颗粒的直径要比水核直径稍大,这可能是由于胶团间快速的物质交换而导致不同水核内沉淀物的聚集所致。 (2)反应物浓度的影响 适当调节反应物的浓度,可使制取粒子的大小受到控制。Pileni等在AOT/异辛烷/H O 反胶团体系中制备CdS粒子时,发现超细颗粒的直径受X 一[cd ]/[s 一]的影响,当反应物之一过量时,生成较小的CdS粒子。这是由于当反应物之一过剩时,结晶过程比等量反应要快,生成的超细颗粒粒径也就偏小。 (3)微乳液界面膜的影响 选择合适的表面活性剂是进行超细颗粒合成的第一步。为了保证形成的微乳液颗粒在反应过程中不发生进一步聚集,选择的表面活性剂成膜性能要合适,否则在微乳液颗粒碰撞时表面活性剂所形成的界面膜易被打开,导致不同水核内的固体核或超细颗粒之间的物质交换,这样就难

纳米复合材料制备

方法: 1.1溶胶一凝胶法 溶胶一凝胶法是一种制备纳米复合材料的重要方法,它是将无机相的前驱体(例如:正硅酸乙醋)和聚合单体、低聚物或高聚物在液态状态下相互混溶,实现分子级水平的均匀混合后,发生溶胶一凝胶反应,生成的纳米复合材料的各组分之间可以形成相互连接的范德华力、氢键或者是化学键,防止了相分离的发生。 溶胶凝胶法的特点在于,该方法反应条件温和,分散均匀,甚至可以达到“分子复合”的水平。目前溶胶一凝胶法是应用最多、也比较完善的方法之一。但它也有一些缺点,如前驱物大都是正硅酸烷基酷,价格昂贵而且有毒;干燥过程中由于溶剂、小分子的挥发,使材料内部产生收缩应力,致使材料脆裂,很难获得大面积或较厚的纳米复合材料等。 1.2原位聚合法 原位聚合,即在位分散聚合,是制备具有良好分散效果纳米复合材料的重要方法。该方法将纳米粒子在单体中均匀分散,然后在一定条件下就地聚合,形成纳米复合材料。 (由于这些原位生成的第二相与基体间的界面有着理想的原位匹配,能显着改善材料中两相界面的结合状况。而且,原位复合省去了第二相的预合成,简化了工艺。此外,原位复合还能够实现材料的特殊显微结构设计并获得特殊性能,同时避免因传统工艺制备材料时可能遇到的第二相分散不均匀,界面结合不牢固以及物理、化学反应使组成物相丧失某些特性等不足的问题。原位聚合法可在水相,也可在油相中发生,单体可进行自由基聚合,在油相中还可进行缩聚反应,适用于大多数聚合物基有机一无机纳米复合体系的制备。)原位聚合法反应条件温和,制备的复合材料中纳米粒子分散均匀,粒子的纳米特性完好无损。同时在聚合过程中,只经次聚合成型,不需热加工,避免了由此产生的降解,从而保持了基本性能的稳定。但其使用有较大的局限性,因为该方法仅适合于含有金属、硫化物或氢氧化物胶体粒子的溶液中使单体分子进行原位聚合制备纳米复合材料。 1.3插层法 插层复合法是将单体或插层剂插层于具有层状结构的硅酸盐(粘土、云母等)、石墨、金属氧化物等无机物中,然后单体在无机片层之间聚合。在此过程中,单体进入无机片层之间,并因聚合可使片层间距扩大甚至剥离,使层状填料在聚合物基体中达到纳米尺度的分散,从而获得纳米级复合材料。 1.3.1溶剂插层法(大分子或预聚物插层法) 该方法首先将层状硅酸盐在一种溶剂(可以是有机溶剂或水)中剥离成单片层,然后将聚合物(对于不溶解聚合物,可使用预聚物)溶解在该混合物中,由于聚合物与层状硅酸盐片层有一定的吸附作用,当除去溶剂后,层状硅酸盐发生聚集,将聚合物夹在层状硅酸盐之间,得到具有一定规整结构的纳米复合材料。 对于水溶性基体,如氧化聚乙烯PEo[聚乙烯醇PV A[s]都使用该方法得到了插层型纳米复合材料,而聚己酸内醋PCL和聚交酷PLA溶解在氯仿中也使用该方法得到了纳米复合材料件。对于不能溶解的一些聚合物,则将其预聚物溶解在含有剥离层状硅酸盐的溶液中,使预聚物吸附在层状硅酸盐上,然后采用物理或化学方法将预聚物转化为目标聚合物,如聚酞亚胺。 1.3.2原位插层聚合法 将层状硅酸盐在液体单体(或单体溶液)中溶胀,然后单体在层间引发聚合,引发可以采

溶胶凝胶法制备材料

溶胶-凝胶法制备材料 摘 要:溶胶-凝胶法广泛应用于制备薄膜材料和粉体材料,其主要原理是将金属醇盐或无机盐经水解直接形成溶胶或经解凝形成溶胶,然后使溶质聚合凝胶化,再将凝胶干燥、焙烧去除有机成分,最后得到无机材料。本文主要介绍了一些溶胶-凝胶法制备材料的发展历史,原理以及一些溶胶-凝胶法实际应用案例。 关键词:溶胶-凝胶法;纳米材料;陶瓷薄膜材料;掺杂;锂电池;包覆材料 溶胶-凝胶法发展过程:1846年法国化学家J.J.Ebelmen 用SiCl 4与乙醇混合后,发现在湿空气中发生水解并形成了凝胶。20世纪30年代W.Geffcken 证实用金属醇盐的水解和凝胶化可以制备氧化物薄膜。1971年德国H.Dislich 报道了通过金属醇盐水解制备了SiO 2-B 2O-Al 2O 3-Na 2O-K 2O 多组分玻璃。1975年 B.E.Yoldas 和M.Yamane 制得整块陶瓷材料及多孔透明氧化铝薄膜。80年代以来,在玻璃、氧化物涂层、功能陶瓷粉料以及传统方法难以制得的复合氧化物材料得到成功应用。 分类:溶胶-凝胶法按产生溶胶凝胶过程机制主要分成三种类型: (1)传统胶体型:通过控制溶液中金属离子的沉淀过程,使形成的颗粒不团聚成大颗粒而沉淀得到稳定均匀的溶胶,再经过蒸发得到凝胶。 (2)无机聚合物型:通过可溶性聚合物在水中或有机相中的溶胶过程,使金属离子均匀分散到其凝胶中。常用的聚合物有聚乙烯醇、硬脂酸等。(3)络合物型:通过络合剂将金属离子形成络合物,再经过溶胶,凝胶过程成络合物凝胶。 制备方法及原理:溶胶一凝胶科学技术是以金属醇盐为原料制作玻璃、玻璃陶瓷、陶瓷以及其它功能无机材料的一种新工艺方法。溶胶-凝胶法制备材料的方法属于化学制备方法,溶胶-凝胶体的制备有3种途径:(1)溶胶溶液的凝胶化; (2)醇盐或硝酸盐前驱体的水解聚合,继之超临界干燥凝胶;(3)醇盐前驱体的水解聚合。 溶胶-凝胶法的化学过程首先是将原料分散在溶剂中,然后经水解反应生成活性单体,活性单体进行聚合,开始成为溶胶,进而生成具有一定空间结构的凝胶,经过干燥和热处理制备出纳米粒子和所需材料。其基本反应式为: ;)()()(424nHOR OH OR M O nH OR M n n +→+-水解: ;])()([)(22214-4O H O OH OR M OH OR M n n n n +→--)(缩聚:

硅胶负载氮掺杂二氧化钛的制备及性能的研究

硅胶负载氮掺杂二氧化钛的制备及性能研究 摘要: 利用溶胶-凝胶法,以硅胶为载体、以钛酸四丁酯为钛源、尿素为氮源制备了具有良好性能的“硅胶负载氮掺杂二氧化钛”( NTS) 光催化剂。考察主要硅胶目数对光催化活性的影响。结果表明,在氮投加量为 30%、钛硅比为 1/1、焙烧温度为 500 ℃的条件下,硅胶目数为120-200时制备的 NTS 具有最佳的光催化活性。氮掺杂二氧化钛( NT) 经硅胶负载后,其表面孔结构发生了变化,且热稳定性增加。亚甲基蓝降解实验表明: 与 T、NT 相比,NTS 体现出更高的光催化活性。 关键词: 光催化;TiO2; 氮掺杂; 硅胶;亚甲基蓝降解 The preparation of silica gel nitrogen doped TiO2 and performance research Tingwei Hu,Yang Yan,Lewei Wen,Jinlong Liu (Hubei institute for nationalities ,institute of chemical and environmental engineering ,hubei enshi ) Abstract: Using sol-gel method,silica gel as the carrier and tetrabutyl titanate as titanium source ;urea as nitrogen source was prepared with good performance of “silicon nitrogen doped TiO2 photocatalyst(NTS)”.Studying the effect of main silicon mesh optical catalytic activity.Results showed that the nitrogen additive amount was 30%,titanium silicon ratio of 1/1,calcination

微乳液法制备纳米微粒

纳米材料 ——微乳液法制备纳米微粒 微乳液法的概述: 微乳液法是利用两种互不相溶的溶剂在表面活性剂的作用下形成均匀的乳液,从乳液中析出固相从而制备出一定粒径的纳米粉体。但相对于细乳液和普通乳液而言的,微乳液颗粒直径约为l0~lOOnm,细乳液颗粒直径约为lO0~400nm,普通乳液颗粒直径一般在几百纳米到上千纳米。一般情况下,将两种互补相溶的液体在表面活性剂作用下所形成的热力学稳定、各项同性、外观透明或半透明、粒径l~lOOnm 的分散体系称为微乳液。相应的把制备微乳液的技术称为微乳化技术(MET)。1982年Boutonmt首先报道了应用微乳液制备出了纳米颗粒:用水合肼或者氢气还原在w/0型微乳液水合中的贵金属盐,得到了分散的Pt、Pd、Ru、Ir 金属颗粒(3~40nm)。从此以后,微乳液理论的研究获得了飞速发展,尤其是2O世纪9O年代以来,微乳液应用研究更快,在许多领域如3次采油、污水治理、萃取分离、催化、食品、生物医药、化妆品、材料制备、化学反应介质,涂料等领域均具有潜在的应用前景。微乳液法是一种简单易行而又具有智能化特点的新方法,是目前研究的热点。运用微乳液法制备纳米粉体是一个非常重要的领域。运用微乳液法制备的纳米颗粒主要有以下几类。:(1)金属,如Pt、Pd、Rh、Ir、Au、Ag、Cu等;(2)硫化物CdS、PbS、CuS等;(3)Ni、Co、Fe等与B的化合物;(4)氯化物AgC1、AuC1 等;(5)碱土金属碳酸盐,如CaCO3、BaCO3、Sr—CO3;(6)氧化物Eu2O 、Fe2O。、Bi2O 及氢氧化物如Al(0H)3 等。 1 微乳反应器原理 在微乳体系中,用来制备纳米粒子的一般都是W/O型体系,该体系一般由有机溶剂、水溶液、活性剂,助表面活性剂4个组分组成。常用的有机溶剂多为C6~C8直链烃或环烷烃;表面活性剂一般为A0T(2一乙基己基磺基琥珀酸钠)、SDS(十二烷基硫酸钠)阴离子表面活性剂、SDBS(十六烷基磺酸钠)阴离子表面活性剂、CTAB(十六烷基三甲基溴化铵)阳离子表面活性剂、TritonX(聚氧乙烯醚类)非离子表面活性剂等;助表面活性剂一般为中等碳链C5~C8的脂肪酸。微乳液中,微小的“水池”为由表面活性剂和助表面活性剂所构成的单分子层包围成的微乳颗粒,其大小在几至几十个纳米间,这些微小的“水池”彼此分离,就是“微反应器”,它拥有很大的界面,有利于化学反应。与其它化学法相比,微乳液法制备的离子不易聚结,大小可控,分散性好。 W/O型微乳液中的水核可以看作微型反应器(Microreactir)或称为纳米反应器,反应器的水核半径与体系中水和表面活性剂的浓度及种类有直接的关系,若令W=[H2O/表面活性剂],则由微乳液制备的纳米粒子的尺寸将会受到w 的影响。 一般地,将两种反应物分别溶于组成完全相同的两份微乳液中,然后在一定条件下混合。两种反应物通过物质交换而发生反应,当微乳液界面强度较大时,反应物的生长受到限制。如微乳液颗粒大小控制在几个纳米,则反应物以纳米颗粒的形式分散在不同的微乳液中。研究表明:纳米颗粒可在微乳液中稳定存在,通过超速离心或将水和丙酮的混合物加入反应后生成的微乳液中使纳米颗粒与微乳液分离,用有机溶剂清洗以去除附着在微粒表面的油和表面活性剂,最后在一定温度下进行干燥,即可得到纳米颗粒。 2 微乳液的形成和结构 与普通乳液相比,尽管在分散类型方面微乳液和普通乳液有相似之处,即有o/w 和w/o型,其中w/O可以作为纳米粒子制备的反应器,但是微乳液是一种热力学稳定的体系,它的形成是自发的,不需要外界提供能量。正是由于微乳液的形成技术要求不高,并且液滴颗粒可控,实验装

微乳液法制备纳米粒子_徐冬梅

文章编号:1004-1656(2002)05-0501-06 微乳液法制备纳米粒子 徐冬梅,张可达,王 平,朱秀林 (苏州大学化学化工系,江苏苏州 215006) 摘要:介绍了W /O 型微乳液内超细颗粒的形成机理、制备的技术关键,综述了近年来国内外微乳法制备纳米粒子的最新进展。引用文献37篇。 关键词:W /O 型微乳液;纳米粒子;形成机理;制备中图分类号:O648.23 文献标识码:A 微乳液是两种不互溶液体形成的热力学稳定的、各向同性的、外观透明或半透明的分散体系,微观上由表面活性剂界面膜所稳定的一种或两种液体的微滴所构成。它的特点是使不相混溶的油、水两相在表面活性剂(有时还要有助表面活性剂)存在下,可以形成稳定均匀的混合物。因而在医药、农药、化妆品、洗涤剂、燃料等 [1~5] 方面得到 了广泛的应用。微乳可将类型广泛的物质增溶在一相中的能力已被作为反应介质用于无机、有机各类反应。当在微乳中聚合时,可得到纳米级(20~50nm )的热力学稳定的胶乳,微乳质点的纳米级范围使得能够利用微乳技术制备所要求的大小和形状的超细粒子。微乳液制备超细颗粒的特点在于:粒子表面包有一层表面活性剂分子,使粒子间不易聚结;通过选择不同的表面活性剂分子可对粒子表面进行修饰,并控制微粒的大小。实验装置简单,操作容易,已引起人们的重视。本文对W /O 微乳液内超细颗粒的形成机理、制备的技术关键以及近年来国内外利用微乳法制备纳米粒子的最新进展进行了综述。 1 W /O (油包水)微乳液内超细颗粒 的形成机理 用来制备纳米粒子的微乳液往往是W /O 型体系,该体系的水核是一个“微型反应器”,或叫纳米反应器,水核内超细颗粒的形成机理有三种情况:(1)将两个分别增溶有反应物的微乳液混合, 由于胶团颗粒间的碰撞,发生了水核内物质相互交换或传递,引起核内的化学反应。由于水核半径是固定的,不同水核内的物质交换不能实现。于是在其中生成的粒子尺寸也就得到了控制。由此可见,水核的大小控制了超细微粒的最终粒径;(2)一种反应物在增溶的水核内,另一种以水溶液的形式与前者混合。这时候,水相内反应物穿过微乳液界面膜进入水核内,与另一反应物作用产生晶核并生长,产物粒子的最终粒径是由水核尺寸决定的。超细颗粒形成后,体系分为两相,其中微乳相含有生成的粒子,可进一步分离得到超细粒子;(3)一种反应物在增溶的水核内,另一种为气体。将气体通入液相中,充分混合使二者发生反应。反应仍然局限在胶团内。 2 实验制备的技术关键 2.1 选择一个适当的微乳体系 首先要选定用来制备超细颗粒的化学反应,然后选择一个能够增溶有关试剂的微乳体系,该体系对有关试剂的增溶能力越大越好,这样可期望获得较高收率。另外构成微乳体系的组分(油相、表面活性剂和助表面活性剂)应该不和试剂发生反应,也不应抑制所选定的化学反应。2.2 分析影响生成超细微粒的各种因素以获得 分散性好,粒度均匀的超细微粒 选定微乳体系后,就要研究影响生成超细微 第14卷第5期2002年10月 化学研究与应用Chemical Research and Application Vol .14,No .5Oct .,2002 收稿日期:2001-08-03;修回日期:2001-10-24 基金项目:江苏省苏州大学薄膜材料重点实验室开放课题(T2108057)

溶胶-凝胶法在制备纳米材料方面的应用

溶胶-凝胶法在制备纳米材料方面的应用 前言 纳米科技是一个跨学科的研究与开发领域,涉及纳米电子学、纳米材料学、纳米物理学、纳米化学、纳米生物学、纳米加工及表征等。纳米材料的合成与制备一直是纳米科学领域内 一个重要的研究课题,新材料制备工艺过程的研究与控制对纳米材料的微观结构和性能具有 重要的影响。最早是采用金属蒸发凝聚"原位冷压成型法制备纳米晶体,相继又发展了各种 物理、化学方法,如机械球磨法、非晶晶化法、水热法、溶胶-凝胶法等 溶胶-凝胶法是上个世纪6、70年代发展起来的一种制备无机材料的新工艺,近年来多 被用于制备纳米微粒和薄膜。溶胶-凝胶法具有反应条件温和通常不需要高温高压,对设备 技术要求不高,体系化学均匀性好,可以通过改变溶胶-凝胶过程的参数裁剪控制纳米材料 的显微结构等诸多优点。不仅可用于制备超微粉末和薄膜,而且成功应用于颗粒表面包覆, 成为目前合成无机纳米材料的主要技术,引起了材料科学技术界的广泛关注,是一个具有挑战性和应用前景非常广阔的领域。 1.溶胶-凝胶法的工艺原理: 溶胶凝胶法的工艺原理是:以液体化学试剂配制成金属无机盐或金属醇盐的前驱体,前驱体溶于溶剂中形成均匀的溶液(有时加入少量分散剂)加入适量的凝固剂使盐水解、 醇解或发生聚合反应生成均匀、稳定的溶胶体系,再经过长时间放置(陈化)或干燥处理使 溶质聚合凝胶化,再将凝胶干燥、焙烧去除有机成分、最后得到无机纳米材料。因此,也有 人把溶胶凝胶法归类为前驱化合物法。 根据原料的不同,溶胶凝胶法一般可分为两类,即无机盐溶胶凝胶法和金属醇盐水解法。(1)在无机盐溶胶凝胶法中,溶胶的制备是通过对无机盐沉淀过程的控制,使生成的颗粒 不团聚成大颗粒而生成沉淀,直接得到溶胶;或先将部分或全部组分用适当的沉淀剂沉淀出 来,经解凝,使原来团聚的沉淀颗粒分散成胶体颗粒溶胶的形成主要是通过无机盐的水解来 完成。反应式如下 (2)金属醇盐水解法通常是以金属有机醇盐为原料! 通过水解与缩聚反应而制得溶胶’首先将金属醇盐溶入有机溶剂! 加水则会发生如下反应: 式中M为金属R为有机基团,如烷基。经加热去除有机溶液得到金属氧化物材料。 2.溶胶-凝胶法的工艺过程: 溶胶凝胶法制备无机纳米材料过程主要包括5个步骤 (1)均相溶液的制备:溶胶凝胶法的第一步是制取包含醇盐和水均相溶液,以确保醇盐的 水解反应在分子级水平上进行。在此过程中,溶剂的选择和加入量是关键。 (2)溶胶的制备:在溶胶凝胶法中,最终产品的结构在溶胶形成过程中即已初步形成,后 续工艺均与溶胶的性质直接相关,因此溶胶制备的质量是十分重要的。有两种方法制备溶胶,一是先将部分或全部组分用适当沉淀剂先沉淀出来,经解凝,使原来团聚的沉淀颗粒分散成 原始颗粒。这种颗粒的大小一般在溶胶体系中胶核大小的范围内,因而可制得溶胶;另一种方法是由同样的盐溶液,通过对沉淀过程的严格控制,使首先形成的颗粒不致团聚为大颗粒 而沉淀,从而直接得到胶体溶液。 (3)凝胶化过程:缩聚反应形成的聚合物或粒子聚集体长大为小粒子簇,后者逐渐相互连 接成为一个横跨整体的三维粒子簇连续固体网络。在陈化过程中,胶体粒子聚集形成凝胶, 由于液相被包裹于固相骨架中,整个体系失去活动性,随着胶体粒子逐渐形成网络结构, 溶胶也从Newton体向Bingham体转变,并带有明显的触变性。在许多实际应用中,制品的成型就是在此期间完成的。

氮掺杂二氧化钛光催化剂的研究进展

林仕伟等:尖晶石型化合物的制备及光催化性能 · 535 · 第38卷第3期 氮掺杂二氧化钛光催化剂的研究进展 胡裕龙1,2,刘宏芳1,郭兴蓬1 (1. 华中科技大学化学与化工学院,武汉 430074;2. 海军工程大学理学院,武汉 430033) 摘要:纯纳米二氧化钛禁带较宽,只能在紫外光下激发。拓宽二氧化钛的光谱响应范围,实现可见光激发,是二氧化钛基光催化材料面临的主要问题。氮掺杂二氧化钛具有良好的可见光催化活性,是具有可见光响应的二氧化钛基光催化材料的典型代表,近十年来受到了广泛关注。本文综述氮掺杂二氧化钛可见光响应机理和提高光催化活性方面的研究进展,提出今后值得关注与研究的方向。 关键词:二氧化钛;氮掺杂;可见光;光催化活性;综合评述 中图分类号:O643.1 文献标志码:A 文章编号:0454–5648(2010)03–0535–07 RESEARCH PROGRESS ON NITROGEN DOPED TITANIA PHOTOCATALYST HU Yulong1,2,LIU Hongfang1,GUO Xingpeng1 (1. School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology,Wuhan 430074; 2. College of Science, Naval University of Engineering, Wuhan 430033, China) Abstract: The pristine titania nanomaterial can only be excited by ultraviolet light because of its wide band-gap. Extending the opti-cal response to the visible light spectrum is one of the most important aspects to the TiO2-based photocatalyst. Nitrogen-doped titania has high visible light photocatalytic activity, which is representative of TiO2-based photocatalyst with reactivity under visible light, and has received enormous attention from scientists and engineers in the past decade. In the current review, the recent progress in research on the origins of visible light responses and the improvement of photocatalytic activity of nitrogen-doped titania are dis-cussed in detail, and urgent issues for future research and development are proposed. Key words: titania; nitrogen doping; visible light; photocatalytic activity; review 纳米二氧化钛(TiO2)具有化学稳定、无毒及光催化活性好的特点,已在许多方面获得了应用。纯纳米TiO2的不足是禁带较宽(3.2eV),只在紫外光照射下才有光催化活性,没有可见光光催化活性,因此需要对TiO2进行改性研究,以拓宽TiO2的光谱响应范围,把吸收边红移至可见光区,使其具有可见光催化活性。在TiO2的改性研究中,掺杂TiO2的研究占有很大部分。第一代掺杂研究主要是对TiO2进行金属掺杂。虽然TiO2经大部分金属/金属氧化物或金属离子掺杂后,能够显著降低带隙能级,实现可见光激发,但也促进电子–空穴的再结合,进而降低其光催化的活性。针对金属掺杂TiO2性能的不足,第二代掺杂研究主要是对TiO2进行非金属掺杂。2001年Asahi等[1]报道N置换TiO2晶格中少量O后具有可见光活性,掀起N掺杂研究的热潮,随后又进行了B、C、S、P、Cl及F等非金属元素掺杂TiO2的研究,其中研究最为广泛的是N掺杂TiO2(N-TiO2)。本文综述N-TiO2可见光响应机理和提高光催化活性方面研究的最新进展。 1 N-TiO2可见光响应的机理 任何材料的光学响应主要由自身的电子结构决定,而纳米材料电子结构又与其化学成分、原子排列及物理尺度等紧密相关。由于纳米颗粒尺寸很小, 收稿日期:2009–05–19。修改稿收到日期:2009–08–05。 基金项目:煤燃烧国家重点实验室开放基金(FSKLCC0809)和材料化学与服役失效湖北省重点实验室开放基金(200802)资助项目。第一作者:胡裕龙(1973—),男,博士研究生。 通信作者:刘宏芳(1968—),女,博士,教授。Received date:2009–05–19. Approved date: 2009–08–05. First author: HU Yulong (1973–), male, postgraduate student for doctor degree. E-mail: huyl1217@https://www.doczj.com/doc/3e15010717.html, Correspondent author: LIU Hongfang (1968–), female, Doctor, professor. E-mail: liuhf2003@https://www.doczj.com/doc/3e15010717.html, 第38卷第3期2010年3月 硅酸盐学报 JOURNAL OF THE CHINESE CERAMIC SOCIETY Vol. 38,No. 3 March,2010

相关主题
文本预览
相关文档 最新文档