当前位置:文档之家› 专题05 等式与不等式的性质(学生版)

专题05 等式与不等式的性质(学生版)

专题05 等式与不等式的性质(学生版)
专题05 等式与不等式的性质(学生版)

专题05 等式与不等式的性质

知识梳理

1.等式的性质

(1)等式的两边同时加上(减去)同一个数或代数式,等式仍成立; (2)等式的两边同时乘以(除以)同一个不为零的数或代数式,等式仍成立. 2.恒等式

一般地,含有字母的等式,如果其中的字母取任意实数时等式都成立,则称其为恒等式,也称等式两边恒等.

3.方程的解集

一般地,把一个方程所有解组成的集合称为这个方程的解集. 1.一元二次方程的解集

一般地,Δ=b 2

-4ac 称为一元二次方程ax 2

+bx +c =0(a ≠0)的判别式. (1)当Δ>0时,方程的解集为{2a ,2a

};

(2)当Δ=0时,方程的解集为???

?

??

-b 2a ;

(3)当Δ<0时,方程的解集为?. 2.一元二次方程根与系数的关系

若x 1,x 2是一元二次方程ax 2

+bx +c =0(a ≠0)的两个根,则x 1+x 2=-b a ,x 1x 2=c a

一、不等式的性质: (1);a b b a (2) (3);c b c a b a +>+?> (4);,d b c a d c b a +>+?>>

(5);0,;0,bc ac c b a bc ac c b a >?>> (6);0,0bd ac d c b a >?>>>> (7);0n

n b a b a >?>>、 (8);0n n

b a b a >?

>>

(9);11,0,b

a b a ab b a ≠且同号、 (10).b a b a b a +≤±≤-

注:在高考中,不等式性质的判断题常有出现,一般我们判断此类问题主要采用两种方法: 其一:按照性质进行判断,此种方法要求我们对不等式性质有一个全面熟练的掌握。 其二:采用赋值法/特殊值法进行判断,此种方法对于证明假命题非常适用; 二、比较两式大小的常见方法:作差法、作商法

作差法:作差是两式比较大小的常用方法,基本步骤如下: 第一步:作差;

第二步:变形,常采用配方,因式分解等恒等变形手段;

;,c a c b b a >?>>

第三步:定号,重点是能确定是大于0,还是等于0,还是小于0.最后得结论.概括为“三步,—结论”,这里的“变形”一步最为关键.

注1:有的问题直接作差不容易判断其符号,这时可根据两式的特点考虑先变形,到比较易于判断符号时,再作差,予以比较;

注2:含参不等式的大小判断要注意符号问题,具体根据不等式性质判断.注意分类合理恰当.

作商法:

注:在两式无法确定正负号或是否可能为0的情况下无法适用.

作商法的基本步骤是:①求商,②变形,③与1比大小从而确定两个数的大小.

例题解析

一、等式性质与方程的解集

(1)利用十字相乘法分解单变量多项式

角度一x2+(p+q)x+pq型式子的因式分解

例1. 分解因式:

(1)x2-3x+2; (2)x2+4x-12.

角度二ax2+bx+c型式子的因式分解

例2. 分解因式:

(1)6x2+5x+1; (2)6x2+11x-7;

(3)42x2-33x+6; (4)2x4-5x2+3.

【巩固训练】

1. 把下列各式分解因式:

(1)x2-3x+2=________;

(2)x2+37x+36=________;

(3)(a-b)2+11(a-b)+28=________;

(4)4m2-12m+9=________.

(2)利用十字相乘法分解双变量多项式

角度一x2+(p+q)xy+pqy2型式子的因式分解

例3.把下列各式因式分解

(1)a2-2ab-8b2; (2)x+5xy-6y(x>0,y>0);

(3)(x+y)2-z(x+y)-6z2; (4)m4+m2n2-6n4.

角度二ax2+bxy+cy2型式子的因式分解

例4. 把下列各式因式分解

(1)6m 2

-5mn -6n 2

; (2)20x 2

+7xy -6y 2

(3)2x 4

+x 2y 2

-3y 4

; (4)6(x +y )+7z (x +y )+2z (x >0,y >0,z >0).

【巩固训练】

2. 分解下列各因式:

(1)x 2

-xy -2y 2

-2x +7y -3; (2)ab -2a -b +2.

(3)一元一次方程的解集

例5. 用适当的方法求下列方程的解集:

(1)x

0.7-0.17-0.2x 0.03=1; (2)x -12????

??x -12(x -1)=

2(x -1)3.

【巩固训练】

所以该方程的解集为????

??

-32.3. 求下列方程的解集:

(1)4-3(10-y )=5y ; (2)2x -13=2x +1

6-1.

(4)因式分解法解一元二次方程

例6. 用因式分解法求下列方程的解集.

(1)6x (x +1)=5(x +1); (2)(2x -1)2

-(x +1)2

=0;

(3)(x +3)(x +1)=6x +2.

【巩固训练】

4. 用因式分解法求下列方程的解集:

(1)x ? ??

??x -12=x ; (2)(x -3)2

+2x -6=0;

(3)9(2x+3)2-4(2x-5)2=0.

二、一元二次方程的解集及根与系数的关系

(1)方程根个数的判断及应用

例1. 已知关于x的一元二次方程3x2-2x+k=0,根据下列条件,分别求出k的范围.

(1)方程有两个不相等的实数根;

(2)方程有两个相等的实数根;

(3)方程有实数根;

(4)方程无实数根.

【巩固训练】

1.不解方程,判断下列方程的实数根的个数.

(1)2x2-3x+1=0;

(2)4y 2

+9=12y ; (3)5(x 2

+3)-6x =0.

(2)直接应用根与系数的关系进行计算

例2. 若x 1,x 2是方程x 2

+2x -2 007=0的两个根, 试求下列各式的值: (1)x 2

1+x 2

2; (2)1x 1+1x 2

(3)(x 1-5)(x 2-5); (4)|x 1-x 2|.

【巩固训练】

2.已知x 1,x 2是方程x 2

+6x +3=0的两个实数根,求x 2x 1+x 1x 2

的值.

(3)应用根与系数的关系求字母系数的值或范围

例3. 已知关于x 的方程x 2

-(k +1)x +14k 2+1=0,根据下列条件,求出k 的值.

(1)方程两实根的积为5;

(2)方程的两实根x 1,x 2,满足|x 1|=x 2.

【巩固训练】

3.已知关于x 的一元二次方程x 2

-(2k -1)x +k 2

+k -1=0有实数根.

(1)求k 的取值范围;

(2)若此方程的两个实数根x 1,x 2满足x 2

1+x 2

2=11,求k 的值.

三、不等式基本性质

【例1】设和都是非零实数,不等式和

同时成立的充要条件是_______ 【例2】下列四个命题中,为真命题的是( ) A. 若a b >,则22ac bc > B. 若a b >,c d >则a c b d ->-

C. 若a b >,则22a b >

D. 若a b >,则

11a b

< 【例3】设0ab >,下面四个不等式中,正确的是________ ①||||a b a +>②||||a b b +<③||||a b a b +<-④||||||a b a b +>-

A 、①和②

B 、①和③

C 、①和④

D 、②和④

【例4】已知101a b c <-<<<<,则下列不等式成立的是_________

A 、22b c a <<

B 、1ab c ab +

b a c

<< D 、2b ab bc ac >-+ 【例5】已知三个不等式: (1);0>ab (2)

;b

d

a c > (3).ad bc > 以其中两个作为条件,余下一个作结论,则可以组成_____个正确命题.

【例6】用不等式的性质证明;若m>n>0,q

.q

n p m < a b b a >b

a 1

1>

【例7】b 克糖水中有a 克糖()0b a >>,若再加入m 克糖()0m >,则糖水更甜了,将这个事实用一个不等式表示的为________.

【巩固训练】

1.b a

>是*1

1

,N n b a n n

∈>

的 条件.

2.0<

211??? ?

?

+>??? ??+a b b a 的 条件.

3.2>x 是

2

1

1

4.实数满足条件:①;②;③,则有( )

A .

B .

C .

D ..

5.若a >0>b >-a ,c <d <0,则下列命题:(1)ad >bc ;(2)a d +b c

<0;(3)a -c >b -d ;(4)a ·(d -c )>b (d -c )中能成立的个数是个.

d c b a 、、、d c b a <<,()()0>--c b c a ()()0<--d b d a b d c a <<

6.给出下列命题:①a >b ?ac 2

>bc 2

;②a >|b |?a 2

>b 2

;③a >b ?a 3

>b 3

;④|a |>b ?a 2

>b 2

.其中正确的命题是( ).

A .①②

B .②③

C .③④

D .①④

7.下列说法不正确的是________.

.A 若..a b m 都是正数,则

a m a

b m b +>+ .B 若0

c a b >>>,则a b

c a c b

>

-- .C 若...a b c d 都是正数,且bc ad >则a a c c

b b d d

+<<+

.D 若0.0a b c d >><<,则

a b c d

> 二、作差法/作商法比较大小

【例8】已知()12,0,1a a ∈,记1212=,1M a a N a a =+-,则M N ,的大小关系是______

【例9】设01x <<

,则141,,11

x a b x c d x x ==+==-+中最大的是_______

【例10】设,比较与的大小.

【例11】设,且,比较:与的大小。

R x ∈x

+11

x -10,0>>b a b a ≠b a b a ?a

b b a

(附:()()110;1010;x x x x a b a b x a b b a x >≥?>≥>≥>>?>≥<)

【例12】设

为正数,且,求证:.

【例13】甲乙两人同时同地沿同一路线走到同一地点,甲有一半时间以速度a 行走,另一半时间以速度b 行走;乙有一半路程以速度a 行走,另一半路程以速度b 行走,如果a b ≠,则先到达指定地点的是__________

【巩固训练】

1.如果1>x ,1,1--=-+=

x x q x x p ,那么q p ,的大小关系为 .

2.)(,1

1

,122R a a a Q a a P ∈+-=

++=,则Q P ,的大小关系为 .

3.设x ,y

.

4.,比较与()的大小.

R x ∈)12)(1(2

++

+x x x )2

1

(+x 12++x x

5.已知0a b c >>>,比较a b c

a b c 与()

3

a b c abc ++的大小

6.设c b a >>,求证:b a a c c b ab ca bc 222222++<++.

7.已知)1,0(,,,∈d c b a ,试比较abcd 与3-+++d c b a 的大小,并给出你的证明.

四、不等式中的范围问题

【例14】若12,21a b -<<-<<,则a b -的取值范围是_________

【例15】已知c b a >>,且,0=++c b a 则

a

c

的取值范围是______

【例16】“??

?<<<+<3042xy y x ”是“???<<<<3

21

0y x ”的( )

(A )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )既非充分又非必要

【例17】已知函数()()(),112,13220b

f x ax f f x

=-≤≤≤≤,求()3f 的取值范围.

【例18】设,x y 为实数,满足22

23,34x xy y ≤≤≤≤,则5

5x y

的最大值是_______. 【例19】已知6枝玫瑰与3枝康乃馨的价格之和大于24元,而4枝玫瑰和4枝康乃馨的价格之和小于20元,那么2枝玫瑰和3枝康乃馨的价格哪个更贵?

【巩固训练】

1.已知实数,a b 满足11≤+≤-b a ;31≤-≤b a ,求:b a -3的取值范围.

2. 已知函数c ax x f -=2)(满足:.5)2(1,1)1(4≤≤--≤≤-f f 试求)3(f 的取值范围

3.已知,,x y z 是非负整数,且10x y z ++=,2330,x y z ++=则53x y z ++的范围是

_______

反思总结

不等式是高中数学的重要内容之一,不等式的性质是解、证不等式的基础,为后续分式不等式,基本不等式等打基础。本章节中的作差法也是后续证明函数单调性的重要思想;在今后的学习过程中应注重基础,重视通法,养成良好的分析问题的习惯。

课后练习

1.分解因式x 3

-x ,结果为( ) A .x (x 2

-1) B .x (x -1)2

C .x (x +1)2

D .x (x +1)(x -1)

2.已知a +b =3,ab =2,计算:a 2

b +ab 2

等于( ) A .5

B .6

C .9

D .1

3.分解因式a 2

+8ab -33b 2

得( ) A .(a +11)(a -3) B .(a +11b )(a -3b ) C .(a -11b )(a -3b )

D .(a -11b )(a +3b )

4.方程3x (x -2)=2-x 的解集为________. 5.把下列各式分解因式: (1)x 2

+15x +56; (2)6x 2+7x -3; (3)x 2

-6xy -7y 2

; (4)8x 2

+26xy +15y 2

.

6.方程x 2

-23kx +3k 2

=0的根的情况是( ) A .有一个实数根 B .有两个不相等的实数根 C .有两个相等的实数根 D .没有实数根

7.若关于x 的方程mx 2

+(2m +1)x +m =0有两个不相等的实数根,则实数m 的取值范围是( ) A .m <1

4

B .m >-1

4

C .m <1

4

且m ≠0

D .m >-1

4

且m ≠0

8.已知x 1,x 2是关于x 的方程x 2

+bx -3=0的两根,且满足x 1+x 2-3x 1x 2=5,那么b 的值为( ) A .4 B .-4 C .3

D .-3

9.已知方程x 2

+tx +1=0,根据下列条件,分别求出t 的取值范围. (1)两个根都大于0; (2)两个根都小于0;

(3)一个根大于0,另一个根小于0.

10设∈b a ,R ,则 “b a >” 是“33b a >” 的(

A .充分不必要条件

B .必要不充分条件

C .充要条件

D .不充分也不必要条件

11.设实数a 、b 、c 满足c b a <<,且0ac <,那么下列不等式中不一定成立.....的是( ) A. ab ac >; B. ()0c b a ->;C.cb ab <;D. ()0ac a c -<. 12. 若,,且,,则( )

A .

B .

C .

D .

13. A 杯中有浓度为的盐水克,B 杯中有浓度为的盐水克,其中A 杯中的盐水更咸一些.若将A 、B 两杯盐水混合在一起,其咸淡的程度可用不等式表示为_____.

14. 若1,01x y a b >><<<,则下列各式中一定成立的是________ (A )a b x y > (B )a b x y < (C )x

y

a b > (D )x

y

a b <

15. 若,,x a b R ∈,下列4个命题:①232x x +>;②553223a b a b a b +>+;③

n m

()2221a b a b +≥+-;④2b a

a b

+≥,其中真命题的序号是__________

16.已知,x y R ∈,22=1,M x y N x y xy ++=++,则,M N 的大小关系为_________

17. 若32a b -<<<,则a b -的取值范围是_______

18.已知x ,y ,z 均为非负实数,且满足30,350x y z x y z ++=+-=,则=542M x y z ++的取值范围是_______。

19.设,,,则下列不等式恒成立的有______.(填不等式序号)

①;②;③.

20. 若0a <,0b <,则22

b a p a b

=+与q a b =+的大小关系为( )

A. p q <

B. p q ≤

C. p q >

D. p q ≥

21. 我们用记号“|”表示两个正整数间的整除关系,如3|12表示3整除12.试类比课本中不等关系的基本性质,写出整除关系的两个性质.①______________________________;②______________________________.

22. 已知、为正实数,,,.试比较与的大小,并指出两式相等的条件;

0>a

0>b 2=+b a 1≤ab 2≤

+b a 222≥+b a a b b a ≠0>x 0>y y b x a 22+y

x b a ++2

)(

23. 已知b a ,为正数,*

∈N n ,求证:b

a b a a b n n n n 1

111+≥+--

24.已知1221,21x x -<-<,

(1)求证:121226,2x x x x <+<-<

(2)若()21f x x x =-+,求证()()1212125x x f x f x x x -<-<-

不等式性质的两个重要应用

不等式性质的两个重要应用 一.利用不等式性质证明不等式 利用不等式的性质及其推论可以证明一些不等式。解决此类问题一定要在理解的基础上,记准、记熟不等式的性质并注意在解题中灵活准确地加以应用. 例1:若0>>b a ,0<-. 分析:本题考查学生对不等式性质的掌握及灵活应用。注意性质的使用条件. 解:∵0<< d c ,0>->-d c ,又0>>b a ∴0>->-d b c a ,故 d b c a -<-11。 而0< e ,∴d b e c a e ->-. 二.利用不等式性质求范围 利用几个不等式的范围来确定某个不等式的范围是一类常见的综合问题,对于这类问题要注意:“同向(异向)不等式的两边可以相加(相减)”,这种转化不是等价变形,在一个解题过程中多次使用这种转化时,就有可能扩大真实的取值范围,解题时务必小心谨慎,先建立待求范围的整体与已知范围的整体的等量关系,最后通过“一次性不等关系的运算,求得待求的范围”,是避免犯错误的一条途径. 三.利用不等式性质,探求不等式成立的条件 不等式的性质是不等式的基础,包括五个性质定理及三个推论,不等式的性质是解不等式和证明不等式的主要依据,只有正确地理解每条性质的条件和结论,注意条件的变化才能正确地加以运用,利用不等式的性质,寻求命题成立的条件是不等式性质的灵活运用. 例2:已知三个不等式:①0>ab ;②b d a c >;③ad bc >。以其中两个作条件,余下一个作结论,则可组成_____________个正确命题. 解:对命题②作等价变形:0>-?>ab ad bc b d a c 于是,由0>ab ,ad bc >,可得②成立,即①③?②; 若0>ab ,0>-ab ad bc ,则ad bc >,故①②?③; 若ad bc >, 0>-ab ad bc ,则0>ab ,故②③?①。 ∴可组成3个正确命题.

不等式解法性质与证明

第五讲 不等式的解法、性质与证明 一、不等式的性质: ⑴(对称性或反身性⑵(传递性)a b b c a c >>?>,; ⑶(可加性)a b a >?;(同向可相加)a b c d a c b d ?>>+>+, ⑷(可乘性)0a b c ac bc ?>>>,; 0a b c ac bc ?><<,. (正数同向可相乘)00a b c d ac bd ?>>>>>, ⑸(乘方法则)00n n a b n N a b >>∈?>>()⑹(开方法则)0,20n n a b n N n a b >>∈>(≥) ⑺(倒数法则)11 0a b ab a b ? >><, 1、判断下列命题是否正确,并说明理由。 (1)若a>b ,则ac 2>bc 2 ; (2)若 a c 2>b c 2 ,则a>b ; (3)若a>b ,且ab ≠0,则1a <1b ; (4)若a>b ,c>d ,则ac>bd ; (5)若a>b ,且k ∈N +,则a k >b k ; (6)若a>b>0,则a a >a b ;(7)若a>b>0,则b 2 +1a 2 +1 > b 2a 2 2、比较下列各组数的大小,其中x ∈R 。(1)x 2+3与3x ;(2)x 6+1与x 4+x 2 ;3)11+x 与1-x 。 3、已知a,b 为正数,试比较a b +b a 与 a +b 的大小。 4、已知a>b ,则不等式(1)a 2>b 2,(2)1a < 1b ,(3)1a -b >1 a 中不能成立的个数是( D ) A 、0个 B 、1个 C 、2个 D 、3个 5、已知12+x x 的解集是_____________。 3、不等式 13 1 2>+-x x 的解集为 。 4、如果x x sin 2 log 3 log 2 1 2 1,那么π π ≥- 的取值范围是为_____________-。 5、) ,的解集是的不等式,关于且已知0(110-∞>≠>x a x a a ,则0)1 (l o g >-x x a 的解集为____。 6、不等式333 2)21 (2 2---

{高中试卷}高三数学一轮复习:不等式性质及解法练习题3[仅供参考]

20XX年高中测试 高 中 试 题 试 卷 科目: 年级: 考点:

监考老师: 日 期: 第7章 第1节 一、选择题 1.(文)(20XX·深圳市深圳中学)不等式(x -1)x +2≥0的解集是( ) A .{x|x>1} B .{x|x≥1} C .{x|x≥1且x =-2} D .{x|x≥1或x =-2} [答案] D [解析] 不等式化为????? x -1≥0x +2≥0或x +2=0, ∴x≥1或x =-2,故选D. (理)(20XX·天津文,7)设集合A ={x|x -a|<1,x ∈R},B ={x|1<x <5,x ∈R},若A∩B =?,则实数a 的取值范围是( ) A .{a|0≤a≤6} B .{a|≤2,或a≥4} C .{a|a≤0,或a≥6} D .{a|2≤a≤4} [答案] C [解析] |x -a|<1?a -1

函数,函数y =f ′(x)的图象如图所示.若实数a 满足f(2a +1)<1,则a 的取值范围是( ) x -2 0 4 f(x) 1 -1 1 A.????0,32 B.??? ?-12,32 C.????12,72D.??? ?-32,32 [答案] D [解析] 由f ′(x)的图象知,f(x)在[-2,0]上单调递减,在[0,+∞)上单调递增,又由表知若f(2a + 1)<1,则-2<2a +1<4,∴-321,则下列不等式成立的是( )

不等式的基本性质知识点

不等式的基本性质知识点 不等式的基本性质知识点 1.不等式的定义:a-b>0a>b, a-b=0a=b, a-b<0a<b。 ① 其实质是运用实数运算来定义两个实数的大小关系。它是本章的基础,也是证明不等式与解不等式的主要依据。 ②可以结合函数单调性的证明这个熟悉的知识背景,来认识作差法比大小的理论基础是不等式的性质。 作差后,为判断差的符号,需要分解因式,以便使用实数运算的符号法则。 如证明y=x3为单增函数, 设x1, x2∈(-∞,+∞), x1<x2, f(x1)-f(x2)=x13-x23=(x1-x2)(x12+x1x2+x22)=(x1-x2)[( x1+)2 +x22] 再由(x1+)2+x22>0, x1-x2<0,可得f(x1)<f(x2), ∴ f(x)为单增。 2.不等式的性质: ① 不等式的性质可分为不等式基本性质和不等式运算性质两部分。 不等式基本性质有: (1) a>bb<a (对称性)

(2) a>b, b>ca>c (传递性) (3) a>ba+c>b+c (c∈R) (4) c>0时,a>bac>bc c<0时,a>bac<bc。 运算性质有: (1) a>b, c>da+c>b+d。 (2) a>b>0, c>d>0ac>bd。 (3) a>b>0an>bn(n∈N, n>1)。 (4) a>b>0>(n∈N, n>1)。 应注意,上述性质中,条件与结论的逻辑关系有两种:“”和“”即推出关系和等价关系。一般地,证明不等式就是从条件出发施行一系列的推出变换。解不等式就是施行一系列的等价变换。因此,要正确理解和应用不等式性质。 ② 关于不等式的性质的考察,主要有以下三类问题: (1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立。 (2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小。 (3)利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系。

不等式的意义、性质及其应用

不等式的意义、性质及其应用 教学重点:不等式的性质 教学难点:不等式的实际应用 一、问题引入 某班同学去植树,原计划每位同学植树4棵,但由于某组的10名同学另有任务,未能参加植树,其余同学每位植树6棵,结果仍未能完成计划任务,若以该班同学的人数为x,此时的x应满足怎样的关系式? 依题意得4x>6(x-10) 二、概念回顾 1.不等式:用“>”或“<”号表示大小关系的式子,叫不等式. 解析:(1)用≠表示不等关系的式子也叫不等式 (2)不等式中含有未知数,也可以不含有未知数; (3)注意不大于和不小于的说法 例1 用不等式表示 (1)a与1的和是正数; (2)y的2倍与1的和大于3; (3)x的一半与x的2倍的和是非正数; (4)c与4的和的30%不大于-2; (5)x除以2的商加上2,至多为5; (6)a与b两数的和的平方不可能大于3. 三.不等式的解 不等式的解:能使不等式成立的未知数的值,叫不等式的解. 解析:不等式的解可能不止一个. 例2 下列各数中,哪些是不等是x+1<3的解?哪些不是? -3,-1,0,1,1.5,2.5,3,3.5 练习: 1.判断数:-3,-2,-1,0,1,2,3,是不是不等式2x+3<5 的解?再找出另外的小于0的解两个. 2.下列各数:-5,-4,-3,-2,-1,0,1,2,3,4,5中,同时适合x+5<7和2x+2>0的有哪几个数? 四.不等式的解集 1.不等式的解集:一个含有未知数的不等式的所有解组成这个不等式的解集. 例3 下列说法中正确的是( )

A.x=3是不是不等式2x>1的解 B.x=3是不是不等式2x>1的唯一解; C.x=3不是不等式2x>1的解; D.x=3是不等式2x>1的解集 2.不等式解集的表示方法 例4 在数轴上表示下列不等式的解集 (1)x>-1;(2)x ≥-1;(3)x<-1;(4)x ≤-1 分析:按画数轴,定界点,走方向的步骤答 五、不等式的性质 不等式性质1:不等式两边都加上(或减去)同一个数(或式子),不等号的方向不变. 不等式性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变. 不等式性质3:不等式两边都乘(或除以)同一个负数,不等号的方向改变. 例1 利用不等式的性质,填”>”,:<” (1)若a>b,则2a+1 2b+1; (2)若-1.25y<10,则y -8; (3)若a0,则ac+c bc+c; (4)若a>0,b<0,c<0,则(a-b)c 0. 例2 利用不等式性质解下列不等式 (1)x-7>26; (2)3x<2x+1; (3)3 2x>50; (4)- 4x>3. 分析:利用不等式性质变形为最基本形,利用数轴表示解集 练习: 1.根据不等式的性质,把下列不等式化为x>a 或xx x (2)22 121--≤x x (3)-3x>2 (4)-3x+2<2x+3 3. 已知不等式3x-a ≤0的解集是x ≤2,求a 的取值范围. 六、不等式的实际应用 问题一:某学校计划购买若干台电脑,现从两家商店了解到同一型号的电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原报价收款,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.学校经核算选择甲商场比较合算,你知道学校至少要买多少台电脑? 解:设购买x 台电脑,到甲商场比较合算,则 6000+6000(1-25%)(x -1)<6000(1-20%)x 去括号,得:6000+4500x -45004<4800x 移项且合并,得:-300x <1500 不等式两边同除以-300,得:x>5 ∵x 为整数 ∴x ≥6 答:至少要购买6台电脑时,选择甲商场更合算. 问题二 :甲、乙两个商店以同样的价格出售同样的商品,同时又各自推出不同的优惠方案:在甲商店累计购买100元商品后,再买的商品按原价的90%收费;在乙商累计购买50元商品后,再买的商品按原价的95%收费.顾客选择哪个商店购物能获得更大的优惠?

不等式及其性质(教师版)

不等式及其性质(教师 版) https://www.doczj.com/doc/3e1496719.html,work Information Technology Company.2020YEAR

一、不等式及其性质 【学习目标】 1.了解不等式的意义,认识不等式和等式都刻画了现实世界中的数量关系; 2. 理解不等式的三条基本性质,并会简单应用; 3.理解并掌握一元一次不等式的概念及性质; 【要点梳理】 要点一、不等式的概念 一般地,用“<”、“>”、“≤”或“≥”表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式. 要点诠释: (1)不等号“<”或“>”表示不等关系,它们具有方向性,不等号的开口所对的数较大. (2) (3)有些不等式中不含未知数,如3<4,-1>-2;有些不等式中含有未知数,如2x>5中,x表示未知数,对于含有未知数的不等式,当未知数取某些值时,不等式的左、右两边符合不等号所表示的大小关系,我们说不等式成立,否则,不等式不成立. 类型一、不等式的概念 例1.判断下列各式哪些是等式,哪些是不等式. 例2.(1)4<5; 例3.(2)x2+1>0; 例4.(3)x<2x-5; 例5.(4)x=2x+3; 例6.(5)3a2+a;

例7. (6)a 2+2a≥4a -2. 变式练习: 1.(2017春?城关区校级期末)贵阳市今年5月份的最高气温为27℃,最低气温为18℃,已知某一天的气温为t ℃,则下面表示气温之间的不等关系正确的是( ) A .18<t <27 B .18≤t <27 C .18<t≤27 D .18≤t≤27 2.(2017春?未央区校级月考)下列式子:①a+b=b+a ;②-2>-5;③x≥-1;④ 31y-4<1;⑤2m≥n ;⑥2x-3,其中不等式有( ) A .2个 B .3个 C .4个 D .5个 3.(2017春?南山区校级月考)下面给出了6个式子:?3>0; x+3y >0; x=3;④x-1;⑤x+2≤3;⑥2x≠0;其中不等式有( ) A .2个 B .3个 C .4个 D .5个 4.(2017春?太原期中)学校组织同学们春游,租用45座和30座两种型号的客车,若租用45座客车x 辆,租用30座客车y 辆,则不等式“45x+30y≥500”表示的实际意义是( ) A .两种客车总的载客量不少于500人 B .两种客车总的载客量不超过500人 C .两种客车总的载客量不足500人 D .两种客车总的载客量恰好等于500人 5.已知有理数m ,n 的位置在数轴上如图所示,用不等号填空. (1)n-m 0;(2)m+n 0;(3)m-n 0;(4)n+1 0;(5)m?n 0; (6)m+1 0. 例2.用不等式表示: (1)x 与-3的和是负数; (2)x 与5的和的28%不大于-6; (3)m 除以4的商加上3至多为5. 举一反三: 【变式】a a 的值一定是( ).

专题2.1 不等式的性质及常见不等式解法(精练)(原卷版)

专题2.1 不等式的性质及常见不等式解法 一、选择题 1.(2019·北京高考真题(文))已知集合A ={x |–11},则A ∪B =( ) A .(–1,1) B .(1,2) C .(–1,+∞) D .(1,+∞) 2.(2019·全国高考真题(理))已知集合{} }2 42{60M x x N x x x =-<<=--<,,则M N ?=( ) A .}{43x x -<< B .}{42x x -<<- C .}{22x x -<< D .}{23x x << 3.(2020·山西省高三其他(理))已知集合2 {|20}A x x x =+->,{1,0,1,2}B =-,则( ) A .{2}A B = B .A B R = C .(){1,2}R B C A =- D .(){|12}R B C A x x =-<< 4.(2020·山东省高三二模)已知集合11A x x ?? = B .3a > C .1a < D .13a << 6.(2020·福建省高三其他(文))已知全集U =R ,集合{ }21M x x =-≤,则U C M =( ) A .()1,3 B .[]1,3 C .()(),13,-∞?+∞ D .(,1][3,)-∞+∞ 7.(2020·上海高三二模)不等式1 02 x x -≤-的解集为( ) A .[1,2] B .[1,2) C .(,1][2,)-∞?+∞ D .(,1)(2,)-∞?+∞ 8.(2020·浙江省高一期末)已知a ,b ∈R ,若0a b +<,则( ) A .22<0a b - B .>0a b - C .0a b +< D .>0+a b 9.(2020·黑龙江省鹤岗一中高一期末(文))如果关于x 的不等式34x x a -+-<的解集不是空集,则参数a 的取值范围是( ) A .()1,+∞ B .[)1,+∞ C .(),1-∞ D .(] ,1-∞ 10.(2020·上海高三二模)已知x ∈R ,则“1x >”是“|2|1x -<”的( ). A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分又非必要条件

不等式的性质及应用

一. 教学内容: 3.1 不等关系与不等式 3.2 均值不等式 二. 教学目的 1. 理解不等号的意义和不等式概念,会用不等式和不等式组表示各种不等关系。理解实数大小与实数运算的关系,会用比差法比较两个实数的大小关系。 2. 能根据实数的基本性质得出不等式的基本性质,并会证明。会运用不等式的基本性质进行推理和变形。 3. 探究成立的条件和证明方法,等号成立的条件和几何解释,会用这个基本不等式解决简单问题。 4. 通过实例学会运用基本不等式求最值的方法。理解用不等式 求最值的条件,并能求实际问题的最大值或最小值。 三. 教学重点、难点 重点:(1)用比差法比较两个实数的大小关系; (2)不等式的性质及其应用; (3)理解不等式和的意义,应用这些不等式解决简单问题; (4)运用基本不等式求最值。 难点:不等式的性质及其应用;运用基本不等式求最值。 四. 知识分析 (一)不等关系与不等式 1. 用数学符号“≠”、“>”、“<”、“≥”、“≤”连接两个数或代数式,以表示它们之间的不等关系,含有这些不等号的式子叫做不等式。 2. 数轴上的任意两点中,右边点对应的实数比左边点对应的实数大。 3. 对于任意两个实数a和b,在三种关系中有且只有一种关系成立。 4. 这组关系告诉我们比较两个实数的大小,可以通过判断它们的差的符号来确定。

5. 若a、b∈R+,则这组关系告诉我们比较两个正实数的大小,可以通过 判断它们的商与“1”的大小关系来确定。 (二)不等式的性质 不等式的性质是证明不等式和解不等式的基础,证明这些性质必须是严格的,不能盲目地乱用。保证每一步推理都有理论根据,否则可能导致推理错误。 1. 等式两边同乘以同一个数仍为等式,但不等式两边同乘以同一个数a(或代数式),结果有三种: (1)当a>0时,得同向不等式。 (2)当a=0时,得等式。 (3)当a<0时,得异向不等式。 2. 不等式性质,有同向不等式相加,得同向不等式,并无相减。若 或.这个结论常用,不妨记为:“大数减小数大于小数减大数。” 3. 不等式性质,有均为正数的同向不等式相乘,得同向不等式,并无相除。若 ,这个结论也常用。不妨记为:“大正数除以小正数大于小正数除以大正数。” 4. 不等式性质有.不能忽略a、b均为正数这个条件,即由是不一定成立的。 5. 由成立。但不一定成立。反过来也不一定成立。事实上。

高中数学第三章不等式3.1不等关系不等式的性质及其应用素材北师大版必修

不等式的性质及其应用 不等式的性质是证明不等式和解不等式的理论依据,不等式性质的应用也是历年高考的重点。因此掌握不等式的性质及其应用是非常必要的,本文就不等式的性质及其应用加以探讨。 一、不等式最基本的性质 对称性:a b b a >?< 传递性:,a b b c a c >>?> 加法性: ,a b c R a c b c >∈?+>+ 乘法性: 00 a b ac bd c d >≥??>? >≥? 除法性: 110a b ab a b >??? 乘方性: 0()n n a b a b n N *>≥?>∈ 开方性: 0)a b n N *>≥>∈ 倒数法则:011ab a b a b >??? 二、不等式性质的应用 (1)比较实数的大小 因为“0a b a b ->?>;0a b a b -=?=;0a b a b -≠且的大小 分析:对于1(1)log a a +和(1)log a a +这两个对数,由于式中含有参数a ,故我们不能直接确定它 们之间的大小关系,于是可用上面的不等式的最基本的性质,让它们作差从而比较大小。 解:∵1 111(1)(1)1log log log log 10a a a a a a a a a ++++-===-<,∴1(1)(1)log log a a a a ++< 点评:通过让两个式子作差,并经过恒等变形,从而确定了两式差的符号,即确定了两式的大小。 例2、(2006年上海卷)如果0,0a b <>,那么,下列不等式中正确的是( ) A. 11a b < 22a b < D.||||a b > 解:对于A :如果0,0a b <>,那么110,0a b <>,由不等式的传递性知 11a b <,故选A 点评:在运用不等式性质时,不要忽略性质成立的条件 (2)求范围 利用几个不等式的范围来确定某个不等式的范围是一类常见的综合问题,求解步骤:先建立待求范围的整体与已知范围的整体的等量关系,然后通过“一次性不等关系的运算,求得待求的范围”。 例2、若二次函数)(x f 图像关于y 轴对称,且2)1(1≤≤f ,4)2(3≤≤f ,求)3(f 的范围。

一元一次不等式的解法(教师版).doc

初二下册第二章一元一次不等式及不等式组 一元一次不等式的解法(基础)知识讲解 【学习目标】 1.理解并掌握一元一次不等式的概念及性质; 2.能够熟练解一元一次不等式; 3.掌握不等式解集的概念并会在数轴上表示解集. 【要点梳理】 要点一、一元一次不等式的概念 只含有一个未知数,未知数的次数是一次的不等式,叫做一元一次不等式,例如, 2 x50 是一个一元一次不等式. 3 要点诠释: (1)一元一次不等式满足的条件:①左右两边都是整式( 单项式或多项式 ) ; ②只含有一个未知数; ③未知数的最高次数为 1. (2)一元一次不等式与一元一次方程既有区别又有联系: 相同点:二者都是只含有一个未知数,未知数的次数都是1,“左边”和“右边”都是整式. 不同点:一元一次不等式表示不等关系,由不等号“<” 、“≤”、“≥”或“>”连接,不等 号有方向;一元一次方程表示相等关系,由等号“=”连接,等号没有方向.要点二、一元一次不 等式的解法 1.解不等式:求不等式解的过程叫做解不等式. 2.一元一次不等式的解法: 与一元一次方程的解法类似,其根据是不等式的基本性质,将不等式逐步化为:x a (或 x a )的形式,解一元一次不等式的一般步骤为:(1) 去分母; (2) 去括号; (3) 移项; (4) 化为ax b(或ax b)的形式(其中a 0); (5) 两边同除以未知数的系数,得到不等式的 解集 . 要点诠释: (1)在解一元一次不等式时,每个步骤并不一定都要用到,可根据具体问题灵活运用. (2)解不等式应注意: ①去分母时,每一项都要乘同一个数,尤其不要漏乘常数项; ②移项时不要忘记变号; ③去括号时,若括号前面是负号,括号里的每一项都要变号; ④在不等式两边都乘以( 或除以 ) 同一个负数时,不等号的方向要改变. 要点三、不等式的解及解集 1.不等式的解: 能使不等式成立的未知数的值,叫做不等式的解. 2.不等式的解集: 对于一个含有未知数的不等式,它的所有解组成这个不等式的解集. 要点诠释: 不等式的解是具体的未知数的值,不是一个范围 不等式的解集是一个集合,是一个范围.其含义:

不等式性质的应用

不等式性质的应用 学习目标:1、了解不等式的基本性质,并可以利用不等式的性质解决问题; 2、通过不等式性质的应用,进一步加深对不等式性质的理解; 3、在应用不等式的基本性质证明简单问题的过程中,培养思维的逻辑性和严谨性,进而 培养学生的逻辑能力. 学习重点:不等式性质的应用. 学习任务: 题型一 利用不等式性质求变量的取值范围. 1、已知),(),,(ππβπα2 2 0∈∈,求 (1) βα+;(2) βα-2 的取值范围. 2、已知31≤≤<-b a ,求b 2-a 的取值范围. 3、已知3286<<<<-b a , ,求b a 的取值范围. 题型二 利用不等式性质判断命题的真假. 1、给出下列命题:(1);,则若c b c a b a >> (2);,则若b a bc ac << (3) ;,则若22bc ac b a >>(4) ;,则若b a bc ac >>2 2 其中正确的命题是_______________. 2、给出下列命题:(1);,则若33 b a b a >> (2);,则若2 2b a b a >> (3) ;,则若2 20b a b a ><<(4) ;,则若22||b a b a >> (5) ;,则若22||b a b a >> 其中正确的命题是_______________. 3、下列说法正确的是_______________. (1) ;,则若b a b a 1 1<> (2);,则若b a b a 110<<< (3) ;,则若b a b a 110<>> (4) ;,则若b a b a 1 10<>> (5);,则若b a a b 110<>> (6);,则且若0,1 1<>>>b b a b a b a 附加题:1、已知.,0,,,ad bc b d a c a b R d c b a >-<->∈证明, 且 2、证明:.0b c b a c a b a c ->->>>,则 若 不等式性质的应用 学习目标:1、了解不等式的基本性质,并可以利用不等式的性质解决问题; 2、通过不等式性质的应用,进一步加深对不等式性质的理解; 3、在应用不等式的基本性质证明简单问题的过程中,培养思维的逻辑性和严谨性,进而 培养学生的逻辑能力. 学习重点:不等式性质的应用. 学习任务: 题型一 利用不等式性质求变量的取值范围. 1、已知),(),,(ππ βπα2 2 0∈∈,求 (1) βα+;(2) βα-2 的取值范围. 2、已知31≤≤<-b a ,求b 2-a 的取值范围. 3、已知3286<<<<-b a , ,求b a 的取值范围. 题型二 利用不等式性质判断命题的真假. 1、给出下列命题:(1);,则若c b c a b a >> (2);,则若b a bc ac << (3) ;,则若22bc ac b a >>(4) ;,则若b a bc ac >>2 2 其中正确的命题是_______________. 2、给出下列命题:(1);,则若33 b a b a >> (2);,则若2 2b a b a >> (3) ;,则若2 20b a b a ><<(4) ;,则若22||b a b a >> (5) ;,则若22||b a b a >> 其中正确的命题是_______________. 3、下列说法正确的是_______________. (1) ;,则若b a b a 1 1<> (2);,则若b a b a 110<<< (3) ;,则若b a b a 110<>> (4) ;,则若b a b a 1 10<>> (5);,则若b a a b 110<>> (6);,则且若0,1 1<>>>b b a b a b a 附加题:1、已知.,0,,,ad bc b d a c a b R d c b a >-<->∈证明, 且 2、证明:.0b c b a c a b a c ->->>>,则 若

高中数学专题讲义-不等式性质的应用 比较大小

【例1】 若0a b <<,1a b +=,则在下列四个选项中,较大的是( ) A .1 2 B .22a b + C .2ab D .b 【例2】 将23 2,12 23?? ??? ,1 22按从大到小的顺序排列应该是 . 【例3】 若52x =-,23x =-,则,x y 满足( ) A .x y > B .x y ≥ C .x y < D .x y = 【例4】 若 11 0a b <<,则下列不等式中, ①a b ab +< ②||||a b > ③a b < ④ 2b a a b +> 正确的不等式有____ .(写出所有正确不等式的序号) 典例分析 比较大小

【例5】已知,a b∈R,那么“|| a b >”是“22 a b >”的() A.充分非必要条件B.必要非充分条件 C.充分必要条件D.既非充分又非必要条件【例6】若0 b a <<,则下列不等式中正确的是() A.11 a b >B.a b >C.2 b a a b +>D.a b ab +> 【例7】比较下列代数式的大小: ⑴23 x x +与2 x-; ⑵61 x+与42 x x +; 【例8】比较下列代数式的大小: ⑴43 x x y -与34 xy y -; ⑵(其中0 xy>,且x y >) ⑶x y x y与y x x y(其中0,0, x y x y >>≠).

【例9】 a 、b 、c 、d 均为正实数,且a b >,将 b a 、a b 、b c a c ++与a d b d ++按从小到大的顺序进行排列. 【例10】 比较大小:log a a b 、log a b 与log b a (其中21a b a >>>) 【例11】 已知a 、b 、c 、d 均为实数,且0ab >,c d a b - <-, 则下列各式恒成立的是( ) A .bc ad < B .bc ad > C .a b c d > D .a b c d < 【例12】 当a b c >>时,下列不等式恒成立的是( ) A .ab ac > B .a c b c > C .ab bc > D .()0a b c b --> 【例13】 已知三个不等式:0ab >,0bc ad ->, 0c d a b ->(其中a 、b 、c 、d 均为实数).用其中两个不等式作为条件,余下的一个不等式作为结论组成一个命题,可组成的正确命题的个数是( ) A .0 B .1 C .2 D .3

不等式的基本性质及解法

教学过程 一、新课导入 初中,我们学习了一元一次不等式(组);已经掌握了不等式(组)的基本性质及解法.从本节开始,我们将在过去已有知识的基础上进一步明确不等式的有关概念,学习其他几种不等式的解法.

二、复习预习 1.不等式的定义. 2.不等式的基本性质. 3.不等式的基本定理及推论. 4.一元二次不等式解法. 5.分式不等式解法. 6.高次不等式解法. 7.无理不等式解法. 8.指对数不等式解法.

三、知识讲解 考点1 不等式的定义及比较大小 1. 不等式的定义:用不等号连接两个解析式所得的式子,叫做不等式. 说明:(1)不等号的种类:>、<、≥(≦)、≤(≧)、≠. (2)解析式是指:代数式和超越式(包括指数式、对数式和三角式等) (3)不等式研究的范围是实数集R. 2.判断两个实数大小的充要条件 对于任意两个实数a、b,在a>b,a= b,a<b三种关系中有且仅有一种成立.判断两个实数大小的充要条件是:a >b b a ? > - b a =b a ? = - a b

考点2 不等式的基本性质 定理1如果a>b ,那么bb .(对称性) 即:a>b ?bb 定理2如果a>b ,且b>c ,那么a>c .(传递性) 即a>b ,b>c ?a>c 定理3如果a>b ,那么a+c>b+c . 即a>b ?a+c>b+c 推论如果a>b ,且c>d ,那么a+c>b+d .(相加法则) 即a>b , c>d ?a+c>b+d . 定理4如果a>b ,且c>0,那么ac>bc ; 如果a>b ,且c<0,那么acb >0,且c>d>0,那么ac>bd .(相乘法则) 推论2 若0,(1)n n a b a b n N n >>>∈>则且 定理5 若0,1)a b n N n >>>∈>且

人教版高中数学高二人教A版必修5练习 不等式的性质与应用

第三章 不等式 3.1 不等关系与不等式 第2课时不等式的性质与应用 A 级 基础巩固 一、选择题 1.若a >0,b >0,则不等式-b <1 x <a 等价于( ) A .-1 b <x <0或0<x <1a B .-1a <x <1 b C .x <-1a 或x >1 b D .x <-1b 或x >1 a 解析:由题意知a >0,b >0,x ≠0, (1)当x >0时,-b <1x <a ?x >1a ; (2)当x <0时,-b <1x <a ?x <-1 b . 综上所述,不等式-b <1 x <a ?x <-1 b 或x >1 a . 答案:D 2.设0<b <a <1,则下列不等式成立的是( ) A .ab <b 2<1 B .log 12b <log 12 a <0

C.2b<2a<2 D.a2<ab<1 答案:C 3.已知实数x,y,满足-4≤x-y≤-1,-1≤4x-y≤5,则9x-y的取值范围是() A.[-7,26] B.[-1,20] C.[4,15] D.[1,15] 答案:B 4.已知a<b<0,那么下列不等式成立的是() A.a3<b3B.a2<b2 C.(-a)3<(-b)3D.(-a)2<(-b)2 解析:取a=-2.b=-1.验证知B,C,D均错,故选A. 答案:A 5.如下图所示,y=f(x)反映了某公司的销售收入y与销量x之间的函数关系,y=g(x)反映了该公司产品的销售成本与销售量之间的函数关系,当销量x满足下列哪个条件时,该公司盈利() A.x>a B.x<a C.x≥a D.0≤x≤a 解析:当x<a时,f(x)<g(x);当x=a时,f(x)=g(x);当x>a 时,f(x)>g(x),故选A. 答案:A 二、填空题

高中数学知识点:不等式的性质及解法

不等式的性质及解法 知识要点: 不等式与等式有许多不同,主要包括: 1、等式两边同乘(或除)以一个数(或式),等式仍然成立;不等式两边同乘(或除)以一个数(或式),不等式能否成立,要考虑该数(式)的符号, 即a b ac bc c ac bc c ac bc c >?>>>=<?->?< 这个性质等式中也存在,即a b b a =?=, 对称性说明了每一个已知的不等式都有两种形式,如:a b ab a b R +≥∈2(,) 这个基本不等式本身就有a b ab 222+≥及222ab a b ≤+两种形式,要能灵活运用。当然若进行等价转化还会有许多变式。 (2) 传递性 a b b c a c >>?>, 这个性质是媒介法比较两个实数大小的依据,是放缩法证明不等式的依据。 (3) 移项法则 a b a c b c >?+>+ 如:x x +>?>-321,相当于在x +>32这个不等式两边同时加上-3得到的。 3、运算性质: (1)加法运算:a b c d a c b d >>?+>+, (2)减法运算:统一成加法运算 a b c d a b d c a d b c >>?>->-?->-,, (3)乘法运算:a b o c d ac bd >>>>?>>,00 (4)除法运算:统一成乘法运算 a b c d a b d c a d b c >>>>?>>>>?>>0001100,, (由y x =1在(0,+∞)上是减函数,c d d c >>?>>011 0) (5)乘方运算:a b a b n N n n n >>?>∈≥02(,) (6)开方运算:a b a b n N n n n >>?>∈≥02(,)

7.1不等式及其基本性质(1)

课题:第7章一元一次不等式与不等式组 7.1 不等式及其基本性质 主备人:王刚喜审核人:杨明使用时间:2011年2月日 年级班姓名: 学习目标: 1.通过实际问题中的数量关系的分析,体会到现实世界中有各种各样的数量关系的存在,不等关系是其中的一种; 2.了解不等式及其概念;会用不等式表示数量之间的不等关系; 3.掌握不等式的基本性质,并能利用不等式的基本性质对不等式进行变形;学习重点: 不等式的概念和不等式的性质 学习难点: 不等式的性质3以及正确分析实际问题中的不等关系并用不等式表示。 一、学前准备 (一)自学提纲 1.认真看书24-26页内容 2.举出生活中一个不等量关系的例子。 3.填空: (1)不等式:;(2)不等式的基本性质: ① ② ③ ④ ⑤

(二)自学检测 1.用不等式表示下列关系 ①亮亮的年龄(记为x)不到14岁。_________ ____ ②七年级(1)班的男生数(记为y)不超过30人。_______ ③某饮料中果汁的含量(记为x)不低于20%.________ 2.试一试选择适当的不等号填空: (1) 2____3 (2) - 2 ____-3 (3)2a ____ 0 (4) a2+b2 ____ 0 (5) 若x≠y,则 -x____-y 二、探究活动 (一)探究性质1 1.明确定义 2.不等式的意义:表示生活中量与量之间不等关系的式子。 例题:1.“神七”速度v超过11200米/秒,才能脱离地球引力,飞入太空,怎样表示v和11200之间的关系? 3.想一想:(1)如果a<b,用不等号连接下列各式的两边. ① a + 2 b + 2 ② a – 5 b – 5 (2)如果2x-8≥3 ,那么2x 11. 4.小结:不等式性质1: 即 (二)探究性质2和性质3 1.用不等号填空: ①已知5<8,则5×3 8×3;5×(-3) 8×(-3) ②已知 -5>-8,则-5×3 -8×3;-5×(-3) -8×(-3) 归纳:不等式两边同时乘以一个正数,不等号方向; 不等式两边同时乘以一个负数,不等号方向。 2.用不等号填空:

高考数学-不等式的性质及其解法

不等式的性质及其解法 第一部分:基础回顾 一、不等式的主要性质: (1)对称性:a b b a (2)传递性:c a c b b a >?>>, (3)加法法则:c b c a b a +>+?>; d b c a d c b a +>+?>>, (4)乘法法则:bc ac c b a >?>>0,;bc ac c b a 0,;bd ac d c b a >?>>>>0,0 (5)倒数法则:b a a b b a 110,> (6)乘方法则:)1*(0>∈>?>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>?>>n N n b a b a n n 且 二、一元二次不等式02>++c bx ax 和)0(02≠<++a c bx ax 及其解法 0>? 0=? 0a )的图象 ) )((212x x x x a c bx ax y --=++= ) )((212x x x x a c bx ax y --=++= c bx ax y ++=2 一元二次方程 ()的根 00 2>=++a c bx ax 有两相异实根 )(,2121x x x x < 有两相等实根 a b x x 221-== 无实根 的解集)0(02>>++a c bx ax {}21x x x x x ><或 ???? ??-≠a b x x 2 R 的解集 )0(02><++a c bx ax {}21x x x x << ? ? 注意:一般常用因式分解法、求根公式法求解一元二次不等式 顺口溜:在二次项系数为正的前提下:大于型取两边,小于型取中间

习题精选精讲不等式性质的应用

不等式的性质是解不等式、证明不等式的基础和依据。教材中列举了不等式的性质,由这些性质是可以继续推导出其它有关性质。教材中所列举的性质是最基本、最重要的,对此,不仅要掌握性质的内容,还要掌握性质的证明方法,理解掌握性质成立的条件,把握性质之间的关联。只有理解好,才能牢固记忆及正确运用。 1.不等式性质成立的条件 运用不等式的基本性质解答不等式问题,要注意不等式成立的条件,否则将会出现一些错误。对表达不等式性质的各不等式,要注意“箭头”是单向的还是双向的,也就是说每条性质是否具有可逆性。 例1:若0< B .a b a 11> - C .||||b a > D .22b a > 解:∵0<->-b a 。 由 b a -< -11, b a 11>,∴(A )成立。 由0<,∴(C )成立。 由0>->-b a ,22)()(b a ->-,22b a >,∴(D )成立。 ∵0<->-a b a , ) (11b a a --< -, b a a -> 11,∴(B )不成立。 故应选B 。 例2:判断下列命题是否正确,并说明理由。 (1)若0<c ,在2 2 c b c a > 两边同乘以2c ,不等式方向不变。∴b a >。 (3)错误。b a b a 1 1,成立条件是0>ab 。 (4)错误。b a >,bd ac d c >?>,当a ,b ,c ,d 均为正数时成立。 2.不等式性质在不等式等价问题中的应用 例3:下列不等式中不等价的是( ) (1)2232 >-+x x 与0432 >-+x x (2)138112++>++x x x 与82>x (3)3 573 54-+ >-+x x x 与74>x (4) 023>-+x x 与0)2)(3(>-+x x

文本预览
相关文档 最新文档