当前位置:文档之家› 史荣昌魏丰版矩阵分析第一章(1)

史荣昌魏丰版矩阵分析第一章(1)

矩阵分析

主讲教师:张艳霞

矩阵理论的应用

微分方程、概率与统计、优化、信号处理、控制

工程、经济理论等等。

工程经济理论等等

如需更深入地学习和了解在自己专业的应用,可

如需更深入地学习和了解在自己专业的应用可

参考:

《矩阵分析与应用》,张贤达著,清华大学出版社;《Matrix Analysis for Scientists & Engineers》:

Alan J. Laub,SIAM.

第章

第一章线性空间和线性变换线性空间的基本概念及其性质

线性空间的基底,维数, 坐标变换

线性空间的基底维数

线性空间的子空间,交与和

线性映射及其值域、核

线性变换及其矩阵表示

矩阵(线性变换)的特征值与特征向量矩阵的可对角化条件

第一节第节线性空间

一:线性空间的定义与例子线性间的义定义

设是一个非空的集合,是一个数域,

V F 在集合中定义两种代数运算,一种是加法运算,来表示另种是运算用来表示V 用

来表示; 另一种是数乘运算, 用来表示,

+i

并且这两种运算满足下列八条运算律:(1)加法交换律αββα

+=+(2)加法结合律

()()

αβγαβγ++=++

(3)零元素: 在中存在一个元素,使得对于

V 0任意的

都有

V α∈0αα

+=(4)负元素: 对于中的任意元素都存在一

V α个元素

使得β

αβ+=(5)i =1αα(6)()()k l kl αα=(7)()k l k l ααα+=+(8)()k k k αβαβ

+

=+为数域F 称这样的上的线性空间。

V

例1全体实函数集合构成实数域上的线性空间。R 例2

复数域上的全体型矩阵构成的集C m n ×合为上的线性空间。

m n

×

C

C 例3实数域上全体次数小于或等于的多项式

R n 集合构成实数域上的线性空间;

1[]n R x +R 实数域上全体次数等于的多项式集合不构成实数域上的线性空间;

R n R

二:线性空间的基本概念及其性质

定义:线性组合;线性表出;线性相关;线性无关;

向量组的极大线性无关组;向量组的秩

向量组的极大线性无关组向量组的秩

R

例1实数域上的函数空间中,函数组

2

x x

1,cos,cos2

是线性相关的函数组。

是线性相关的函数组

上的函数空间中函数组

R 例2

实数域上的函数空间中,函数组234x x x x

e e e e

是一组线性无关的函数.

,,,上的函数空间中函数组

例3实数域

上的函数空间中,函数组R 1cos cos2cos ???是线性无关的。

1,cos ,cos2,,cos x x nx

提示:连续求导2n 次,分别令x =0 代入得方程组。

线性空间的基底维数线性空间的基底,维数

定义上的个线性空间如果在设为数域上的一个线性空间。如果在中存在个线性无关的向量使得中的任意个向量V F 12,,,n ααα???V V n 的任意一个向量都可以由线性表出

α12,,,n ααα???则称的个1122n n

k k k αααα=++???+)为的一个基底;为向量在基底下的坐标。此时我们为个维线性空间记为12,,,n ααα???V 12(,,,T

n k k k ???α12,,,n ααα???di 称为一个维线性空间,记为n V dim .

V n =

例1

实数域上的线性空间中向量组

R 3

R (1,0,0),(1,1,0),(1,1,1)

与向量组

(0,1,1),(1,0,1),(1,1,0)

(,,),(,,),(,,)都是的基。是3维线性空间。

3

R 3

R

例2实数域上的线性空间中的向量组

R 1[]n R x +21,,,,n

x x x

???与向量组

2

1,2,(2),,(2)

n

x x x ??????都是的基底。

的维数为1[]n R x + 1.n +1[]n R x +

注意:通过上面的例子可以看出线性空间的基底并不唯一,但是维数是唯一确定的。利用维数的定义线性空间可以分为有限维线性空间和无限维线性空间。目前,我们主要讨论有限维的线性空间。例3在4维线性空间中,向量组

22

R

×1011?????

0111,,,11110110???????????????????

与向量组

011????11111,,,0????

????????0001011????????

2??

是其两组基,求向量在这两组基下

134A =??

的坐标。??

设向量

在第组基下的坐标为A 解:设向量在第一组基下的坐标为

T

1234(,,,),

x x x x 于是可得

基变换与坐标变换??????设

(旧的)与(新的)

是维线性空间的两组基底,它们之间的关系为

12,,,n ααα12,,,n βββn V a a a ααα=+++ 11221i i i ni n

i a β??21,2,i

a i n

ααα????== []12,,,,,,,n ???? ni a ??

将上式矩阵化可以得到下面的关系式

11121n a a a ??

? 21222n a a a ααα=??????

[][]1212,,,,,n n βββ??

??

1

2n n nn a a a ??

a a a ?? n 1112

121222n n a a a ?

???

= 称阶方阵P ??

??

1

2n n nn a a a ??

是由旧的基底到新的基底的过渡矩阵,那么上式可以写成

?1212

,,,,,n n P βββααα=?????????? 定理:过渡矩阵是可逆的。

P ,设在两组基下的坐标分别为V ∈任取设在两下的标分别为

ζζ与

,那么我们

[,,,T

x x x [,,,T

y y y 有:

]

12n ]

12n

11x y ????22x y P ????????=? x ??????? n n y ????

称上式为坐标变换公式。例 1 在4维线性空间中,向量组

22

R

×?120110,,1111εε???

==?

???????1111????==34,,0110εε?

???????

矩阵分析 - 北京理工大学研究生院

课程名称:矩阵分析 一、课程编码:1700002 课内学时: 32 学分: 2 二、适用学科专业:计算机、通信、软件、宇航、光电、生命科学等工科研究生专业 三、先修课程:线性代数,高等数学 四、教学目标 通过本课程的学习,要使学生掌握线性空间、线性变换、Jordan标准形,及各种矩阵分解如QR分解、奇异值分解等,正规矩阵的结构、向量范数和矩阵范数、矩阵函数,广义逆矩阵、Kronecker积等概念和理论方法,提升研究生的数学基础,更好地掌握矩阵理论,在今后的专业研究或工作领域中熟练应用相关的矩阵分析技巧与方法,让科研结果有严格的数学理论依据。 五、教学方式 教师授课 六、主要内容及学时分配 1、线性空间和线性变换(5学时) 1.1线性空间的概念、基、维数、基变换与坐标变换 1.2子空间、线性变换 1.3线性变换的矩阵、特征值与特征向量、矩阵的可对角化条件 2、λ-矩阵与矩阵的Jordan标准形(4学时) 2.1 λ-矩阵及Smith标准形 2.2 初等因子与相似条件 2.3 Jordan标准形及应用; 3、内积空间、正规矩阵、Hermite 矩阵(6学时) 3.1 欧式空间、酉空间 3.2标准正交基、Schmidt方法 3.3酉变换、正交变换 3.4幂等矩阵、正交投影 3.5正规矩阵、Schur 引理 3.6 Hermite 矩阵、Hermite 二次齐式 3.7.正定二次齐式、正定Hermite 矩阵 3.8 Hermite 矩阵偶在复相合下的标准形

4、矩阵分解(4学时) 4.1矩阵的满秩分解 4.2矩阵的正交三角分解(UR、QR分解) 4.3矩阵的奇异值分解 4.4矩阵的极分解 4.5矩阵的谱分解 5、范数、序列、级数(4学时) 5.1向量范数 5.2矩阵范数 5.3诱导范数(算子范数) 5.4矩阵序列与极限 5.5矩阵幂级数 6、矩阵函数(4学时) 6.1矩阵多项式、最小多项式 6.2矩阵函数及其Jordan表示 6.3矩阵函数的多项式表示 6.4矩阵函数的幂级数表示 6.5矩阵指数函数与矩阵三角函数 7、函数矩阵与矩阵微分方程(2学时) 7.1 函数矩阵对纯量的导数与积分 7.2 函数向量的线性相关性 7.3 矩阵微分方程 (t) ()() dX A t X t dt = 7.4 线性向量微分方程 (t) ()()() dx A t x t f t dt =+ 8、矩阵的广义逆(3学时) 8.1 广义逆矩阵 8.2 伪逆矩阵 8.3 广义逆与线性方程组 课时分配说明:第一章的课时根据学生的数学基础情况可以调整,最多5学时,如学生线

矩阵分析第3章习题答案

第三章 1、 已知()ij A a =是n 阶正定Hermite 矩阵,在n 维线性空间n C 中向量 1212(,,,),(,, ,)n n x x x y y y αβ==定义内积为(,)H A αβαβ= (1) 证明在上述定义下,n C 是酉空间; (2) 写出n C 中的Canchy-Schwarz 不等式。 2、 已知2111311101A --?? =? ? -?? ,求()N A 的标准正交基。 提示:即求方程0AX =的基础解系再正交化单位化。 3、 已知 308126(1)316,(2)103205114A A --?? ?? ????=-=-?? ?? ????----?? ?? 试求酉矩阵U ,使得H U AU 是上三角矩阵。 提示:参见教材上的例子 4、 试证:在n C 上的任何一个正交投影矩阵P 是半正定的Hermite 矩阵。 5、 验证下列矩阵是正规矩阵,并求酉矩阵U ,使H U AU 为对角矩阵,已知 1 31(1)612A ????? =????????? ? 01(2)10000i A i -????=??????,434621(3)44326962260i i i A i i i i i +--????=----? ???+--?? 11(4)11A -?? =?? ?? 6、 试求正交矩阵Q ,使T Q AQ 为对角矩阵,已知

220(1)212020A -????=--????-?? ,11011110(2)01111011A -?? ??-? ?=?? -??-?? 7、 试求矩阵P ,使H P AP E =(或T P AP E =),已知 11(1)01112i i A i i +????=-????-??,222(2)254245A -?? ??=-?? ??--?? 8、 设n 阶酉矩阵U 的特征根不等于1-,试证:矩阵E U +满秩,且1 ()() H i E U E U -=-+是Hermite 矩阵。反之,若H 是Hermite 矩阵,则E iH +满秩,且1 ()()U E iH E iH -=+-是酉矩阵。 证明:若||0+=E U ,观察0-=E U λ知1-为U 的特征值,矛盾,所以矩阵E U +满 秩。()()1 1()()()--=-+=-+-H H H H H i E U E U i E U E U ,要H H H =,只要 ()()1 1()()()()()()---+-=-+?--+=+-?-=-H H H H H H i E U E U i E U E U E U E U E U E U U U U U 故H H H = 由()0+=--=E iH i iE H 知i 为H 的特征值。由Hermite 矩阵只能有实数特征值可得 0+≠E iH ,即E iH +满秩。 111111()()()()()()()()()()()()------=+-+-=+-+-=++--=H H H U U E iH E iH E iH E iH E iH E iH E iH E iH E iH E iH E iH E iH E 9、 若,S T 分别是实对称和实反对称矩阵,且det()0E T iS --≠,试证: 1()()E T iS E T iS -++--是酉矩阵。 证明: 1111 [()()]()()()()()()----++--++--=++--++--H E T iS E T iS E T iS E T iS E T iS E T iS E T iS E T iS 11()()()()--=++++----=E T iS E T iS E T iS E T iS E

《矩阵分析》(第3版)史荣昌,魏丰.第一章课后知识题目解析

第1章 线性空间和线性变换(详解) 1-1 证:用ii E 表示n 阶矩阵中除第i 行,第i 列的元素为1外,其余元素全为0的矩阵.用 ij E (,1,2, ,1)i j i n <=-表示n 阶矩阵中除第i 行,第j 列元素与第j 行第i 列元素 为1外,其余元素全为0的矩阵. 显然,ii E ,ij E 都是对称矩阵,ii E 有(1) 2 n n -个.不难证明ii E ,ij E 是线性无关的,且任何一个对称矩阵都可用这n+(1)2n n -=(1) 2 n n +个矩阵线性表示,此即对称矩阵组成 (1) 2 n n +维线性空间. 同样可证所有n 阶反对称矩阵组成的线性空间的维数为(1) 2 n n -. 评注:欲证一个集合在加法与数乘两种运算下是一个(1) 2 n n +维线性空间,只需找出 (1)2n n +个向量线性无关,并且集合中任何一个向量都可以用这(1) 2 n n +个向量线性表示即可. 1-2解: 11223344x x x x ααααα=+++令 解出1234,,,x x x x 即可. 1-3 解:方法一 设11223344x x x x =+++A E E E E 即 123412111111100311100000x x x x ??????????=+++???????????????????? 故 1234 1231211203x x x x x x x x x x +++++?? ??=??? ?+???? 于是 12341231,2x x x x x x x +++=++=

1210,3x x x +== 解之得 12343,3,2,1x x x x ==-==- 即A 在1234,,,E E E E 下的坐标为(3,3,2,1)T --. 方法二 应用同构的概念,22R ?是一个四维空间,并且可将矩阵A 看做(1,2,0,3)T , 1234,,,E E E E 可看做(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)T T T T .于是有 111111 000 31110201003110000 01021000300011???? ????-??? ?→???? ??? ? -???? 因此A 在1234,,,E E E E 下的坐标为(3,3,2,1)T --. 1-4 解:证:设112233440k k k k αααα+++= 即 12341234123134 12411111110110110110 k k k k k k k k k k k k k k k k k ????????+++???????????????? +++++??==??++++?? 于是 12341230,0k k k k k k k +++=++= 1341240,0k k k k k k ++=++= 解之得 12340k k k k ==== 故1234,,,αααα线性无关. 设

矩阵分析在汉明码中的应用

矩阵分析在汉明码中的应用 摘要:数字信号在传输过程中,由于受到干扰的影响,码元波形将变坏。接收端收到后可能发生错误判决。由于乘性干扰引起的码间串扰,可以采用均衡的办法来纠正。而加性干扰的影响则需要用其他办法解决。在设计数字通信系统时,应该首先从合理选择调制制度,解调方法以及发送功率等方面考虑,使加性干扰不足以影响到误码率要求。在仍不能满足要求时,就要考虑采用差错控制措施了,本文在基于矩阵分析的基础上对汉明编码进行介绍,效率高,提高抗突发干扰的能力。 关键词:矩阵分析汉明码 引言 矩阵如今在各个领域都有广泛的应用,例如在生活中,在经济中,在通信领域,数字图像领域中等各个方面应用很广泛。在生活中的魔方也是根据矩阵分析,在excel表格中,我们可以根据矩阵很简单的计算出各行各列的和,在数字图像处理中,我们将图像用矩阵表示,像素来表示,一个像素代表一点,有很多像素组成一幅数字图像,再对矩阵进行各种变换从而实现数字图像处理,在通信领域中我们也经常用到矩阵,例如编码,我们下面将对矩阵分析在汉明编码中的应用进行具体分析 1.汉明码编码 Hamming码中文称作汉明码。汉明码是由汉明于1950年提出的,具有纠正一位错误能力的线性分组码它的突出特点是:编译码电路简单,易于硬件实现;用软件实现编译码算法时,软件效率高;而且性能比较好. 1.1 汉明码的定义: 若一致监督矩阵H 的列是由不全为0且互不相同的所有二进制m(m≥2的正整数)重组成,则由此H矩阵得到的线性分组码称为[2m-1,2m-1-m,3]汉明码。1.2 汉明码的构造特点: 1).绐定一个m,我们由二进制m 重组成线性分组码的监督矩阵H,由二进制m重来标定一个发生错误的位置。由此可知,二进制m 重共有2 种位组合,去掉一个全为0的位组合,则余下共有2m-1种位组合。故汉明码的最大码长n=2m-1。

矩阵分析结课论文

矩阵分析结课论文 《矩阵分析的应用与学习心得》 姓名:雷仁鹏 学号:2120120053 学院:宇航学院

矩阵分析的应用 摘要:本文主要通简单的实例,进行浅显地说明矩阵在求解方程过程中的应用:第一,通过矩阵进行相容方程的求解;第二,通过矩阵进行不相容方程的求解;其中,在不相容方程的求解过程中,会涉及到广义逆矩阵、伪逆矩阵以及矩阵的满秩分解。在具有实际物理背景下的有关方程组能够通过矩阵的理论知识,得到、高效地求解。 关键字:矩阵方程求解相容方程 不相容方程 最小二乘解 满秩分解 一、 矩阵在相容方程求解中的应用 已知n 元线性方程组如下表示: 11112211 21122222 1122...............n n n n n n nn n n a x a x a x b a x a x a x b a x a x a x b +++=??+++=?? ??+++=? 其矩阵的表达形式如下: 111112********* 2 n n n n nn n n x b a a a a a a x b a a a x b ???? ???????????? ??=?????????? ???????? 矩阵A 可记为 1112121 2221 2 n n n n nn a a a a a a A a a a ?????? =???? ?? 如果矩阵A 满秩,且非矛盾方程,则可以通过消元法计算出每个未知量。见如下示例: 例1设桥式电路中闭合回路的电流分别为 3 21I I I 、、,如图2所示:

图2 已知14 ,1,2,1,1,254321======E R R R R R ,计算流过中央支路AB 的电 流AB I . 解:由基尔霍夫第二定律(电压定律)得如下方程组: ??? ??=-+-=-+-+=-+-+E I I R I I R I I R I I R I R I I R I I R I R )()(0)()(0)()(2341321253242331221511 即 ??? ??=+--=-+-=--14 3202404321 321321I I I I I I I I I 同样计算如下几个行列式 2132124 1 114=------=A 84321424 110 1=----=D 1263 14120 1 1042=----=D 210 14 2104 1 014 3=----=D 所以 10,6,4332211====== A D I A D I A D I 从而,流过中央支路AB 的电流为221-=-=I I I AB . 即电流是从B 流向A 的.

《矩阵分析》(第3版)史荣昌,魏丰.第一章课后习题答案讲课讲稿

《矩阵分析》(第3版)史荣昌,魏丰.第一章课后习题答案

第1章 线性空间和线性变换(详解) 1-1 证:用ii E 表示n 阶矩阵中除第i 行,第i 列的元素为1外,其余元素全为0 的矩阵.用ij E (,1,2,,1)i j i n <=-L 表示n 阶矩阵中除第i 行,第j 列元素与第j 行第i 列元素为1外,其余元素全为0的矩阵. 显然,ii E ,ij E 都是对称矩阵,ii E 有(1) 2 n n -个.不难证明ii E ,ij E 是线性无关的,且任何一个对称矩阵都可用这n+(1)2n n -=(1) 2 n n +个矩阵线性表示,此 即对称矩阵组成(1) 2 n n +维线性空间. 同样可证所有n 阶反对称矩阵组成的线性空间的维数为(1) 2 n n -. 评注:欲证一个集合在加法与数乘两种运算下是一个(1) 2 n n +维线性空间, 只需找出(1) 2 n n +个向量线性无关,并且集合中任何一个向量都可以用这 (1) 2n n +个向量线性表示即可. 1-2解: 11223344x x x x ααααα=+++令 解出1234,,,x x x x 即可. 1-3 解:方法一 设11223344x x x x =+++A E E E E 即 123412111111100311100000x x x x ??????????=+++???????????????????? 故 12341231211203x x x x x x x x x x +++++?? ??=????+???? 于是 12341231,2x x x x x x x +++=++= 1210,3x x x +==

开题报告-线性变换的几何意义研究.doc

一、综述本课题的研究动态,说明选题的依据和意义 矩阵是数学中的一个重要的基本概念,英国数学家凯莱首先把矩阵作为一个独立的数学概念提出来,1855年,他发表了一篇论文《矩阵论的研究报告》系统地阐述了关于矩阵的理论。1858年,艾米特证明了别的数学家发现的一些矩阵类的特征根的特殊性质。在矩阵论的发展史上,弗罗伯纽斯讨论了正交矩阵、矩阵的相似变换等概念。矩阵经过两个多世纪的发展,矩阵及其理论已广泛的应用到现在科技的各个领域。 线性代数是研究线性空间和线性变换的一门学科。线性空间到自身的映射称为空间上的变换,如果此变换保线性运算称为线性变换。线性变换可以通过儿何现象直观化,几何现象也可以通过线性变换理论化,几何的直观有助于对数学理论、相关内容的理解。 本课题通过研究线性变换所表示的几何形象,探讨具体的线性变换如正交投影变换、反射变换等以及对应矩阵的几何现象,探讨与线性变换相关的如特征值、特征向量等等内容的几何意义。 二、本课题研究的基本内容,拟解决的主要问题和难点问题 基本内容:本课题介绍有关于线性变换的基本概念、基本定理;研究具体的线性变换如投影变换、反射变换、切变变换及其性质;说明线性变换的特征值、特征向量, 线性变换的可对角化等几何意义。 主要问题:线性变换的概念介绍及各种变换的性质和几何意义的研究。 难点问题:各种线性变换的有关的概念的图形表示,线性变换可对角化矩阵的几何意义及其求解过程的研究。 三、研究步骤、方法及措施: 1、根据任务书的要求查阅参考书及参考文献,完成开题报告; 2、深入阅读相关文献,理解线性变换的基本概念、基本定理; 3、理解具体的线性变换如投影变换、反射变换及线性变换的特征值、特征向

矩阵分析课后习题解答版

第一章 线性空间与线性变换 (以下题目序号与课后习题序号不一定对应,但题目顺序是一致的,答案为个人整理,不一定正确,仅供参考,另外,此答案未经允许不得擅自上传) (此处注意线性变换的核空间与矩阵核空间的区别) 1.9.利用子空间定义,)(A R 是m C 的非空子集,即验证)(A R 对m C 满足加法和数乘的封闭性。 1.10.证明同1.9。 1.11.rankA n A N rankA A R -==)(dim ,)(dim (解空间的维数) 1.13.提示:设),)(- ?==n j i a A n n ij (,分别令T i X X ),0,0,1,0,0(K K ==(其中1位于i X 的第i 行),代入0=AX X T ,得0=ii a ;令T ij X X )0,0,10,0,1,0,0(K K K ==(其中1位于ij X 的第i 行和第j 行) ,代入0=AX X T ,得0=+++jj ji ij ii a a a a ,由于0==jj ii a a ,则0=+ji ij a a ,故 A A T -=,即A 为反对称阵。若X 是n 维复列向量,同样有0=ii a , 0=+ji ij a a , 再令T ij i X X ),0,1,0,0,,0,0(K K K ='=(其中i 位于ij X 的第i 行,1位于ij X 的第j 行),代入0=AX X H ,得0)(=-++ij ji jj ii a a i a a ,由于 0==jj ii a a ,ij ji a a -=,则0==ji ij a a ,故0=A 1.14.AB 是Hermite 矩阵,则AB BA A B AB H H H ===)( 1.15.存在性:令2 ,2H H A A C A A B -=+=,C B A +=,其中A 为任意复矩阵,可验证C C B B H H -==, 唯一性:假设11C B A +=,1111,C C B B H H -==,且C C B B ≠≠11,,由

矩阵分析习题

一,设311202113A -?? ?=- ? ?--?? (1)求矩阵e At . (2)求()At d e dt . 二,(15分)设矩阵1001200-1A ??????=?????? , (1)求矩阵A 的奇异值。 (2)求矩阵A 的奇异值分解。 三、证明对任何方阵A 和B ,有 A B A B B A e =e e =e e ⊕??,其中A B=A I+I B ⊕??。 四、已知102011121A -?? ?= ? ?--?? (1) 写出A 的若当标准型 (2) 写出A 的最小多项式()A m λ (3)计算矩阵函数At e 五、设矩阵方程为AX XB D +=,其中111020,,02011A B D λ--??????=== ? ? ??????? (1) 当λ为何值时, 矩阵方阵有唯一解 (2) 当=1λ 时,求矩阵的解X 六、设 110021001A ?? ?= ? ??? ,求一个次数不超过3 的矩阵多项式 ()g x , 将矩阵函数 ()cos A 用矩阵多项式 ()g A 表示出来 七、对给定的矩阵5010,1253A B -????== ? ????? , 矩阵空间22 R ?上的线性变换 T 被定义为 : ()22 ,T X AX XB X R ?=+?∈ (a) 求变换 T 在空间 22 R ?的基 {}11211222,,, E E E E 下的变换矩阵P .

(b) 求矩阵P 的特征值 , 讨论P 是否可逆 八、叙述奇异值分解定理(即酉相抵标准形定理)并用其证明方阵的极分解定理: 九、设A 是n 阶不可约非负矩阵,证明:若A 恰有d 个对角元非零,则21n d A O --> . 十、证明分块上三角矩阵为酉矩阵当且仅当其为对角块均为酉矩阵的分块对角阵 十一、试证:如果A 是n 阶正规矩阵,则A 相应于不同特征值的特征向量复正交 十二、设矩阵U 是酉矩阵,()12diag ,, ,n A a a a = 证明UA 的所有特征值λ满足 不等式 {}{}min max i i i i a a λ≤≤ 十三、设A 是正定Hermite 矩阵,B 是斜Hermite 矩阵,证明A B +是可逆矩阵. 十四、证明若A 是Hermite 矩阵,则i A e 为酉矩阵 十五、设A 是正规矩阵,证明A 是酉矩阵的充要条件是A 的特征值的绝对值等于1。 十六、设,A B 均为n 阶半正定阵,证明A B 也是半正定阵. 十七、设,m m n n A C B C ??∈∈ 及m n F C ?∈ ,且,A B 无公共特征值, 证明: B O F A ?? ??? 与B O O A ?? ??? 相似 十八、设A 是n 阶复方阵,(){}12,,,n Spec A λλλ=,证明: ()(){} 1211k k i i i k Spec C A i i n λλλ=≤<<≤ 十九、陈述Perron-Frobenius 系列定理。 二十、陈述关于Hermite 方阵特征值的min-max 原理

矩阵分析第章习题答案

第三章 1、 已知()ij A a =是 n 阶正定Hermite 矩阵,在n 维线性空间n C 中向量 1212(,, ,),(,, ,)n n x x x y y y αβ==定义内积为(,)H A αβαβ= (1) 证明在上述定义下,n C 是酉空间; (2) 写出n C 中的Canchy-Schwarz 不等式。 2、 已知2111311101A --?? =? ?-?? ,求()N A 的标准正交基。 提示:即求方程0AX =的基础解系再正交化单位化。 3、 已知 308126(1)316,(2)103205114A A --?? ?? ????=-=-?? ?? ????----???? 试求酉矩阵U ,使得H U AU 是上三角矩阵。 提示:参见教材上的例子 4、 试证:在n C 上的任何一个正交投影矩阵P 是半正定的Hermite 矩阵。 5、 验证下列矩阵是正规矩阵,并求酉矩阵U ,使H U AU 为对角矩阵,已知 1 31(1)612A ????? =????????? ? 01(2)10000i A i -????=??????,434621(3)44326962260i i i A i i i i i +--????=----? ???+--?? 11(4)11A -?? =?? ?? 6、 试求正交矩阵Q ,使T Q AQ 为对角矩阵,已知

220(1)212020A -????=--????-?? ,11011110(2)01111011A -?? ??-? ?=?? -??-?? 7、 试求矩阵P ,使H P AP E =(或T P AP E =),已知 11(1)01112i i A i i +????=-????-??,222(2)254245A -?? ??=-?? ??--?? 8、 设 n 阶酉矩阵U 的特征根不等于1-,试证:矩阵E U +满秩,且 1()()H i E U E U -=-+是Hermite 矩阵。反之,若H 是Hermite 矩阵,则 E iH +满秩,且1()()U E iH E iH -=+-是酉矩阵。 证明:若||0+=E U ,观察0-=E U λ知1-为U 的特征值,矛盾,所以矩阵E U +满秩。()()1 1()()()--=-+=-+-H H H H H i E U E U i E U E U ,要H H H =, 只要()()1 1 ()()()()()()---+-=-+?--+=+-?-=-H H H H H H i E U E U i E U E U E U E U E U E U U U U U 故H H H = 由()0+=--=E iH i iE H 知i 为H 的特征值。由Hermite 矩阵只能有实数特征值可得0+≠E iH ,即E iH +满秩。 111111()()()()()()()()()()()()------=+-+-=+-+-=++--=H H H U U E iH E iH E iH E iH E iH E iH E iH E iH E iH E iH E iH E iH E 9、 若,S T 分别是实对称和实反对称矩阵,且det()0E T iS --≠,试证: 1()()E T iS E T iS -++--是酉矩阵。 证明: 1111 [()()]()()()()()()----++--++--=++--++--H E T iS E T iS E T iS E T iS E T iS E T iS E T iS E T iS

矩阵分析复习题2013[1].5

矩阵分析复习题 1.设r V 是n 维线性空间n V 的一个r 维子空间,r ααα,,,21 是r V 的一组基,证明这组向量必可扩充为整个空间的基。即,在n V 中必可找到r n -个向量n r r ααα,,,21 ++,使得n r r αααα,,,,,11 +是n V 的一组基。 2.证明:如果21,V V 是线性空间V 的子空间,那么它们的和21V V +也是V 的子空间. 3.设12,V V 是线性空间V 的子空间,证明: )dim()dim()dim()dim(212121V V V V V V -+=+. 4.设)10,2,1(1=α,)11,1,1(2-=α,)01,1,2(1-=β,)7,3,1,1(2-=β. {}211,αα=Span V ,{}212,ββ=Span V .求(1)21V V +的基与维数;(2)21V V 的基与维数. 5.设12,V V 是线性空间V 的两个子空间,证明以下论断等价: (1)12V V +是直和; (2)零向量分解式唯一(即,若1211220,,,V V α+α=α∈α∈则120α=α=.); (3){}120V V = ; (4)dim (12V V +)=dim (1V )+ dim (2V ). 6.设线性变换T 在两组基n ααα,,,21 与n βββ,,,21 下的矩阵分别为A 和B ,从基n ααα,,,21 到基n βββ,,,21 的过渡矩阵为P ,证明:AP P B 1-=. 7.在线性空间][x C n 中,取两组基 n x x x ,,,,12 (Ⅰ) n x n x x ! 1,,!21,,12 (Ⅱ) D 为微分算子。(1)求由(Ⅰ)到(Ⅱ)的过渡矩阵;(2)求线性变换D 在两组基下的矩阵。

正定、半正定二次型的性质及应用的开题报告

毕业论文﹙设计﹚开题报告 题目正定、半正定二次型的性质及应用 学生姓名学号 所在院(系) 数学与计算机科学学院 专业班级数学与应用数学专业班 指导教师 2012年 3月 5 日

题目正定、半正定二次型的性质及应用 一、选题的目的及研究意义 在高等代数中,在二次型中,正定二次型占有特殊的地位,本文主要探讨常见的正定二次型以及半正定二次型的判定。二次型不仅在数学学科中出现,而且在数学的其他分支学科以及物理、力学中也常常会出现。而在大学的学习中, 只是简单的介绍了实二次型及其矩阵表示、正定二次型的定义和简单性质,并没有涉及到半正定二次型的学习,而且对它们的性质研究也很少,只是很零散的在课本习题中提及到。这对于初学者来说,较全面、系统地掌握正定、半正定二次型的性质及应用是很困难的。但根据对正定、半正定二次型的重要作用及特殊地位,我认为有必要也很有意义对其系统的研究讨论一下,本文先给出正定、半正定二次型的定义,然后讨论了它们的若干性质。最后,利用它们的性质,讨论了许多关于它们的应用。 二、综述与本课题相关领域的研究现状、发展趋势、研究方法及应用领域等 研究现状: 在许多相关的教材和书籍资料中,都只是简单介绍了正定二次型的定义和它的一些简单零散性质,也没有提及半正定二次型,对于它们的研究不深,应用也涉及不多,更没有做什么系统的归纳。 发展趋势: 正定二次型在《高等代数》中作为基础性的知识,他的地位十分重要,并且也被广泛的应用于解决实际数学问题中。 应用领域:基础数学与数学的其他分支学科以及物理、力学。 研究方法:查阅资料,列出提纲,撰写论文、修改、定稿。

三、对本课题将要解决的主要问题及解决问题的思路与方法、拟采用的研究方法(技术路线) 或设计(实验)方案进行说明,论文要写出相应的写作提纲 解决的主要问题:讨论正定、半正定二次型的性质;利用正定、半正定二次型的性质来研究它们的一些简单应用。 思路与方法:首先了解正定、半正定二次型的定义,再讨论它们的性质,再利用其中一些性质来研究它们的应用。 研究方法:查阅资料,列出提纲,撰写论文、修改、定稿。 论文的写作提纲为: 1.对正定、半正定二次型的定义进行归纳总结; 2.对正定、半正定二次型的性质进行一些讨论; 3.利用正定、半正定二次型的性质解决实际的数学问题。 四、检索与本课题有关参考文献资料的简要说明 [1] 王萼芳,石生明.《高等代数》[M].(第三版).北京:高等教育出版社,2008.4 :205-234. [2] 陈文灯,《线性代数复习指导---思路、方法与技巧》[M]北京:清华大学出版社, 2011.3 :119-127 [3] 陈大新《矩阵理论》[M]上海: 上海交通大学出版社, 1997.4 :117-133 [4] 曹璞.《正定矩阵的判定与性质》[J].南都学坛,1994(3):117-129 [5] 史荣昌、魏丰.《矩阵分析》 [M].北京:北京理工大学出版社,2010:134-139. [6] 费伟劲. 《线性代数》[M].上海:复旦大学出版社,2007:169—192. . 五、毕业论文(设计)进程安排 2009年3月1日~2009年3月8日,查阅相关资料,学习理论知识;完成开题答辩并填写开题报告。 2009年3月10日~2009年3月30日,按提纲要点,完成论文的框架;整理论文框架并完成论文雏稿。

相关主题
文本预览
相关文档 最新文档