当前位置:文档之家› 镁MgO对水泥熟料煅烧的影响

镁MgO对水泥熟料煅烧的影响

镁MgO对水泥熟料煅烧的影响
镁MgO对水泥熟料煅烧的影响

MgO镁对水泥熟料煅烧的影响

(2011-01-04 00:00:00)

Mg镁对水泥熟料煅烧的影响

水泥熟料主要成份是CaO、SiO

2、Al

2

O

3

、Fe

2

O

3

等四种化合物,次要成份为MgO、

R 2O、SO

3

等化合物,而其中MgO含量允许达到5%,是次要成份中含量最多的一

种。通常人们认为MgO影响水泥产品的安定性,规定了限制值,但实际上MgO 在一定程度影响着熟料的煅烧,这种情况往往被忽视。现根据国内外的研究成果及工厂生产实践,讨论MgO对熟料煅烧及其产品性能的影响,供有关技术人员参考。

1、水泥原料中镁MgO

水泥生产中,生料中的MgO主要来源于石灰石中的镁质矿物,这些矿物主要以硅酸镁、白云石、菱镁矿、铁白云石等不同类型存在。当石灰石中MgO以硅酸镁形式存在时,可获得均匀分布和细小(1~5μm)的方镁石晶体,而以白云石或菱镁矿形式存在时,易生成粗大(25~30μm)的方镁石晶体。我院曾对不同年代所形成的石灰石中MgO含量对熟料强度的影响进行了测试,发现石灰石中MgO的含量对熟料强度有一定的影响,总的趋势是石灰石中MgO含量越高,则熟料强度越低。根据试验研究,镁质矿物中MgCO

3

的分解温度为660~700℃,

白云石Mg(CO

3)

2

的分解温度为800℃,而石灰石中CaCO

3

分解温度接近900℃。

在水泥熟料生产过程中,MgO较CaO先形成。

2、Mg镁对熟料煅烧的影响

熟料煅烧时,约有2%的MgO和熟料矿物结合成固熔体,此类固熔体甚多,例如

CaO·MgO·SiO

2、2CaO·MgO·SiO

2

、2CaO·MgO·2SiO

2

、3CaO·MgO·2SiO、

7CaO·MgO·2Al

2O

3

、3CaO·MgO·2Al

2

O

3

、MgO·Al

2

O

3

、MgO·Fe

2

O

3

以及C

3

MS

2

等,

此类化合物的稳定温度在1200~1350℃,同时它还可能含有一些微量元素。在温度超过1400℃以上时,MgO的化合物会分解,且从熔融物中结晶出来。当熟料中含有少量细小方镁石晶格的MgO时,它能降低熟料液相生成温度,增加液相数量,降低液相粘度,增加液相表面张力,有利于熟料形成和结粒,也有利于C

3

S的生成,还能改善熟料色泽。粗大方镁石晶体的MgO超过2%时,则易形成方镁石晶体,导致熟料安定性不良。而当氧化镁含量过高时,则易生成大块、结圈和结厚窑皮,以及表面呈液相的熟料颗粒,此类熟料易损坏篦冷机篦板。

3、Mg镁对熟料结粒的影响

3.1 影响熟料结粒的因素

窑内熟料颗粒是在液相(有些资料称熔体)作用下形成的,液相在晶体外形成毛细管桥。液相毛细管桥起到两个作用:一是使颗粒结合在一起,另一作用是

作为中间介质,使CaO和C

2S在熔融态内扩散生成C

3

S,颗粒的强度取决于毛细

管桥的强度,桥的强度即连接颗粒的力随液相表面张力和颗粒直径的降低而增加。毛细管桥的数量又和颗粒直径的平方根成反比。要结好粒,必须有足够的液相,并要求颗粒在液相内分布均匀,形成较高的表面张力,较低的液相粘度,适宜的结粒时间和温度等。

3.2 Mg镁对液相性质的影响

3.2.1 液相量

熟料液相量太少不易结粒,太多易结成致密的大块熟料。液相量与液相中所含

的Al

2O

3

、Fe

2

O

3

、K

2

O、Na

2

O、MgO含量有关。从近年来国外发表的液相量计算公

式中,MgO的系数得以提高,说明MgO对液相量有较大的影响,与Fe

2O

3

的系数

接近。其计算公式为:1400℃时液相量

L=3.0Al

2O

3

+2.25Fe

2

O

3

+K

2

O+Na

2

O+MgO

液相量在25~28%时,对结粒最有利。

当MgO含量超过2%以上的值乘以系数1.5。

3.2.2 液相表面张力

液相表面张力是液相的重要性质,与结粒有着直接的关系。液相表面张力增大易结粒,熟料颗粒的大小与液相表面张力呈良好的线性关系(见图1)。

图1 回转窑内熟料最终尺寸与液相表面张力的关系

液相的表面张力与元素外层电子的负电性有关(见图2),有些元素如K、Cl、S的表面张力值较低,不利于结粒;而Mg、Al等元素的表面张力值较高,有利于结粒。

图2 液相粘度和表面张力的影响

3.2.3 液相粘度

不同成分熟料的液相粘度值是不同的,一般说来液相粘度值减少,有利于CaO

和C

2S在液相内扩散生成C

3

S,也易结粒,液相粘度与温度有关,随温度上升而

下降。

几种元素共存的液相粘度值并非单元素的液相粘度值的叠加。

近年来,国内一些单位相继发表了MgO、R

2O、SO

3

对结皮和结粒有较大影响的

报导。为解释此现象,现将MgO-R

2O-SO

3

复合存在时液相等粘度线示于图3。

从图3来看,R

2O含量增加,粘度值增加较大,不利于结粒;SO

3

含量增加,粘

度值降低,但SO

3的粘度值较R

2

O低得多,因此SO

3

存在时结粒有所改善;若R

2

O、

SO

3

均存在时,MgO含量增加,液相粘度值大大降低,有利于结粒。

图3 MgO-R

2O-SO

3

复合存在时液相等粘度线

液相的粘度与元素外层电子的负电性有关,液相粘度按它们碱性降低的次序(K -Na-Ca-Mg)逐渐降低,MgO仅对液相粘度有适当的下降(见图2)

从一些实验来看,在煅烧的熟料成份中,适量加入Mg2+、SO

3

2-、K-等离子后,熟料的液相表面张力和粘度均发生变化。Ocoknh所进行的研究表明,熟料在1450℃含25~35%液相时,粘度为0.16Pa.S,表面张力0.58N/m,加入MgO等化合物后的液相表面张力和液相粘度均发生变化,影响着熟料的结粒(见表1)。此外,除MgO含量对液相表面张力和液相粘度有影响外,还需考虑液相内其他成份的因素。

表1 一些氧化物对液相粘度和表面张力的影响

4、MgO对熟料强度的影响

MgO存在于熟料内,会影响CaO的数量,因而MgO在一定程度影响熟料的强度。为缓和MgO对熟料强度的影响,在水泥熟料生产中,应尽量提高石灰饱和系数

KH和硅酸率SM值,相应提高C

3S和C

2

S的含量,以提高熟料的强度。

5、MgO对产品安定性的影响

在硅酸盐水泥熟料中,MgO的固熔体总量可达2%,多余的MgO即结晶出来呈游离状方镁石,就会产生有害作用。

熟料中方镁石晶体的生成速度与镁矿物的分解温度有关,分解温度越低,晶体生长的机遇越大。总的说来,白云石等高镁原料分解温度较高,易生成大晶格的MgO。

方镁石结晶大小随冷却速度不同而变化,快冷时结晶细小,方镁石水化缓慢,要几个月甚至几年才明显起来,水化生成Mg(OH)

2

时,体积膨胀148%,导致安定性不良。方镁石膨胀的严重程度与其含量、晶体尺寸等都有关系,方镁石晶体小于1μm且含量为5%时,只引起轻微膨胀,方镁石晶体为5-7μm且含量为3%时,会引起严重膨胀。

6、缓和MgO对生产和产品质量的影响

生料的主要成份为CaO、SiO

2、Al

2

O

3

、Fe

2

O

3

四种,在熟料煅烧过程中,主要受

由上述四种氧化物组成计算的石灰饱和系数KH、硅酸率SM、铝氧率AM以及

SiO

2、CaCO

3

等颗粒级配的影响,也就是生料的易烧性决定了烧成工况。但是

MgO含量较高时,对熟料液相量、液相表面张力、液相粘度以及熟料煅烧温度、熟料结粒、强度以及窑内结圈、结皮等均有影响。若生产过程中,出现MgO的影响,应从以下几个方面采取减缓措施。

6.1 做好生料配料和均化工作:

国外公司在研究中提出,在含有MgO的生料内,石灰饱和系数应作如下调整:

LSF=100CaO/(2.80SiO

2+1.18Al

2

O

3

+0.65Fe

2

O

3

)(不含MgO)

LSF=100(CaO+0.75MgO)/(2.80SiO

2+1.18Al

2

O

3

+0.65Fe

2

O

3

)(MgO<2%)

LSF=100(CaO +1.150 MgO)/(2.80SiO

2+1.18Al

2

O

3

+0.65Fe

2

O

3

)(MgO>2%)

做好原料的均化,确保生料中MgO含量均匀入窑。

6.2 控制合适的液相量、液相表面张力、液相粘度

液相量是熟料结粒的重要因素,在计算液相量时,应注意MgO超过2%时的校正系数,还应考虑碱含量的因素。为缓和MgO对液相量的影响,在提高熟料质量

的前提下,适当提高石灰饱和系数KH及硅酸率SM值,减少Al

2O

3

和Fe

2

O

3

的含

量,减缓MgO对液相量的影响,相应减缓结大球的趋势。同时KH值和SM值增

加,增加了CaO、SiO

2的含量,也增加了C

3

S和C

2

S的生成量及熟料煅烧温度,

有利于提高熟料强度。

MgO含量在一定程度影响液相表面张力和液相粘度,影响熟料结粒。在生产过程中,当出现液相表面张力和液相粘度造成熟料结大球或过细的粉尘熟料时,在调节措施中,可考虑通过调整配料率值对MgO含量进行调节,但应考虑原、燃料带入的碱化物、硫化物等微量元素的影响。

由于各生产线的生料成份不同、配料率值不同,SiO

2、CaCO

3

等颗粒级配不同,

MgO的数量及晶体大小不同,碱(R

2O)、SO

3

及微量元素的含量也不一致,再

加上液相量、液相表面张力,液相粘度取样和测定的困难,很难在实际生产中进行计算和测试,只能通过分析、判断进行测算,试烧后进行生产。从国内一些MgO含量较高的生产线的生产情况来看,通过调整KH和SM值,均能生产结粒较好且强度较高的熟料,总体情况总结如下:

(1)生料中MgO含量较高且易烧性较好、SiO

2

的易磨性好且颗粒较细、碱含

量与硫含量对液相粘度影响不大时,C

2S有利于与CaO结合生成C

3

S,则SM值

可提高至3.60以上,在生产过程中结粒均齐,f-CaO含量较低,熟料强度较高。

(2)生料中MgO含量较高但易烧性较差、SiO

2

的易磨性差且颗粒较粗、此外

原料中带入的碱含量较高时,对液相粘度影响较大,不利于液相内的C

2

S与

f-CaO结合生成C

3

S。在生产过程中,为缓和MgO对液相量的影响,可提高SM

值;但SM值提高后,更不利于生成C

3

S,易使f-CaO含量偏高;为降低f-CaO

含量,生产时提高烧成温度,但又易增大C

3

S的晶格易形成飞砂料,不利于熟料强度的提高;这种工况,SM值是很难提高的。

以上情况表明,各条生产线的生料易烧性不一致,其颗粒级配也不一致,石灰石中MgO含量不等且晶体大小有别,另外带入生料的原燃料中碱含量也不一致,此时只能结合实际状况,通过分析,找出优化点,来提高熟料强度。

6.3 操作措施

(1)在生产过程中,加大窑尾风机风量,尽量减少窑内还原气氛,避免硫酸盐在还原气氛下分解造成窑后部结长厚窑皮,减缓MgO含量较高窑料出现结圈、结蛋从而进一步加剧窑内通风不良、还原气氛加重的恶性操作状况的产生。(2)适当加快窑速,减少结厚窑皮的趋势。

(3)避免窑头过烧,减少表面带液相的大块熟料落入篦冷机内损坏前端篦板,或形成表面带液相的大晶格粉状熟料在冷却机进料口处粘结成雪人的事故。(4)加强篦冷机前端通风,一方面使熟料急冷,有利于形成小晶格的MgO矿物,相应减缓MgO水化的膨胀影响;另一方面将表面带液相的料球固化,避免篦板过热损坏。

结束语

MgO是熟料矿物中最多的次要化合物,对熟料煅烧、结粒、强度以及安定性带来影响。在生产过程中,当遇到MgO含量偏高对水泥熟料煅烧造成影响时,

应分析生料的易烧性及颗粒级配,结合MgO的含量以及原、燃料带入的碱(R

2

O)、

SO

3

的状况,作出判断,进行测算,并对熟料率值进行调整,进行必要的测试和试烧,在取得成功的基础上,进行工业化生产,必将使系统呈现工艺事故率

低、产品优质高产、低消耗的良性生产状况。

煤的岩相分析学在水泥熟料生产中的指导意义

煤的岩相分析学在水泥熟料生产中的指导意义 内蒙古蒙西水泥股份有限公司 韩建业 一、煤的岩相分析学相关内容简述 煤的岩相分析学告诉我们,煤的组成包含有机组分和无机组分,有机组分又包括镜质组、壳质组、惰质组三种组分,其中镜质组含量最大,约占50%---80%。在偏光显微镜下检测镜质组反射率(Rmax或Re)大小,可以相对判定不同的煤种。 Rmax------偏光下镜质组最大反射率 Re-------自然光下镜质组随机反射率 煤的形成年代不同,煤化程度不同,化学成分不同,各组分含量也不同,变质程度不同,燃烧性能也就不一样,燃点也就不同。 下面两个表是不同煤种对应的化学组成变化和燃点的不同范围以及对应的我国境内不同煤种大致形成年代:

同一煤矿的同一层煤形成的条件基本是相同的,它的镜质组反射率一定是一个单峰正态分布的图形,标准偏差基本<0.1。而不同变质程度煤混配在一起时,在镜质组反射率分布图上必然会出现多个峰,偏差也随之增大。但是,变质程度相近的煤混配在一起镜质组反射率也可能只有一个峰,但一般会偏差略增大,但因煤质相近,可视作单一煤层煤。 下面几个镜质组反射率图形就是典型代表: 1、单一煤层煤镜质组反射率图谱:就一个正态分布的单峰

2、具多个凹口混合煤镜质组反射率图谱:四种不同煤质的单一煤层煤混合在一起 3、简单混煤(简单凹口混煤)镜质组反射率图谱:镜质组反射率(煤质)相近的单一煤层煤混合在一起 二、大多数水泥生产企业用煤状况 煤是水泥熟料生产企业的主要原材料, 也是提供水泥熟料生成的的唯一热源, 它通过喷煤管喷入回转窑内燃烧,产生的合理的热力分布, 直接决定了回转窑的产质量, 进而影响到熟料单位能耗,决定了水泥的生产成本。然而,目前水泥生产企业进厂煤控制, 基本 类型:多凹口混煤 自然光下镜质组最小反射率Re :0.3 自然光下镜质组最大反射率Re :1.85 标准偏差:0.445 类型:单一煤层煤 偏光下镜质组最大反射率Rmax :0.68 标准偏差:0.061

水泥游离氧化镁

FCLJCSN0009 水泥氧化镁的测定EDTA 络合滴定法 F_CL_JC_SN_0009 水泥EDTA 络合滴定法 1 范围 本推荐方法采用络合滴定法测定氧化镁 普通硅酸盐水泥火山灰质硅酸盐水泥 复合硅酸盐水泥以及制备上述水泥的熟料和适合本标准方法的其他水泥 中氧化镁的测定 或用氢氧化钠熔融加盐酸分解 在pHl0的条件下酒石酸钾钠为掩蔽剂荼酚绿B 混合指示剂 当试样中一氧化锰含量在0.5%以上时测定钙锰总量 3 试剂 3.1氢氧化钠 3.2硝酸 ρ1.19g/mL 1+5 将200g 氢氧化钾(KOH)溶于水中贮存于塑料 瓶中 pHl0将67.5g 氯化铵(NH 4Cl)溶解于水中加水稀释至1L 1+2 将100g 洒石酸钾钠(C 4H 4KNaO 6稀释至l L HCl) 甲基百里香酚蓝称取1.000g 钙黄 绿素0.200g 酚酞与50g 已在105 保存在磨口瓶中 禁酚绿B 混合指示剂 烘干过的硝酸钾(KNO 3)混合研细 3.9 碳酸钙标准溶液(c(CaCO 3)=0.024mol/L] 110 精确至0.0001g 加入约100 mL 水沿杯口 滴加盐酸(1+1)至碳酸钙全部溶解将溶液冷至室温 用水稀释至标线 3.10 EDTA 标准滴定溶液[c(EDTA)=0.015mol/L] 3.10.1 标准滴定溶液的配制 称取约5.6gEDTA(乙二胺四乙酸二钠盐)置于烧杯中加热溶解用水稀释至1L 加水稀释至约200mL 在搅拌下加入氢氧化钾溶液(200g/L)至出现绿色荧光后再过量2 以EDTA 标准滴定溶液滴定至绿色荧光消失并呈现红色 ()1 10002511× =××= m m EDTA c 中 国分 析 网

硅酸盐水泥熟料的煅烧:什么是硅酸盐水泥

硅酸盐水泥熟料的煅烧 §5-1 生料在煅烧过程中的物理化学变化 §5-2 熟料形成的热化学 §5-3 矿化剂、晶种对熟料煅烧和质量的影响 §5-4 挥发性组分及其他微量元素的作用 §5-5 水泥熟料的煅烧方法及设备 【掌握内容】 1、硅酸盐水泥熟料的形成过程名称、反应特点、影响反应速度的因素; 2、熟料的形成热、热耗的定义、一般数值、影响因素 3、挥发性组分对新型干法水泥生产的影响 4、悬浮预热器窑及预分解窑的组成、工作过程

5、影响窑产、质量及消耗的因素 【理解内容】 1、C3S的形成机理,形成条件; 2、影响熟料形成热的因素,形成热与实际热耗的区别,降低热耗的措施; 3、回转窑的结构、组成、及工作过程; 4、回转窑内“带”的划分方法,预分解窑内“带”的划分。 【了解内容】 1、水泥熟料的煅烧方法及设备类型; 2、矿化剂、晶种定义、类型、作用、使用; 3、湿法窑的组成,工作过程 合格生料在水泥窑内经过连续加热,高温煅烧至部分熔融,经过一系列的物理化学反应,得以硅酸钙为主要成分的硅酸盐水泥熟料的工艺过程叫硅酸盐水泥

熟料的煅烧,简称煅烧。结合目前生产现状及学生的就业去向,主要介绍与回转窑尤其是新型干法回转窑有关的知识,立窑有关知识留给学生自学。 第一节生料在煅烧过程中的物理化学变化 生料在加热过程中,依次进行如下物理化学变化 一、干燥与脱水 (一)干燥 入窑物料当温度升高到100~150℃时,生料中的自由水全部被排除,特别是湿法生产,料浆中含水量为32~40%,此过程较为重要。而干法生产中生料的含水率一般不超过0%。 (二)脱水 当入窑物料的温度升高到450℃,粘土中的主要组成高岭土 (Al2O3·2SiO2·2H2O)发 生脱水反应,脱去其中的化学结合水。此过程是吸热过程。 Al2O3·2SiO2·2H2 Al2O3 + 2SiO2 + 2H2 (无定形)(无定形)

水泥熟料的形成过程

第一章回转窑及预分解技术 第一节水泥熟料的形成 水泥是重要的建筑材料之一,它的煅烧方法从立窑生产到现代干法生产经过了180年的历史。而水泥熟料是水泥生产的半成品,其形成过程是水泥生产的一个重要的环节,它决定着水泥产品的产量、质量、消耗三大指标。本节将主要阐述熟料的形成过程和水泥熟料形成热的计算方法。 一、水泥熟料煅烧方法及窑型的演变 (一)水泥熟料的煅烧方法 从水泥熟料的生产方法分为干法生产、湿法生产以及半干法生产。干法生产是指干生料粉进入窑内进行煅烧;湿法生产是将原料加水粉磨,黏土用淘泥机制成泥浆,然后将含水量为32-40%的生料浆搅拌均匀后入窑煅烧;半干法生产是将生料粉加入12-14%的水分成球后,再入窑进行煅烧。 (二)水泥窑型的演变 自发明水泥以来,水泥窑型发生了巨大的变化,经历了立窑、干法中空回转窑、湿法窑、立波尔窑、悬浮预热器窑至窑外分解窑的变化。其规模从!) 世纪的日产几吨,发展到目前日产1万吨,增加了1000倍以上。 在这些变化中有几次重大技术突破,第一次是%# 世纪初湿法回转窑的出现并得到全面推广,提高了水泥的产量和质量,奠定了水泥工业作为现代化工业的基础;第二次是20世纪50-70年代悬浮预热和预分解技术的出现(即新型干法水泥生产技术),大大提高了水泥窑的热效率和单机生产能力,促进了水泥工业向大型化、现代化的进一步发展;第三次是20世纪80年代以后计算机信息化和网络化技术在水泥工业中得到了广泛应用,使得水泥工业真正进入了现代化阶段。 1824年,世界上第一台立窑在英国诞生,这是人类最早的用来煅烧水泥熟料窑型。它是一个竖直放置的静止的圆筒,窑内自然通风,生料制成块状,与燃料块交替分层加入窑内,采用间歇的人工加料和出料操作。立窑的产生

新型干法水泥熟料煅烧过程

1 新型干法水泥熟料煅烧工艺过程 1.1 水泥熟料的形成过程 水泥熟料的形成过程,是对合格的水泥生料进行煅烧,使其连续被加热, 经过一系列的物理化学反应,形成熟料,再进行冷却的过程。 生料在加热过程中,依次发生干燥、粘土矿物脱水、碳酸盐分解、固相 反应、熟料烧结及熟料冷却结晶等重要的物理化学反应。这些反应过程的反 应温度、反应速度及反应产物不仅受原料的化学成分和矿物组成的影响,还 受反应时的物理因素诸如生料粒径、均化程度、气固相接触程度等的影响。 1.1.1 干燥 排除生料中自由水分的工艺过程称为干燥。 生料都含有一定量的自由水分,随着温度的升高,物料中的水分被蒸发, 当温度升高到100~150℃时,生料中的自由水分全部被排除,这一过程称为 干燥过程。新型干法水泥生料水分小于1%,在预热器内瞬间完成。 1.1.2 脱水 脱水是指粘土矿物分解放出化合水。 粘土矿物的化合水有两种:一种是以OH 一离子状态存在于晶体结构中, 称为晶体配位水(也称结构水);另一种是以水分子状态吸附于晶层结构间, 称为晶层间水或层间吸附水。所有的粘土都含有配位水;多水高岭土、蒙脱 石还含有层间水;伊利石的层间水因风化程度而异。层间水在100℃左右即 可排除,而配位水则必须高达400~600℃以上才能脱去。 粘土中的主要矿物高岭土发生脱水分解反应如下式所示: Al2O3 2SiO2 2H20 Al203 2SiO2 + 2H2O↑ 高岭土无水铝硅酸盐(偏高岭土) 水蒸气 Al203 2SiO2 Al203 + 2SiO2 高岭土进行脱水分解反应属吸热过程。高岭土在失去化合水的同时,本身 晶体结构遭受破坏,生成了非晶质的无定形偏高岭土(脱水高岭土),由于偏高岭 土中存在着因 OH 一基跑出后留下的空位,故可以把它看成是无定型的SiO2 和 Al2O3,这些无定形物具有较高活性。 1.1.3 碳酸盐分解 生料中的碳酸钙和夹杂的少量碳酸镁在煅烧过程中分解并放出CO2 的过程称 碳酸盐分解。 碳酸镁的分解温度始于402~480℃左右,最高分解温度700℃左右;碳酸钙 在600℃时就有微弱分解发生,但快速分解温度在812~928℃之间变化。MgCO3 在590 ℃、CaCO3 在890℃时的分解反应式如下: MgC03 MgO + CO2↑-(1047~1 214)J/g

水泥氧化镁作业指导书

水泥氧化镁含量检测细则 1、目的 为对水泥氧化镁含量进行检验,特制定本标准 2、适用范围 本方法适用于氧化镁试验、氯离子含量试验。 3、检验检测依据 《水泥化学分析方法》GB/T176-2008 4、评定标准 《通用硅酸盐水泥》GB/T 175--2007 5、仪器设备 分析天平、滴定管、高温电阻炉、移液管、烧杯、坩埚等。 6、检验步骤 所取的样品采用四分法分至约100g,经0.080mm方孔筛,用磁石吸去筛余物中金属铁,将筛余物经研磨后使其全部通过0.080mm方孔筛。将试样充分混匀后,装入带有磨口瓶的瓶中密封。 高温电阻炉滴定管

6.1 样品的熔融 称取约0.5g试样,精确至0.0001g。置于银坩埚中,加入67g氢氧化钠,在650-700的高温下熔融20min取出冷却,将坩埚放入已盛有100mL近沸腾水的300ml烧杯中,盖上表面皿,于电热板上适当加热,待熔块完全浸出后,取出坩埚,用水冲洗坩埚和盖,在搅拌下一次加入25-30mL 盐酸,再加入1mL硝酸用热盐酸(1+5)洗净坩埚和盖,将溶液加热至沸,冷却,然后移入250mL 容量瓶中,用水稀释至标线,摇匀此为溶液E。 6.2 氧化镁、氧化钙的测定 6.2.1原理 在PH10的溶液中,以酒石酸钾钠、三乙醇胺为掩蔽剂,用酸性铬蓝K-萘芬绿B混合指示剂用EDTA标准溶液滴定。 6.2.2氧化钙的测定 从溶液E中吸取25.00mL溶液放入400mL烧杯中入7mL氟化钾,搅拌并放置2min以上,加水稀释至约200mL,加入5mL三乙醇胺(1+2)及少许的钙黄绿素-甲基百里香酚蓝-酚酞混合指示剂(CMP),在搅拌下加入氢氧化钾溶液至出现绿色荧光后再过量58mL,此时溶液在pH13以上,用[c(EDTA)=0.015mol/L]EDTA标准滴定液滴定至绿色荧光消失并呈现红色,记录消耗的体积V1。 6.2.3氧化镁的测定

粉煤灰细度对混凝土强度的影响(1)

粉煤灰细度对混凝土强度的影响 摘要:我国是一个产煤大国,煤炭作为火力发电主要燃料,其副产物粉煤灰的大量排放对生态环境和人民大众的健康造成了较大的危害。合理地利用粉煤灰不仅能有效解决粉煤灰带来的环境污染,同时能变废为宝,节省自然资源。粉煤灰的一个用途是掺入到混凝土中能代替部分水泥的掺入,节省水泥,同时还能有效增加粉煤灰的强度。本文详细介绍了粉煤灰对混凝土强度的影响。 关键字:粉煤灰;细度;混凝土强度;影响 一、概述 粉煤灰是火电厂排放的主要固体粉状废弃物。不同火电厂出产的粉煤灰成分都不一样,总体来看我国粉煤灰主要成分是SiO2、Al2O3、FeO、Fe2O3、CaO、Ti2O3等氧化物组成。从重量百分比来看主要是SiO2、Al2O3。 表1 粉煤灰的成分 成分SiO2 Al2O3 Fe2O 3 CaO MgO SO3 NA2O K2O 烧失 量 范围34.3-66 .76 14.56- 40.12 1.5- 6.22 0.44- 16.8 0.2-3 .72 0-6 0.1-4 .23 0.02- 2.14 0.63- 29.97 均值50.8 28.1 6.2 3.7 1.2 0.8 1.2 0.6 7.9 二、粗细颗粒粉煤灰性质分析 细颗粒粉煤灰中的活性火山灰玻璃珠成分会与水泥中析出的氢氧化钙反应生成水化硅酸钙和水化氯酸钙等胶凝物质,能有效增加混凝土的塑性和强度;同时火山灰玻璃微小珠成分会在混凝土中起到滚珠作用和解絮作用,从而减少混凝土的水量改善和易性,提高密实性;这些玻璃珠均匀分布在水泥砂浆中,增加了硬化浆体的结构强度,改变了混凝土的均匀性,填充和细化了混凝土浆体的缝隙和孔洞。粉煤灰做为掺加料被加入到混凝土中对混凝土的强度影响与粉煤灰的细

硅酸盐水泥熟料的形成

第七章硅酸盐水泥的水化和硬化 第一节硅酸盐水泥熟料的形成 一、硅酸盐水泥熟料的形成 水泥熟料矿物为什么能与水发生反应?主要原因是: 1. 硅酸盐水泥熟料矿物结构的不稳定性,可以通过与水反应,形成水化产物而达到稳定性。造成熟料矿物结构不稳定的原因是:<1) 熟料烧成后的快速冷却,使其保留了介稳状态的高温型晶体结构;<2) 工业熟料中的矿物不是纯的C3S,C2S等,而是 A lite 和Belite 等有限固溶体;(3) 微量元素的掺杂使晶格排列的规律性受到某种程度的影响。 2. 熟料矿物中钙离子的氧离子配位不规则,晶体结构有“空洞”,因而易于起水化反 应。例如,C3S 的结构中钙离子的配位数为 6 ,但配位不规则,有 5 个氧离子集中在一侧而另一侧只有 1 个氧离子,在氧离子少的一侧形成“空洞”,使水容易进入与它反应。户C2S 中钙离子的配位数有一半是 6 ,一半是8 ,其中每个氧离子与钙离 子的距离不等,配位不规则,因而也不稳定,可以水化,但速度较慢。 C 3A的晶体结构中,铝的配位数为 4 与6, 而钙离子的配位数为 6 与9 ,配位数为9 的钙离子周围的氧离子排列极不规则,距离不等,结构有巨大的“空洞”,故水化很快。C4A F 中钙的配位数为10 与 6 ,结构也有“空洞”,故也易水化。有些矿物如Y-C2S和 CZ A S 几乎是惰性的,主要是钙离子的配位有规则的缘故.例如: Y-CZS 中钙离子的氧配位为 6 , 6 个氧离子等距离地排列在钙离子的周围,形成八面体,结构没有“空洞”,因此不易与水反应。这里要特别指出,水化作用快的矿物,其最终强度不一定高。例如,C3A水化快,但强度绝对值并不高,而户C2S 虽然水化慢,但最终强度却很高,因为水化速度只与矿物水化快慢有关,而强度则与浆体结构 形成有关。 二、熟料单矿物的水化 (一)硅酸三钙的水化 硅酸三钙在水泥熟料中的含量约占50 %,有时高达60 %,因此它的水化作 用、产物及其所形成的结构对硬化水泥浆体的性能有很重要的影响硅酸三钙在常温下

煅烧对水泥熟料质量的八大影响

回转窑煅烧对熟料质量的八大影响 (发布日期:2011-11-15 11:05:17)浏览人数:1837 鼠标双击自动滚屏 研究表明回转窑的煅烧操作热工制度对硅酸盐水泥熟料煅烧质量产生重要影响,优质熟料主要特征是C3S+C2S矿物含量高,碱含量低,矿物晶粒粒径较细小均匀,发育良好,当生料工艺质量参数和粉磨细度、颗粒粒径分布、化学成分、有害成分、率值等保持稳定不变的情况下,回转窑煅烧操作热工制度和煅烧温度、升温速率、峰值温度、保温时间、窑速和冷却速率等就决定了熟料硅酸盐矿物C3S和C2S的含量和活性,熟料中阿里特晶体尺寸发育大小,主要决定于水泥生料的易烧性和窑的煅烧操作热工制度的稳定。因此,以下结合煤质,火焰形状和温度,熟料和煅烧温度,烧成带长度,窑型规格,窑速、升温速率和冷却速率等对熟料煅烧质量的影响作一初步探讨。 一、煤质的影响 一般回转窑煅烧用煤质量要求灰分A≤30%,挥发分V在18%~30%,发热量 QDW≥5000kcal/kg,煤粉细度要求控制在8%~15%,实际上,我国当前由于优质煤炭供应紧张且价格较高,许多厂家实际达不到这一要求,由于煤粉燃烧后灰分全部沉落在烧成带的熟料颗粒表面上,造成熟料颗粒表面富硅化,从而改变熟料表层矿物成分,C3S含量下降,C2S含量上升,从而影响熟料质量,当前相应的对策措施,一是适度调整增加干法窑 尾分解炉用煤量和降低窑头喷煤量,其比例控制在6:4左右,以增加分解炉中煤灰分与灼 烧生料的混合程度,降低窑头煤灰对熟料质量的负面影响;二是采取窑尾分解炉与窑头喂煤质量分别控制,分解炉喂低热值煤,窑头喂高热值煤,可降低劣质煤对窑头熟料质量的不利影响。 二、火焰形状和温度的影响 火焰形状的调节一方面取决于煤粉的热值、灰分、细度和挥发分的大小,另一方面还取决于一次风的风速和风量大小,即窑头燃烧器的规格和性能,调整好窑火焰长度也就是调整好烧成带长度,也即调整控制了熟料在高温烧成带停留时间,火焰形状和长度影响到熟料中C3S矿物的晶粒发育大小和活性。因此,在烧高强优质熟料时,必须调整火焰长度适中,既不拉长火焰使烧成带温度降低,也不缩短火焰使高温部分过于集中,从而烧垮窑皮和耐火砖而不利于窑的安全运转,回转窑内火焰形状粗细必须与窑断面积相适应,要求比较充满近料而不触料,正常形状保持其纵断面为正柳叶形状。 当烧灰分高、热值低的劣质煤时,其一次风风速应适度加大,对于使用多通道喷煤管的窑应增加内、外净风风速和风量,使其火焰形状尽量控制不发散而形成正常火焰。干法窑窑头火焰温度控制,视窑型大小而异,对于2000t/d以下的窑型一般控制在1650~1850℃之间,对于大型窑如5000t/d以上窑型,火焰温度控制在1750~1950℃的较高范围内比较 有利,预分解窑内火焰温度取决于两部分因素:一是煤粉热值、灰分和细度,二是取决于二次风温大小,对于烧劣质煤的厂家提高二次风温尤其重要。对于易烧性差的生料和含碱高的生料,适当提高火焰温度,采用高温烧成有利于熟料质量的提高和碱分的充分挥发可获得低碱熟料。

镁MgO对水泥熟料煅烧的影响

MgO镁对水泥熟料煅烧的影响 (2011-01-04 00:00:00) Mg镁对水泥熟料煅烧的影响 水泥熟料主要成份是CaO、SiO 2、Al 2 O 3 、Fe 2 O 3 等四种化合物,次要成份为MgO、 R 2O、SO 3 等化合物,而其中MgO含量允许达到5%,是次要成份中含量最多的一 种。通常人们认为MgO影响水泥产品的安定性,规定了限制值,但实际上MgO 在一定程度影响着熟料的煅烧,这种情况往往被忽视。现根据国内外的研究成果及工厂生产实践,讨论MgO对熟料煅烧及其产品性能的影响,供有关技术人员参考。 1、水泥原料中镁MgO 水泥生产中,生料中的MgO主要来源于石灰石中的镁质矿物,这些矿物主要以硅酸镁、白云石、菱镁矿、铁白云石等不同类型存在。当石灰石中MgO以硅酸镁形式存在时,可获得均匀分布和细小(1~5μm)的方镁石晶体,而以白云石或菱镁矿形式存在时,易生成粗大(25~30μm)的方镁石晶体。我院曾对不同年代所形成的石灰石中MgO含量对熟料强度的影响进行了测试,发现石灰石中MgO的含量对熟料强度有一定的影响,总的趋势是石灰石中MgO含量越高,则熟料强度越低。根据试验研究,镁质矿物中MgCO 3 的分解温度为660~700℃, 白云石Mg(CO 3) 2 的分解温度为800℃,而石灰石中CaCO 3 分解温度接近900℃。 在水泥熟料生产过程中,MgO较CaO先形成。 2、Mg镁对熟料煅烧的影响 熟料煅烧时,约有2%的MgO和熟料矿物结合成固熔体,此类固熔体甚多,例如 CaO·MgO·SiO 2、2CaO·MgO·SiO 2 、2CaO·MgO·2SiO 2 、3CaO·MgO·2SiO、 7CaO·MgO·2Al 2O 3 、3CaO·MgO·2Al 2 O 3 、MgO·Al 2 O 3 、MgO·Fe 2 O 3 以及C 3 MS 2 等, 此类化合物的稳定温度在1200~1350℃,同时它还可能含有一些微量元素。在温度超过1400℃以上时,MgO的化合物会分解,且从熔融物中结晶出来。当熟料中含有少量细小方镁石晶格的MgO时,它能降低熟料液相生成温度,增加液相数量,降低液相粘度,增加液相表面张力,有利于熟料形成和结粒,也有利于C 3 S的生成,还能改善熟料色泽。粗大方镁石晶体的MgO超过2%时,则易形成方镁石晶体,导致熟料安定性不良。而当氧化镁含量过高时,则易生成大块、结圈和结厚窑皮,以及表面呈液相的熟料颗粒,此类熟料易损坏篦冷机篦板。 3、Mg镁对熟料结粒的影响 3.1 影响熟料结粒的因素 窑内熟料颗粒是在液相(有些资料称熔体)作用下形成的,液相在晶体外形成毛细管桥。液相毛细管桥起到两个作用:一是使颗粒结合在一起,另一作用是

煤对水泥熟料的影响 (2)

煤对窑的影响 在水泥生产过程中,煤不仅作为燃料,而且成为水泥中的一种成分。并且煤质的好坏直接影响水泥熟料的产量、质量以及企业的综合经济效益。那么,掌握煤对窑影响方面的知识是绝对有必要的。 煤对窑内热工制度、熟料的产和质量影响较大的是:煤的发热量、灰分、挥发分、含水量、煤粉的细度以及碱、氯、硫的含量等。 1、煤的发热量(热值)的影响 煤的发热量的高低直接影响到窑内的热工制度,影响窑内温度的高低,进而影响到C3S的形成,影响熟料的质量。而影响热值的主要因素为灰分,灰分过高,热值低。 热值高的煤,在保证熟料质量和产量生产过程中,煤的使用量势必会减少,进而产生的灰分量的比例会减少,对熟料质量及回转窑的稳定运行影响就小。反之,煤使用量的增多,燃烧过程中产生的灰分的比例增加,势必会影响熟料的质量及回转窑的稳定运行(灰分对熟料质量及回转窑稳定运行的影响,将在煤的灰分中做进一步解释)。 2、煤的挥发分的影响 所谓挥发分即将煤隔绝空气加热到900℃左右,煤中的有机质和一部分矿物质就会分解成气体或者液体逸出,再减去煤中的水分。 当煤的挥发分Var<18%时,着火缓慢,形成黑火头过长,燃烧缓慢,降低火焰温度。 当煤的挥发分Var>18%时,由于挥发分会很快的分解燃烧,形成黑火头过短,物料在高温带停留时间短,对熟料的质量不利。当煤的挥发分过高时,在进行烘干和粉磨时,会有一部分挥发分逸出,不但造成热量的浪费,且易发生爆炸事故,同时,挥发分加高的煤有更大的经济效益,用来生产水泥是不经济的。 3、煤的灰分的影响 灰分是煤在彻底燃烧后剩下的残渣。灰分的高低对煤的热值有着直接的影响。 灰分过高会导致煤的热值低,从而使烧成带的温度上不去,火焰发浑,飞沙料增多,窑况不稳,熟料产、质量下降;并且灰分高,产生灰分沉积及窑内液相量过早出现,引起窑内结圈、结蛋,严重影响窑内通风和大窑的安全稳定运行,进而引起篦冷机堆“雪人”,反过来有更严重地影响窑及预热器系统的稳定运行;再者,灰分过高,煤质差,造成相当部分的煤粉未完全燃烧。未完全燃烧的煤粉进入C5旋风筒内及窑尾二次燃烧形成还原气氛和局部高温,造成下料管和上升烟道的结皮堵塞,导致系统阻力的增大,风机抽风量下降,整个

EDTA容量法测定水泥中氧化镁含量的测试结果不确定度评定

EDTA 容量法测定水泥熟料中氧化镁 含量的测试结果不确定度评定 1测试方法 样品的熔融 称取约 试样,精确至 ,置于银坩埚中,加入 6~7g 氢氧化钠,在 650~700℃的高温下熔融20min 。取出冷却,将坩埚放入已盛有 100mL 近沸腾水的烧杯中,盖上表面皿,于电热板上适当加热,待熔块完全浸出后,取出坩埚,用水冲洗坩埚和盖,在搅拌下一次加入 25~30mL 盐酸,再加入 lmL 硝酸。用热盐酸(1+5)洗净坩埚和盖,将溶液加热至沸,冷却,然后移入 250mL 容量瓶中,用水稀释至标线,摇匀。此为溶液 E 。 氧化钙的测定 从溶液 E 中吸取 溶液放入 400mL 烧杯中,加入 7mL 氟化钾,搅拌并放置 2min 以上,加水稀释至约200mL ,加入 5mL 三乙醇胺(1+2)及少许的钙黄绿素一甲基百里香酚蓝一酚酞混合指示剂(CMP),在搅拌下加入氢氧化钾溶液至出现绿色荧光后再过量 5~8mL ,此时溶液在 pH13以上,用 [c(EDTA)=/L]EDTA 标准滴定液滴定至绿色荧光消失并呈现红色。 氧化镁的测定 从溶液E 中吸取 溶液放入 400mL 烧杯中,加水稀释至约200mL ,加 lmL 酒石酸钾钠溶液,5mL 三乙醇胺 (1+2),搅拌,然后加入25mLpH10缓冲溶液及少许酸性铬蓝K 一萘酚绿B 混合指示剂,用 [c(EDTA)=/L]EDTA 标准滴定溶液滴定,近终点时应缓慢滴定至纯蓝色。 2数学模型 水泥中氧化镁的质量百分数:1001000 ) ((%)3 121??-?= T Mgo V V m V V T X 式中:Mgo X ——氧化镁的质量百分数,%; T ——每毫升 EDTA 标准滴定溶液相当于氧化镁的毫克数,mg /mL ; 1V ——滴定钙、镁总量时消耗 EDTA 标准滴定溶液的体积,mL ; 2V ——测定氧化钙时消耗 EDTA 标准滴定溶液的体积,mL ; 3V ——所取试样溶液的体积,mL ; T V ——试样溶液总体积,mL ; m 1 ——试料的质量,g 。 3不确定度来源分析 水泥中氧化镁含量测量不确定度的来源包括: (1)试样质量m 1不确定度 u(m 1); (2)样品的湿度带来的不确定度 u(Hum); (3)试样溶液总体积T V 的不确定度 u(T V ); (4)滴定钙、镁总量时消耗 EDTA 标准溶液体积V 1 的不确定度 u(V 1); (5)测定氧化钙时消耗 EDTA 标准溶液体积V 2的不确定度 u(V 2); (6)所移取试样溶液体积V 3的不确定度 u(V 3); (7)EDTA 标准溶液对氧化镁滴定度T 的不确定度 u(T); (8)肉眼判断滴定终点的标准不确定度 u(V end );

水泥生产工艺及水泥熟料的形成

水泥生产工艺及水泥熟料的形成 水泥生料经过连续升温,达到相应的温度时,其煅烧会发生一系列物理化学变化,最后形成熟料。硅酸盐水泥熟料主要由硅酸三钙(C3S)、硅酸盐二钙(C2S)、铝酸三钙(C3A)、铁铝酸四钙(C4AF)等矿物所组成。 硅酸盐水泥生料通常是用石灰石、黏土及少量铁矿石等按适当的比例配制而成。石灰石的主要组成是碳酸钙(CaCO3)和少量的碳酸镁(MgCO3),黏土的主要矿物是高岭石(2SiO2·Al2O3·2H2O)及蒙脱石(4SiO2·Al2O3·9H2O)等,铁矿石的主要组成是氧化铁(Fe2O3)。 硅酸盐水泥熟料形成的过程,实际上是石灰石、黏土、铁矿石等主要原料经过加热,发生一系列物理化学变化形成C3A、C4AF、C2S和C3S等矿物的过程,不论窑型的变化如何,其过程是不变的。 一、煅烧过程物理化学变化 水泥生料在加热煅烧过程中所发生的主要变化有以下六点: (一)自由水的蒸发 (二)黏土质原料脱水和分解 (三)石灰石的分解 (四)固相反应 (五)熟料烧成

(六)熟料的冷却 (一)自由水的蒸发 无论是干法生产还是湿法生产,入窑生料都带有一定量的自由水分,由于加热,物料温度逐渐升高,物料中的水分首先蒸发,物料逐渐被烘干,其温度逐渐上升,温度升到100~150℃时,生料自由水分全部被排除,这一过程也称为干燥过程。 (二)黏土质原料脱水和分解 黏土主要由含水硅酸铝所组成,其中二氧化硅和氧化铝的比例波动于2:1~4:1之间。当生料烘干后,被继续加热,温度上升较快,当温度升到450℃时,黏土中的主要组成高岭土(Al2O3·2SiO2·2H2O)失去结构水,变为偏高岭石(2SiO2·Al2O3)。 高岭土进行脱水分解反应时,在失去化学结合水的同时,本身结构也受到破坏,变成游离的无定形的三氧化二铝和二氧化硅,其具有较高的化学活性,为下一步与氧化钙反应创造了有利条件。在900-950℃,由无定形物质转变为晶体,同时放出热量。 (三)石灰石的分解

水泥厂对用煤的要求及检验方法

水泥厂对用煤的要求及检验方法 管庆超 煤是水泥的一个重要的燃料,煤质量的好坏,直接影响着水泥熟料的质量,因此对燃煤检验有着严格的标准和要求。我们目前对燃煤的检验项目有水分、粒度、原煤的灰分、挥发分、全硫量和低位发热量。 1﹑应用基水分的测定 1.1 准确称取已破碎到3mm左右的煤样50g,置于预先烘干恒重的称量瓶中,放入105~110℃的干燥箱中烘干20~30min,取出稍冷,放入干燥器中冷却至室温后称量。 1.2 水分的质量百分数按下式计算: G–G1 Wy=――――×100 G 式中:Wy――――应用基煤水分质量百分数,%; G――――烘干前试样质量,g; G1――――烘干后试样质量,g。 2﹑分析基(空气干燥基)水分的测定 2.1 准确称取粒度为0.2mm的空气干燥基煤样1.0±0.1g(准确至0.0001g),置于已恒量的称量瓶中,将称量瓶放于预先鼓风并加热至105~110℃的烘干箱中,在一直鼓风的条件下烟煤干燥1~1.5h,从烘干箱中取出称量瓶,冷却3~5min后,放入干燥气,冷却后称量。 2.2 进行检查性干燥,每次30min,直到连续两次干燥煤样的质量减少不超

过0.0010g或质量增加时为止。在后一种情况下,采用质量增加前一次的质量为计算依据。水分在2.00%以下时,不必进行检查性干燥。 2.3 分析基水分按下式计算: G1-G2 M ad= ------------×100 G 式中:M ad―――空气干燥基水分的质量百分数,%; G――――称取试样的质量,g; G1―――干燥前试样与称量瓶质量,g; G2―――干燥后试样与称量瓶质量,g. 3﹑灰分的测定 3.1 准确称取分析基煤样1.0000g,于已恒重的灰皿中,均匀摊平,放入高温炉中从低温500℃升至815±10℃后保持50分钟,取出冷却3~5min后,放入干燥器中冷却至室温后称量。 3.2 灰分的质量百分数按下式计算: G1-G2 A ad=------------×100 G 式中:A ad―――灰分的质量百分数,%; G―――试样的质量,g; G1―――灼烧后残渣与灰皿重,g; G2―――空灰皿重,g。

EDTA容量法测定水泥中氧化镁含量的测试结果不确定度评定

EDTA 容量法测定水泥熟料中氧化镁 含量的测试结果不确定度评定 1测试方法 样品的熔融 称取约 试样,精确至 ,置于银坩埚中,加入 6~7g 氢氧化钠,在 650~700℃的高温下熔融20min 。取出冷却,将坩埚放入已盛有 100mL 近沸腾水的烧杯中,盖上表面皿,于电热板上适当加热,待熔块完全浸出后,取出坩埚,用水冲洗坩埚和盖,在搅拌下一次加入 25~30mL 盐酸,再加入 lmL 硝酸。用热盐酸(1+5)洗净坩埚和盖,将溶液加热至沸,冷却,然后移入 250mL 容量瓶中,用水稀释至标线,摇匀。此为溶液 E 。 氧化钙的测定 从溶液 E 中吸取 溶液放入 400mL 烧杯中,加入 7mL 氟化钾,搅拌并放置 2min 以上,加水稀释至约200mL ,加入 5mL 三乙醇胺(1+2)及少许的钙黄绿素一甲基百里香酚蓝一酚酞混合指示剂(CMP),在搅拌下加入氢氧化钾溶液至出现绿色荧光后再过量 5~8mL ,此时溶液在 pH13以上,用 [c(EDTA)=/L]EDTA 标准滴定液滴定至绿色荧光消失并呈现红色。 氧化镁的测定 从溶液E 中吸取 溶液放入 400mL 烧杯中,加水稀释至约200mL ,加 lmL 酒石酸钾钠溶液,5mL 三乙醇胺 (1+2),搅拌,然后加入25mLpH10缓冲溶液及少许酸性铬蓝K 一萘酚绿B 混合指示剂,用 [c(EDTA)=/L]EDTA 标准滴定溶液滴定,近终点时应缓慢滴定至纯蓝色。 2数学模型 水泥中氧化镁的质量百分数:1001000 ) ((%)3 121??-?= T Mgo V V m V V T X 式中:Mgo X ——氧化镁的质量百分数,%; T ——每毫升 EDTA 标准滴定溶液相当于氧化镁的毫克数,mg /mL ; 1V ——滴定钙、镁总量时消耗 EDTA 标准滴定溶液的体积,mL ; 2V ——测定氧化钙时消耗 EDTA 标准滴定溶液的体积,mL ; 3V ——所取试样溶液的体积,mL ; T V ——试样溶液总体积,mL ; m 1 ——试料的质量,g 。 3不确定度来源分析 水泥中氧化镁含量测量不确定度的来源包括: (1)试样质量m 1不确定度 u(m 1); (2)样品的湿度带来的不确定度 u(Hum); (3)试样溶液总体积T V 的不确定度 u(T V ); (4)滴定钙、镁总量时消耗 EDTA 标准溶液体积V 1 的不确定度 u(V 1); (5)测定氧化钙时消耗 EDTA 标准溶液体积V 2的不确定度 u(V 2); (6)所移取试样溶液体积V 3的不确定度 u(V 3); (7)EDTA 标准溶液对氧化镁滴定度T 的不确定度 u(T); (8)肉眼判断滴定终点的标准不确定度 u(V end );

高硫煤矸石配料对熟料生产的影响及措施

62表5 42.5等级高抗硫酸盐硅酸盐水泥主要性能指标对比 表4 熟料化学成分及强度统计 中图分类号:TQ172.4 文献标识码:B 文章编号:1008-0473(2019)03-0062-03 DOI 编码:10.16008/https://www.doczj.com/doc/3d5168462.html,ki.1008-0473.2019.03.012 高硫煤矸石配料对熟料生产的影响及措施 伍定坤 冀东水泥铜川有限公司,陕西 铜川 727100 摘 要 在生料中加入煤矸石进行配料生产,能实现降低生产成本的目的,不仅提高了企业的经济效益,还解决了煤矸石作为固废对环境的危害。但须通过工艺改进,增加脱硫设施、操作优化等措施,在一定程度上可以有效地消除煤矸石中硫对熟料煅烧系统稳定运行的不良影响。 关键词 生料配料 高硫煤矸石 SO 2 结皮 排放 0 引言 水泥行业是高耗能行业,能源消耗占到水泥 熟料成本的65%。其中,煤炭消耗占到水泥熟料成 本的50%~55%。国务院办公厅印发的《能源发展 战略行动计划(2014~2020年)》,其中主要任务 之一便是优化能源结构、降低煤炭消费比重,计划 要求控制重点地区、重点领域煤炭消费总量,推进 减量替代,压减煤炭消费,到2020年,全国煤炭消费比重降至62%以内。在能源使用上,计划指出,对高耗能和产能过剩行业实行能源消费总量控制的强约束政策,其他产业按先进能效标准实行强约束,现有产能能效要限期达标,新增产能必须符合国内先进能效标准。近年来由于煤炭价格不断攀升,水泥成本受熟料成本的影响增加较大,因此节能降耗成了水泥行业的主旋律。 参考文献 [1] GB748-2005, 抗硫酸盐硅酸盐水泥[S]. [2] 丁奇生, 唐根华, 陆树标.电石渣替代石灰石生产水泥熟料 的新工艺[J]. 新世纪水泥导报,2007(1):10-14.(收稿日期:2019-01-20) 2019年第3期 新世纪水泥导报 No.3 2019 Cement Guide for New Epoch 烧成论坛

第五章 硅酸盐水泥熟料的煅烧

第五章硅酸盐水泥熟料的煅烧 §5-1 生料在煅烧过程中的物理化学变化 §5-2 熟料形成的热化学 §5-3 矿化剂、晶种对熟料煅烧和质量的影响 §5-4 挥发性组分及其他微量元素的作用 §5-5 水泥熟料的煅烧方法及设备 【掌握内容】 1、硅酸盐水泥熟料的形成过程:名称、反应特点、影响反应速度的因素; 2、熟料的形成热、热耗的定义、一般数值、影响因素 3、挥发性组分对新型干法水泥生产的影响 4、悬浮预热器窑及预分解窑的组成、工作过程 5、影响窑产、质量及消耗的因素 【理解内容】 1、C3S的形成机理,形成条件; 2、影响熟料形成热的因素,形成热与实际热耗的区别,降低热耗的措施; 3、回转窑的结构、组成、及工作过程; 4、回转窑内“带”的划分方法,预分解窑内“带”的划分。 【了解内容】 1、水泥熟料的煅烧方法及设备类型; 2、矿化剂、晶种:定义、类型、作用、使用; 3、湿法窑的组成,工作过程 合格生料在水泥窑内经过连续加热,高温煅烧至部分熔融,经过一系列的物理化学反应,得以硅酸钙为主要成分的硅酸盐水泥熟料的工艺过程叫硅酸盐水泥熟料的煅烧,简称煅烧。 结合目前生产现状及学生的就业去向,主要介绍与回转窑尤其是新型干法回转窑有关的知识,立窑有关知识留给学生自学。 第一节生料在煅烧过程中的物理化学变化生料在加热过程中,依次进行如下物理化学变化: 一、干燥与脱水 (一)干燥 入窑物料当温度升高到100~150℃时,生料中的自由水全部被排除,特别是湿法生产,料浆中含水量为32~40%,此过程较为重要。而干法生产中生料的含水率一般不超过1.0%。 (二)脱水 当入窑物料的温度升高到450℃,粘土中的主要组成高岭土(Al2O3·2SiO2·2H2O)发

不同煤质对窑煅烧的影响讲义 - 副本

不同煤质对窑煅烧的影响 通常回转窑煅烧用煤质量要求灰分≤30%,挥发分在18%~30%,发烧量≥5000kcal/kg,煤粉细度要求控制在8%~15%,实际上,我国当前因为优质煤炭供给紧张且价格较高,很多厂家实际移动破碎站达不到这一要求,因为煤粉燃烧后灰分全部沉落在烧成带的熟料颗粒表面上,造成熟料颗粒表面富硅化,从而改变熟料表层矿物成分,C3S含量下降,C2S含量上升,从而影响熟料质量。 当前相应的对策措施,一是适度调整增加干法窑尾分解炉用煤量和降低窑头喷煤量,其比例控制在6:4左右,以增加分解炉中煤灰分与灼烧生料的混合程度,降低窑头煤灰对熟料质量的负面影响;二是采取窑尾分解炉与窑头喂煤质量分别控制,分解炉喂低热值煤,窑头喂高热值煤,可降差劲质煤对窑头熟料质量的不利影响。 水泥厂熟料煅烧使用燃料主要有煤和油。我国原油比较紧张,水泥厂熟料煅烧使用燃料基本上全部是煤。水泥厂是用煤大户,早期,我国水泥回转窑熟料煅烧使用的燃料主要是高热值(≥5500kcal/kg)、高挥发份(≥25%)的优质烟煤。但我国煤炭储量的地区分布很不均匀,大量的优质煤炭集中在华北、西北及中南的部分地区,而工业较发达的南方及沿海地区储量相对有限,且大多为劣质煤。若能利用劣质煤(指无烟煤、贫煤及褐煤)代替优质烟煤煅烧水泥熟料,可大大降低水泥成本,提高水泥厂的经济效益。如今,水泥厂竟争越来越激烈,为了降低水泥成本,越来越多的水泥厂希望使用劣质煤煅烧水泥熟料。

一、劣质煤对窑煅烧的影响 1、由于煤质差,造成相当部分煤粉未完全燃烧,未燃烧的煤粉进入五号筒及窑尾二次燃烧,形成还原气氛及局部高温,造成下料管及C4、C5锥部结皮堵塞。 2、劣质煤中的有害成分在C 3、C 4、C5筒易富集,形成结3、高灰分、低热值的煤,易引起烧成带温度低,飞沙料增多,熟料产、质量下降。 4、高灰分、低热值的煤,易产生灰分沉积及窑内液相量的过早出现,引起窑内结圈,结蛋,磨蚀耐火砖,影响窑内通风和窑的运行。 二、劣质煤煅烧的干法窑优化设计 1、采用高细高产管磨制备煤粉 劣质煤不论是高灰份、低热值的烟煤还是低挥发分的贫煤、无烟煤,用于煅烧回转窑水泥熟料,首先要解决煤粉细度问题。煤粉细度对着火温度和燃烧时间影响很大,提高煤粉细度,也就是增加煤粉中固定炭的比表面积,可使其与空气接触面积增大,有利于提高煤粉燃烧. 目前,我国煅烧劣质煤的水泥厂大部分采用高细管磨粉磨原煤。该磨机采用先进的技术,增加了细磨、选粉、分离的能力,减少了仓内过粉磨现象。磨机设有两个研磨仓,一仓采用球形研磨体,主要承担破碎和粗磨功能,二仓采用特制的钢锻,主要承担细磨的作用,在一仓和二仓之间采用新型筛分隔仓板,原煤进入一仓粉磨,通过筛分隔仓板时,粗颗粒返回一仓,细粒进

回转窑熟料烧成还原气氛的成因及对熟料的影响

回转窑熟料烧成还原气氛的成因及对熟料的影响 水泥熟料的正常生产是在氧化气氛下进行的,但是当燃料燃烧不充分时会产生还原气氛。正常状态下,燃料充分燃烧生成CO2,燃料所蕴含的热能全部释放出来,若氧气不足时,煤粉就会不完全燃烧生成CO,产生还原气氛。事实上还原气氛对熟料烧成产生严重的影响,烧成中出现黄心料,熟料易磨性差,并严重影响水泥的颜色。 (1)还原气氛对回转窑操作的影响(窑后结圈,虽说大窑结圈结球很难但是会影响窑内通风状况):有专家说:燃料不完全燃烧产生还原气氛是造成预分解系统粘结堵塞的关键原因。究其原因,煤粉的不完全燃烧使窑内产生还原气氛,未燃尽的焦炭离子沉落在窑后段继续燃烧产生大量的热致使窑内提早出现液相,引起后结圈结球,Fe2O3铁在还原气氛下被还原生成FeO,易形成低熔点矿物形成后结圈。 (2)烧成中熟料有黄心料存在:还原气氛下烧成熟料外观呈现正常熟料颜色灰黑色,而内部呈浅棕色到棕黄色不等,随烧成还原气氛严重程度的不同,熟料内颜色的深浅程度也不同,严重时熟料呈棕黄素。究其原因:物料在还原气氛下煅烧,高价氧化物Fe2O3被还原成低价氧化物FeO,大量的FeO进入B矿及玻璃体内,导致黑色矿物C4AF生成量减少而导致熟料黄心。正常熟料磨制的水泥是墨绿色的,而还原气氛下烧成熟料磨制的水泥呈灰黄色,水泥用户往往担心灰黄色水泥存在质量问题而不敢放心使用。 (3)影响水泥熟料化学组成和矿物组成的影响:有实验指出,与正常煅烧的熟料相比,还原气氛下烧成的熟料中氧FeO的含量增加1.60%,f-CaO的含量增加1.71%,C2S含量增加8.14%,C3A增加2.84%,而C3S含量降低8.80%,C4AF 含量降低4.59%。主要是因为水泥熟料在还原气氛下烧成,引起了熟料体系中可变价元素Fe的变化, 即Fe3+还原成Fe2+( 熟料中未发现单质Fe 的存在) , 使熟料体系中FeO 含量明显增加; 而且, 由于Fe 元素的价态变化, 将影响熟料体 系中铁相的形成,使熟料中C3A的含量增加, A 矿的稳定性降低, 在A 矿晶体内部发生成分离析而形成二次B 矿和f-CaO。因此, 导致熟料体系中C4AF、C3S 形成量减少, 而C2S、C3A、f-CaO 含量增加。 (4)导致A矿分解影响熟料质量:通常认为在熟料体系中,A矿是在液相中结晶形成的,一般有两种生长模式,稳定生长和不稳定生长。稳定生长的A矿典型特点就是内部包裹物少,杂质含量低晶体形态规则,晶体结构缺陷少;不稳定

水泥厂生产流程及设备原理终审稿)

水泥厂生产流程及设备 原理 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

水泥厂生产流程及设备原理简介 1、水泥厂生产流程 1.1 水泥生产工艺 水泥的生产工艺简单讲便是两磨一烧,即原料要经过采掘、破碎、磨细和混匀制成生料,生料经1450℃的高温烧成熟料,熟料再经破碎,与石膏或其他混合材一起磨细成为水泥。由于生料制备有干湿之别,所以将生产方法分为湿法、半干法或半湿法、干法3种。 1.2全场平面布置 图1.1 水泥厂的工艺流程简图 图1.2 立磨原理图 图1.1 图1.2 1.3全厂主机设备与存储设备 表1.1全厂主机设备与存储设备列表 生料磨、回转窑、水泥磨、煤磨、冷却机、储存设备(堆料场,配料站,均化库,熟料库,水泥库)

(1)PC-2018反击锤式破碎机(2)板式喂料机(3)MLS3626立式辊磨机(4)LS 型螺旋输送机(5)链斗输送机(6)O-Sepa选粉机(7)罗茨鼓风机(8)水泥窑尾引风机(9)调速型液力偶合器(10)陕西压强设备厂调速机(11)离心通风机 2、生料制备 2.1 矿山开采的工艺流程

矿山开采的工艺流程:采矿工作面的整平→布置爆孔→钻孔→装药爆破 →集矿→装车 2.2 原料的破碎,预均化和生料粉磨 从矿山开采的矿石用卡车运到水泥厂,由板式喂料机送入单段锤式破碎机,再用皮带送到预均化堆场,采用横堆竖取的方式取料,料经皮带送到石灰 石仓.再加上从铁粉仓和粘土仓及粉煤灰仓经电子皮带称定量取料混合后送入生料磨(立磨).经立磨粉磨后粗细料被选粉机分离,粗料返回立磨继 续粉磨,细料送入两个锥型仓暂时储存. 2.3 生料储存,均化和输送 由立磨出来的细粉经气力输送管道和皮带提升机送到均化库顶部,经四嘴下料机进入均化库.均化库既有均化的作用也有储存生料的作用. 2.4 水泥厂生料工段工艺流程图石灰石→板式喂料机→单段锤式破碎机 →皮带→堆料机→取料机→皮带→配料站→立磨→o-sepa选粉机→气力 输送管道和皮带提升机→生料均化库 2.5 生料工段主要设备,设备工作原理 (1) 板式喂料机 板式喂料机能承受较大的料压和冲击,适应大块矿石的喂料,该机给料均 衡运转可靠,但设备较重,价格高.板式喂料机分轻型,中型和重型三种.立窑水泥厂石灰石破碎的喂料机一般选用中型的占多.

相关主题
文本预览
相关文档 最新文档