当前位置:文档之家› 类胡萝卜素生物合成抑制剂的研究进展解析

类胡萝卜素生物合成抑制剂的研究进展解析

类胡萝卜素生物合成抑制剂的研究进展解析
类胡萝卜素生物合成抑制剂的研究进展解析

类胡萝卜素生物合成抑制剂的研究进展

11应用化学

摘要概述了类胡萝卜素生物合成抑制剂类除草剂的作用机理以及八氢番茄红素去饱和

酶(phytoene desaturase, PD酶)抑制剂的结构-活性关系。简要介绍了进入商品化开发应用的类胡萝卜素生物合成抑制剂类除草剂品种以及它们的除草活性。

类胡萝卜素生物合成是极佳的除草剂作用靶标,经类胡萝卜素生物合成抑制剂处理后的植物最明显的症状是产生白化叶片【1】。植物产生白化叶片的首要原因是类胡萝卜素生物合成被抑制,其次是叶绿素生物合成被抑制,而且已合成的叶绿素还会遭到破坏。尽管经药剂处理后的植株仍能生长一段时间,但是由于不能产生绿色的光合组织,因此其生长不可能持续下去,随后生长停止,植物死亡【2】。由于此类除草剂以类胡萝卜素生物合成为作用点,确保了动植物之间的选择毒性,具有高效、低毒的特点,成为新型除草剂开发的热点。

1、类胡萝卜素生物合成

类胡萝卜素在植物中的生物合成途径见图l:首先,异戊烯焦磷酸(IPP)在IPP异构酶作用下生成二甲基丙烯基二磷酸(DMAPP),然后DMAPP在拢儿基抛牛儿基焦磷酸合成酸(CGPS)作用下与三个IPP缩合,依次生成10碳的拢牛少L焦磷酸(GPP)、巧碳的法尼基焦磷酸(FPP〕即碳的橄儿基推牛儿基焦磷酸(GGPP)。2个GGPP在八氢番茄红素合成酶(PSY)作用下形成第一个40碳的、无色的举胡萝卜素一八氢番茄红素(Phytone)。Phytone再经过连续的脱氢反应、共扼双键延长,经八氢番茄红素脱氮酶(PDS)脱笨形成ζ一类胡萝卜素,直至在ζ一胡萝卜素脱氢酶(ZDS)作用下形成番茄红素(Lycopene)。番茄红素是类胡萝卜素进一步合成代谢的分枝点,可被环化形成β一、ε一环两大类胡萝卜素分支。番茄红素分子的两个末端在番茄红素β一环化酶(LycB)作用下形成β一环,即为β一胡萝卜素;若只有其中一个末端在番茄红素ε一环化酶(LycE)作用下形成ε一环,即为δ一胡萝卜素;而若分子的两个末端分别被LycB及LycE作用形成β一环和ε一环,即为α一胡萝卜素[3][4]。α一、β一胡萝卜素还可形成结构更为复杂的叶黄素等[5]。

类胡萝卜素是含 40 个碳的类异戊烯聚合物,即四萜化合物,是含有 8 个异戊二烯单位的四萜化合物,由两个二萜缩合而成。植物中的萜类化合物有两条合成途径,即甲羟戊酸途径( mevalonate,MVA)和2-C-甲基-D-赤藻糖醇-4-磷酸( 2-C-methyl-D-erythritol-4-phosphate,MEP) 途径。Zhan 等【6】综述了植物帖类化合物的生物合成途径并以图表形式清晰的给出了类胡萝卜素生物合成的前体物质异戊烯二磷酸

( isopentenydiphosphate,IPP) 主要来自于 MEP 途径,其在 IPP 异构酶作用下生成二甲基丙烯基二磷酸 ( dimethylallyldiphosphate,DMAPP) 。MEP 途径主要在植物特有的细胞器质体中进行,以 IPP 为中间产物,除了类胡萝卜素,赤霉素、脱落酸、生育酚、叶绿素、叶醌、质体醌和单萜等的合成也是通过该途径。

三个 IPP 分子和一个 DMAPP 分子在牻牛儿基牻牛儿基二磷酸合酶( geranylgeranyl diphosphate synthase,GGPS) 催化下缩合形成 20 个碳原子的牻牛儿基牻牛儿基二磷酸( geranylgeranyl diphosphate,GGPP) ,GGPP 是多种物质生物合成的共同前体,是形成植物类胡萝卜素最直接的前体,参与合成植物中第一个类胡萝卜素———八氢番茄红素。

在八氢番茄红素合酶( phytoene synthase,PSY) 催化下,两个 GGPP 分子缩合生成类胡萝卜素生物合成途径中的第一个化合物: 无色的 15-顺式-八氢番茄红素。在植物中,由八氢番茄红素脱氢酶 ( phytoenedesaturase,PDS ) 和ζ-胡萝卜素脱氢酶 ( ζ-carotenedesaturase,ZDS) 催化 4 步脱氢反应,PDS 脱氢作用的产物 9,15,9'-三顺式-ζ-胡萝卜素,在光和ζ-胡萝卜素异构酶( ζ-carotene isomerase,ZISO) 作用下异构形成黄色的 9,9'-二顺式-ζ-胡萝卜素【7】,在植物非绿色组织中,由类胡萝卜素异构酶( carotenoid isomersase,CRTISO)催化作用下,生成全反式番茄红素【8】【9】。全反式番茄红素是一种红色的类胡萝卜素,主要存在于西瓜、番茄等的果实中。

番茄红素分子式为 C40H56,为含有 11 个共轭双键和 2 个非共轭双键的多不饱和脂肪烃,是一种很重要的类胡萝卜素,结晶是暗红色【10】。分子式及其晶体结构如图 2所示:

图2 番茄红素的结构及其晶体

番茄红素环化反应是类胡萝卜素进一步合成代谢的分支点,可被环化形成β-、ε-环两大类胡萝卜素。番茄红素分子的两个末端在番茄红素β-环化酶( lycopeneβ-cyclase-L YCB) 作用下形成β-环,即为β-胡萝卜素,其分子结构如图3所示。

图3 β-胡萝卜素的结构及其晶体

β-胡萝卜素以不同的有机溶剂提取得到的晶体形状不同,一般为深紫红色六棱柱结晶或红色正方形叶片晶体。可溶于二硫化碳、苯、氯仿等溶剂,微溶于甲醇、乙醇、食用油等溶剂,不溶于水、酸和碱等。β-胡萝卜素对空气、光和热较敏感,空气中易被氧化而变为无色、无活性的氧化产物【11】,其晶体结构如图4 所示。

图 4 δ-胡萝卜素的结构

若只有其中一个末端在番茄红素ε-环化酶( lycopene ε-cyclase-L YCE) 作用下形成ε-环,即为δ-胡萝卜素,其分子结构如图 4 所示。以δ-胡萝卜素为底物经过L YCB 催化,在其另一端形成β-环,生成α-胡萝卜素。α-胡萝卜素为红黄色板状结晶,能溶于石油醚、氯仿,难溶于甲醇,其分子结构如图5所示【12】。

图 5 α-胡萝卜素的结构

β-胡萝卜素、α-胡萝卜素、γ-胡萝卜素和β-隐黄质都含有未被取代的β-环,是维生素A 生物合成的前体物质,被称为维生素A 原。β-胡萝卜素环可以在非亚铁血红素β-胡萝卜素羟化酶( β-carotene hydroxylase,BCH) 催化下经中间产物β-隐黄质( β-cryptoxanthin)生成玉米黄质( zeaxanthin) ,而α-胡萝卜素则可在细胞色素P450 胡萝卜素羟化酶( ε-carotene hydroxylase,CYP97) 的作用下生成叶黄素【12-14】。叶黄质和玉米黄质在生物体内以酯化物形式存在,且存在立体异构现象【15-16】。玉米黄质可以转化为花药黄质( a ntheraxanthin) ,进而转化为紫黄质( violaxanthinde) ,两步环氧化作用都是在玉米黄质环化酶( zeaxanthin epoxidase,ZEP)催化作用下完成。

在胡萝卜素分子中引入羟基、酮基、醚基、环氧基等含氧基团,可以将其转化为其氧化衍生物叶黄素( 类胡萝卜素中的另一大类物质) 。常见的叶黄素主要有α-隐黄质、叶黄质、玉米黄质、紫黄质、新黄质、辣椒红素和虾青素等,都是常见的氧化衍生叶黄素,其类胡萝卜素分子中引入了羟基、酮基、醚基、环氧基等含氧基团,是类胡萝卜素中的另一大类物质,类胡萝卜素合成途径如图6 所示。

2、类胡萝卜素生物合成的调控

一般来说,类胡萝卜素在体内的生物合成是通过基因和环境因素(如:光、氧及营养等)多级调控的。许多文章都论述了不同种生物中类胡萝卜素生物合成的调控【2,8】。在此,只将基因调控及合成抑制方面的研究予以介绍。

2.1基因调控

高等植物光和组织的多种突变可影响其中的类胡萝卜素生物合成,并可能会产生多种表型,包括在叶子生长过程中的光漂白和其它变化。许多人已对Arabidopsis thalianna,Lycopersicon esculentum 和Zea mays 中的突变做了深入的研究[15]。此外,已有文献报道了在Hordeum vulgare、Capsicum annuum和Helianthus annuus中的突变。除了突变之外,高等植物中类胡萝卜素的生物合成也受到植物生长和个体发育的调控,例如,

PSY和PDS在Lycopersicon esculentum 的叶子、花和果实中的表达就明显不同。在花的发育期,这两种基因的表达产物会比开花前多10倍[16]。

与高等植物相比,微生物中类胡萝卜素生物合成的基因调控比较简单。母菌株通过各种处理(如物理、化学和放射等处理)即可得到突变型或新菌株。

2.2合成的抑制

对类胡萝卜素生物合成抑制的研究已有40 年的历史。Bramley曾对类胡萝卜素生物合成的抑制以及各种抑制剂的情况进行过全面的评述[17]。已经证明,多种化合物在合成途径中可抑制各种反应,主要是八氢番茄红素去饱和环化反应。图6阐明了多种抑制剂和其作用点。这些抑制剂在生物合成途径和反应机制的研究中起到了重要的作用,尼古丁是个典型的例子。它可在各种微生物中抑制环化反应,从而导致番茄红素和链孢红素在体内的积累,现被大量用于类胡萝卜素生物合成途径的研究中。

图6 类胡萝卜素生物合成抑制剂的作用位点示意图

类胡萝卜素的生物合成对许多生物(尤其是光合生物)的生命是很重要的,抑制类胡萝卜素的生物合成可能导致生物体的死亡。在高等植物的光合组织中,八氢番茄红素去饱和反应的抑制剂可导致组织失去颜色,最终导致植物体的死亡。因此,这些抑制剂亦可作为漂白除草剂。

3、类胡萝卜素生物合成抑制剂作用机理的研究

类胡萝卜素生物合成需要多种酶的参与(见图7),理论上讲,抑制参与催化的任何一种酶都能阻断类胡萝卜素的生成,最终导致植物死亡[18]。目前,研究最为透彻的作用位点是八氢茄红素去饱和酶(phytoene desaturase, PD酶)以及F-胡萝卜素去饱和酶(F-carotenedesaturase, ZD酶),尤其是PD酶。

图7

4、类胡萝卜素生物合成抑制剂

类胡萝卜素生物合成抑制剂又称白化除草剂(bleaching herbicide)。此类除草剂引起的变化主要表现为植物出现白化叶片,导致植物死亡。主要原因有两点:其一,植物体内类胡萝卜素生物合成被抑制;其二,植物体内叶绿素生物合成被抑制[19]。阻断类胡萝卜素生物合成的主要两种酶为八氢番茄红素去饱和酶(PDS)以及F-胡萝卜素去饱和酶(ZDS)。

4.1八氢番茄红素去饱和酶,F-胡萝卜素去饱和酶抑制剂的作用机制

目前,研究最为透彻的类胡萝卜素生物合成抑制剂的作用位点是八氢番茄红素去饱和酶以及F-胡萝卜素去饱和酶。A L Babili[20]曾发现如果PDS受到抑制,植物体内六氢番茄红素以及F-胡萝卜素积累程度受到影响,最终导致类胡萝卜素积累减少。

通过类异戊二烯途径或类萜途径可以得到类胡萝卜素。类胡萝卜素的生成过程是由二甲基丙烯基焦磷酸和异戊烯焦磷酸的浓缩物生成=牛儿基=牛儿基焦磷酸,后者进而缩合得到八氢番茄红素,在PDS的作用下八氢番茄红素脱氢生成六氢番茄红素,六氢番茄红素继续在PDS 的作用下脱氢生成F-胡萝卜素,最后F-胡萝卜素在ZDS作用下脱氢生成番茄红素[21]。类胡萝卜生物合成抑制剂通过对PDS以及ZDS的抑制,造成八氢番茄红素大量积累,六氢番茄红素减少,导致类胡萝卜素的积累受到抑制,最终使得植物出现白化症状而死亡。图8为植物类胡

萝卜素生物合成途径简图[17]。

图8 植物类胡萝卜素生物合成途径简图

4.2 八氢番茄红素去饱和酶,F-胡萝卜素去饱和酶抑制剂的应用

目前世界上以PDS为作用靶标,已经进入商品化开发应用的类胡萝卜素生物合成抑制剂类除草剂的发展研究更为系统化。Atul等[22]报道,氟啶草酮(fluridone)作为一种抑制PDS类的除草剂,是美国环境保护局批准的唯一对水生杂草进行长期系统控制的除草剂。Kolyo等[23]把它用于研究类胡萝卜素减少的程度与植物光合系统的功能之间的关系,数据显示,微量氟啶草酮的使用使类胡萝卜素减少25%,可见除草活性较好。

到目前为止, ZDS抑制剂类除草剂还不具备商品化的条件,但已经发现能够抑制ZDS的许多嘧啶类衍生物,不仅可以导致F-胡萝卜素的量增加,也使八氢番茄红素得到大量积累,此类衍生物甚至对PDS有更好的抑制作用。Breitenbach等[23]曾试验了14种不同的6-甲基嘧啶衍生物对F-胡萝卜素去饱和酶的抑制活性,结果表明,抑制作用最强的是结构中含二氯-环丙

基-甲基-氧代的化合物。番茄红素环化酶(lycopene cyclase)是阻断类胡萝卜素生成的另一个作用靶标,Burdge[24]曾报道多种可以抑制此酶的嘧啶酮类化合物、三乙胺衍生物和烟碱类衍生物,但至今还未有一种化合物进入商品化市场。目前已开发或推广应用的主要PDS抑制剂类除草剂见表1

表1 PDS抑制剂类除草剂的主要品种

5、质体醌生物合成抑制剂

质体醌是类胡萝卜素生物合成以及光合电子传递过程中的一个电子接受体。质体醌的生物合成受到抑制,间接导致类胡萝卜素的生物合成受到抑制,最终使得植物死亡。质体醌生物合成抑制剂也具有除草活性,能产生植物白化毒素。这些抑制剂的靶标酶为对羟苯基丙酮酸双氧化酶[25]。

5.1对羟苯基丙酮酸双氧化酶抑制剂的作用机制

20世纪初,一个新的类胡萝卜素生物合成抑制剂作用位点——对羟苯基丙酮酸双氧化酶(HPPD)被确定,在微生物、哺乳动物和植物中都可以找到HPPD,但在不同的生物体内作用机制不同。HPPD是一种铁-酪氨酸蛋白,在哺乳动物体内,HPPD参与生物体内酪氨酸和苯丙氨酸的分解代谢【26】;在植物体内HPPD催化质体醌与生育酚生物合成的起始反应【27】,亦即催化对羟苯基丙酮酸转化为尿黑酸的过程,同时释放出CO2。对羟基苯基丙酮酸在HPPD催化条件下转化得到的尿黑酸是植物体内一种重要物质。有氧条件下,这个过程包括氧化脱羧、芳环羟基化以及羧甲基的1,2位迁移,从而生成质体醌和生育酚【28】。

尿黑酸的生物合成被抑制,导致质体醌与生育酚合成受阻。植物体内质体醌和生育酚的减少,可引起植物白化症状【29】。生育酚在植物的新陈代谢过程中具有重要的作用,它是高等植物细胞膜的主要抗氧化剂之一;而质体醌是植物在进行光合作用时重要的电子传递载体,同时HPPD抑制剂也起着光合作用电子传递抑制剂的角色。此外,在类胡萝卜素的生物合成过程中,质体醌还是辅助八氢番茄红素去饱和酶的关键因素,八氢番茄红素去饱和酶的催化作用受阻中的主要原因是由于质体醌的减少,最终导致类胡萝卜素的生物合成受到抑制,使植物出现白化症状。类胡萝卜素既可作为光吸收体,又可作为保护性物质,降低三线态叶绿体或单线态氧的激发,类胡萝卜素的生物合成被抑制将导致植物最终出现白化症状而死亡。

5.2对羟苯基丙酮酸双氧化酶抑制剂的应用

HPPD抑制剂最初来源于三酮类化合物,因此对于HPPD抑制剂构效关系的研究也主要集中于三酮类化合物。影响HPPD抑制剂活性的结构主要分为3类:在环己二酮部分中,4-位或者6-位引入取代基后可以增强除草剂的活性,如果环己二酮取代基被异噁唑环替代,可形成异噁唑类抑制剂;如果环己二酮取代基被吡唑环替代,可形成吡唑类HP-PD抑制剂。在苯环部分中,为增强除草剂的活性,可引入强吸电子取代基,并且引入的取代基碳链越长、基团体积越大,除草剂活性提高的效果越明显。在三酮部分中,HPPD抑制剂的除草活性取决于7-位羰基的存在、具有共平面性的三酮系统及形成烯醇的能力【30】。

目前,对于三酮类除草剂已有3个品种开发成功,它们是磺草酮(sulcotrione)、甲基磺草酮(me-sotrione)和双环磺草酮(benzobicyclon)。三酮类除草剂的最大优点是【31】:其一,不易挥发

与光解,水溶液的贮存稳定性强;其二,为弱酸性除草剂,便于植物吸收;其三,与其他除草剂的物理相容性好,利于开发混合制剂。

目前已开发或推广应用的主要HPPD抑制剂类除草剂见表2。

表2 HPPD抑制剂类除草剂的主要品种

6、2-唑基苯氧基嘧啶类——除草剂新的类胡萝卜素生物合成抑制剂

取代的2-唑基-4-苯氧基嘧啶类(结构式1)是新一类高效除草剂,它们的作用机理是抑制类胡萝卜素的生物合成。嘧啶上的取代基都是含氧的杂环,包括吡啶、咪唑和三唑,这类化合物是苗前和苗后除草剂,在苗前使用活性更高,小麦、玉米和大豆对这类化合物具有选择性。在禾谷类田间试验中,吡唑基嘧啶la对阔叶杂草显示出了极佳的防效,而且对小麦安全,使用剂量为5~10g/hm2。

6.1 2-唑基-4-苯甲酰基嘧啶的合成

Miyashita【33】近期给出了一条直接合成4-苯甲酰基嘧啶的路线。他们发现,用某些苯甲醛类在催化剂存在下可以进行卤代杂环的酰化反应,如1,3-二甲基咪唑碘化物、氢化钠、嘧啶(3)和3-三氟甲基苯甲醛反应,可以生成所需的苯甲酰基嘧啶(11),收率很高。用4-三氟甲基吡唑取代氯化物(11)很容易得到高活性的嘧啶化合物(1d),(11)与4-三氟甲基苯甲醛进行铃木耦合,生成2-芳基嘧啶(12),其它的醛类、嘧啶、唑类也可以进行类似反应(图9)。

图9 4-苯甲酰基嘧定类的模拟合成

6.2 唑基甲基嘧啶的合成

选择Strekowski【34】的嘧啶官能团作快速合成液。首先,利用嘧啶(13)与甲基锂进行甲基化反应,在4-位上引入一个甲基,在原位置以DDQ氧化生成嘧啶(14),在醋酸中,用溴对4-甲基基团进行选择性溴化得到(15)。该苄基溴化物可用于各种不同的取代唑类中氮进行烷基化反应,生成嘧啶(le)和类似化合物(图10)。(le)的除草活性表明,唑类可以作为间-和对-位取代苯的等排物。

图10 唑基甲嘧啶的合成

6.3 两个唑基嘧啶类的合成

在钯催化下,用2,4-二氯-5-甲基嘧啶(3)与三甲基铝进行反应,使其在4-位选择性引进一个甲基,再在醋酸存在下,用溴进行选择性溴化,得到化合物(16),16中的卤代甲基在室温下与吡唑基反应生成4-吡唑基甲基嘧啶(17),随后在K2CO3存在下,化合物通过改变唑基的引进顺序制备不同的双唑基嘧啶类(1f)。合成如图11。

6.4 取代的4-杂芳氧基吡唑基嘧啶类的合成

2-吡唑基-5-甲磺酰基嘧啶(18)分别与2-羟基-5-三氟甲硫基苯和5-羟基-1-甲基-3-三氟甲基吡唑在N,N-二甲基甲酰胺中,于K2CO3存在下进行反应,可得到4-杂芳氧基-2-吡唑基嘧啶(19)、(20)、(21),收率较高。

只有间位取代的化合物具有较高除草活性,在这个位置上最佳的取代基是卤代烷基和卤

代烷氧基。通过对嘧啶的2-位上R1取代基进行研究,不同的唑基中,吡唑的活性高于三唑和咪唑,而对嘧啶来说,应首选对位取代,三氟甲基是最好的取代基。合成如图12。

图11 两个唑基的嘧啶类的合成

图12 取代的4-杂芳氧基-2-吡唑基

7、开发和应用

就作用机理而言,目前世界上进入商品化开发应用的类胡萝卜素生物合成抑制剂类除草剂,根据其作用靶标不同可划分为3类:第一类是以PD酶为作用靶标的除草剂,主要品种有

哒嗪酮类,如哒草伏(9,防除柑桔、棉花、酸果蔓、坚果、仁果类、大豆、核果类园中一年生阔叶杂草,对PD酶的I50为0.1Lmol/L【35】,施用剂量1~4 kg/hm2);吡啶羧酰胺类,如吡氟酰草胺(diflufenican,10,防除麦田禾本科杂草和阔叶杂草,对PD酶的I50为0.03Lmol/L【35】,剂量125 ~250 g/hm2),picolinafen(11,对PD酶的I50为0.01Lmol/L,剂量50 g/hm2)【1】;其他结构类型还有beflubutamid(12),氟定酮(5),防除水中或水面杂草,对PD酶的I50为0.02Lmol/L【35】,剂量250 g/hm2)【1】,氟咯草酮(7),防除麦田、棉花田、马铃薯田和向日葵田的多种阔叶杂草,对PD酶的I50为0.1Lmol/L,剂量500~700 g/hm2),呋草酮(3,防除多种禾本科和阔叶杂草,对PD酶的I50为0.03Lmol/L[35],剂量60~840 g/hm2)。从上述PD酶抑制剂类除草剂的生物活性数据可见,施用剂量与其I50值基本呈对应趋势,表明除草活性随其对PD酶抑制活性的增强而增强。第二类为目前尚未确定具体作用靶标的类胡萝卜素生物合成抑制剂,主要品种为三唑类,如杀草强(amitrole,13);异唑酮类,如异草松(clomazone,14,防除大豆田阔叶杂草和禾本科杂草,剂量100~1 000 g/hm2);脲类,如氟草隆(fluometuron,15,防除棉田阔叶和禾本科杂草,剂量1~1.5 kg/hm2),该品种同时也是光系统Ⅱ的光合成抑制剂。第三类为4-羟苯基丙酮酸双氧化酶(HPPD)抑制剂。主要品种有三酮类,如mesotrione(16,对HPPD的I50为0.01Lmol/L,剂量60~100 g/hm2)[1],磺草酮(sulcotrione,17,防除玉米田阔叶杂草及禾本科杂草,对HPPD的I50为0.008Lmol/L,剂量250 g/hm2)[1];异唑类,如isoxachlortole(18),异唑草酮(isoxaflutole,19,对HPPD的I50为0.005Lmol/L,剂量75 g/hm2)[1];吡唑类,如吡草酮(benzofenap,20,防除稻田一年生及多年生阔叶杂草,剂量1.2~2.4 kg/hm2),吡唑特(pyrazolate,21,防除稻田禾本科杂草、莎草科杂草,剂量3 kg/hm2),苄草唑(pyrazoxyfen,22,防除稻田一年生和多年生杂草,剂量3 kg/hm2);其他结构类型还有Benzobicyclon(23,对HPPD的I50为0.1Lmol/L,剂量300 g/hm2)[1]。HPP 抑制剂类除草剂的生物活性数据同样表明,I50值越小,施用剂量越少,即除草活性随抑制活性的增强而增强。

类胡萝卜素生物合成是极佳的除草剂作用靶标,具有杀草谱广的优点,但由于这类除草剂对植物无专一性,其选择性相对较差,使其应用范围受到限制。虽然目前合成了大量具有活性的类胡萝卜素生物合成抑制剂,但具有高选择性的商品化品种为数不多。随着基因工程的发展,以及抗类胡萝卜素生物合成抑制剂类除草剂基因作物的推出[36,37],将有力地推动此类除

草剂的发展。

参考文献:

1.Wakabayashi K, Boger P. Target sites for herbicides: entering the 21stcentury[J].Pest Manag Sci,2002, 58(11): 1149-1154.

2. Boger P. Mode of action of herbicides affecting carotenogenesis[J].J Pestic Sci, 1996, 21(4): 473-478.

3.陶俊,张上隆,徐昌杰等.类胡萝卜素合成的相关基因及其基因工程[J].生物工程学报,2002,18;276-281.

4.徐昌杰, 张上隆.植物类胡萝卜素的生物合成及其调控[J].植物生理学通讯,2002 ,36(l):64

一70.

5.Hirschberg J, Caritenoid biosynthesis in flowering plants[J]. Currt Opin Plant Biolt ,2001,4;210-218.

6.Zhan A Y ,You X L ,Zhan Y G . Biosynthetic pathway and applications of plant terpenoid isoprenoid.Letters in Biotechnology,2010,21( 1) : 131-135.

7.Li F , Murillo C , Wurtzel E T. Maize Y9 encodes a productessential for 15-ciszeta-carotene isomerization. Plant Physiol , 2007, 144; 1181-1189.

8.Krinsky N, Landrum J, Bone A. Biologic mechanisms of theprotective role of Lutein and zeaxanthin in the eye. Annu Rev Nutr, 2003, 23; 171-201.

9.Breitenbach J, Sandmann G. zeta-Carotene cis isomers asproducts and substrates in the plant poly-cis carotenoid biosynthetic pathway to lycopene Planta, 2005 , 220 ; 785-793.

10.Maass D, Arango J, Wüst F, et al. Carotenoid Crystal Formationin Arabidopsis and CarrotRoots Caused by Increased Phytoene Synthase Protein Levels. Journal of Chemical Technology and Biotechnology, 2009,84( 2) ; 215-222.

11.Chu B S, Ichikawa S, Kanafusa S, et al. Preparation of protein-stabilized β-carotene nanodispersions by emulsification-evaporation method Journal of the American Oil Chemist 'Society, 2007, 84( 11) ; 1053-1062.

12.Kim J, DellaPenna D. Defining the primary route for luteinsynthesis in plants: the role of Arabidopsis carotenoid b-ringhydroxylase CYP97A3. Proc Natl Acad Sci USA, 2006,103;3474-3479.

13.Quinlan R F, Jaradat T T, Wurtzel E T. Escherichia coli as aplatform for functional expression of plant P450 carotene hydroxylases., Arch Biochem Biophys ,2007, 458( 2) : 146-157.

14.Kim J E,Cheng K M, Craft N E , et al. Over-expression of Arabidopsis th aliana carotenoid hydroxylases individually and in combination with a beta-carotene ketolase provides insight into in vivo functions. Phytochemistry, 2010, 71( 2-3) : 168-178.

15. Miguel F, Martín A, Mattea F, et al. Precipitation of lutein andco-precipitation of lutein and poly-lactic acid with the supercritical anti-solvent process. Chemical Engineering and Processing: Process Intensification, 2008 , 47 ( 9-10 ) :1594-1602.

16. Linden A,Bürgi B , Eugster C H. Confirmation of the structuresof lutein and zeaxanthin. Helvetica Chimica Acta, 2004, 87( 5) : 1254-1269.

17. Wakabayash I K, Boger P. Target site for herbicides: entering the 21st century [ J]. Pest ManagSc i, 2002, 58 ( 11 ):1149-1154.

18. A-l Babili S, Hartung W, Kleinig H, et al. CPTA modulates levels of carotenogenic proteins and their m RNA s and affects carotenoid and ABA content as well as chromoplast structure in Narcissus pseudonarcissus Flowers[J]. Plant Biology, 1998(1):607-612.

19. Breitenbach J, Sandmann G. zeta-Carotene cis isomers as prod-ucts and substrates in the plant poly-cis carotenoid biosynthetic pathway to lycopene[J]. Planta, 2005, 220(5):785-793. 20. Atul P, Gregory E M, Fredy A, et al. Mutations in phytoene desaturase gene in fluridone-resistant hydrilla (Hydrilla verti-cillata) biotypes in florida[J]. Weed Science, 2007, 5(5):412-420.

21. Dankov K, Busheva M, Stefanov D. Relationship between the degree of carotenoid depletion and function of the photosyn-thetic apparatus[J]. Journal of Photochemistry and Photobiol-ogy B: Biology, 2009, 96(1): 49-56.

22. Breitenbach J, Boger P, Sandmann G. Interaction of bleaching herbicides with target enzyme-carotene desaturase[J]. Pestic Biochem Physiol, 2002, 73(2): 104-109.

23. Burdge E L. The mode of action of RH21965: a new phenylpyr imidinone bleachingn herbicide[J]. Pest Manag Sci, 2000, 56:245-248.

24. Mitchell G, Bartlett D W, Fraser T E M, et al. Mesotrione: A new selective herbicide for use in Maize[J]. Pest Manag Sci,2001, 57(2):120-128.

25. Abbasi A R, H ajirezaei M, Hofius D, et al. Specific roles of A-and C-tocopherol in abiotic stress responses of transgenic tobac-co[J]. Plant Physiology, 2007,143(4):1720-1738.

26.梁玉玲.黄连对-羟苯基丙酮酸双加氧酶HPPD基因的cDNA克隆、特性分析及对烟草的遗传转化[C],中国植物生理学会全国学术会议论文摘要汇编,2007.

27.黄美兰,商志才,邹建卫.两类HPPD酶抑制剂的比较分子场分析研究[J].化学学m 报,2002,60(9):1558-1563.

28. Yang H, Wang I, Xie Z, et al. The tyrosine degradation genehpp D is transcriptionally activated by Hpd A and repressed by Hpd R inStreptomy cescoelicolor, while hpd A is negatively au-toregulated and repressed by hpdR[J]. Molecular Microbiolo-gy, 2007, 65(4):1064-1077. 29.朱有全,胡方中,杨华铮,等. HPPD酶及其抑制剂构效关系的研究进展[J].化学通报,2004,67(3):1-7.

30.苏少泉.三酮类除草剂磺草酮与硝磺酮的作物特性及使用[J].现代农药,2002,1(3):1-8.

31.Miyashita, A1, Suzuki, Y1, Iwamoto, K-I., Higashino, T. Chem.Pharm.Bull1,1998,46,390~399.

32.Strekowski, L.,WYDRA, R. L.,Janda,L.,Harden,D.B.J. Org.Chem.,1991,56,5610~5614.

33. Sandmann G, Boger P. Chemical structure and activity of herbicidal inhibitors of phytoene desaturase[A]. Draber W, Fujita T. Rational Approaches to Structure, Activity, and Ecotoxicology of Agrochemicals[C]. Boca Raton, FL, USA: CRC Press, 1992. 357-371.

34. Sandmann G, Fraser P D. Differential inhibition of phytoene desaturases from diverse origins and analysis of resistant cyanobacterial mutants[J].Z Naturforsch C, 1993, 48(3-4): 307-311. 35.Sandmann G. Genetic manipulation of carotenoid biosynthesis: strategies, problems and achievements [J].Trends Plant Sci, 2001, 6(1): 14-17.

生物工程设备

1.生物质原料的粉碎的设备:锤式、辊式、湿式、超细、纳米粉碎机、球磨机、切片机。 2.连续灭菌流程:加热、保温(湿)、冷却。 3.啤酒生产中麦芽汁的制备设备:糊化锅、糖化锅、过滤槽、麦汁煮沸锅、糖化醪过滤槽。 4.糊化锅的作用:用于煮沸大米粉和部分麦芽粉醪液,使淀粉糊化和液化。 5.氧传递模型:双膜理论、渗透扩散、表面更新理论。 6.常用通风式(固态)生物反应器种类:填充床、流化床、转鼓式、浅盘式、搅拌生物反应器和压力脉动固态发酵生物反应器。 7.生物反应器的放大方法:经验放大法、因次分析法、时间常数法、数学模拟法。 8.经验放大法原则:几何相似放大、以单位体积液体中搅拌功率相同放大、以单位培养液体积的空气流量相同的原则进行放大、以空气线速度相同的原则进行放大、以kLa相同的原则进行放大、搅拌器叶尖速度相同的准则、混合时间相同的准则。 9.液液萃取设备:混合设备、分离设备、兼有混合和分离两种功能的设备。 10.蒸发器组成:加热室、分离器。 11.固体输送设备:带式输送机、斗式提升机、螺旋输送机。 12.垂直管中气力输送设备流程:粒子向下加速运动;粒子相对静止;粒子向上加速运动。 13.生物除菌方法:辐射杀菌、化学药品杀菌、干热杀菌。 14.空气过滤除菌流程:两级冷却、加热除菌流程;高效前置过滤空气除菌流程。 15.过滤除菌效率与空气流速关系:当气流速度较大时,v↑η↑,此时惯性冲击起主要作用;当气流速度较小时,v↑η↓,此时扩散起主要作用;当气流速度中等时,可能是截留起主要作用;如果气流速度过大,除菌效率又下降,则是由于重新污染。1.GMP:药品生产质量管理规范,指在药品生产全过程中运用科学的原理和方法来保证生产出优质产品的一整套科学管理办法。 2.冷冻干燥:将物料冷冻至水的冰点以下,并置于高真空的容器中,通过供热使物料中的水分直接从固态冰升华为水汽的一种干燥方法。 3.渗透平衡:两溶液过一段时间后的分压相同,相当于进入半透膜的水与出半透膜的水相同,就会达到渗透平衡。不管是什么溶液体系给够足够时间后一定能达到渗透平衡。 4.渗透:渗透是水分子经半透膜扩散的现象。它由高水分子区域(即低浓度溶液)渗入低水分子区域(即高浓度溶液),直到细胞内外浓度平衡(等张)为止。水分子会经由扩散方式通过细胞膜,这样的现象,称为渗透。 5.离子交换法:应用合成的离子交换剂作为吸附剂,将溶液中的物质,依靠库仑力吸附在交换剂上,然后用合适的洗脱剂将吸附物质从交换剂上洗脱下来,达到分离、浓缩、提纯的目的。 6.湿热灭菌:指用饱和水蒸气、沸水或流通蒸汽进行灭菌的方法,以高温高压水蒸气为介质,由于蒸汽潜热大,穿透力强,容易使蛋白质变性或凝固,最终导致微生物的死亡。 7.双水相萃取:一些亲水性高分子聚合物的水溶液超过一定浓度后可以形成两相,并且在两相中水分均占很大比例,即形成双水相系统。 8.超临界流体:温度和压力均在本身的临界点以上的高密度流体,具有和液体同样的凝聚力、溶解力。 9.体积传质系数:是决定反应器结构的最相关的参数,它是质量传递的比速率,是指在单位浓度差下,单位时间、单位界面面积所吸收的气体。

合成生物学研究进展及其风险

合成生物学研究进展及其风险 关正君魏伟徐靖 1合成生物学研究概况 合成生物学(synthetic biology)是在现代生物学和系统科学基础上发展起来的、融入工程学思想的多学科交叉研究领域。其包括了与人类自身和社会发展相关的研究方向和内容,为解答生命科学难题和人类可持续发展所面临的重大挑战提供了新的思路、策略和手段。2004年,合成生物学被美国麻省理工学院出版的Technology Review评为“将改变世界的十大新技术之一”。2010年12月,Nature杂志盘点出2010年12件重大科学事件,Science杂志评出的科学十大突破,合成生物学分别排名第4位和第2位。为此,世界各国纷纷制定合成生物学发展战略及规划,开展合成生物学研究,以抢占合成生物学研究和发展先机,促进了合成生物学基础研究和应用研究的快速发展。同时合成生物学的巨大应用潜力,还吸引了众多公司及企业参与到该领域的研究开发,推动着合成生物学产业化的进程。 合成生物学作为后基因组时代生命科学研究的新兴领域,其研究既是生命科学和生物技术在分子生物学和基因工程水平上的自然延伸,又是在系统生物学和基因组综合工程技术层次上的整合性发展。与传统生物学通过解剖生命体以研究其内在构造不同,合成生物学旨在将工程学的思想用于生物学研究中,以设计自然界中原本不存在的生物或对现有生物进行改造,使其能够处理信息、加工化合物、制造材料、生产能源、提供食物、处理污染等,从而增进人类的健康,改善生存的环境,以应对人类社会发展所面临的严峻挑战。 作为一个新的基础科学研究领域,合成生物学综合生物化学、生物物理和生物信息技术与知识,涵盖利用基因和基因组的基本要素及其组合,设计、改造、重建或制造生物分子、生物体部、生物反应系统、代谢途径与过程,乃至整个生物活动的细胞和生物个体。合成生物学使人们可以利用与物理学方法类似的模块构建和组装形成新的生命有机体,从而人工设计新的高效生命系统。中科院《2013年高技术发展报告》指出,DNA测序技术、DNA合成技术和计算机建模是支撑合成生物学发展的关键技术。近年来,大量物种的全基因组测序,为合成生物学家构建功能组件的底盘生物体系提供了丰富的遗传信息。快速、廉价的测序技术也促进了新的系统和物种的识别和解析。 2 合成生物学应用研究进展 2.1 合成生物学在医药工业领域的应用 2.1.1 天然药物合成生物学 天然药物合成生物学是在基因组学研究的基础上,对天然药物生物合成相关元器件进行发掘和表征,借助工程学原理对其进行设计和标准化,通过在底盘细胞中装配与集成,重建生物合成途径和代谢网络,从而实现药用活性成分定向、高效的异源合成,以解决天然药物

生物工程设备复习题

生物工程设备复习题 一、选择题 1、目前啤酒厂的糖化锅中利用__B__进行搅拌。 A.圆盘平直叶涡轮搅拌器 B.螺旋浆式搅拌器 C.醪液内二氧化碳的密度梯度 D. 二折叶旋桨式搅拌器 2、空气过滤系统中旋风分离器的作用是____A_____。 A.分离油雾和水滴 B.分离全部杂菌 C.分离二氧化碳 D.分离部分杂菌 3、好气性发酵工厂,在无菌空气进入发酵罐之前___C___,以确保安全。 A.应该安装截止阀 B.应该安装安全阀 C.应该安装止回阀 D.不应该安任何阀门 4、机械轴封的动环的硬度比静环___B____。动环的材料可用___________,静环最常用的材料是___________。 A.大,碳化钨钢,铸铁 B.大,碳化钨钢,聚四氟乙烯 C.小,聚四氟乙烯,不锈钢; D.小,聚四氟乙烯,碳化钨钢。 5、目前啤酒厂的圆筒锥底发酵罐内采用_____C_______。 A.圆盘平直叶涡轮搅拌器 B.螺旋浆式搅拌器 C.无搅拌器 D.锚式搅拌器 6、机械搅拌发酵罐中最下面一档搅拌器离罐底距离一般____A______搅拌器直径的高度,最上面一个搅拌器要在液层以下0.5米(大罐)。 A.小于一个 B.大于一个小于两个 C.等于一个 D.等于两个 7、自吸式发酵罐的搅拌轴是从罐下方进罐的,因此____C____轴封。 A.应该用填料函 B.应该用单端面机械 C.应该用双端面机械 D.无需 8、培养基连续灭菌流程中选用管道维持器,应该使培养基在管道的流速达到___C___,才能保证先进先出。 A.过渡流 B.层流 C.活塞流 D.湍流 9、把干玉米原料从多处集中送到一处,原则上应选择:( D ) A .带式输送机 B .压送式气力输送装置C.斗式提升机 D .吸送式气力输送装置 10、压送式气力输送装置的闭风器应装在:( A ) A .加料口处 B .卸料口处 C .中间部位 D .无论哪里 11、直接向空气中喷100 ℃蒸汽,此过程对湿空气来说将近似是:( B ) A .等湿升温 B .等温加湿 C .加湿升温 D .等温等湿 12、垂直管中颗粒物料气流输送的流体力学条件是:( A ) A . 气流速度大于悬浮速度 B. 气流速度小于悬浮速度 C. 气流速度等于悬浮速度 D. 不能确定

鬼臼毒素生物合成研究进展_陆炜强

·综述· 鬼臼毒素生物合成研究进展 陆炜强,傅承新,赵云鹏 * (浙江大学生命科学学院濒危野生动植物保护生物学教育部重点实验室,浙江杭州310058) [摘要]鬼臼毒素(podophyllotoxin )是一种成功商品化的天然木脂素,其衍生物依托泊苷(etoposide )、替尼泊苷(tenipo-side )等在临床上广泛应用于抗肿瘤、抗病毒治疗。植物提取是鬼臼毒素的主要来源,面对野生资源压力,人们分别开展了植物野生变栽培、 植物细胞或器官培养、化学全合成等研究,以扩大鬼臼毒素来源。鬼臼毒素生物合成研究是开展植物规范化栽培和代谢工程的重要前提。20多年来尤其是近10年来,鬼臼毒素生物合成研究进展迅速,但鬼臼毒素的下游代谢以及整个合成途径基因水平的评述仍不足,因此作者专门针对鬼臼毒素的生物合成,对相关文献尤其是近10年的文献进行综述,重点介绍其合成途径关键环节的过程、主要产物、酶的特点与功能、已报道的酶编码基因等内容,以合理推测和概括鬼臼毒素的生物合成途径,同时对目前研究仍存在的问题和将来研究方向进行了讨论。 [关键词]鬼臼毒素;生物合成;规范化栽培;代谢工程[稿件编号]20101116002 [基金项目]国家科技支撑计划项目(2006BAI21B07);浙江省科技厅中药现代化专项(2006C13077)[通信作者]* 赵云鹏, Tel :(0571)88206463,E-mail :ypzhao @https://www.doczj.com/doc/3d5120867.html, [作者简介]陆炜强, Tel :(0571)88206463,E-mail :lwq-711@ 163.鬼臼毒素(podophyllotoxin , PTOX )是植物来源天然产物成功商品化的经典案例。从其发现至今已有近1个世纪的历史,其具有良好的抗肿瘤、抗尖锐湿疣、抗艾滋病毒活性 [1-3] ,虽然自身毒副作用较大,但其半合成衍生物在保证治 疗效果的同时,大大降低了毒性,在临床治疗淋巴癌、肺癌等多种癌症中得到广泛应用, 如依托泊苷(etoposide ,VP-16),替尼泊苷(teniposide ,VM-26),依托泊苷磷酸酯(etopophos ),azatoxin ,tafluposide 等[4]。鬼臼毒素的传统和主要来源是植物提取,来源植物主要分布于小檗科足叶草属Podophyllum 、桃儿七属Sinopodophyllum 、八角莲属Dysosma 、山荷叶属Diphylleia 、Jeffersonia 属,其他还有亚麻科亚麻属Linum ,柏科刺柏属Juniperus 、崖柏属Thuja 、Callitris 属,唇形科山香属Hyptis 、百里香属Thymus 、香科科属Teucrium 、荆芥属Nepeta 、Eriope 属等[5-7]。由于过度采挖、生境破坏和植物自身生长缓慢等原因,鬼臼类野生植物资源逐渐枯竭、物种濒危,已难以满足鬼臼毒素生产的需求,人工规范化栽培势在必行,但目前桃儿七S .hexandrum (异名:Podophyllum hex-andrum ,P .emodi )、八角莲D .versipellis 的栽培刚刚起步,其他来源植物的新资源开发程度也有待进一步深入 [8-10] 。此外,虽然化学全合成技术已经有所突破,但是 复杂的合成过程、极低的合成效率(约为5%),使人工全合成鬼臼毒素目前仍难以实现商业化 [3,11] 。近年来基于 生物技术的植物代谢工程快速发展,为鬼臼毒素替代资源的开发提供了更多途径,如植物细胞或器官培养、生物转化等,但仍存在效率低、成本高的共性问题,目前尚未产业化 [5,12-14] 。因此,要彻底解决鬼臼毒素的来源问题, 仍需要对上述3种途径的关键科学和技术问题深入研究。 实现药用植物规范化栽培和植物细胞或器官培养生产鬼臼毒素的前提之一是必须充分阐明鬼臼毒素的生物合成途径及其调控机制。因此,自20世纪80年代末以来,学者们以足叶草Podophyllum spp.、亚麻Linum spp.等植物的组织或细胞培养体系为研究系统,探讨了鬼臼毒素的生物合成途径,取得了长足进展。前人综述了不同时期鬼臼毒素生物合成不同方面的研究进展 [6,12,15-19] ,揭示了合成途径的大体 框架,为后续的研究提供了良好的基础和背景。但是前人的综述大多是对鬼臼毒素的资源、化学、药理、生物合成、细胞或器官培养等内容的全面评述,或者是对整个木脂素类生物合成的综述, 对于鬼臼毒素生物合成的论述不够全面、详细,比如对鬼臼毒素下游的代谢往往没有讨论,而且对近几年已有新进展的相关酶编码基因的分离、扩增、表达也较少涉及。因此,本文专门针对鬼臼毒素的生物合成,对相关文献尤其是近10年的文献进行综述,重点介绍其合成途径关键环节的过程、主要产物、酶的特点与功能、鬼臼毒素下游代谢、已报道的酶编码基因等内容,以期继续推动该领域的研究,实现优质种源筛选、株系改良、栽培和培养条件优化、生产体系调控,为鬼臼类植物规范化栽培和代谢工程的产业化奠定

生物工程设备习题及答案总

1. 常用的两种磁选设备的原理 (1)固定形磁钢装置(平板式磁分离器) 将永久磁钢根据需要的数量组合起来,可分散装置在谷粒经过的加料斜槽或在 加工设备之前集中装置。 工作时,原料以薄层经过磁性部分时,铁块被吸住而除去,原料自由通过。(2)永磁滚筒(旋转式磁分离器) 由转动的外筒和其中固定不动的磁铁芯( 170 °的半圆形芯子)两部分组成。 工作时,原料经过磁性部分时,铁块被吸住,转动到盛铁盒掉落而除去,原料 自由通过。 2. 筛选分级的原理 利用物料粒度、形状不同,利用一层或数层运动或静止的筛面而达到清理的目的。 3. 振动筛的工作原理 原料大麦进入后经控料闸(控制进料量)首先经过风道进行第一次风选除去轻 的杂质和灰尘(进入沉降室),落入初清筛面,去掉除去大杂质,接着通过筛 孔落入第二级筛面,除去稍大于麦粒的中级杂质,再通过筛孔进入第三级筛面,除去细杂,得到粗糙的原料大麦,最后进行第二次风选,除去三级筛选中的杂 质(进入沉降室),得到原料大麦。 4. 精选机的工作原理 精选是按籽粒长度和形状不同进行分选 精选机是利用带有袋孔(窝眼)的工作面来分离杂粒,袋孔中嵌入长度不同的颗粒,带升高度不同而分离。 5. 常用的大麦精选机有哪两种?各有何特点? (1)碟片式精选机 碟片式精选机的主要构件是一组同轴安装的圆环形铸铁碟片,碟片的两侧工作 面制成许多特殊形状的袋孔。

碟片上袋孔的大小、形状,可根据籽粒长度的粒度曲线来确定。 碟片精选机的优点是工作面积大,转速高,产量比滚筒精选机大;而且各种不 同的袋孔可用于同一机器中;碟片损坏可以更换。 缺点是碟片上的袋孔容易磨损。 (2 )滚筒精选机 根据滚筒转速差别分为快速滚筒精选机和慢速滚筒精选机。 按其作用有荞子滚筒、大麦滚筒和分级滚筒之分。 滚筒精选机的特点是它分离出来的杂粒中含大麦较少; 其主要缺点是袋孔的利用系数低,产量也较低,且工作面磨损后不能修复。 6. 圆筒分级筛的工作原理和特点? 根据物料分级的要求,在圆筒筛上布置不同孔径的筛面。原料进入后在传动装 置作用下运动并接触筛面而进行筛分。 优点:设备简单、电动机传动比平板分级筛方便。 缺点:筛面利用率小,仅为整个筛面的 1/5 1.物料的粉碎度(粉碎比) 物料粉碎前后平均直径之比,称为粉碎度或称粉碎比。 X=D1/D2 式中 D1 ——粉碎前物料的平均粒径, mm ;D2——粉碎后物料的平均粒径, mm 。粉碎度表示粉碎操作中物料粒度的变化比例。 2.对粉碎机的要求 (1 )粉碎后的物料颗粒大小要均匀。 (2)已被粉碎的物块,应立即从轧压部位排除。

生物工程设备 教学大纲

《生物工程设备》课程教学大纲 一、课程简介 生物工程设备是生物工程专业的主干必修专业课,是在微生物学、生物化学、物理化学和化工原理等课程学习的基础上开设的有关生物加工过程设备的原理、构造、设计及应用的一门专业课。主要研究生物过程工程及设备的相关问题,从生物工程的研究内容和范畴出发,根据生物工程设备共性技术,阐述生物生产过程中主要设备的作用原理、设计方法和设备的选型等内容,具有明显的工程化特色。 二、教学目标 2.1 课程教学目标 通过本课程的学习,使学生能够进一步了解国内外生物技术和生物工程的研究前沿,认识原料处理设备、生物反应设备、生物分离设备、辅助设备等的应用与研究开发现状及发展趋势,掌握生物过程设备流程、主要设备的结构、设计计算、工程放大、优化控制等技术,能够独立地解决生物工业生产、实验研究及技术开发等方面的设备问题,从而利用所学的知识提升传统生物技术产业,推动生物技术成果的产业化,提高工业生物技术产业的经济和社会效益。同时进一步培养学生的社会责任感、创新精神、实践能力和国际视野培养,促进学生知识、能力、素质的协调发展。

2.2 课程目标与毕业要求(指标点)对应关系 课程目标: (1)通过本课程学习,掌握进行复杂生物工程问题的设计、研发等所需的生物加工过程与装备设计、选型、应用操作等知识(对应毕业要求指标点1.4)。 (2)能够将生物加工过程与设备知识和设计规范等用于生物工程产品市场方案和生产工艺的设计(对应毕业要求指标点3.1)。 (3)能够针对复杂生物工程问题中设备选型等问题,根据对象特点,设计生物工程设备、进行优化、调整和改进(对应毕业要求指标点3.2)。 三、课程教学内容及学时分配 1.理论教学安排

微生物药物合成生物学研究进展

微生物药物合成生物学研究进展 武临专, 洪斌* (中国医学科学院、北京协和医学院医药生物技术研究所, 卫生部抗生素生物工程重点实验室, 北京100050) 摘要: 微生物次级代谢产物结构复杂多样, 具有抗细菌、抗真菌、抗肿瘤、抗病毒和免疫抑制等多种生物活性, 是微生物药物开发的源泉。当前, 微生物药物研究面临一些挑战: 快速发现结构新颖、生物活性突出的化合物; 理性化提高产生菌的发酵效价; 以及以微生物为新宿主, 实现一些重要天然药物的工业生产。合成生物学是在系统生物学和代谢工程等基础上发展起来的一门学科。本文对合成生物学在发现微生物新次级代谢产物、提高现有微生物药物合成水平和创制微生物次级代谢产物方面的研究进展进行了阐述。 关键词: 微生物药物; 合成生物学; 次级代谢产物; 生物合成 中图分类号: Q939.9; Q81; R914.5 文献标识码:A 文章编号: 0513-4870 (2013) 02-0155-06 Synthetic biology toward microbial secondary metabolites and pharmaceuticals WU Lin-zhuan, HONG Bin* (Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China) Abstract: Microbial secondary metabolites are one of the major sources of anti-bacterial, anti-fungal, anti- tumor, anti-virus and immunosuppressive agents for clinical use. Present challenges in microbial pharmaceutical development are the discovery of novel secondary metabolites with significant biological activities, improving the fermentation titers of industrial microbial strains, and production of natural product drugs by re-establishing their biosynthetic pathways in suitable microbial hosts. Synthetic biology, which is developed from systematic biology and metabolic engineering, provides a significant driving force for microbial pharmaceutical development. The review describes the major applications of synthetic biology in novel microbial secondary metabolite discovery, improved production of known secondary metabolites and the production of some natural drugs in genetically modified or reconstructed model microorganisms. Key words: microbial pharmaceuticals; synthetic biology; secondary metabolites; biosynthesis 来源于微生物的药物称为微生物药物(microbial medicine, microbial pharmaceuticals), 主要包括来源于微生物(特别是放线菌和真菌) 次级代谢产物的药物。 收稿日期: 2012-09-25; 修回日期: 2012-11-01. 基金项目: 国家“重大新药创制”科技重大专项资助项目(2012ZX09301002-001-016); 国家自然科学基金资助项目 (31170042, 81172964). *通讯作者 Tel: 86-10-63028003, E-mail: binhong69@https://www.doczj.com/doc/3d5120867.html,, hongbin@https://www.doczj.com/doc/3d5120867.html, 微生物药物例如抗生素, 在控制感染、免疫调节和治疗癌症等方面发挥了重要作用。目前, 已经从放线菌和真菌中发现了2万多种具有生物活性的次级代谢产物, 其中百余种成为微生物药物。随着对放线菌和真菌的持续开发利用, 直接从放线菌和真菌研制微生物新药难度越来越大, 主要原因在于: ①化合物排重难度很大(从微生物已经发现了25 000多种化合物); ②新微生物资源的分离培养工作没有突破性进展, 获得大量的、具有产生新次级代谢产物能 ·专题报道·

苦豆子生物碱的研究进展

苦豆子生物碱的研究进展 发表时间:2014-01-14T11:36:51.670Z 来源:《医药前沿》2013年11月第33期供稿作者:韩玉刚张浩 [导读] 此外,苦参碱还试用于治疗病毒性肝炎、病毒性心肌炎。 韩玉刚张浩(解放军第206医院临床药学科吉林通化 134000) 苦豆子(sophora alopecuroides L)是豆科槐属植物,别名苦豆根、苦甘草、西豆根、苦豆草、欧苦参等,我国西北省区及中亚细亚一带均有分布。药用根、根茎、全草及种子,味苦性寒,有清热解毒、祛风燥热、止痛杀虫等作用。近年来的研究发现,其还有抗癌、抗炎、抗菌的作用。关于化学成分的研究的研究已有报道,为了更好的开发利用该资源,我们对其种子中生物碱成分的研究和药理作用的研究。已有报道鉴定的生物碱有氧化苦参碱(oxymatrine OMT)、氧化槐果碱(oxysophocarpine OSC)、苦参碱(matrine MT)、槐果碱(sophocarpine SC)、槐定碱(sophoridine SRI)和槐胺碱(sophoramine SA)、莱曼碱(lehmannine LEH)、苦豆碱(aloperine ALC)。现将近几年苦豆子类生物碱在抗炎方面的资料进行综述如下。 杨志伟等发现苦参总碱、苦豆总碱具有明显而独特的抗柯萨基B3组病毒(CVB3)的作用,通过对(CVB3)与各个药物在37℃作用2小时,然后测定病毒的TCID50。结果提示苦参总碱和苦豆总碱能有效的抑制CVB3繁殖,两总碱主要效应可能是直接灭活游离病毒以及进入细胞内发挥抗病毒作用。而且具有免疫调节功能。此外,苦参碱还试用于治疗病毒性肝炎、病毒性心肌炎。 李凡等的研究发现苦豆碱对多种致炎剂所引起的急性炎症和Ⅲ,Ⅳ型变态反应有显著的抑制作用。从免疫的角度对其进行研究。苦豆碱有抑制巨噬细胞产生包细胞介毒1(IL-2)的作用(p<0.01),并能直接抑制小鼠脾细胞增殖反应,同时能抑制脾细胞对豆蛋白A(CorA)诱导的T细胞增殖反应(p<0.01),对多种致炎剂诱发的动物炎症有拮抗作用。魏立民等指出氧化苦参碱对大鼠急性胰腺炎具有良好的治疗效果,其机制可能与其抑制料性细胞因素的产生有关,有学者的系列报道提出,苦参碱是一种新的有希望的眼炎药物,能够对抗晶状体蛋白诱发的家兔虹膜炎、睫状体炎,但是它不通过影响花生四烯酸链,而可能是一种全新的抗炎机制,何丽华等在临床采用苦参碱制成阴道栓剂治疗慢性宫颈炎。有效率达95.9%,治愈率为49.78%,治疗宫颈糜烂有效率为97.33%,并无腹痛、出血、感染、复发等副作用,可弥补物理治疗的不足。另外它对滴虫性阴道炎、霉菌性阴道炎等亦有一定的治疗作用。氧化苦参碱iv和im治疗各型湿疹皮炎,取得明显效果,有效率为84.8%,氧化苦参碱对大鼠变异性接触性皮炎具有一定的疗效。苦豆子碱片(每片重0sg,含生物碱30mg)通过临床证明可治疗细菌性痢疾、肠炎。 黄秀梅等对四种苦豆子生物碱抗炎的考察,通过用LPS刺激体外培养的小鼠腹腔巨噬细胞,使之剂理依赖性地产生肿瘤坏死因子,观察对巨噬细胞产生肿瘤坏死因子的影响。结果这四种苦参碱、氧化苦参碱、槐定碱和槐果碱都能显著抑制小鼠腹腔巨噬细胞有LPS诱导产生地TNFa,并有明显地剂量反应关系,进一步证实了此类生物碱的抗炎作用与其直接抑制TNFa的分泌有关。 给大鼠灌胃苦豆碱可明显抑制组胺、PGE25-HT和角叉莱胶引起的组肿胀,苦豆碱还能抑制霉菌素引起的足肿胀,对大鼠PCA反应、Arthus反应、可逆性被动Arthus反应以及结核菌素引起的大鼠迟发型皮肤超敏反应也有显著抑制作用,并能抑制组胺引起的毛细血管通透性增加和白细胞游走于体外,对红细胞膜也有明显稳定作用。以上表明,苦豆碱抗炎与免疫抑制作用主要与其抑制白细胞游走,稳定溶酶体膜,抑制PG、组胺等炎症介质的合成释放有关。 甘乐文等的氧化苦参碱对大鼠肝纤维化的影响的研究发现苦参碱能显著减轻大鼠肝细胞变形坏死和纤维组织增生,降低升高的ALT、HA。氧化苦参碱对四氯化碳引起的小鼠肝损伤、氨基个乳糖所致小鼠肝损伤有保护作用、可抑制肝组织内炎症活动度,下调血清TNFa水平,且在大剂量治疗组抑制的效果更好,下调幅度更大。 陈伟忠等对苦参碱对大鼠试验性肝纤维化的影响研究发现降低乐血清中ALT,降低血清HA的含量。降低Hyp的含量,能显著减少大鼠肝细胞变性坏死和纤维组织增生。病理结果显示治疗肝细胞变性坏死较模型组轻,结缔组织形成减少,说明苦参碱有抗纤维化作用,推测苦参碱可能通过保护肝细胞,抑制单核-巨噬细胞、枯否细胞分泌细胞因子而达到防治肝纤维化的作用。 苦豆子生物碱在抗炎,抗过敏有着很好的疗效,特别是在肝炎,肝硬化这些疑难杂症,博尔泰力就是用苦豆子生物碱做的制剂,治疗肝炎效果显著,得开发。豆子生物碱在妇科炎症也有广阔天地。为了更好的开发中药的苦豆子,对苦豆子生物碱的药理作用考察是很重要的。特别是抗病毒方面,有待于基础研究和临床应用进一步密切合作。 参考文献 [1].杨志伟,周娅,曹秀琴等。苦豆总碱、苦参总碱体外抗柯萨B3病毒的作用,宁夏医学杂志,2002,24(12):707-710. [2].魏立民,张兴荣,马述春等。生长抑素及氧化苦参碱治疗大鼠急性胰腺炎的试验研究。第二军医大学学报,1999,20(9):633-635. [3].黄秀梅,李波,沈连忠等。四种苦豆子生物碱对巨噬细胞产生肿瘤坏死因子a的影响。中药药理与临床,2001,17(3):12-14. [4].韩春雷,陈学荣,马俊江等。氧化苦参碱对大鼠变应性接触性皮炎药效学作用。北京医科大学学报,1996.28(1):59-61. [5].何丽华,刘世连,杨丽楠等。中药苦豆子治疗宫颈糜烂75例。中国民间疗法,2000,8,(10):32. [6].彭建华,于华等。博尔泰力治疗慢性乙型肝炎的临床疗效观察。中国城乡企业卫生,2001,6,(3):30. [7].陈伟忠,张俊平,许青等。苦参碱对大鼠实验性肝纤维化的影响。第二军医大学学报,1996,17(5):424-426. [8].周清荣,张园梅,申悦平等。苦参素治疗慢性乙型肝炎32例。中西医结合肝病杂志,2003,13(3):174-176. [9].李凡,石艳春,黄红兰等。苦豆碱对小鼠免疫细胞功能的影响。白求恩医科大学学报,1997,23(6):603-605. [10].甘乐文,王国俊,李玉莉等。氧化苦参碱对大鼠肝纤维化的影响。第二军医大学学报,1999120(7):445-448.

生物工程设备

生物工程设备 教学大纲 生物科学与工程学院 生物工程教研室编2009年9月第三次修改

编写说明 生物工程设备是生物工程专业的专业核心课程之一,在我系的专业课教学中占有特别重要的地位。生物工程设备是专门研究生物工厂设备的一门学科,是生物工程专业的专业课,在学过的生物工艺,化工原理,生物化学的基础上开设的。生物技术是以基因工程为先导,结合发酵工程、酶工程和生化工程等技术,构成现代生物技术。生物工程设备则是生物工程技术和化学工程与设备交叉的结合体。具体内容包括:生化反应器、生化反应物料处理及产物分离纯化设备和辅助系统设备的原理和设计及计算。通过本课程的学习使学生能够了解和掌握发酵工厂常用的发酵设备、分离提取原理及设备。并为学习其他工艺学奠定基础。 为了规范教学,提高我系的生物工程专业课的教学质量,特编写此大纲。 生物工程设备教学大纲,全面系统的介绍发酵工艺的内容,结合本学科的最新成果组织编写。本大纲的内容有:教学目的与要求、教学重点与难点、教学内容、并提供了思考题、教学参考书及课时分配表等。 本大纲由李树立老师编写,教研室集体审定。 生物工程教研室 2009年9月

课时分配表

目录理论教学部分: 第一章概述 第二章物料处理和输送设备 第一节固体物料的处理与粉碎设备 第二节固体物料输送设备 第三节液体物料的输送设备 第三章空气净化除菌设备 第一节空气净化除菌的方法与原理 第二节空气过滤除菌设备及计算 第四章培养基的制备设备 第一节糖蜜原料的稀释与澄清 第二节淀粉质原料的蒸煮糖化设备 第三节啤酒生产麦芽汁的制备 第四节培养基的灭菌 第五章通风发酵设备 第一节机械搅拌通风发酵罐 第二节气升式发酵罐(ALR) 第三节自吸式发酵罐 第四节通风固相发酵设备 第五节其他类型的通风发酵反应器简介第六章嫌气发酵设备 第一节酒精发酵设备 第二节啤酒发酵设备 第三节连续发酵 第七章植物细胞(组织)和动物细胞培养反应器第一节植物细胞(组织)培养反应器 第二节动物细胞培养反应器 第三节微藻培养反应器 第八章生物反应器的比拟放大 第一节生物反应器的放大目的及方法 第二节通气发酵罐的放大设计 第九章过滤、离心与膜分离设备 第一节过滤速度的强化 第二节过滤设备 第三节离心分离设备 第四节膜分离设备 第十章离子交换分离原理及设备 第一节离子交换树脂 第二节离子交换分离原理 第三节离子交换设备 第十一章蒸发与结晶设备 第一节常压与真空蒸发设备

生物工程设备期末复习题

生物工程设备期末题 1.根据工艺操作,发酵生产设备类型分为 发酵设备和 发酵设备。 2.小型发酵罐罐顶和罐身采用 连接,材料一般为不锈钢。 3.罐体各部分的尺寸有一定的比例,罐的高度与直径之比一般为 左右。 4.挡板的作用是防止液面中央形成 流动,增强其湍动和溶氧传质。 5.消泡器的作用是 。 6.大型发酵罐搅拌轴较长,常分为二至三段,用 使上下搅拌轴成牢固的刚性联接。 7.为了防止发酵液泄漏和杂菌污染,搅拌器轴与罐顶或罐底连接处需要密封,即 。 8.一个发酵罐的圆柱部分体积为80 L ,上下封头的体积分别为10 L ,如果装料系数为80%,则罐的总容积为 L ,罐的有效容积为 L ,公称容积为 L 。 9.CIP 清洗系统整个清洗程序分7个步骤:预冲洗、 、中间清洗、清水喷冲、碱喷冲、清水冲洗、 。 10.细胞培养的操作方式有 、流加式操作、半连续式操作、 连续操作和 。 11.笼式通气搅拌反应器由两大部分组成: 和 。搅拌笼体由 和其顶端的 以及套在笼体外面的 组成。 二、名词解释 1. 连续发酵。2.在线检测。3.净化工作台。4.公称容积。5.流加式操作 三、简答题 1. 机械搅拌发酵罐的基本要求是什么?2.机械搅拌通风发酵罐中搅拌器的作用是什么?3.圆柱锥底啤酒发酵罐上为什么要安装真空安全阀?4.朝日罐生产啤酒的优缺点是什么? 1. 试论述传感器应满足哪些条件?2.以四器组合为例说明啤酒生产中麦汁的制备设备包括哪几种,每种设备的用途是什么? 六、计算题(10分×1 = 10 分) 一个年生产12万t 赖氨酸的发酵工厂,发酵产酸水平为18%,提取总收率为85%,年生产时间为300d ,发酵周期为60 h ,洗罐准备时间为12 h ,设发酵罐的装罐系数为80%,发酵罐的容积为450 m3。问:1、该工厂每日产量是多少(t/d)?2、每日所需要的发酵液量是多少?3、每日所需要的发酵罐容积为多大?4、生产12万t 赖氨酸需要发酵罐的总数是多少?(每步计算请标清楚单位,小数点后保留一位有效数字) 一、名词解释 1、 菌体的率 YX/S 对基质的细胞得率Yx/s 2、半连续式操作 又称反复分批式培养或换液培养,是指在分批式操作的基础上,不全部取出反应系剩余部分重新补新的营养成分,再按分批式操作的方式进行培养,这是反应器内培养液的总体积保持不变的操作方式。 3、Ka 4、发酵稀释比D:补料速度与反应器体积的比值(h-1),在稳定状态下,细胞的生长速率等于稀释速率 5、过滤效率被捕捉的粉尘量与原空气中粉尘量之比。 6、装料系数:发酵罐存在持气与起泡问题,必须在充入培养液后留有一定的空间。 式中 V —发酵罐的代表容积(m 3);V 0—进入发酵罐的发酵液量(m 3)ψ —装液系数 7、实罐灭菌:将培养基置于发酵罐中用蒸汽加热,达到预定灭菌温度后,维持一定时间,再冷却到发酵温度,然后接种发酵,又称分批灭菌。 8、升膜式蒸发器:真空蒸发设备,主要由加热室和汽液分离器组成,在真空状态下溶液在蒸发器的加热表面形成液膜,很快受热升温、汽化、浓缩。液膜与蒸发的二次气流方向相同称为升膜式蒸发器。 S x x ?-?==消耗基质的质量生成细胞的质量/s Y ?0V V =

生物工程设备考试知识点必看

生物工程设备 第一章绪论 ●生物工程设备(bioengineering equipment):就是生物工程类工 厂或实验室为生物反应提供最基本也是最主要的能够满足特定生物反应工艺过程的专门技术装备或设施。即为生命体完成一定反应过程所提供的特定环境。 ●生物工程设备是现代生物技术的基本原理与工程学原理相交叉的 应用性学科,是将生物技术成果产业化的桥梁。 ●吕文虎克发明显微镜、柯赫建立了微生物分离纯化和纯培养技术、 弗莱明发现了青霉素,并确认青霉素对伤口感染更有疗效 ●通风搅拌发酵技术的建立标志着实现了真正意义的生物工程设 备; 代表:青霉素 ●对通气搅拌生物反应器进行了改造,发展了气升式反应器,设备 向着大型化、自动化发展 ●20世纪70年代基因重组技术诞生; 代表产物是胰岛素 第二章原料处理及灭菌设备 ●目前常用的处理方法有:筛选法、比重法、浮选法、磁选法 ●预处理包括:筛选去杂、磁力除铁、精选分级、原料粉碎

●筛分机械原理:根据颗粒的几何形状及其粒度,利用带有孔眼的 筛面对物料进行分选的机器,具有去杂、分级两个功能 ●网目:以每英寸长度内的筛孔数表示,称为网目数,简称网目, 以M表示 ●振动筛:发酵工厂应用最为广泛,带有风力除尘功能的筛选设备, 多用于清除物料中小或者轻的杂质。 ●滚筒筛分类有 1.并列式:颗粒直径分布均匀;2,串联式:小颗粒 含量较多的;3.同轴式:大颗粒含量不多的物料 ●重力分选原理:干重重力分选、湿重重力分选 ●湿重重力分选利用不同密度的颗粒在水中受到的浮力及下降阻力 的差异进行分选的。 ●典型重力分选机械粒状原料密度去石机采用干法重力分选块根原 料除石机该设备通常采用湿法重力分选 ●精选设备常用的有滚筒式精选机、碟片式精选机、螺旋球度精选 机 ●螺旋球度精选机从长颗粒中分离出球形颗粒 ●粉碎的理论模型(a)体积粉碎模型(b)表面粉碎模型(c)均一 粉碎模型 ●粉碎:粉碎是固体物料尺寸由大变小的过程,是利用机械力来克 服固体物料内部凝聚力使之破碎成符合要求的小颗粒的单元操作。 ●实际粉碎过程中受到两个因素的影响:原料性质和粉碎设备结构

合成生物学的研究进展

第!期中!国!科!学!基!金"# !! !学科进展与展望! 合成生物学研究的进展 !!"中国科学院院士$ 本文于!%%&年’!月!"日收到$张春霆" !天津大学生命科学与工程研究院"天津(%%%)!# "摘!要#!本文简要介绍了合成生物学发展的历史背景与定义"它的主要研究内容"包括基因线路$合成基因组$合成药物与生物基产品或材料等%探讨了合成生物学与基因工程的异同"介绍了合成生物学在中国的发展情况"讨论了伦理道德与安全问题"最后展望了合成生物学的发展前景% "关键词#!合成生物学!基因线路!合成基因组!合成药物!合成生物基产品或材料!合成*+,序列 !!合成生物学的历史背景与定义 ’--%年人类基因组计划启动!随后模式生物基因组计划也快速实施!产生了大量的基因组*+,序列信息"由于新技术的出现!又促进了转录组学#蛋白质组学和代谢组学等的产生和发展"这一切又催生了一系列新兴交叉学科!如生物信息学和系统生物学等"基础研究的成果最终要转化为生产力!而合成生物学在!’世纪初的出现则是上述学科发展的一个合乎逻辑的结果"那么什么是合成生物学呢$合成生物学网站是这样介绍的%合成生物学包括两重意义%&’’新的生物零件&./01’#组件&234563’和系统的设计与构建(&!’对现有的#天然存在的生物系统的重新设计!以造福人类社会&711.%))89:; 173156<5=>=?9$=0?)’"维基百科全书是这样描述的%合成生物学旨在设计和构建工程化的生物系统!使其能够处理信息#操作化合物#制造材料#生产能源#提供食物#保持和增强人类的健康和改善我们的环境&711.%))3:$@5A5.325/$=0?)@5A5)B9173156*<5=>=; ?9’" "!合成生物学的主要研究内容 "#!!基因线路$$%&%’())(*)+(’% 说起基因线路或基因回路!最早可追溯到C/6=<和D=:=2关于半乳糖操纵子模型的经典工作" !"#$%&杂志在!%%%年发表了基因振荡和基因双稳态两个基因线路!被认为是奠基性的工作"现在则 已发表了大量的有关基因线路的工作!本文不拟详加介绍"一个典型的基因线路是基因双稳态线路+’,!由两个蛋白质编码基因与两个相对应的启动子组成"线路是这样设计的%蛋白质’的表达抑制了蛋白质!的表达!系统只有蛋白质’存在(反之!蛋白质!的表达抑制了蛋白质’的表达!系统只有蛋白质!存在"可在双稳态线路中加入诱导物!促使系统在两个稳定状态之间任意翻转"基因线路有广泛的应用!因篇幅所限不能展开介绍!下面只介绍(个应用例子" &’’大肠杆菌照相术+!, 首先从集胞兰细菌基因组中克隆两个基因并转入大肠杆菌!使之能生成对光敏感的藻青素!简称E F G"接着利用大肠杆菌中双组份信号转导系统’()*+,-./!将与E F G共价结合的脱辅基蛋白与’()*的组氨酸激酶结构域融合构成一个嵌合体!成为一个光敏部件"同时!将0-.1基因与2"3*基因融合!通过在2"3*基因上游引入0-.1启动子使其表达依赖于,-./"通过这一基因线路!2"3*基因的表达就会受光调控"当有红光照射时&相当于被摄物体的光亮部分’!’()*的自磷酸化被抑制!从而,-./不能被磷酸化激活!2"3*基因关闭!由涂抹在琼脂基片上的菌苔形成的底片保持原色"当没有红光照射时&相当于被摄物体的黑暗部分’!过程正好相反!’()*的自磷酸化被激活!从而使2"3*基因被磷酸化的,-./激活而表达!其产物为半乳糖苷酶!催化菌苔中的B;?/>&一种化合物’反应生成

Roquefortine类生物碱的研究进展

第32卷第2期2013年4月 中国海洋药物 CHINESE JOURNAL OF MARINE DRUGS Vol.32 No.2 April,2013 Roquefortine类生物碱的研究进展△* 汤枝鹏,朱天骄,顾谦群,李德海* (海洋药物教育部重点实验室,中国海洋大学医药学院,山东青岛266003) 摘 要:Roquefortine是由真菌生产的一类结构复杂生物碱化合物,这类化合物来源于组氨酸和色氨酸,包含由吲哚吡咯二酮哌嗪骈合而成的四环母核,吲哚环的3位有异戊烯基取代,咪唑基通过单双键与四环母核相连。此类化合物具有抗革兰氏阳性细菌和抗肿瘤活性。本文主要从化合物的发现,生物活性,生物合成途径以及化学合成这几个方面对这类化合物的研究作全面的回顾。 关键词:Roquefortine;次级代谢产物;真菌 中图分类号:R931.6 文献标志码:A 文章编号:1002-3461(2013)02-076-09 真菌次级代谢产物是天然产物非常重要的来源之一,它们具有丰富的结构类型和良好的生物活性,如抗菌,免疫抑制,促进生长等,是药物先导化合物的重要来源;同时某些次级代谢产物会对人和动物的健康造成损害,被称为真菌毒素[1]。Roquefor-tine类生物碱都是从来源于各种环境下的真菌中分离得到的,roquefortine C在高浓度时具有神经毒性,是1种常见的真菌毒素。该类化合物的结构特征是包含由吲哚吡咯二酮哌嗪骈合而成的四环母核,吲哚环的3位有异戊烯基取代,咪唑基通过单键或双键与四环母核相连。其复杂的结构特征引起了化学家的广泛兴趣,对于化合物的化学合成和生物合成研究工作正在广泛开展。 1 Roquefortine类化合物的发现 Roquefortine C(1)是第一个被分离得到具有吲哚吡咯二酮哌嗪骈合而成的四环母核结构的roquefortine类化合物。1975年日本的Ohmomo等人在1株Penicillium roqueforti中分离得到3个生物碱类化合物,分别命名roquefortine A-C。其中只有roquefortine C的结构符合本文论述的结构类型。1976年法国的Scott等人在1株青霉中再次分到了化合物(1),并阐明了其化学结构,至此以后roquefortine C多次被不同的课题组重 复分离[2-5]。1978年Ohmono再次从上述真菌中分离得到了化合物(2)[6],它是化合物(1)的3位和12位双键被还原的产物,被认为是roqueforti-ne C生物合成的前体。1994年Musuk等从来源于木薯的1株Penicillium verrucosum var.cy-clopium中分离得到化合物(3),它是化合物(1)6位N的甲醛基取代物[7]。化合物(4)是Ko-zlovsky等于1996年分离得到的,它是化合物(1)14位N的乙基化衍生物[8]。2003年Kozlovsky等从来源于俄罗斯冻土的Penicillium aureovi-rens中分离到了化合物(5),它是化合物(2)16N的羧乙基衍生物[9]。化合物(6)是2005年由BenClark等人从澳大利亚土壤中的Gymnoascusreessii中分离得到,它是该类化合物中唯一从非青霉属的真菌中分离得到的天然产物[10],它是化合物(1)17位C上发生异戊烯基化的产物。2009年Du等从1株深海来源的青霉属真菌F23-2中分离得到了4个化合物(7~10)[11-12],其中16位N上来源于乙酸甲羟戊酸途径的侧链取代以及11a位的甲氧基取代都是首次报道,也是首次从深海来源样品中发现该类化合物。化合物(11)不是天然产物,而是化合物1在酸碱作用或紫外线照射的条件下发生双键异构化生成,其双键构型是Z式[13]。 *△基金项目:高等学校博士学科点专项科研基金(20100132120026);山东省优秀中青年科学家科研奖励基金计划(BS2010HZ027); 中国海洋大学“青年英才工程”科研支持经费资助  作者简介:汤枝鹏(1987-),男,硕士研究生,主要从事海洋微生物活性次级代谢产物研究。 *通讯作者:李德海,男,副教授Tel.:0086-532-82031619;fax:0086-532-82033054;E-mail:dehaili@ouc.edu.cn  收稿日期:2012-09-18 DOI:10.13400/https://www.doczj.com/doc/3d5120867.html,ki.cjmd.2013.02.013

相关主题
文本预览
相关文档 最新文档